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Abstract 

This chapter describes the theoretical background of the Quantum Mechanical/Molecular 

Mechanical (QM/MM) implementation in deMon2k within the framework of Auxiliary Density 

Functional Theory (ADFT). It aims to give the reader an overview of the current state-of-the-art of 

this QM/MM implementation and perspectives for its future development. To this end, we first 

derive the ADFT working equations for the QM and QM/MM energy and gradient expressions. 

Based on the joined QM/MM gradient expression, we present algorithms for QM/MM structure 

optimizations, transition state searches and molecular dynamics simulations. The use of auxiliary 

density perturbation theory (ADPT) in the framework of QM/MM is discussed on illustrative 

example implementations including analytic second-order ADFT energy derivatives, nuclear 

magnetic resonance chemical shift calculations and excited state calculations by time-dependent 

ADFT. The chapter closes with the description of a transformation program to generate deMon2k 

QM/MM inputs. 
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1. Introduction 

Over the last two decades, many Quantum Mechanical/Molecular Mechanical (QM/MM) 

implementations have emerged based on the pioneering works of Warshel and Karplus [1] and 

Warshel and Levitt [2] published in the seventies. Common to these approaches is the possibility 

to describe a relatively small part of a complex system at a more or less sophisticated QM level of 

theory whereas a computationally efficient MM force field is employed for the remaining part of 

the system. The fundamental idea behind these QM/MM methodologies is to balance the accuracy 

and reliability of the simulation with the size of the underlying model. Naturally, the interface 

between the QM and MM regions is most delicate and defines to a large extend the achievable 

accuracy and reliability of the overall simulation. Therefore, it is common practice to extend the 

QM region as much as possible in order to diminish these interface effects. To this end, a promising 

first-principle QM approach is Kohn-Sham Density Functional Theory (DFT) [3,4]. Although its 

computational demand is similar to the well-known Hartree-Fock method, it incorporates electron 

correlation through the used exchange-correlation functional. In the Linear Combination of 

Gaussian Type Orbital (LCGTO) approximation, Kohn-Sham DFT possesses a formal 𝑁𝑏𝑎𝑠
4  

scaling, 𝑁𝑏𝑎𝑠 being the number of basis functions in the calculation, due to the expansion of the 

two-electron Coulomb repulsion into four-center electron repulsion integrals (ERIs). Already in 

very early molecular LCGTO-DFT Kohn-Sham implementations, the calculation of the four-center 

ERIs was identified as a critical computational bottleneck. To overcome this bottleneck, Dunlap 

and co-workers [5,6] introduced the variational fitting of the Coulomb potential. Due to its 

variational nature, this approximation yields also a variational energy expression free of four-center 

ERIs. Note, however, that the variational bound shifts below the corresponding four-center ERI 

Kohn-Sham bound. For relative energies, this shift in the variational bound has no effect. Thus, 

Kohn-Sham LCGTO-DFT approaches incorporating the variational fitting of the Coulomb 
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potential yield the same relative energies as their four-center ERI counterparts at a considerably 

reduced computational cost. The same holds for so-called resolution-of-the-identity (RI) 

approaches [7] because RI is a direct result of the variational fitting of the Coulomb potential and, 

therefore, possesses the same variational bound [8]. To avoid four-center ERI calculations for 

hybrid functionals, the variational fitting of the Fock potentials [9-15] was introduced in deMon2k 

[16], too. The resulting four-center ERI free Kohn-Sham energy model is one of the first-principle 

QM approaches available in deMon2k for QM/MM simulations. It is named Density Fitted DFT 

(DF-DFT). 

The computational bottleneck in medium sized (50 to 500 atoms) DF-DFT calculations is 

the numerical integration of the exchange-correlation energy and its functional derivatives. 

Although, this computational bottleneck has been identified at the same time as the one for the two-

electron Coulomb repulsion, it has received much less attention. Early LCGTO-DFT 

implementations like deMon-KS [17] or DGAUS [18] used the semi-numerical fit of the exchange-

correlation potential with auxiliary functions as proposed by Sambe and Felton [19] to circumvent 

this bottleneck. This approach gives reasonable energies but is prune to numerical instabilities in 

energy derivatives [20]. To overcome this problem the direct use of the (linear scaling) 

approximated density for the calculation of the exchange-correlation potential was suggested [21-

24]. In the framework of deMon2k this has led to the development of Auxiliary Density Functional 

Theory (ADFT) [25] which is another first-principle energy model available for deMon2k QM/MM 

simulations. Because ADFT yields relative energies of the same quality as Kohn-Sham, albeit with 

a significant reduction in computational demand, we will focus in the following on ADFT as first-

principle QM approach in QM/MM calculations. With the now available MPI parallelized ADFT 

implementation in deMon2k large QM regions with 500 to 5000 atoms have become feasible. In 
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these calculations, the computational bottleneck has shifted to linear algebra tasks such as matrix 

multiplications and matrix diagonalizations. In this respect, it is important to note that the 

variational fitting of the Coulomb potential as well as the use of the approximated density for the 

calculation of the exchange-correlation contributions introduce additional linear algebra tasks in 

form of solving inhomogeneous linear equation systems. To avoid corresponding computational 

bottlenecks we have adapted Krylov subspace methods, such as MINRES [26] and Eirola-

Nevanlinna [27], for the density fitting [28] and perturbation theory [29] calculations in deMon2k. 

This chapter is organized as follows. In the next section, we derive the QM/MM energy and 

gradient working equations implemented in deMon2k. Section 3 describes algorithms for QM/MM 

structure optimizations and transition state searches based on the trust region method for local 

optimization. In the next section, the propagator equations for QM/MM molecular dynamics 

simulations in various closed system ensembles using factorized Liouville operators are presented. 

Section 5 introduces auxiliary density perturbation theory (ADPT) for the calculation of analytic 

second-order ADFT energy derivatives. Their extension to QM/MM, currently under development 

in the deMon developers’ community, is discussed, too. The following section describes deMon2k 

magnetic shielding and excited states calculations within the QM/MM framework. These are 

typical examples for QM/MM electronic property calculations employing perturbation theory. 

Section 7 presents the new QM/MM Input Builder (QIB) for deMon2k. A résumé of the current 

state-of-the-art ADFT QM/MM implementation in deMon2k is given in the last section of this 

book chapter. 
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2. Energies and gradients 

The QM LCGTO Kohn-Sham energy expression is given by: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈
𝑄𝑀

𝜇,𝜈

+  
1

2
 ∑ ∑ 𝑃𝜇𝜈  𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜈‖𝜎𝜏⟩ + 𝐸𝑥𝑐[𝜌] (1) 

In our notation Greek letters, here 𝜇, 𝜈, 𝜎 and 𝜏, denote (contracted) atom centered Gaussian type 

orbitals. For clarity of presentation, we restrict ourselves to closed-shell systems. The closed-shell 

density matrix elements, 𝑃𝜇𝜈, are calculated as: 

𝑃𝜇𝜈 =  2 ∑ 𝑐𝜇𝑖 𝑐𝜈𝑖

𝑜𝑐𝑐

𝑖

 (2) 

The upper limit in Eq. (2), 𝑜𝑐𝑐, denotes the number of doubly occupied molecular orbitals (MOs) 

in the QM system and 𝑐𝜇𝑖 are the corresponding MO coefficients. For an isolated QM system, the 

first term in Eq. (1) represents the mono-electronic core energy. The QM core matrix elements are 

given in atomic units, which we use throughout this chapter, by: 

𝐻𝜇𝜈
𝑄𝑀 =  −

1

2
 ⟨𝜇|𝛁2|𝜈⟩ + ∑ ⟨𝜇|

𝑍𝐶

|𝒓 − 𝑪|
|𝜈⟩

𝑄𝑀

𝐶

 (3) 

They collect the kinetic energy and nuclear attraction of the electrons. The second term in Eq. (1) 

describes the Coulomb repulsion between the electrons. It includes the four-center two-electron 

integrals responsible for the 𝑁𝑏𝑎𝑠
4  scaling of the method: 

⟨𝜇𝜈‖𝜎𝜏⟩ =  ∬
𝜇(𝒓1) 𝜈(𝒓1) 𝜎(𝒓2) 𝜏(𝒓2) 

|𝒓1 −  𝒓2|
 𝑑𝒓1 𝑑𝒓2 (4) 

In the here used short-hand ERI notation ∥ represents the two-electron Coulomb operator 

1/|𝒓1 −  𝒓2|. It also separates functions from electron 1, on the left, from those of electron 2, on 

the right. In the following, we will use the same notation for two- and three-center ERIs. The last 
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term in Eq. (1) denotes the exchange-correlation energy functional evaluated with the Kohn-Sham 

density and its derivatives. In LCGTO the Kohn-Sham density can be expressed as: 

𝜌(𝒓) =  ∑ 𝑃𝜇𝜈  𝜇(𝒓) 𝜈(𝒓) 

𝜇,𝜈

 (5) 

As already mentioned, the two-electron Coulomb repulsion in Eq. (1) introduces a formal 

𝑁𝑏𝑎𝑠
4  scaling due to the four-center ERIs. To circumvent this computational bottleneck, we employ 

the variational fitting of the Coulomb potential based on the following second-order energy error 

functional [5,6]: 

𝜀2
𝐻 =   

1

2
 ∬

[𝜌(𝒓1) − �̃�(𝒓1)]  [𝜌(𝒓2) −  �̃�(𝒓2)] 

|𝒓1 − 𝒓2|
 𝑑𝒓1 𝑑𝒓2 (6) 

The here appearing approximated electronic density, �̃�(𝒓), also named auxiliary density, is 

calculated as a linear combination of auxiliary functions which we denote by Latin letters: 

�̃�(𝒓) =  ∑ 𝑥�̅� �̅�(𝒓) 

�̅�

 (7) 

In deMon2k atom centered primitive Hermite Gaussian functions, indicated by a bar, are used as 

auxiliary functions [30]. Inserting this expansion of �̃�(𝒓) and the LCGTO expansion of the Kohn-

Sham density, Eq. (5), into Eq. (6) yields: 

𝜀2
𝐻 =  

1

2
  ⟨𝜌‖𝜌⟩ − ⟨𝜌‖�̃�⟩ + 

1

2
 ⟨�̃�‖�̃�⟩                                                                                        

=
1

2
 ∑ ∑ 𝑃𝜇𝜈 𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜈‖𝜎𝜏⟩ − ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� +  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ 

 

 

(8) 

It is straightforward to show that 𝜀2
𝐻 is semi-positive definite [31]. Thus, we obtain from Eq. (8): 

1

2
 ∑ ∑ 𝑃𝜇𝜈 𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜈‖𝜎𝜏⟩ ≥ ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ 
 

(9) 
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Inserting this inequality into the Kohn-Sham energy expression, Eq. (1), yields the QM DF-DFT 

energy expression: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈
𝑄𝑀

𝜇,𝜈

+  ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ +  𝐸𝑥𝑐[𝜌] (10) 

The Coulomb fitting coefficients, 𝑥�̅�, in Eq. (10) are calculated by minimizing the second-order 

error functional of Eq. (6), which is accompanied by an energy maximization [32]: 

𝜕𝜀2
𝐻

𝜕𝑥�̅�

=  − ∑ 𝑃𝜇𝜈

𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  + ∑ 𝑥𝑙 ̅ ⟨𝑙‖̅�̅�⟩ 

𝑙 ̅

≡  0      ∀ �̅� 
 

(11) 

Collecting these equations for all auxiliary functions yields the inhomogeneous linear equation 

system, 

𝑮 𝒙 = 𝑱 , (12) 

which must be solved in each self-consistent field (SCF) iteration. In Eq. (12) 𝑮 and 𝑱 are the 

Coulomb matrix and vector, respectively, given by 

𝑮 =   (

〈1̅‖1̅〉 〈1̅‖2̅〉 … 〈1̅‖�̅�〉

〈2̅‖1̅〉 〈2̅‖2̅〉 … 〈2̅‖�̅�〉
⋮

〈�̅�‖1̅〉
⋮

〈�̅�‖2̅〉
⋱
…

⋮
〈�̅�‖�̅�〉

)    and   𝑱 =   (

〈𝜌‖1̅〉

〈𝜌‖2̅〉
⋮

〈𝜌‖�̅�〉

) . 

 

 

As the QM Kohn-Sham energy, the QM DF-DFT energy is variational, due to the variational 

fitting, but with a lower energy bound. For relative energies this shift of the variational bound has 

no effect. 

To obtain the ADFT energy expression, only the functional argument of 𝐸𝑥𝑐 must be 

changed to the auxiliary density. Thus, the QM ADFT energy is given by [22]: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈
𝑄𝑀

𝜇,𝜈

+  ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ +  𝐸𝑥𝑐[�̃�] (13) 
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To demonstrate that also the ADFT QM energy is variational, we now calculate ADFT Kohn-Sham 

matrix elements as derivatives of the energy with respect to density matrix elements: 

𝐾𝜇𝜈 =  
𝜕𝐸𝑄𝑀

𝜕𝑃𝜇𝜈
=  𝐻𝜇𝜈

𝑄𝑀 +  ∑⟨𝜇𝜈‖�̅�⟩  𝑥�̅�

�̅�

+ 
𝜕𝐸𝑥𝑐[�̃�]

𝜕𝑃𝜇𝜈
   (14) 

For the derivative of the ADFT exchange-correlation energy, 𝐸𝑥𝑐[�̃�], assuming the local density 

approximation (LDA) for clarity of discussion, follows: 

 
𝜕𝐸𝑥𝑐[�̃�]

𝜕𝑃𝜇𝜈
=  ∫

𝛿𝐸𝑥𝑐[�̃�]

𝛿�̃�(𝒓)
 
𝜕�̃�(𝒓)

𝜕𝑃𝜇𝜈
 𝑑𝒓   (15) 

To proceed, we now define the ADFT exchange-correlation potential, 𝑣𝑥𝑐[�̃�], as the functional 

derivative of the ADFT exchange-correlation energy with respect to the auxiliary density: 

𝑣𝑥𝑐[�̃�] ≡
𝛿𝐸𝑥𝑐[�̃�]

𝛿�̃�(𝒓)
 (16) 

The differentiation of the auxiliary density in Eq. (15) can be expressed with the formal solution 

of Eq. (12), 

𝑥�̅� =  ∑  𝐺�̅�𝑙 ̅
−1 ⟨𝑙‖̅𝜇𝜈⟩ 𝑃𝜇𝜈

𝑙̅

 ,    

as: 

𝜕�̃�(𝒓)

𝜕𝑃𝜇𝜈
=  ∑ �̅�(𝒓)

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1 ⟨𝑙‖̅𝜇𝜈⟩    (17) 

Inserting Eq. (16) and (17) into Eq. (15) yields for the derivative of the ADFT exchange-correlation 

energy: 

𝜕𝐸𝑥𝑐[�̃�]

𝜕𝑃𝜇𝜈
=   ∑  ⟨𝜇𝜈‖�̅�⟩

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1 ⟨𝑙|̅𝑣𝑥𝑐[�̃�]⟩ (18) 

Thus, the ADFT Kohn-Sham matrix elements can be straightforwardly calculated by the variation 

of the corresponding energy. This demonstrates the variational nature of the ADFT energy 
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expression in Eq. (13), albeit with its own variational bound. As for the DF-DFT energy, relative 

ADFT energies are in good agreement with their Kohn-Sham counterparts. Therefore, ADFT yields 

relative energies that are almost indistinguishable from their Kohn-Sham counterparts (≲ 0.1 

kcal/mol) with significant reduction in the computational scaling and demand. For the explicit 

formulation of the ADFT Kohn-Sham matrix elements it is convenient to introduce the exchange-

correlation coefficients as: 

𝑧�̅� ≡   ∑  

𝑙 ̅

𝐺�̅�𝑙 ̅
−1 ⟨𝑙|̅𝑣𝑥𝑐[�̃�]⟩ (19) 

Eq. (19) can be reformulated as an inhomogeneous linear equation system analog to the Coulomb 

fitting equation system in Eq. (12): 

𝑮 𝒛 = 𝑳  (20) 

In Eq. (20) 𝑳 denotes the exchange-correlation vector with elements 𝐿�̅� = ⟨�̅�|𝑣𝑥𝑐[�̃�]⟩. Note that 𝒛 

is spin polarized. In the most recent deMon2k versions the linear equation systems of Eqs. (12) and 

(20) are solved by the Krylov subspace method MINRES [28]. As a result, the computational 

overhead associated to the calculation of Coulomb and exchange-correlation coefficients is 

negligible even for systems with hundreds of thousands of auxiliary functions. Thus, the use of 

extended auxiliary function sets such as GEN-A2* [33] presents no computational challenge. With 

the Coulomb and exchange-correlation coefficients at hand, the ADFT Kohn-Sham matrix can be 

expressed as:    

𝐾𝜇𝜈 =  
𝜕𝐸𝑄𝑀

𝜕𝑃𝜇𝜈
=  𝐻𝜇𝜈

𝑄𝑀 +  ∑⟨𝜇𝜈‖�̅�⟩  (𝑥�̅� +  𝑧�̅�)

�̅�

   (21) 

Note that the ADFT Kohn-Sham matrix is free of density matrix elements, which greatly simplifies 

data handling in parallel applications. This is one reason for the excellent parallel scaling of ADFT. 
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 Whereas it is rather straightforward to extend the here outlined LDA ADFT discussion to 

functionals of the generalized gradient approximation (GGA), the computationally efficient 

implementation of hybrid functionals into ADFT (and DF-DFT) is less obvious. To facilitate our 

discussion, we use the following generic ADFT hybrid functional QM energy expression: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈  𝐻𝜇𝜈
𝑄𝑀

𝜇,𝜈

+  ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ +  𝛼 𝐸𝑥
𝐹 + 𝐸𝑥𝑐[�̃�] (22) 

Here 𝛼 represents the mixing parameter for the Fock exchange energy, 𝐸𝑥
𝐹, of the hybrid functional. 

The corresponding counterpart (1 − 𝛼) for the DFT exchange energy is absorbed into the ADFT 

exchange-correlation energy functional and will be of no further concern to the following 

discussion. For a more detailed discussion of the structure of global and range-separated hybrid 

functionals in ADFT, we refer the interested reader to [15,34-36]. The computational drawback 

arises from the Fock exchange energy, 

𝐸𝑥
𝐹 =  − ∑ ∑ 𝑃𝜇𝜈  𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜎‖𝜈𝜏⟩ , 

which contains four-center ERIs and, therefore, will jeopardize the computational benefits of 

ADFT. To overcome this problem, we implemented the variational fitting of the Fock potential 

[13,15] in deMon2k. To this end, we express the Fock exchange energy in terms of occupied MOs, 

𝜓𝑖(𝒓) = ∑ 𝑐𝜇𝑖

𝜇

𝜇(𝒓) , 

as 

𝐸𝑥
𝐹 =  − ∑ ∬

𝜓𝑖 (𝒓1) 𝜓𝑗(𝒓1) 𝜓𝑖 (𝒓2) 𝜓𝑗(𝒓2)

|𝒓1 − 𝒓2 |
 𝑑𝒓1

𝑜𝑐𝑐

𝑖,𝑗

𝑑𝒓2  (23) 

For the variational Fock potential fitting we now introduce MO transition densities, 𝜌𝑖𝑗(𝒓), and 

corresponding approximated transition densities, �̃�𝑖𝑗(𝒓): 
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𝜌𝑖𝑗(𝒓) = 𝜓𝑖(𝒓)𝜓𝑗(𝒓) = ∑ 𝑐𝜇𝑖 𝑐𝑣𝑗 𝜇(𝒓) 𝜈(𝒓) 

𝜇,𝜈

 (24) 

�̃�𝑖𝑗(𝒓) = ∑ 𝑥�̅�𝑖𝑗 �̅�(𝒓)  

�̅�

 (25) 

With these MO transition densities the variational fitting of the Fock potential can be based on the 

following second-order error functional [13,15]: 

𝜀2
𝐹 =  − ∑ ∬

[𝜌𝑖𝑗(𝒓1) −  �̃�𝑖𝑗(𝒓1)]  [𝜌𝑖𝑗(𝒓2) −  �̃�𝑖𝑗(𝒓2)] 

|𝒓1 − 𝒓2|
 𝑑𝒓1 𝑑𝒓2

𝑜𝑐𝑐

𝑖,𝑗

  (26) 

Expanding the transition densities in Eq. (26) yields: 

𝜀2
𝐹 =  − ∑⟨𝜌𝑖𝑗‖𝜌𝑖𝑗⟩

𝑜𝑐𝑐

𝑖,𝑗

+ 2 ∑⟨𝜌𝑖𝑗‖�̃�𝑖𝑗⟩

𝑜𝑐𝑐

𝑖,𝑗

−  ∑⟨�̃�𝑖𝑗‖�̃�𝑖𝑗⟩

𝑜𝑐𝑐

𝑖,𝑗

                                                                 

=  −
1

4
 ∑ ∑ 𝑃𝜇𝜈 𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜎‖𝜈𝜏⟩  + 2 ∑ ∑⟨𝜓𝑖 𝜓𝑗‖�̅�⟩

�̅�

𝑜𝑐𝑐

𝑖,𝑗

 𝑥�̅�𝑖𝑗 − ∑ ∑ 𝑥�̅�𝑖𝑗

𝑘,̅ 𝑙 ̅

𝑜𝑐𝑐

𝑖,𝑗

𝑥𝑙�̅�𝑗 ⟨�̅�‖𝑙⟩̅ 

Because 𝜀2
𝐹 is (termwise) semi-negative definite [35] the following inequality holds: 

−
1

4
 ∑ ∑ 𝑃𝜇𝜈 𝑃𝜎𝜏

𝜎,𝜏𝜇,𝜈

 ⟨𝜇𝜎‖𝜈𝜏⟩ ≤ −2 ∑ ∑⟨𝜓𝑖  𝜓𝑗‖�̅�⟩

�̅�

𝑜𝑐𝑐

𝑖,𝑗

 𝑥�̅�𝑖𝑗 + ∑ ∑ 𝑥�̅�𝑖𝑗

𝑘,̅ 𝑙 ̅

𝑜𝑐𝑐

𝑖,𝑗

𝑥𝑙�̅�𝑗  ⟨�̅�‖𝑙⟩̅ 
 

(27) 

The Fock exchange fitting coefficients are obtained by the maximization of the negative fitting 

error, 

𝜕𝜀2
𝐹

𝜕𝑥�̅�𝑖𝑗

=  −2 ∑⟨𝜓𝑖  𝜓𝑗‖�̅�⟩

𝑜𝑐𝑐

𝑖,𝑗

+ 2 ∑ 𝑥𝑙�̅�𝑗  ⟨𝑙‖̅�̅�⟩

 𝑙 ̅

≡  0      ∀ �̅�  ∧  𝑖, 𝑗 ∈ 𝑜𝑐𝑐, (28) 

which is accompanied by the minimization of the approximated Fock exchange energy. This 

suggests that the simultaneous variational fitting of Coulomb and Fock potentials will benefit from 

systematic error compensation if the same auxiliary function set is used for both fits. In fact, if the 

variational nature of both potential fits are preserved, the resulting four-center ERI free total 
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Hartree-Fock energies for molecules with thousands of basis functions are nearly indistinguishable 

(< 1 kcal/mol) from their four-center ERI counterparts! Corresponding binding energy differences 

between four- and three-center Hartree-Fock calculations are below 10−2 kcal/mol. From Eq. (28) 

the following linear equation systems, 

𝑮 𝒙𝑖𝑗 =  𝑱𝑖𝑗   ∀  𝑖, 𝑗 ∈ 𝑜𝑐𝑐, (29) 

with 

 𝐽�̅�𝑖𝑗 =  ⟨𝜓𝑖  𝜓𝑗‖�̅�⟩ (30) 

are obtained. Therefore, the Fock exchange fitting coefficients are given by: 

𝑥�̅�𝑖𝑗 =  ∑ 𝐺�̅�𝑙 ̅
−1

𝑙̅

⟨𝑙 ̅‖ 𝜓𝑖 𝜓𝑗⟩ 
(31) 

Inserting these Fock exchange fitting coefficients into Eq. (27) and the resulting 

approximation for the Fock exchange energy into Eq. (22) yields the following generic ADFT 

hybrid functional energy expression free of four-center ERIs: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈  𝐻𝜇𝜈
𝑄𝑀

𝜇,𝜈

+  ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ −   

                                    𝛼 ∑ ∑  ⟨𝜓𝑖  𝜓𝑗‖�̅�⟩ 

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1

𝑜𝑐𝑐

𝑖,𝑗

 ⟨ �̅� ‖ 𝜓𝑖 𝜓𝑗⟩ + 𝐸𝑥𝑐[�̃�]   

 

 

(32) 

Direct implementation of Eq. (32) leads to an algorithm that scales as 𝒪(𝑁𝑎𝑢𝑥 × 𝑁𝑏𝑎𝑠
2 × 𝑁𝑜𝑐𝑐) with 

𝑁𝑎𝑢𝑥 and 𝑁𝑜𝑐𝑐 being the number of auxiliary functions and occupied MOs, respectively. Such an 

algorithm is useful only when 𝒪(𝑁𝑏𝑎𝑠) ≫  𝒪(𝑁𝑜𝑐𝑐) [10,11]. Note, however, that Eq. (32) is 

invariant under orthogonal transformation of the MOs, because the density matrix is invariant under 

such transformations. Thus, any set of MOs obtained by an orthogonal transformation of the 

canonical MOs (CMOs) can be used in Eq. (32). In particular, the CMOs (see Fig.1a) can be 
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transformed into spatially localized MOs (LMOs) by minimizing or maximizing, an appropriated 

functional (Fig 1b). This facilitates efficient screening in the integral transformation from the 

atomic to the molecular representation. 

Figure 1: Canonical (a) and localized (b) molecular orbitals of n-C10H22.The atomic centers for 

the local auxiliary function set (c) and local basis set (d) are indicated by blue and red regions, 

respectively. 

The recently developed variational fitting of the Fock potential [13] based on Foster-Boys 

localization explores this possibility by utilizing LMOs in Eq. (32). As a result, it shows an 

improved computational performance for the calculation of variational fitted Fock exchange 

energies. In this implementation, a two step localization is used. First an incomplete Cholesky 
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decomposition [37] is performed followed by a tighter Foster-Boys localization [38,39]. The 

molecular orbital localization permits a variational fitting of Fock exchange by defining fitting 

domains around each LMO. In particular, we define fitting domains around each localized MO in 

terms of atomic centers. To this end, we calculate the atomic Löwdin population for each atom 𝐴 

in a given LMO, 𝜓𝑖
́ , according to 

𝑛𝑖𝐴 =  ∑ ∑ 𝑆𝜇𝜈
1/2

𝜈

𝑐𝜈𝑖 

𝜇∈𝐴

. 
 

After ordering these atomic populations from the largest to the smallest, we sum them up until a 

threshold value (default is 0.9995 for final energy calculation) is reached. All atoms that contribute 

to this sum define the atomic domain for the given LMO. The auxiliary functions on these atoms 

define the local auxiliary function set given by the blue region in Fig. 1c. The corresponding local 

basis set is defined by all basis functions of the domain atoms and augmented by basis functions 

from neighboring atoms with significant overlap (by default ≥ 10−6) into the domain. This is the 

red region in Fig. 1d. Because of this localization, each LMO has a particular Coulomb matrix. The 

computational cost for computing all these local 𝑮 and 𝑮−𝟏 matrices [40] for all occupied LMOs 

is in larger systems more than overcompensated by the reduced dimensionality of these matrices. 

Thus, the final QM energy expression used for ADFT QM/MM calculation has the form: 

𝐸𝑄𝑀 =  ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈

𝜇,𝜈

+ ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩  𝑥�̅� −  
1

2
 ∑  𝑥�̅�

�̅�,𝑙 ̅

𝑥𝑙 ̅ ⟨�̅�‖𝑙⟩̅ −             

                                    
𝛼

2
 ∑ ∑ ∑ 𝑃𝜇𝜈  ⟨𝜇 �́�𝑖‖�̅�⟩ 

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1

𝑜𝑐𝑐

𝑖

 ⟨𝑙 ̅‖ �́�𝑖 𝜈⟩

𝜇,𝜈

+ 𝐸𝑥𝑐[�̃�]   

 

 

(33) 

Note that in QM/MM calculations, the core Hamilton matrix elements in Eq. (33) are 

augmented by the electrostatic embedding from the MM region. They are given by: 
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𝐻𝜇𝜈 =  𝐻𝜇𝜈
𝑄𝑀 −  ∑〈𝜇𝜈|�̂�𝐷(𝟎)〉 𝑄𝐷  

𝑀𝑀

𝐷

 (34) 

In Eq. (34) 𝐻𝜇𝜈
𝑄𝑀

 are the QM core matrix elements given by Eq. (3) and 𝑄𝐷 are the MM atomic 

charges. For generality of discussion, we introduce the nuclear attraction type operator �̂�𝐷defined 

as [41]:  

�̂�𝐷(𝒌) =   (
𝜕

𝜕𝐷𝑥
)

𝑘𝑥

(
𝜕

𝜕𝐷𝑦
)

𝑘𝑦

(
𝜕

𝜕𝐷𝑧
)

𝑘𝑧 1

|𝒓 − 𝑫|
 

 

(35) 

This general definition allows inclusion of higher point moments on MM atoms, e.g. for polarizable 

force fields [42]. Work in this direction is currently under development within the deMon 

developers’ community. However, for clarity of presentation we restrict ourselves here to MM 

point charges, i.e. 𝑘𝑥 = 𝑘𝑦 =  𝑘𝑧 = 0 in Eq. (35). Although the core Hamilton matrix elements are 

only calculated once for each geometry at the beginning of the SCF, they can become 

computational demanding for larger number of MM atoms if standard nuclear attraction integral 

recurrence relations [43] are used. Due to the slow decay of Coulomb interactions an efficient 

screening of these integrals is not possible. However, it is possible to separate the QM/MM 

electrostatic interaction integrals in Eq. (34) into near- and far-field integrals [44]. The far-field 

QM/MM electrostatic interaction integrals are obtained by the following asymptotic expansion 

[45]: 

⟨𝛼𝛽|�̂�𝐷(𝟎)⟩
𝐴

 ~ ∑ ∑ ∑
(−1)𝑚

𝑚𝑥! 𝑚𝑦! 𝑚𝑧!
𝑚𝑧𝑚𝑦𝑚𝑥

(
𝜕

𝜕𝐷𝑥
)

𝑘𝑥

(
𝜕

𝜕𝐷𝑦
)

𝑘𝑦

(
𝜕

𝜕𝐷𝑧
)

𝑘𝑧 1

|𝑨 − 𝑫|
 ⟨𝛼 + 𝑚|𝛽⟩ 

 

 

The superscript 𝐴 indicates the center of the asymptotic expansion. There are always two 

expansions, one for the center where atomic orbital 𝛼 is located and the other for the center where 

the atomic orbital 𝛽 is located. The extension of this asymptotic expansion to higher moments is 
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possible as shown in the double asymptotic expansion of ERIs [46]. Thus, QM/MM core Hamilton 

matrix elements in deMon2k are calculated as (only the asymptotic expansion with respect to center 

𝐴 is explicitly shown): 

   𝐻𝜇𝜈 =  𝐻𝜇𝜈
𝑄𝑀 −  ∑ 〈𝜇𝜈|�̂�𝐷(𝟎)〉 𝑄𝐷

𝑁𝑒𝑎𝑟

𝐷

− ∑ ∑ ∑
(−1)𝑚

𝑚𝑥! 𝑚𝑦! 𝑚𝑧!
𝑚𝑧𝑚𝑦𝑚𝑥

 ⟨𝛼 + 𝑚|𝛽⟩ ∑ 𝑇𝐴𝐷(𝒎) 𝑄𝐷

𝐹𝑎𝑟

𝐷

  (36) 

with 

𝑇𝐴𝐷(𝒎) =   (
𝜕

𝜕𝐷𝑥
)

𝑚𝑥

(
𝜕

𝜕𝐷𝑦
)

𝑚𝑦

(
𝜕

𝜕𝐷𝑧
)

𝑚𝑧 1

|𝑨 − 𝑫|
 

 

(37) 

In Eq. (36) the sum limits 𝑁𝑒𝑎𝑟 and 𝐹𝑎𝑟 refer to MM atoms in the near- and far-field of the QM 

region. There are two major advantages associated to the above asymptotic expansion of the 

electrostatic MM embedding. First, nuclear attraction type integrals are substituted by overlap type 

integrals, ⟨𝛼 + 𝑚|𝛽⟩, which avoids the calculation of the incomplete gamma function. Second, the 

far-field loop over MM atoms is factored out and, therefore, scales only with the number of MM 

atoms independent from the electronic expansion of the QM region. As a result, the MM embedding 

in deMon2k QM/MM SCF calculations produces only a small computational overhead in the range 

of a few percent compared to the corresponding QM calculation [44]. The QM/MM modified core 

matrix elements enter the corresponding ADFT Kohn-Sham matrix according to Eq. (21) where 

𝐻𝜇𝜈
𝑄𝑀

 is substituted by 𝐻𝜇𝜈 from Eq. (34). In this way, the MM embedding alters directly the SCF. 

 In practical QM/MM applications the user has to choose the density functional 

approximation (DFA), the basis set, the auxiliary functions set and other specifications in the here 

outlined methodological frameworks of DF-DFT and ADFT. The DFAs available for QM/MM 

calculations in deMon2k are LDA, GGA and meta-GGA (only within DF-DFT) as well as global 
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and range-separated hybrids. By default, the LDA is used in form of Dirac exchange [47] and VWN 

correlation [48]. Because in ADFT LDA and GGA performance is similar, we recommend GGA 

functionals for QM/MM calculations. In particular, PBE [49] in combination with the GGA 

optimized DZVP-GGA basis and GEN-A2* auxiliary function set [33] yields reliable optimized 

structure parameters and fair qualitative binding energies throughout the periodic table. Note that 

for heavier elements scalar relativistic effects must be taken into account either by effective core 

potentials (ECPs) or by model core potentials (MCPs) [50]. The ECP approach can also be used 

for the introduction of capping potentials [51] in QM/MM calculations. We also recommend the 

PBE functional for QM/MM calculation because analytic ADFT kernel formulas [52] are 

implemented in deMon2k. This greatly facilitates QM/MM response calculations with Auxiliary 

Density Perturbation Theory (ADPT). For most other GGA functionals the ADFT kernels are 

calculated by finite-differences [53]. If van der Waals interaction are important, e.g. in QM/MM 

structure optimizations, the DF-DFT and ADFT LDA or GGA energy expressions must be 

augmented by empirical dispersion terms [54-56] because these interactions are not captured by 

those functionals. Although ADFT hybrid calculations show similar serial performance as 

corresponding GGA runs, we do not recommend them for initial QM/MM structure optimizations 

due to their less than ideal parallel scaling [40]. Instead, we advocate composite approaches [57] 

consisting of GGA structure optimization and single-point hybrid energy calculations, e.g. with 

PBE0 [58,59]. At this point, it is important to note that basis set convergence for hybrid functionals 

is much slower than for GGA functionals. To this end, we have made good experience with 

augmented Dunning type basis sets [60]. The handling of the three-center ERIs and the grid 

accuracy for the numerical integration of the exchange-correlation energy and potential are 

important for the computational performance of QM/MM calculations, too. By default, the direct 

SCF setting is used in deMon2k. In this approach the three-center ERIs are repeatedly calculated 
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(twice) in each SCF iteration. If sufficient random access memory (RAM) is available, the use of 

the so-called mixed SCF approach [61,62] is very beneficial for the computational performance. 

The tightening of the adaptive grid accuracy [63,64] beyond the default value of 10−5 a.u. will 

increase computational demand. Thus, care is advised. For linear algebra tasks, we recommend the 

use of MINRES for the density fitting and the ScaLAPACK extension of deMon2k for matrix 

diagonalization. 

 With QM energy models for QM/MM calculations at hand, we now express the QM/MM 

energy as: 

𝐸𝑄𝑀/𝑀𝑀 =  𝐸𝑄𝑀 + 𝐸𝑀𝑀 + 𝐸𝑄𝑀𝑀𝑀 + 𝐸𝑁𝑁 (38) 

In Eq. (38) 𝐸𝑀𝑀, 𝐸𝑄𝑀𝑀𝑀 and 𝐸𝑁𝑁 denote the MM energy, the QMMM interaction energy and the 

nuclear repulsion energy for the QM/MM system, respectively. All three terms are classical and, 

therefore, have no dependency from the wave function and electronic density. In deMon2k the 

following MM energy expression is implemented: 

𝐸𝑀𝑀 =  𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑈𝑟𝑒𝑦 + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠 + 𝐸𝑖𝑡𝑜𝑟𝑠 + 𝐸𝑣𝑑𝑊 + 𝐸𝑄𝑄 (39) 

The first five terms correspond to bonded contributions, whereas the last two are non-bonded terms. 

For simplicity of discussion, we will use generic formulas for the individual terms, i.e. for bond 

stretching, Urey-Bradley interaction, angle bending and so on. The analytic forms of the generic 

bond stretching, Urey-Bradley interaction, angle bending and proper torsion are given by: 

 𝐸𝑏𝑜𝑛𝑑 = 𝑘𝑏(𝑑 − 𝑑0)2 (40) 

𝐸𝑈𝑟𝑒𝑦 =  𝑘𝑙(𝑙 − 𝑙0)2 (41) 

 𝐸𝑏𝑒𝑛𝑑 = 𝑘𝜗(𝜗 − 𝜗0)2 (42) 
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 𝐸𝑡𝑜𝑟𝑠 = ∑ 𝑉𝑛[1 + cos(𝑛𝜑 − 𝜑𝑛)]

𝑛

 (43) 

In the first equation, the distance is calculated as 𝑑 = |𝑨 − 𝑩|. The equilibrium distance 𝑑0 and 

the force constant 𝑘𝑏 are force field parameters for the specific bond. In the Urey term (see Fig. 2), 

𝑙 represents the distance between two atoms, with the difference that these atoms are at the ends of 

an angle. The equilibrium distance 𝑙0 and force constant 𝑘𝑙 are given by the force field, too.  

 

Figure 2: Urey-Bradley interaction (top) as modeled by a spring-like system formed by the B and 

C atoms. Bottom: Definition of a proper torsion (left) over consecutive bond connected atoms and 

definition of an improper torsion (right) where consecutive bond connectivity is not mandatory. 

  

Also the angle bending in Eq. (42) is modeled by a harmonic potential. The corresponding force 

constant, 𝑘𝜗, and equilibrium angle, 𝜗0, are force field parameters for the bending. Eq. (43) is used 

for the calculation of both proper and improper torsion as depicted in Fig. 2. The difference between 

proper and improper torsions is not in their mathematical formulation, but rather on how they are 

defined: Proper torsions are defined over atoms successively connected, such that whenever going 

from one atom to the following, there is always a bond between them. On the other hand, for 
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improper torsions this connectivity is not mandatory. This serves various purposes like restricting 

three atoms into a plane, e.g. to describe a sp2 carbon binding. Fig. 2 shows, besides the Urey 

interactions in the top, typical torsion definitions in the bottom. Similar to the rest of the bonded 

terms the parameters needed for the calculations of the torsion contributions are given by the force 

field dataset (FFDS) file. The number of expansion coefficients, 𝑉𝑛, and phase factors, 𝜑𝑛, in Eq. 

(43) is four for proper torsions, and three for the improper torsions. All here discussed bonded MM 

interactions require molecular connectivity information, which is either provided by the user in the 

deMon2k input file [65] (see also Section 7) or automatically generated based on the distances 

between MM atoms. The latter is particularly useful for molecular assemblies, e.g. water clusters. 

For the non-bonded interactions, the energy expressions used are the well-known van der 

Waals (aka Lennard Jones) and point charge Coulomb potentials: 

𝐸𝑣𝑑𝑊 = 4 ∑ 𝜖𝐴𝐵

𝑀𝑀

𝐴>𝐵

[(
σ𝐴𝐵

|𝑨 − 𝑩|
)

12

− (
σ𝐴𝐵

|𝑨 − 𝑩|
)

6

] (44) 

  

𝐸𝑄𝑄 = ∑
𝑄𝐴𝑄𝐵

|𝑨 − 𝑩|

𝑀𝑀

𝐴>𝐵

  (45) 

  

As for the bonded terms, the atomic parameters for atoms A and B in Eqs. (44) and (45) are defined 

by the force field. To obtain the diatomic parameters 𝜖𝐴𝐵 and 𝜎𝐴𝐵, a combination rule, which can 

be either an arithmetic or a geometric average, is used as it is shown below for the epsilon 

parameter: 

𝜖𝐴𝐵 =
1

2
(𝜖𝐴 + 𝜖𝐵) 

𝜖𝐴𝐵 = √𝜖𝐴 ∙  𝜖𝐵 

By default in deMon2k, an arithmetic mean is used to obtain 𝜎𝐴𝐵, whereas the geometric mean is 

used for the calculation of 𝜖𝐴𝐵. The force field parameters are read from the FFDS file. By default, 
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the FFDS file for OPLS-AA [66] is used. Alternatively, the user can select the family of AMBER 

force-field parameters [67], which are available in a common format with corresponding FFDS 

files, too.   

The last two terms of Eq. (38) are the mechanical QM/MM interaction and the nuclear 

repulsion. Both have simple analytic formulas in terms of QM and MM atomic positions. The 

mechanical QM/MM interaction energy, 𝐸𝑄𝑀𝑀𝑀, is modeled in deMon2k by a Lennard-Jones 

potential: 

𝐸𝑄𝑀𝑀𝑀 = 4 ∑ ∑ 𝜖𝐴𝐷

𝑀𝑀

𝐷

𝑄𝑀

𝐴

[(
𝜎𝐴𝐷

|𝑨 − 𝑫|
)

12

− (
𝜎𝐴𝐷

|𝑨 − 𝑫|
)

6

] (46) 

This is the same analytic expression as of Eq. (44) for the van der Waals interactions between MM 

atoms. The difference is that in Eq. (46) one of the atoms is a QM atom and the other is a MM 

atom. The diatomic parameters 𝜖𝐴𝐷 and 𝜎𝐴𝐷 are again calculated by the above described 

combination rules from atomic parameters. To this end, MM atomic 𝜖 and 𝜎 parameters are 

assigned to the QM atoms by the QM/MM keyword [65] in deMon2k. The last term in Eq. (38) is 

the electrostatic repulsion between the QM point charge nuclei with themselves and with the MM 

atomic point charges. It has the following form: 

𝐸𝑁𝑁 = ∑
𝑍𝐴𝑍𝐵

|𝑨 − 𝑩|

𝑄𝑀

𝐴>𝐵

+ ∑ ∑
𝑍𝐴𝑄𝐷

|𝑨 − 𝑫|

𝑀𝑀

𝐷

 

𝑄𝑀

𝐴

 (47) 

The here appearing MM atomic point charges, 𝑄𝐷, are again taken from the FFDS file. Fig. 3 

depicts in the top the energy modules of deMon2k that can contribute to QM/MM calculations. 

Once the QM/MM energy is calculated, which implies a converged SCF solution for the QM part, 

gradient components are calculated by differentiation of Eq. (38) with respect to atomic coordinates 

𝐴𝜆, 𝜆 = 𝑥, 𝑦, 𝑧: 
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𝜕𝐸𝑄𝑀/𝑀𝑀

𝜕𝐴𝜆
   =  

𝜕𝐸𝑄𝑀

𝜕𝐴𝜆
+  

𝜕𝐸𝑀𝑀

𝜕𝐴𝜆
+

𝜕𝐸𝑄𝑀𝑀𝑀

𝜕𝐴𝜆
+  

𝜕𝐸𝑁𝑁

𝜕𝐴𝜆
  (48) 

  

 

Figure 3: Diagram of deMon2k energy modules for QM/MM calculations and their relation to 

gradient and property calculations (see also Section 5 and 6). 

 

As Eq. (48) shows, all energy terms of a QM/MM calculation contribute to the corresponding 

gradient. From the gradient on, QM and MM atoms are treated on equal footing in deMon2k. Thus, 

the following utility modules for structure optimization and chemical reaction modeling (see 

Section 3) as well as for molecular dynamics simulation (see Section 4) are the same for QM, MM 

and QM/MM calculations. On the other hand, the analytic higher order SCF energy derivatives 

calculated in the TD-ADFT and ADPT modules of Fig. 3 are directly linked to the ADFT module 

and, therefore, are only available for the QM part of a QM/MM calculation (see Section 6). The 

QM/MM frequency analysis is linked to the ADFT as well as MM module as outlined in Section 

5. 
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 The first term in Eq. (48) is the generic QM energy derivative. For ADFT [15,22,35,36] 

QM/MM calculations this term is obtained by differentiation of Eq. (33) with respect to a QM 

atomic coordinate: 

𝜕𝐸𝑄𝑀

𝜕𝐴𝜆
= − ∑ 𝑊𝜇𝜈 𝑆𝜇𝜈

(𝐴𝜆)

𝜇,𝜈

+ ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈
(𝐴𝜆)

𝜇,𝜈

+ ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

 ⟨𝜇𝜈‖�̅�⟩
(𝐴𝜆)

(𝑥�̅� +  𝑧�̅�) +             

               ∑  𝑥�̅�

�̅�,𝑙 ̅

𝐺
�̅�𝑙 ̅
(𝐴𝜆)

 (
1

2
 𝑥𝑙 ̅ +  𝑧𝑙 ̅)  + ∑  𝑥�̅�

�̅�

 ⟨�̅�(𝐴𝜆)|𝑣𝑥𝑐[�̃�]⟩ + 𝛼 ∑  Γ�̅�𝑙 ̅

�̅�,𝑙 ̅

𝐺
�̅�𝑙 ̅
(𝐴𝜆)

− 

𝛼 ∑ ∑ ∑ ∑ 𝑃𝜇𝜈

𝜇,𝜈

𝑥�̅�𝜇𝑖

𝜎�̅�

𝑜𝑐𝑐

𝑖

⟨𝑙 ̅‖𝜈𝜎⟩
(𝐴𝜆)

𝑐𝜎𝑖                                                      

 

(49) 

The superscripts denote differentiation of molecular integrals or functions with respect to the QM 

atomic coordinate. Eq. (49) consists of three contributions. The first one is the Pulay force [68] 

given by the first term of Eq. (49). It collects all derivatives of the MO coefficients. Thus, no 

response calculation is needed for the gradient evaluation as expected from Wigner’s 2𝑛 + 1 rule 

[69,70]. The second contribution arises from the QM/MM core (second term in Eq. 49), Coulomb 

(third and fourth term in Eq. 49), and exchange-correlation (fifth term in Eq. 49), derivatives. 

Together with the Pulay forces, these contributions define the QM ADFT energy derivatives for 

LDA and GGA. The last two terms in Eq. (49) define the third contribution given by the derivative 

of the three-center ERI Fock exchange energy. The closed-shell energy weighted density matrix 

elements appearing in the Pulay term are given by: 

𝑊𝜇𝜈 =  2 ∑ 𝜀𝑖  𝑐𝜇𝑖 𝑐𝜈𝑖

𝑜𝑐𝑐

𝑖

 (50) 

Here 𝜀𝑖 refers to the canonical MO energies as obtained from the converged SCF. The Γ�̅�𝑙 ̅ and 𝑥�̅�𝜇𝑖 

coefficients are calculated as: 
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Γ�̅�𝑙 ̅ =  
1

2
∑ ∑ 𝑥�̅�𝜇𝑖 𝑃𝜇𝜈 𝑥𝑙�̅�𝑖

𝜇,𝜈

𝑜𝑐𝑐

𝑖

 (51) 

𝑥�̅�𝜇𝑖 = ∑ 𝐺�̅�𝑙 ̅
−1

𝑙̅

 ⟨𝑙 ̅‖ 𝜇 �̇�𝑖⟩ (52) 

The QM energy inside the QM/MM energy expression, Eq. (38), depends, through the core matrix 

elements defined in Eq. (34), from the atomic coordinates of the MM atoms, too. Therefore, the 

corresponding gradient component for a MM atom coordinate 𝐷𝜆 is given by: 

𝜕𝐸𝑄𝑀

𝜕𝐷𝜆
= − ∑ ∑〈𝜇𝜈|�̂�𝐷(1𝜆)〉 𝑄𝐷  

𝑀𝑀

𝐷𝜇,𝜈

 (53) 

We note that for these derivative integrals (electric field integrals) asymptotic expansions [31] 

analog to the core matrix elements are available in deMon2k, too. The DF-DFT gradients for 

QM/MM calculations differ from the here derived ADFT gradients in the term for the exchange-

correlation in Eq. (49). 

 The second term in Eq. (48) is the MM energy derivative. It only depends from the atomic 

coordinates of the MM atoms. As the MM energy, the MM derivatives can be partitioned into 

bonded and non-bonded derivatives. For the derivatives of the generic bond stretching and Urey-

Bradley terms with respect to the MM atomic coordinate 𝐴𝜆 follows: 

𝜕𝐸𝑏𝑜𝑛𝑑

𝜕𝐴𝜆
= 2𝑘𝑏(𝑑0 − 𝑑)

𝐴𝜆 − 𝐵𝜆

𝑑
 (54) 

𝜕𝐸𝑈𝑟𝑒𝑦

𝜕𝐴𝜆
= 2𝑘𝑙(𝑙 − 𝑙0)

𝐴𝜆 − 𝐵𝜆

𝑙
 (55) 

From the corresponding differentiation of the angle bending energy, we find: 

𝜕𝐸𝑏𝑒𝑛𝑑

𝜕𝐴𝜆
= 2𝑘𝜗(𝜗 − 𝜗0) 

𝜕𝜗

𝜕𝐴𝜆
 (56) 
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𝜕𝜗

𝜕𝐴𝜆
=

cos 𝜗

sin 𝜗

(𝐴𝜆 − 𝐵𝜆)

|𝑨 − 𝑩|2
−

(𝐶𝜆 − 𝐵𝜆)

|𝑨 − 𝑩||𝑪 − 𝑩| sin 𝜗
 (57) 

𝜕𝜗

𝜕𝐶𝜆
=

cos 𝜗

sin 𝜗

(𝐶𝜆 − 𝐵𝜆)

|𝑪 − 𝑩|2
−

(𝐴𝜆 − 𝐵𝜆)

|𝑨 − 𝑩||𝑪 − 𝑩| sin 𝜗
 (58) 

Here 𝐴𝜆 and 𝐶𝜆 refer to atomic coordinates of the end atoms of the 𝐴 − 𝐵 − 𝐶 angle. The angle 

derivative for the central 𝐵 atom is calculated from the translation invariance as: 

𝜕𝜗

𝜕𝐵𝜆
= −

𝜕𝜗

𝜕𝐴𝜆
−

𝜕𝜗

𝜕𝐶𝜆
 (59) 

Due to their definition, both proper and improper torsions share the same differentiation formulas, 

and thus we write the equations referring to the proper torsions only. We start by writing the 

gradient of Eq. (43) in terms of the derivative of the dihedral angle 𝜑: 

𝜕𝐸𝑡𝑜𝑟𝑠

𝜕𝐴𝜆
= − ∑ 𝑛 𝑉𝑛 sin(𝑛𝜑 − 𝜑𝑛)

𝑛

𝜕𝜑

𝜕𝐴𝜆
 (60) 

As for the case of the bending energy gradients, the derivatives of the dihedral angle depend on the 

relative position of the atom in the dihedral. The four different cases are: 

𝜕𝜑

𝜕𝐴𝜆
= −

𝑃𝜆

|𝑨 − 𝑩| sin2 𝜗𝐴𝐵𝐶
 (61) 

𝜕𝜑

𝜕𝐷𝜆
= −

𝑄𝜆

|𝑪 − 𝑫| sin2 𝜗𝐵𝐶𝐷
 (62) 

𝜕𝜑

𝜕𝐵𝜆
= (

|𝑨 − 𝑩| cos 𝜗𝐴𝐵𝐶

|𝑩 − 𝑪|
− 1)

𝜕𝜑

𝜕𝐴𝜆
− (

|𝑪 − 𝑫| cos 𝜗𝐵𝐶𝐷

|𝑩 − 𝑪|
)

𝜕𝜑

𝜕𝐷𝜆
 (63) 

𝜕𝜑

𝜕𝐶𝜆
= (

|𝑪 − 𝑫| cos 𝜗𝐵𝐶𝐷

|𝑩 − 𝑪|
− 1)

𝜕𝜑

𝜕𝐷𝜆
− (

|𝑨 − 𝑩| cos 𝜗𝐴𝐵𝐶

|𝑩 − 𝑪|
)

𝜕𝜑

𝜕𝐴𝜆
 (64) 

The vectors 𝑷 and 𝑸 are perpendicular to the planes (𝐴𝐵𝐶 and 𝐵𝐶𝐷, respectively) that define the 

dihedral angle 𝜑. They are given by the following cross products: 
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𝑷 = (𝑩 − 𝑨) × (𝑪 − 𝑩)  

𝑸 = (𝑪 − 𝑫) × (𝑩 − 𝑪)  

Finally, the energy derivatives of the non-bonded MM interactions are comprised by the gradients 

of the van der Waals and Coulomb potentials. These are given by: 

𝜕𝐸𝑣𝑑𝑊

𝜕𝐴𝜆
= −48 ∑ 𝜖𝐴𝐵

𝑀𝑀

𝐵≠𝐴

[(
𝜎𝐴𝐵

|𝑨 − 𝑩|
)

12

−
1

2
(

𝜎𝐴𝐵

|𝑨 − 𝑩|
)

6

]
𝐴𝜆 − 𝐵𝜆

|𝑨 − 𝑩|2
 (65) 

𝜕𝐸𝑄𝑄

𝜕𝐴𝜆
= − ∑

𝐴𝜆 − 𝐵𝜆

|𝑨 − 𝑩|3

𝑀𝑀

𝐵≠𝐴

 𝑄𝐴𝑄𝐵 (66) 

For the QM/MM mechanical interaction, we find similar results to Eq. (65) since the same 

model is used for both the 𝐸𝑄𝑀𝑀𝑀 and the 𝐸𝑣𝑑𝑊 energy terms. Nonetheless, for 𝐸𝑄𝑀𝑀𝑀 we have 

derivatives with respect to both QM and MM atomic coordinates: 

𝜕𝐸𝑄𝑀𝑀𝑀

𝜕𝐴𝜆
= −48 ∑ 𝜖𝐴𝐷

𝑀𝑀

𝐷

[(
𝜎𝐴𝐷

|𝑨 − 𝑫|
)

12

−
1

2
(

𝜎𝐴𝐷

|𝑨 − 𝑫|
)

6

]
𝐴𝜆 − 𝐷𝜆

|𝑨 − 𝑫|2
 (67) 

𝜕𝐸𝑄𝑀𝑀𝑀

𝜕𝐷𝜆
= −48 ∑ 𝜖𝐴𝐷

𝑄𝑀

𝐴

[(
𝜎𝐴𝐷

|𝑨 − 𝑫|
)

12

−
1

2
(

𝜎𝐴𝐷

|𝑨 − 𝑫|
)

6

]
𝐴𝜆 − 𝐷𝜆

|𝑨 − 𝑫|2
 (68) 

In these gradients, the QM and MM atomic coordinates are given by 𝐴𝜆 and 𝐷𝜆, respectively. The 

same convention is used for the gradients of the repulsion between the QM point charge nuclei 

with themselves and with the MM atomic point charges, Eq. (47). These gradients are given by: 

𝜕𝐸𝑁𝑁

𝜕𝐴𝜆
= − ∑

𝐴𝜆 − 𝐵𝜆

|𝑨 − 𝑩|3
 𝑍𝐴𝑍𝐵

𝑄𝑀

𝐴≠𝐵

− ∑
𝐴𝜆 − 𝐷𝜆

|𝑨 − 𝑫|3

𝑀𝑀

𝐷

𝑍𝐴𝑄𝐷 (69) 

𝜕𝐸𝑁𝑁

𝜕𝐷𝜆
= ∑

𝐴𝜆 − 𝐷𝜆

|𝑨 − 𝑫|3
 𝑍𝐴𝑄𝐷

𝑄𝑀

𝐴

 (70) 
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With these final equations, all terms needed for the calculation of the QM/MM energy gradients 

are at hand for the different methodologies implemented in deMon2k, as depicted in Fig. 3. 

3. Local structure minimization and transition state search 

The Potential Energy Surface (PES) of molecular systems is a multidimensional function arising 

from the Born-Oppenheimer approximation [71] that possesses different kinds of stationary points. 

At these points, the first energy derivatives with respect to the nuclear coordinates, i.e. the energy 

gradients, are zero.  For a molecule with M atoms the dimension of the PES is given by its internal 

degrees of freedom, which are either 3 𝑀 − 5 or 3 𝑀 − 6 depending if the molecule is linear or 

not, respectively. The different types of stationary points are indicated on the PES model illustrated 

in Figure 4.  

 

Figure 4: Stationary points on a PES model. 

As shown in this figure, different stationary points such as minima, maxima and saddle points can 

exist on a PES. The number of stationary points of the PES increases exponentially as the number 

of atoms increases. Fortunately, from a chemical point of view only minima and first order saddle 
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points are of interest because they correspond to stable minimum structures and transition states, 

respectively. Nevertheless, the exploration of the full PES remains a formidable task for many 

molecular systems. 

 On the other hand, the PES can be efficiently explored in local regions employing numerical 

optimization techniques. For quantum chemical structure minimization, quasi-Newton methods 

[72-84] are commonly applied. They are particular efficient for QM methods because only energy 

and gradient information are needed. Because in deMon2k QM/MM calculations the QM and MM 

gradients are joined together (see Fig. 3) a quasi-Newton trust region method (TRM) [72,73] is 

employed for local QM/MM structure optimizations by default. To this end, the PES is expanded 

around a reference molecular structure by a second-order Taylor series. This quadratic PES 

expansion is given by: 

𝑞(𝒑) = 𝐸0 + 𝐠𝑇 𝒑 +
1

2
 𝒑𝑇 𝑩 𝒑 (71) 

In Eq. (71) 𝐠 is the QM/MM gradient vector and 𝑩 the corresponding approximation of the Hessian 

matrix. Both quantities are evaluated at the reference structure with energy 𝐸0. In order to find a 

minimum the quadratic expansion is optimized with respect to the step direction 𝒑. To ensure that 

the model function 𝑞(𝒑) is a good approximation of the PES, we restrict the step size within a trust 

region defined by a hypersurface with radius ℎ around the reference structure. Thus, the following 

constrained minimization problem is obtained: 

min
𝒑

𝑞(𝒑)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   |𝒑| ≤ ℎ (72) 

For the solution of Eq. (72) the following Lagrange function is introduced [85]: 

𝐿(𝒑, 𝜆) = 𝐸0 + 𝐠𝑇 𝒑 +
1

2
 𝒑𝑇 𝑩 𝒑 +

1

2
 𝜆 (𝒑𝑇 𝒑 − ℎ2) (73) 

From the stationary condition of this Lagrange function 
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𝜕𝐿(𝒑, 𝜆)

𝜕𝑝𝐴
= 0        ∀ 𝐴 ∈ QM/MM (74) 

the step direction p is defined as: 

𝒑 = −(𝑩 + 𝜆𝑬)−1 𝐠 (75) 

For the determination of the Lagrange multiplier 𝜆 that multiplies the identity matrix in Eq. (75) 

standard techniques from the literature [73,85-87] are used. Similar, for the update of the 

(approximated) Hessian matrix the BFGS update formula, named after its inventors Broyden [88], 

Fletcher [89], Goldfarb [90] and Shanno [91], is used: 

𝑩𝐼+1 = 𝑩𝐼 −
𝑩𝐼𝜹�̃�𝑩𝐼

�̃�𝑩𝐼𝜹
+

𝜸�̃�

�̃�𝜹
 (76) 

In Eq. (76) 𝜸 =  𝒈𝐼+1 − 𝒈𝐼 and 𝜹 =  𝒙𝐼+1 − 𝒙𝐼 holds. The superscripts 𝐼 and 𝐼 + 1 refer to 

optimization steps. Thus, QM/MM structure optimizations in deMon2k follow the same path as 

pure QM structure optimizations. The advantage is the robustness of the underlying algorithms. 

The disadvantage of the TRM in particular is the need for the diagonalization of the (approximated) 

Hessian matrix. This limits its applicability to QM/MM system sizes with up to around 10,000 

atoms. For larger systems, alternative step methods free of second-order energy derivatives such 

as steepest descent (see keyword STEPTYPE [65]) are available in deMon2k, too. 

 Besides the excellent performance of the TRM for molecular structure optimizations, it is 

also well suited for the search of transition states on the PES. In general, a transition state search is 

more complicate than the just discussed structure minimization due to the (first-order) saddle point 

nature (see Fig. 4) of transition states as depicted in Fig. 5. 
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Figure 5: Transition state (TS) nature on the model PES. 

However, combining the TRM with eigenvector following in the so-called uphill trust region 

method [92-94] yields a robust local transition state search algorithm. The corresponding step 

formula is given by: 

𝒑 = −(𝑩 + 𝜆𝑴)−1 𝐠 (77) 

In Eq. (77) 𝑴 is the so-called mode matrix defined as: 

𝑴 = (

−1 0 ⋯ 0
   0 1 ⋯ 0
   ⋮ ⋮ ⋱ ⋮
   0 0 ⋯ 1

) (78) 

The position of the negative entry in the mode matrix 𝑴 defines the Hessian matrix mode, which 

is followed uphill. From a computational point of view, it is desirable that the initial Hessian matrix 

for the transition state search has the right eigenvalue spectrum, i.e. one negative eigenvalue and 

all others positive. This can be achieved by an appropriate start structure and the explicit calculation 
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of the initial Hessian matrix. To this end, the hierarchical transition state search algorithm [94] is 

currently extended for QM/MM calculations in one of our laboratories. In transition state searches 

the unbiased Powell-symmetric-Broyden [95] update formula is used in deMon2k by default: 

𝑩𝐼+1 = 𝑩𝐼 +
(𝜸 − 𝑩𝐼𝜹)�̃� + 𝜹(𝜸 − 𝑩𝐼𝜹)𝑻

�̃�𝜹
−

[�̃�(𝜸 − 𝑩𝐼𝜹)]𝜹�̃�

(�̃�𝜹)
𝟐

 (79) 

 

4. Molecular dynamics 

Whereas the QM/MM molecular structure optimization in deMon2k utilizes algorithms from 

QM calculations, the QM/MM molecular dynamics simulations in deMon2k uses MM inspired 

algorithms. To this end, we assume classical equations of motion for the QM nuclei and MM atoms 

and introduce the concepts of ensembles for closed systems. Based on this approximation 

microcanonical (NVE) and canonical (NVT) QM/MM molecular dynamics (MD) simulations can 

be performed with deMon2k. The implementation of isothermal-isobaric (NPT) QM/MM MD 

simulations is currently under development in the deMon developers’ community. 

For the conservation of temperature and pressure during MD simulations, it is necessary to 

include thermostats and barostats that can regulate these properties. For this purpose, the 

reformulation of the equations of motion in terms of the Liouville operator [96] simplifies the 

application and implementation of the propagation equations. We start our discussion by writing 

the Newton equations for a system of 𝑀 particles consisting of QM nuclei and MM atoms: 

�̇�𝐴 = 𝑷𝐴/𝑚𝐴 (80) 

�̇�𝐴 = 𝑭𝐴 (81) 
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In these equations, the index 𝐴 addresses QM nuclei and MM atoms with masses 𝑚𝐴. Their 

positions and momenta are labeled by the symbols 𝑹𝐴 and 𝑷𝐴. Dots indicate corresponding time 

derivatives. We now rewrite Eq. (80) and (81) as: 

�̇�𝐴 = 𝑖𝐿𝑹𝐴 (82) 

�̇�𝐴 = 𝑖𝐿𝑷𝐴 (83) 

The Liouville operator used in these expressions is given by: 

𝑖𝐿 = ∑ (�̇�𝐴

𝜕

𝜕𝑹𝐴
+ �̇�𝐴

𝜕

𝜕𝑷𝐴
)

𝑀

𝐴

 (84) 

A more compact and general form of this operator is found if we collect the positions and momenta 

of all particles in the system into a single variable 𝒙 = (𝑹𝑀, 𝑷𝑀 ), known as the phase-space vector. 

With this vector, Eq. (84) can be written as 𝑖𝐿 = �̇� ⋅ ∇𝒙, where ∇𝒙 collects the differentiation 

operators from all variables in 𝒙.  Therefore, the evolution in time of a system is given by: 

𝒙(𝑡) = 𝑒𝑖𝐿𝑡𝒙(0) (85) 

The exponential term in this equation is known as the classical propagator. Its form depends on the 

equations governing the progress of the system and, as such, the analytic solution of Eq. (85) 

becomes very difficult as the system grows in complexity. Therefore, a numerical scheme is used 

for its implementation, namely by the Trotter factorization [97] of the classical propagator: 

𝑒𝑖𝐿Δ𝑡 = 𝑒(𝑖𝐿1+𝑖𝐿2)Δ𝑡 ≈ 𝑒𝑖𝐿2Δ𝑡 2⁄ 𝑒𝑖𝐿1Δ𝑡𝑒𝑖𝐿2Δ𝑡 2⁄  (86) 

Here, the operator of Eq. (84) has been arbitrarily separated in two terms, 𝑖𝐿1 and 𝑖𝐿2, which 

propagate, individually, positions and momenta. Their forms are: 
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𝑖𝐿1 = ∑ �̇�𝐴

𝑀

𝐴

𝜕

𝜕𝑹𝐴
 (87) 

𝑖𝐿2 = ∑ �̇�𝐴

𝑀

𝐴

𝜕

𝜕𝑷𝐴
 (88) 

As a result, the propagator for NVE simulations reads: 

𝑒𝑖𝐿Δ𝑡 = ∏ exp (
Δ𝑡

2𝑚𝐴
𝑭𝐴

𝜕

𝜕�̇�𝐴

)

𝑀

𝐴

∏ exp (Δ𝑡�̇�𝐴

𝜕

𝜕𝑹𝐴
)

𝑀

𝐴

∏ exp (
Δ𝑡

2𝑚𝐴
𝑭𝐴

𝜕

𝜕�̇�𝐴

)

𝑀

𝐴

 (89) 

The application of this operator to the phase-space vector of a system results in the well-known 

velocity Verlet algorithm [98]. The advantage of using this formulation resides on the direct 

translation between the resulting working equations and the programming statements.  

For the generation of the NVT ensemble, a variety of different thermostats [99] 

are available in deMon2k. All of them work by controlling the kinetic energy fluctuations of the 

system by changing the particle velocities. The extended phase-space approach of the Nosé-Hoover 

Chain (NHC) [100,101] thermostat, by which additional variables are included into the simulation, 

provides a methodology to simulate the canonical ensemble using the following equations of 

motion: 

�̇�𝐴 = 𝑷𝐴/𝑚𝐴 (90) 

�̇�𝐴 = 𝑭𝐴 −
𝑃𝜂1

𝑄1
𝑷𝐴 (91) 

�̇�𝑘 = 𝑃𝜂𝑘
/𝑄𝑘 (92) 

�̇�𝜂𝑘
= 𝐺𝑘 −

𝑃𝜂𝑘+1

𝑄𝑘+1
𝑃𝜂𝑘

 (93) 

�̇�𝜂𝑁
= 𝐺𝑁 (94) 
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In these equations the 𝑘 index loops over the 𝑁 thermostats, each having a position 𝜂𝑘 with no 

units, a mass 𝑄𝑘 with units of energy times time squared, and momentum 𝑃𝜂𝑘
 in units of energy 

times time. Only the first link of the thermostat chain couples to the system as indicated by Eq. 

(91). The 𝑘 ≥ 2 thermostats will regulate the variables of the previous link in the chain. The forces 

driving the evolution of the thermostats’ dynamical variables are given by: 

𝐺1 = ∑ 𝑚𝐴

𝑀

𝐴

�̇�𝐴 − 3𝑀𝑘𝐵𝑇 (95) 

𝐺𝑘 =
𝑃𝜂𝑘−1

2

𝑄𝑘−1
− 𝑘𝐵𝑇 (96) 

Here, 𝑘𝐵 is the Boltzmann constant and 𝑇 the desired macroscopic temperature. The resulting 

propagator builds upon that of Eq. (89), with the difference that the new factorization will include 

a third term 𝑖𝐿𝑇 accounting for the presence of the thermostat variables 𝜂𝑘 and 𝑃𝜂𝑘
. This third term 

has the form: 

𝑖𝐿𝑇 = ∑ [
𝑃𝜂𝑘

𝑄𝑘

𝜕

𝜕𝜂𝑘
+ 𝐺𝑘

𝜕

𝜕𝑃𝜂𝑘

]

𝑁

𝑘=1

−
𝑃𝜂1

𝑄1
∑ 𝑷𝐴 ⋅

𝜕

𝜕𝑷𝐴

𝑀

𝐴

− ∑
𝑃𝜂𝑘+1

𝑄𝑘+1

𝑁−1

𝑘=1

𝑃𝜂𝑘

𝜕

𝜕𝑃𝜂𝑘

 (97) 

The corresponding propagator in its factorized form is then given by: 

𝑒𝑖𝐿Δ𝑡 = 𝑒(𝑖𝐿1+𝑖𝐿2+𝑖𝐿𝑇)Δ𝑡 = 𝑒𝑖𝐿𝑇Δ𝑡 2⁄ [𝑒𝑖𝐿2Δ𝑡 2⁄ 𝑒𝑖𝐿1Δ𝑡𝑒𝑖𝐿2Δ𝑡 2⁄ ]𝑒𝑖𝐿𝑇Δ𝑡 2⁄  (98) 

This is essentially the same propagator as for the NVE case, the only difference being the update 

of the thermostat variables before and after the application of the velocity Verlet algorithm. The 

NHC algorithm within the formalism of the Liouville operator is implemented in the current 

development version of the deMon2k software.  
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Within the NVE and NVT ensembles dynamics of solute-solvent systems can effectively 

be performed using QM/MM, capped by a continuum solvent model (PCM). The PCM model is 

based on the Onsager approximation, implemented in the self-consistent reaction field DFT method 

[67,102-105]. Within the QM/MM scheme, the reaction field energy reads: 

 

𝐸𝑅𝐹 = −
1

2
 𝑔 (∑ ∑ 𝑍𝐴𝑨 + 𝑄𝐷𝑫

𝑀𝑀

𝐷

𝑄𝑀

𝐴

)

2

+ 𝑔 ∑ ∑(𝑍𝐴𝑨 + 𝑄𝐷𝑫)

𝑀𝑀

𝐷

𝑄𝑀

𝐴

∑ 𝑃𝜇𝜈⟨𝜇|𝒓|𝜈⟩ −

𝜇,𝜈

1

2
𝑔 ∑ ∑ 𝑃𝜇𝜈𝑃𝜎𝜏⟨𝜇|𝒓|𝜈⟩

𝜎,𝜏

⟨𝜎|𝒓|𝜏⟩

𝜇,𝜈

                                             

 

     

 

(99) 

In Eq. (99) 𝑔 is the response function of the dielectric solvent medium with respect to the potential 

of the QM/MM system. For a spherical cavity with radius 𝑎, and the solvent medium with a 

dielectric constant 𝜀, the response function is: 

𝑔 =  
1

𝑎3
 
2 (𝜀 − 1)

(2𝜀 + 1)
 (100) 

The reaction-field energy is added to the QM/MM energy in Eq. (38) and the gradient of the 

reaction-field with respect to the atomic coordinates 
𝜕𝐸𝑅𝐹

𝜕𝐴𝜆
is added to the QM/MM energy gradient 

in Eq. (48). 

For QM/MM simulations at constant temperature and pressure, the Martyna, Tobias, Klein 

(MTK) [106,107] barostat is currently extended for QM/MM applications in deMon2k. In this 

algorithm, the volume of the system is introduced as a dynamical variable together with the 

corresponding momentum. When used in combination with the NHC thermostat, the isobaric-

isothermic NPT ensemble can be sampled. The equations of motion for the particle system and 

barostat are: 
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�̇�𝐴 =
𝑷𝐴

𝑚𝐴
+

𝑃𝜖

𝑊
𝑹𝐴 (101) 

�̇�𝐴 = 𝑭𝐴 −
𝑃𝜂1

𝑄1
𝑷𝐴 − (1 +

1

𝑀
)

𝑃𝜖

𝑊
𝑷𝐴 (102) 

�̇� =
3𝑉

𝑊
𝑃𝜖 (103) 

�̇�𝜖 = 𝐺𝜖 −
𝑃𝜉1

𝑄1
′ 𝑃𝜖 (104) 

The terms labeled with 𝜂 belong to the thermostat coupled to the particles, whereas those labeled 

with 𝜉 correspond to the thermostat coupled to the barostat, whose variables are labeled with 𝜖. 

Eqs. (92) to (94) describe the dynamics of both thermostats, although the 𝜉 thermostat is subject to 

the forces: 

𝐺1
′ =

𝑃𝜖
2

𝑊
− 𝑘𝐵𝑇 (105) 

𝐺𝑘
′ =

𝑃𝜉𝑘−1

2

𝑄𝑘−1
′ − 𝑘𝐵𝑇 (106) 

The force driving the barostat, 𝐺𝜖, is given by: 

𝐺𝜖 = (1 +
1

𝑀
) ∑

𝑷𝐴
2

𝑚𝐴

𝑀

𝐴

+ ∑ 𝑹𝐴

𝑀

𝐴

⋅ 𝑭𝐴 − 3𝑉𝑃𝑒𝑥𝑡 (107) 

The external pressure, 𝑃𝑒𝑥𝑡, is the target value for the simulation. The corresponding propagator 

resembles that of Eq. (98) with the addition of the terms from the barostat and the second 

thermostat. However, the presence of the barostat changes how positions and velocities of the 

particles are updated within the (modified) velocity Verlet algorithm. It now reads: 

𝑹𝐴(𝑡 + Δ𝑡) = 𝑹𝐴(𝑡)𝑒𝑣𝜖Δ𝑡 + Δ𝑡�̇�𝐴(𝑡)𝑒𝑣𝜖Δ𝑡/2
sinh (𝑣𝜖Δ𝑡/2)

𝑣𝜖Δ𝑡/2
 (108) 
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�̇�𝐴(𝑡 + Δ𝑡/2) = �̇�𝐴(𝑡)𝑒−
𝛼𝑣𝜖Δ𝑡

2 +
Δ𝑡

2𝑚𝐴
𝐹𝐴𝑒−𝛼𝑣𝜖Δ𝑡/4

sinh (𝛼𝑣𝜖Δ𝑡/4)

𝛼𝑣𝜖Δ𝑡/4
 (109) 

Here 𝛼 = 1 + 1/𝑀. The changes in the cell containing the system are considered isotropic and 

retrieved from the instantaneous volume. 

From this discussion, it is obvious that a volume definition is needed for the simulation of 

systems under constant pressure. To this end, we introduce periodic boundary conditions in form 

of the Cyclic Cluster Model (CCM) [108-110]. In this model, the molecules are placed inside a 

(large) unit cell, which defines the size of the system during the calculation, e.g. the number of 

atoms. This unit cell is then translated along its axes in all directions without increasing the system 

size for the calculation. Such a scheme is shown in Fig. 6 for a two-dimension unit cell containing 

the atoms A0 , B0 and C0. The dashed objects are created by translation of the central unit cell. 

 

Figure 6: Translation scheme and interactions of atom A in a CCM calculation. 

In the CCM framework, the interaction between the atoms A and B, for example, may not be 

calculated between A0 and B0. In case of the scheme shown in Fig. 6, the calculated interaction 

will be between A0 and B4. The atom B4 is chosen because it has from all B atoms the smallest 

distance to atom A0. On the other hand, the calculated interaction for atoms A and C is between A0 
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and C0 because from all C atoms C0 has the smallest distance to atom A0. If there are several 

combinations, which have the same distance, all will be calculated and an average is used. As in a 

finite system, the interactions are calculated in real space. What is different is the relative 

orientation of the atoms to each other. For a structure like a regular lattice of argon atoms, this 

procedure creates for each atom an identical and symmetric environment. Therefore, the CCM 

scheme is an alternative realization of periodic boundary conditions. Fig. 7 compares the 

convergence of the cohesive energy of solid Lennard-Jones argon with increasing cluster size 

between the free cluster model (FCM) and CCM. As this figure shows CCM clusters reach the 

converged cohesive energy of 8.42 kJ/mol at much smaller cluster sizes, i.e. at smaller average 

coordination numbers, than FCM clusters. 

 

Figure 7: Cohesive energy of solid argon as a function of cluster size calculated using the Free 

Cluster Model (FCM) and the Cyclic Cluster Model (CCM). 

 

Another characteristic of CCM is that the atoms inside the system cannot leave it due to the equality 

between atoms and their translations. Thus, if during a BOMD simulation an atom would leave the 

unit cell, a translation would bring it back inside. This is so because the projection of the distance 
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vector between two atoms onto an edge of the unit cell is not allowed to exceed half of the length 

of that edge, effectively creating an interaction region of this size around each atom. Only atoms 

within this region generate interactions with the atom in the center. The shape of this region is 

equal to a Wigner-Seitz cell (WSC) constructed from the unit cell. With this, one can describe the 

CCM as exchanging summations over all atoms in the (large) unit cell by summations over all 

atoms in a WSC. A further consequence of the use of WSCs is that there are no direct interactions 

of an atom with its equivalent in a translated unit cell, meaning that direct defect-defect interactions 

are not existing. This is particularly useful in a QM/MM solvation model for the treatment of 

infinitely diluted systems in which the solute is seen as a defect in the periodicity of the solvent 

environment.  

 In order to extend CCM to polar systems long-range Coulomb interactions must be added. 

To this end, the lattice sum algorithm of Ewald in its classical [111] formulation is available in 

deMon2k. The target quantity for this method is the electrostatic potential generated by the classical 

point charges of the MM system given by: 

𝐸 =
1

2
∑ ∑ ∑

𝑄𝐶𝑄𝐷

|𝑪 − 𝑫 + 𝒎𝐿|

∞

|𝒎|=0

𝑀𝑀

𝐷

𝑀𝑀

𝐶

 (110) 

For sake of simplicity, it has been assumed that the particles are inside a cubic box of length 𝐿. The 

vector 𝒎 of integer components works, together with 𝐿, as a translation operator of the reference 

cell. Its norm is represented by |𝒎|. Care must be taken in Eq. (110) for 𝒎 = (0,0,0) to avoid self-

interaction. In the classical Ewald method, the calculation of Eq. (110) for neutral systems is carried 

out by means of two rapidly and absolutely convergent series evaluated in real and reciprocal space 

[112]. The starting point of this method is the total potential generated by the point charges of the 

particles inside the original cell and its images, namely: 
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𝜙(𝒓) = ∑ ∑
𝑄𝐶

|𝒓 − 𝑪 + 𝒎𝐿|

∞

|𝒎|=0

𝑀𝑀

𝐶

 (111) 

The main idea behind the Ewald method is to use Gaussian charge distributions of the same 

magnitude but opposite sign of the point charges to shield them from their environment, as it is 

shown in Fig. 8 (left). These distributions are of the form: 

𝜌𝐶(𝒓) =
𝑄𝐶𝛼3

√𝜋3
𝑒−𝛼2(𝒓−𝑪)2

 (112) 

The parameter 𝛼 is the width of the distributions. It also has the effect of biasing the total potential 

energy towards one of the two main contributions in which it is divided. Of course, this energy is 

invariant with respect to the value of 𝛼. 

 

Figure 8: One-dimensional point and Gaussian charge distributions. The original potential (right-

hand side) is obtained by adding the shielded and compensating potentials. 

 

Due to the presence of the Gaussian charge distributions, the point-charge potential becomes short-

range and can be calculated directly in real space. On the other hand, a second set of Gaussian 

distributions with the same sign and magnitude of the original point charge distributions is added 

to cancel the first set of distributions. Thus, the potential from the point charges is split into two 

parts, and the energy expression of Eq. (110) becomes: 
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𝐸 =  
1

2
∑ ∑ ∑

𝑄𝐶𝑄𝐷

|𝑪 − 𝑫 + 𝒎𝐿|

∞

|𝒎|=0

𝑀𝑀

𝐷

𝑀𝑀

𝐶

 erfc(𝛼|𝑪 − 𝑫 + 𝒎𝐿|)  +   

4𝜋

𝑉
∑ ∑ ∑

𝑄𝐶𝑄𝐷

𝑘2
𝑒𝑖𝒌⋅(𝑪−𝑫)𝑒−𝑘2/4𝛼2

∞

|𝒌|≠0

𝑀𝑀

𝐷

𝑀𝑀

𝐶

−
𝛼

√𝜋
∑ 𝑄𝐶

2

𝑀𝑀

𝐶

    

 

 

 

 

(113) 

The first term in this equation is a sum in the manner of the Coulomb potential calculated over the 

original and image cells (𝒎 vectors), weighted by the complimentary error function erfc(𝑥) = 1 −

2

√𝜋
∫ 𝑒−𝑢2

d𝑢
𝑥

0
. This function approaches zero as its argument grows, improving the convergence of 

the sum.  The second term in Eq. (113) is a sum arising from the compensating distributions and is 

calculated over the reciprocal vectors 𝒌 =
2𝜋

𝐿
𝒎. The last term in Eq. (113) accounts for self-

interaction. 

In practice, finite limits for the 𝒎 and 𝒌 sums are needed. These limits are chosen as a 

compromise of the desired accuracy and the computational demand for the calculation. Usually, 

the sum over 𝒎 is carried out in the original cell only (|𝒎| = 0), whereas the 𝒌 sum is performed 

over around 300 vectors [112, 113]. This is achieved by tuning the 𝛼 parameter towards large 

values. For 𝛼 = √𝜋/𝐿 [114] both sums converge at the same rate. A value of 𝛼 = 6/𝐿 is used in 

deMon2k. To illustrate the performance of this implementation we compare MM CCM water 

calculations augmented by long-range Coulomb lattice sums according to Eq. (113) against 

deMon2k embedding and periodic Tinker [115] calculations. To this end, a large unit cell (CCM 

cluster) of four water molecules as depicted in Fig. 9 (left) is used. For the deMon2k embedding 

calculations performed with Eq. (110), the system was replicated around the original cell following 

both a cubic and a spherical pattern (Fig. 9, right). The convergence of the energy of these systems 

towards the value calculated with Eq. (113) of −22.40 kcal/mol is shown in Fig. 10 (left). 
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Figure 9: CCM cluster of four water molecules (left) together with its cubic (right, up) and 

spherical (right, down) embedding supercells of increasing size. 

 

The norms of the corresponding forces per atom for this system are shown in the right part of this 

figure. 

 

Figure 10: Energy convergence of deMon2k embedding calculations towards the Ewald energy 

result (left) and comparison of the deMon2k CCM force norms against periodic Tinker calculations 

(right). 
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The Ewald method as described above is implemented in deMon2k for MM systems under 

CCM periodic boundary conditions. Nonetheless, in the case of QM/MM systems, interactions 

between the QM electron density and the periodic point charges need to be considered. This same 

problem has been recently investigated in the literature [116], however, within a different working 

framework to the one discussed here. In QM/MM systems the potential energy has the following 

form: 

𝐸 = ∑ ∑ ∫
𝑄𝐶𝜌(𝒓)

|𝒓 − 𝑪 + 𝒎𝐿|
d𝒓

∞

|𝒎|=0

𝑀𝑀

𝐶

= ∫ 𝜙(𝒓)𝜌(𝒓)d𝒓 (114) 

The potential 𝜙(𝒓) is given by Eq. (111). As it was commented before, this potential is splits into 

two contributions by the Ewald method. Therefore, Eq. (114) is partitioned into two integrals. Their 

form, when considering that the real part of the potential is calculated in the original cell only, are: 

𝐸(1) = ∑ ∑ 𝑄𝐶𝑃𝑎𝑏 ∫ 𝑎(𝒓)𝑏(𝒓)
erfc(𝛼|𝒓 − 𝑪|)

|𝒓 − 𝑪|
 d𝒓

𝑎,𝑏

𝑀𝑀

𝐶

 (115) 

𝐸(2) =
4𝜋

𝑉
∑ ∑ ∑

𝑄𝐶

𝑘2
𝑃𝑎𝑏𝑒−𝑘2/4𝛼2

∫ 𝑎(𝒓)𝑏(𝒓)𝑒𝑖𝒌⋅(𝒓−𝑪) d𝒓

𝑎,𝑏

∞

|𝒌|≠0

𝑀𝑀

𝐶

 (116) 

Notice that there is no need for a self-interaction term, which only appears in Eq. (113) due to the 

point-like nature of the MM charges. An efficient methodology for the evaluation of these integrals 

is currently under development in one of our research groups. The availability of these integrals 

and their gradients will make it possible to use the MTK barostat inside QM/MM calculations and 

thus, fully atomistic simulations under ambient conditions will become possible. 

 

 



 
 

45 

5. Second-order energy derivatives 

The calculation of second-order energy derivatives with respect to nuclear displacements 

in form of Hessian matrix elements is essential for the characterization of optimized molecular 

structures. It is also of great importance for transition state searches (see Section 3) and structure 

optimizations with soft internal degrees of freedom that are common to QM/MM systems. The 

dimensionality of the Hessian matrix is 9𝑀2, with 𝑀 being the number of atoms in the system. 

Although the first-order electronic energy derivatives are relatively easy to calculate, second-order 

derivatives are less straightforward. The simplest way to calculate second-order derivatives is to 

follow a finite-difference method where typically two first-order derivatives are required for each 

atomic coordinate. This method is available for QM/MM calculations in deMon2k but requires 

significant computational resources and is prone to numerical instabilities. Thus, an analytic 

second-order energy derivative formulation for QM/MM is very desirable. 

Similar to the calculation of the QM/MM gradient components, after a converged SCF 

solution for the QM part, Hessian matrix components of a molecular system are obtained by 

differentiation of Eq. (48) once again with respect to atomic coordinates 𝐵𝜂, with  𝜂 = 𝑥, 𝑦, 𝑧: 

𝜕2𝐸𝑄𝑀/𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
   =  

𝜕2𝐸𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+  

𝜕2𝐸𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+

𝜕2𝐸𝑄𝑀𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+  

𝜕2𝐸𝑁𝑁

𝜕𝐴𝜆𝜕𝐵𝜂
   (117) 

The first term in Eq. (117) corresponds to the generic QM second-order derivative. For an ADFT 

QM-only calculation, this term is calculated by differentiation of Eq. (13), with respect to a QM 

atom coordinate 𝐴𝜆 and a QM atom coordinate 𝐵𝜂, and the second, third and fourth term of Eq. 

(117) will vanish. According to Wigner’s 2𝑛 + 1 rule [69,70], the resulting expression contains 

the first-order response density matrix as well as the response Coulomb and exchange-correlation 
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fitting coefficients. Based on this, the expression of the second-order ADFT energy derivatives can 

be partitioned in two contributions as [117]: 

𝜕2𝐸𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
=

𝜕2𝐸(1)
𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+  

𝜕2𝐸(2)
𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
  (118) 

The first contribution of Eq. (118), is completely independent from the perturbed density matrix 

and fitting coefficients and has the form: 

𝜕𝐸(1)
𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
=  − ∑ 𝑊𝜇𝜈 𝑆𝜇𝜈

(𝐴𝜆,𝐵𝜂)

𝜇,𝜈

+ ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈

(𝐴𝜆,𝐵𝜂)
+                                                            

𝜇,𝜈

 

                         ∑ ∑ 𝑃𝜇𝜈 ⟨𝜇𝜈‖�̅�⟩
(𝐴𝜆,𝐵𝜂)

�̅�

(𝑥�̅� + 𝑧�̅�) 

𝜇,𝜈

− ∑ 𝐺�̅�𝑙 ̅
(𝐴𝜆,𝐵𝜂) 𝑥�̅� (

1

2
𝑥𝑙 ̅ + 𝑧𝑙 ̅) +

𝑘,̅𝑙 ̅

  

∑  𝑥�̅�

�̅�

 ⟨�̅�(𝐴𝜆,𝐵𝜂)|𝑣𝑥𝑐[�̃�]⟩ + ∑ 𝑥�̅�

�̅�,𝑙 ̅

⟨�̅�(𝐴𝜆) |𝑓𝑥𝑐[�̃�]|𝑙(̅𝐵𝜂)⟩     

 

 

 

 

 (119) 

Here, 𝑓𝑥𝑐[�̃�], denotes the ADFT exchange-correlation kernel, defined as the functional derivative 

of the ADFT exchange-correlation potential. In the case of pure density functionals, the exchange-

correlation kernel is defined as [52,118]: 

𝛿𝑣𝑥𝑐[�̃�](𝒓)

𝛿�̃�(𝒓′)
= 𝛿(𝒓 − 𝒓′)

𝑑𝑣𝑥𝑐[�̃�](𝒓)

𝑑�̃�(𝒓′)
= 𝑓𝑥𝑐[�̃�](𝒓)  (120) 

The analytic molecular integral derivatives in Eq. (119) are calculated over the corresponding 

integral recurrence relations [30,119], whereas numerical integration of the exchange-correlation 

potential and kernel are evaluated with the same adaptive grid that is used for the SCF [63,64]. The 

exchange-correlation kernel is calculated either from analytic expressions for each functional [52] 

or by finite-differences if only analytic exchange-correlation potential expressions are available 

[53]. The density, 𝑃𝜇𝜈 , and energy-weighted density, 𝑊𝜇𝜈, matrix elements are calculated from the 
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converged canonical MO coefficients and energies. The Coulomb fitting coefficients, 𝑥�̅�, and 

exchange-correlation fitting coefficients, 𝑧�̅�, are also taken directly from the previously converged 

single-point energy calculation. The second contribution to the QM second-order ADFT energy 

derivative in Eq. (118), contains only terms that depend on first-order response matrix or vector 

elements. It is given by: 

𝜕𝐸(2)
𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
=  − ∑ 𝑊𝜇𝜈

(𝐵𝜂)
 𝑆𝜇𝜈

(𝐴𝜆)

𝜇,𝜈

+ ∑ 𝑃𝜇𝜈

(𝐵𝜂)
 𝐻𝜇𝜈

(𝐴𝜆)
+                                                               

𝜇,𝜈

  

∑ ∑ 𝑃𝜇𝜈

(𝐵𝜂)
⟨𝜇𝜈‖�̅�⟩

(𝐴𝜆)

�̅�

(𝑥�̅� + 𝑧�̅�) 

𝜇,𝜈

+                                       

                        ∑ ∑ 𝑃𝜇𝜈

�̅�𝜇,𝜈

⟨𝜇𝜈‖�̅�⟩
(𝐴𝜆)

(𝑥
�̅�

(𝐵𝜂)
+ 𝑧

�̅�

(𝐵𝜂)
)  − ∑ 𝐺�̅�𝑙 ̅

(𝐴𝜆)(𝑥�̅� + 𝑧�̅�) 𝑥
𝑙 ̅

(𝐵𝜂)
−

𝑘,̅𝑙 ̅

 

∑ 𝐺�̅�𝑙 ̅
(𝐴𝜆)𝑧

�̅�

(𝐵𝜂)
 𝑥𝑙 ̅

𝑘,̅𝑙 ̅

+ ∑  𝑥
�̅�

(𝐵𝜂)

�̅�

 ⟨�̅�(𝐴𝜆)|𝑣𝑥𝑐[�̃�]⟩ +                  

∑ 𝑥�̅�

�̅�,𝑙 ̅

⟨�̅�(𝐴𝜆) |𝑓𝑥𝑐[�̃�]|𝑙⟩̅ 𝑥
𝑙 ̅

(𝐵𝜂)
                                                       

 

 

 

 

 

 

 

 

 

   

   (121) 

Again, the here appearing molecular integral derivatives can be straightforwardly calculated by 

integral recurrence relations. For the calculation of the perturbed matrix and vector elements, we 

employ auxiliary density perturbation theory (ADPT). This methodology is an adaptation of 

McWeeny’s self-consistent perturbation (SCP) theory [120-124] to ADFT. It allows the calculation 

of the first-order response density matrix elements with respect to QM atom displacements by the 

following expression: 

 𝑃𝜇𝜈

(𝐵𝜂)
= 2 ∑  ∑

𝒦
𝑖𝑎

(𝐵𝜂)
− 𝜖𝑖𝒮𝑖𝑎

(𝐵𝜂)

𝜖𝑖 − 𝜖𝑎

𝑢𝑛𝑜

𝑎

(𝑐𝜇𝑖𝑐𝜈𝑎 + 𝑐𝜇𝑎𝑐𝜈𝑖)

𝑜𝑐𝑐

𝑖

−
1

2
∑ 𝑃𝜇𝜎𝑆𝜎𝜏

(𝐵𝜂)
𝑃𝜏𝜇

𝜎,𝜏

  (122) 

In Eq. (122) 𝒦
𝑖𝑎

(𝐵𝜂)
 and 𝒮

𝑖𝑎

(𝐵𝜂)
 denote first-order response Kohn-Sham and overlap matrix elements 

in molecular orbital representation, which are defined by: 
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𝒦
𝑖𝑎

(𝐵𝜂)
≡ ∑ 𝑐𝜎𝜏𝐾𝜎𝜏

(𝐵𝜂)
𝑐𝜏𝑎

𝜎,𝜏

  (123) 

and 

𝒮
𝑖𝑎

(𝐵𝜂)
≡ ∑ 𝑐𝜎𝜏𝑆𝜎𝜏

(𝐵𝜂)
𝑐𝜏𝑎

𝜎,𝜏

  (124) 

In conventional Kohn-Sham DFT, due to the fact that the perturbed Kohn-Sham matrix depends 

on the perturbed density matrix, Eq. (122) has to be solved iteratively to achieve self-consistency 

[120]. This iterative evaluation can become a serious computational bottleneck if convergence is 

slow. In contrast, in the ADFT framework, the corresponding Kohn-Sham matrix only depends on 

the fitted density [125]. As a result, McWeeny’s SCP method can be reformulated as a non-iterative 

approach in terms of the response of the fitting coefficients. The resulting ADPT equations yield 

coupled-perturbed Kohn-Sham (CPKS) analog equation systems, albeit of significantly reduced 

dimensions. It reads [29,125,126]: 

[
1

4
𝑮 − 𝑨(𝑬 + 𝑭)] 𝒙(𝐵𝜂) =  𝒃(𝐵𝜂)  (125) 

Here 𝑮 denotes the Coulomb matrix, Eq. (12). The Coulomb response matrix, 𝑨, and the kermel 

matrix, 𝑭, are given by: 

𝐴�̅�𝑙 ̅ = ∑  ∑
⟨�̅�‖𝑖𝑎⟩⟨𝑖𝑎‖𝑙⟩̅

𝜖𝑖 − 𝜖𝑎

𝑢𝑛𝑜

𝑎

𝑜𝑐𝑐

𝑖

  (126) 

and: 

𝐹�̅��̅�  =  ∑ 𝐺�̅�𝑙 ̅
−1⟨𝑙|̅𝑓𝑥𝑐[�̃�]|�̅�⟩

𝑙 ̅

  (127) 

The linear equation system of Eq. (125) keeps the same form irrespective of the nature of the 

perturbation parameter (electric, magnetic, QM or MM nuclear displacement). The essential 
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difference arises from the perturbation vector elements, 𝑏
�̅�

(𝐵𝜂)
, which are characteristic to the 

specific perturbation. So far, ADPT has been successfully applied for the calculation of static and 

dynamic polarizabilities [29,125,126], first hyperpolarizabilities [127], Fukui functions [128,129] 

and second-order nuclear displacements [117]. For the latter the perturbation vector becomes much 

more complicated due to the perturbation dependency of basis and auxiliary functions. In fact, in 

this case the calculation of these vector elements can become a computational bottleneck because 

they are needed for each individual perturbation. 

To solve the ADPT equation system, Eq. (125), we can calculate the inverse of the response 

matrix, 𝑹 =  
1

4
𝑮 − 𝑨(𝑬 + 𝑭) and then solve the equation system analytical. This is possible 

because the dimension of the ADPT response matrix (𝑁𝑎𝑢𝑥 × 𝑁𝑎𝑢𝑥) is much smaller than the 

(𝑁𝑜𝑐𝑐 × 𝑁𝑢𝑛𝑜) × (𝑁𝑜𝑐𝑐 × 𝑁𝑢𝑛𝑜) CPKS dimension [125]. An important consideration is that 𝑹 is 

perturbation-independent. This is clearly an advantage, because regardless of the number of 

perturbations (or perturbation types), 𝑹 remains unaltered. Thus, a single inversion is needed and 

𝑹−1 can be stored on disk and read when required. However, as system size grows, the response 

matrix 𝑹 tends to become ill-conditioned, and therefore, prone to numerical instabilities during the 

matrix inversion. Therefore, a robust and efficient algorithm for solving large indefinite non-

symmetric systems of linear equations is needed [130]. In deMon2k we use the Eirola-Nevanlinna 

(EN) algorithm [27,29,131]. As the evaluation of analytic QM second energy derivatives requires 

the solution of three times the number of QM atoms ADPT equation systems, the pre-calculation 

of the Coulomb response matrix, 𝑨, and the kernel matrix, 𝑭, is convenient. However, the 

calculation of the Coulomb response matrix introduces an overall 𝒪(𝑁𝑎𝑢𝑥
4 ) computational 

complexity [125]. Despite its unfavorable scaling, the explicit evaluation of 𝑨 and 𝑭 is usually 

computationally advantageous for second-order energy derivatives because these matrices have to 
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be calculated only once. In analogy to the conventional SCF approach, this implementation for the 

solution of the ADPT equation systems is called the conventional EN (Con-EN) method [117]. A 

drawback of this implementation, besides its high order formal scaling, is its random access 

memory (RAM) demand. Thus, it is only suitable for small systems with up to a few hundred of 

atoms. To overcome this limitation, a direct implementation of the EN algorithm (Dir-EN) is 

available in deMon2k, too. The advantage of this method is that the explicit computation of the 

Coulomb response matrix and kernel matrix is avoided. Instead, the action of these matrices on a 

trial vector 𝒑 is calculated in the iterative Dir-EN procedure. This reduces the overall 𝒪(𝑁𝑎𝑢𝑥
4 ) 

complexity to 𝒪(𝑁𝑎𝑢𝑥
3 ) [29] by breaking down the matrix vector multiplication into a series of sub-

steps. This allows efficient ERI screening and double asymptotic expansions in the action 

calculations with the Coulomb response matrix. Similar, numerical integration screening 

techniques can be used for the action calculation with the kernel matrix. Besides the reduction in 

computational complexity, the Dir-EN implementation has also a reduced RAM demand. It 

requires about 2 𝑁𝑏𝑎𝑠
2  matrices and a few 𝑁𝑎𝑢𝑥 vectors, compared to the 𝑁𝑏𝑎𝑠 × 𝑁𝑜𝑐𝑐 × 𝑁𝑢𝑛𝑜 RAM 

demand for the explicit Coulomb response matrix calculation in the Con-EN implementation. This 

permits ADPT calculations on systems with thousand and more atoms [29]. As for the direct SCF 

algorithm implemented in deMon2k, the Dir-EN implementation requires the repetitive calculation 

of three-center ERIs in each iteration step of the EN algorithm. For many perturbations, as needed 

for the calculation of analytic second-order energy-derivatives, the repetitive ERI calculation is 

usually the most demanding computational task in the Dir-EN method. Fortunately, three-center 

ERI calculation is well developed in deMon2k [30,46,119] and also very well parallelized 

[132,133]. 
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Once the ADPT equation systems are solved and the perturbed Coulomb fitting coefficients 

are obtained, the calculation of the remaining response matrix and vector elements is 

straightforward. First, the perturbed exchange-correlation fitting coefficients, 𝑧
�̅�

(𝐵𝜂)
, are obtained 

according to [117]: 

𝑧
�̅�

(𝐵𝜂)
= ∑ 𝐺�̅�𝑙 ̅

−1⟨�̅�(𝐵𝜂)|𝑣𝑥𝑐[�̃�]⟩

𝑙 ̅

−  ∑ 𝐺�̅�𝑙 ̅
−1𝐺

𝑙�̅̅�

(𝐵𝜂)
𝑧�̅�

𝑙,̅�̅� 

+                                       

∑ 𝐺�̅�𝑙 ̅
−1⟨𝑙|̅𝑓𝑥𝑐[�̃�]|�̅�⟩ 𝑥�̅�

(𝐵𝜂)

𝑙,̅�̅�̅̅ ̅̅ ̅

+ ∑ 𝐺�̅�𝑙 ̅
−1⟨𝑙|̅𝑓𝑥𝑐[�̃�]|�̅�(𝐵𝜂)⟩

𝑙,̅�̅�

𝑥�̅� 

 

  (128) 

After that, the perturbed Kohn-Sham matrix elements, which are obtained by direct differentiation 

of Eq. (21) with respect to a QM nuclear coordinate, are calculated with the perturbed Coulomb 

and exchange-correlation fitting coefficients: 

𝐾𝜇𝜈

(𝐵𝜂)
= 𝐻𝜇𝜈

(𝐵𝜂)
+  ∑⟨𝜇𝜈‖�̅�⟩

(𝐵𝜂)
  (𝑥�̅� +  𝑧�̅�)

�̅�

+ ∑⟨𝜇𝜈‖�̅�⟩  (𝑥
�̅�

(𝐵𝜂)
+ 𝑧

�̅�

(𝐵𝜂)
)

�̅�

  (129) 

Afterwards, the perturbed Kohn-Sham matrix elements are transformed into MO representation 

using Eq. (123), and the perturbed density matrix is calculated according to Eq. (122). Once the 

perturbed density and Kohn-Sham matrices are available the perturbed energy-weighted density 

matrix 𝑾(𝐵𝜂) is calculated as: 

𝑊𝜇𝜈

(𝐵𝜂)
=

1

2
∑ (𝑃𝜇𝜎

(𝐵𝜂)
𝐾𝜎𝜏𝑃𝜏𝜈 + 𝑃𝜇𝜎𝐾𝜎𝜏

(𝐵𝜂)
𝑃𝜏𝜈 + 𝑃𝜇𝜎𝐾𝜎𝜏𝑃𝜏𝜈

(𝐵𝜂)
  )

𝜎,𝜏

  (130) 

With all perturbed matrix and vector elements at hand, the corresponding contributions of the 

perturbation-dependent second derivatives, Eq. (121), can be calculated. This concludes the 

calculation of analytic second-order ADFT energy derivatives with respect to nuclear 

displacements. For the simulation of infrared (IR) and Raman spectra within the double harmonic 
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approximation [134,135] second- and third-order mixed energy derivatives with respect to QM 

atomic coordinates and components of an external electric field are needed, too. They are 

implemented as analytical and semi-numerical derivatives in deMon2k [136]. Finally, we note that 

the here outlined analytic second-order ADFT energy derivative calculation is currently extended 

to effective and model core potentials employing half-numerical integral evaluation [50]. 

Although ADPT within ADFT can provide first-principle response properties of systems 

up to around thousand atoms [117], a frequency analysis of a protein with many thousand atoms in 

water is still computationally unfeasible with a first-principle QM-only methodology. For such 

systems with many thousands of atoms the QM/MM methodology in deMon2k can be used [42,44]. 

In analogy to the QM/MM energy expression, Eq. (38), second-order QM/MM energy derivatives 

can be expressed as: 

𝜕2𝐸𝑄𝑀/𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
   =  

𝜕2𝐸𝑄𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+  

𝜕2𝐸𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+

𝜕2𝐸𝑄𝑀𝑀𝑀

𝜕𝐴𝜆𝜕𝐵𝜂
+  

𝜕2𝐸𝑁𝑁

𝜕𝐴𝜆𝜕𝐵𝜂
   (131) 

The last three terms of the right-hand side of Eq. (131) are analytic derivatives of the corresponding 

gradient terms discussed in Section 2. Therefore, they are straightforward to calculate and will not 

be further discussed here. The complete Hessian matrix, schematically depicted in Fig. 11, can be 

separated into four regions, labeled as QM-QM, QM-MM, MM-QM and MM-MM in Fig. 11. By 

symmetry, the QM-MM and MM-QM blocks are identical. In the QM-QM block, second ADFT 

energy derivatives with respect to QM atomic coordinates are collected. They are calculated as 

outlined above. Note, however, that they include according to Eq. (119) second derivatives of the 

QM/MM core Hamilton matrix elements given by Eq. (36). The elements of the QM-QM block 

also contain analytic second derivatives of 𝐸𝑄𝑀𝑀𝑀 and 𝐸𝑁𝑁 with respect to QM atomic 

coordinates, which are straightforward to calculate. The QM-MM block elements contain 
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contributions from the same three terms, namely 𝐸𝑄𝑀,  𝐸𝑄𝑀𝑀𝑀 and 𝐸𝑁𝑁. Again, we discuss only 

the terms arising from the (mixed) second derivatives of 𝐸𝑄𝑀. Their calculation is simpler because 

the basis and auxiliary functions of the QM atoms are independent from the coordinates of the MM 

atoms and the MM atoms themselves carry none of these functions. Taking this into account, the 

evaluation of Eq. (118) for a QM atomic coordinate 𝐴𝜆 and a MM atomic coordinate 𝐷𝜂 yields: 

𝜕2𝐸𝑄𝑀

𝜕𝐷𝜂𝜕𝐴𝜆
= ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈

(𝐷𝜂,𝐴𝜆)

𝜇,𝜈

+ ∑ 𝑃𝜇𝜈
(𝐴𝜆)

 𝐻𝜇𝜈

(𝐷𝜂)
 

𝜇,𝜈

   (132) 

 

Figure 11: Hessian matrix structure for a QM/MM system. 
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Note that the perturbed density matrix elements in Eq. (132) are the same as the once needed for 

the elements in the QM-QM block. The perturbed core matrix elements in Eq. (129) are given by 

(without employing asymptotic expansions) 

𝐻𝜇𝜈

(𝐷𝜂)
= − 〈𝜇𝜈|�̂�𝐷(1𝜼)〉 𝑄𝐷 

and 

  (133) 

𝐻𝜇𝜈

(𝐷𝜂,𝐴𝜆)
= − 〈𝜇𝜈|�̂�𝐷(1𝜼)〉(𝐴𝜆) 𝑄𝐷 .   (134) 

Finally the MM-MM block elements contain contributions from all four analytic second derivatives 

on the right-hand side of Eq. (131). Again the 𝐸𝑀𝑀,  𝐸𝑄𝑀𝑀𝑀 and 𝐸𝑁𝑁 second derivatives with 

respect to MM atomic coordinates are straightforward to calculate. For the 𝐸𝑄𝑀 analytic second 

derivatives with respect to MM atomic coordinates 𝐷𝜆 and 𝐷𝜂
′  follows: 

𝜕2𝐸𝑄𝑀

𝜕𝐷𝜆𝜕𝐷𝜂
′

= ∑ 𝑃𝜇𝜈 𝐻𝜇𝜈

(𝐷𝜆,𝐷𝜂
′ )

𝜇,𝜈

+ ∑ 𝑃𝜇𝜈

(𝐷𝜂
′ )

 𝐻𝜇𝜈
(𝐷𝜆)

 

𝜇,𝜈

   (135) 

 with  

𝐻𝜇𝜈

(𝐷𝜆,𝐷𝜂
′ )

= {
 〈𝜇𝜈|�̂�𝐷(𝟏𝝀 + 𝟏𝜂)〉

0

    𝑖𝑓 𝐷 = 𝐷′

    𝑒𝑙𝑠𝑒
     (136) 

Eq. (135) implies the calculation of perturbed density matrix elements, 𝑃𝜇𝜈

(𝐷𝜂
′ )

, for each 

corresponding MM degree of freedom. This is expected to be the principal bottleneck for the 

analytical Hessian calculation of a QM/MM system because there are usually much more MM 

atoms than QM atoms. Therefore, the ADPT equations must be solved for all MM degrees of 

freedom, too. Fortunately, the response equation system will have important simplifications as 

basis and auxiliary functions are independent from MM atom coordinates. These simplifications 

have been already explored in the framework of conventional DFT/MM calculations using CPKS 
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response equations [137,138]. Despite these improvements, such calculations are still prohibitive 

for large systems, including enzymes. Thus, a derivation of second-order ADFT energy derivatives 

within the QM/MM framework is expected to be a useful tool to evaluate frequencies and infrared 

intensities of complex systems with many thousands of atoms. Work in this direction is currently 

under development within the deMon developers’ community. 

6. QM/MM Magnetic shielding and excited states calculations 

The calculation of magnetic properties such as magnetic shieldings and magnetizabilities 

of very large systems containing thousands of atoms, like the ones including explicit solvent 

molecules, can be efficiently handled by QM/MM methods. In the particular case of ADFT 

QM/MM magnetic property calculations [139-143], QM regions with around 1,000 atoms and 

15,000 thousand basis functions can be used.The ADFT magnetic shielding tensor elements, 𝜎𝜆𝜂, 

are defined as the second-order ADFT energy  derivative with respect to a component of the 

magnetic field, ℋ𝜆, and a component of the nuclear magnetic moment, 𝜇𝐶𝜂
: 

𝜎𝜆𝜂 =  
𝜕2𝐸𝑄𝑀

𝜕ℋ𝜆𝜕𝜇𝐶𝜂

     (137) 

In a QM/MM calculation, only the QM atoms possess nuclear magnetic moments. Therefore, Eq. 

(137) is only defined for the QM atoms. Furthermore, the other terms of the QM/MM energy 

expression, Eq. (38), do not contribute to this mixed second energy derivative. Thus, expanding 

Eq. (137) yields for the shielding tensor elements: 

𝜎𝜆𝜂 =  ∑ 𝑃𝑎𝑏
(𝜆)

 𝐻𝑎𝑏
(𝜂)

𝑎,𝑏

+ ∑ 𝑃𝑎𝑏 𝐻𝑎𝑏
(𝜆𝜂)

𝑎,𝑏

 
  (138) 
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In this equation 𝑎 and 𝑏 index Gauge-Including Atomic Orbitals (GIAOs) [139,144] centered at 

the QM nuclei 𝐴 and 𝐵. The GIAOs, 𝜙𝑎(𝒓), are obtained by multiplying (contracted) GTOs with 

the so-called London factor: 

𝜙𝑎(𝒓) =  𝑎(𝒓) 𝑒−
𝑖
2

 𝓗 (𝐴−𝑮) ×𝒓    (139) 

Here 𝑎(𝒓) is the field independent atomic orbital in form of a (contracted) GTO, and 𝑨 and 𝑮 are 

the position vectors of the QM nucleus 𝐴 and the gauge, respectively. The use of GIAOs effectively 

resolves the gauge origin problem in magnetic shielding calculations. The perturbed core matrix 

elements in Eq. (138) remain unaltered in QM/MM shielding calculations compared to their QM-

only counterparts. Their efficient calculation is described in [139]. Thus, the essential difference 

between QM/MM and QM shielding calculations arises from the calculation of the perturbed 

density matrix elements with respect to the external magnetic field components ℋ𝜆. In ADFT 

GIAO, using LDA or GGA [145], they are given according to McWeeny’s SCP theory [120-124] 

by: 

𝑃𝑎𝑏
(𝜆)

= 2 ∑ ∑
𝒦𝑜𝑢

(𝜆)
− 𝜖𝑜𝒮𝑜𝑢

(𝜆)

𝜖𝑜 − 𝜖𝑢

𝑢𝑛𝑜

𝑢

𝑜𝑐𝑐

𝑜

 (𝑐𝑎𝑜𝑐𝑏𝑢 − 𝑐𝑎𝑢𝑐𝑏𝑜) −
1

2
∑ 𝑃𝑎𝑐𝑆𝑐𝑑

(𝜆)
𝑃𝑑𝑏

𝑐,𝑑

   (140) 

Here, 𝑜 and 𝑢 denote occupied and unoccupied MOs, respectively. The minus sign in Eq. (140) 

compared to Eq. (122) arises from the imaginary perturbation dependency of the GIAO basis 

according to Eq. (139). The Kohn-Sham and overlap matrix elements in molecular orbital 

representation, 𝒦𝑜𝑢
(𝜆)

 and 𝒮𝑜𝑢
(𝜆)

, are calculated according to Eq. (123) and (124). The underlying 

perturbed matrix elements are given by [145]: 

𝑆𝑎𝑏
(𝜆)

=
𝑖

2
 ⟨𝑎|[(𝑨 − 𝑩) × 𝒓]𝜆|𝑏⟩   (141) 

and 
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𝐾𝑎𝑏
(𝜆)

=
𝑖

2
 ⟨𝑎|[(𝑨 − 𝑩) × 𝒓]𝜆 �̂�|𝑏⟩ −  

𝑖

2
 ⟨𝑎|[(𝒓 − 𝑩) × 𝛁]𝜆|𝑏⟩ + 

 
𝑖

2
 ∑⟨𝑎𝑏[(𝑨 − 𝑩) × 𝒓]𝜆 ‖ �̅�⟩

�̅�

 (𝑥�̅� + 𝑧�̅�)                  

   

 

  (142) 

Because in QM/MM calculations the one-electron core Hamilton operator, �̂�, is augmented by the 

electrostatic embedding potential from the MM environment, Eq. (34), we can write Eq. (142) as: 

𝐾𝑎𝑏
(𝜆)

=  𝐾𝑎𝑏
𝑄𝑀(𝜆)

−   
𝑖

2
 ∑⟨𝑎𝑏[(𝑨 − 𝑩) × 𝒓]𝜆|

𝑀𝑀

𝐷

�̂�𝐷(𝟎)⟩ 𝑄𝐷   (143) 

Thus, the last term in Eq. (143) must be additionally computed for 𝜆 = 𝑥, 𝑦, 𝑧 in QM/MM magnetic 

shielding calculations. Efficient recurrence relations are available in deMon2k for these modified 

nuclear attraction type integrals. Therefore, the computational efficiency of the ADFT-GIAO 

methodology is preserved in QM/MM calculations. 

 Another example for QM linear response in the framework of ADFT QM/MM is the 

calculation of excited states. To this end, we compute excited states properties through Time-

Dependent ADFT (TD-ADFT) [146]. In this formalism, the QM/MM excited state energy, 𝐸∗, is 

calculated as a single-electron excitation in the QM region from QM/MM the ground-state, Eq. 

(38): 

𝐸∗ = 𝐸𝑄𝑀/𝑀𝑀 + ω (144) 

For a given number of excited states, these excitation energies, 𝜔, are obtained by solving an 

equation system that resembles that of the Random-Phase Approximation (RPA) [147]: 

(
𝑨 𝑩
𝑩 𝑨

) (
𝑿
𝒀

) = 𝜔 (
𝑰    𝟎
𝟎 −𝑰

) (
𝑿
𝒀

) (145) 

Both matrices, A and B, contain the Coulomb and Kernel response of the Kohn-Sham matrix, to a 

change in the electronic density. These matrices are free of any explicit contribution of the MM 

environment. For pure functionals, they are given by 
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𝐴𝑖𝑎,𝑗𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎 − 𝜖𝑖) + ∑⟨𝜓𝑖  𝜓𝑎‖�̅�⟩

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1⟨𝑙‖̅𝜓𝑗  𝜓𝑏⟩ +  

                                ∑ ∑⟨𝜓𝑖  𝜓𝑎‖�̅�⟩

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1⟨𝑙|̅𝑓𝑥𝑐[�̃�]|�̅�⟩𝐺�̅��̅�

−1

�̅�,𝑙 ̅

⟨�̅�‖𝜓𝑗  𝜓𝑏⟩ (146) 

and  

𝐵𝑖𝑎,𝑗𝑏 = ∑ ⟨𝜓𝑖 𝜓𝑎‖�̅�⟩G
�̅�𝑙 ̅

−1
⟨𝑙‖̅𝜓𝑏 𝜓𝑗⟩ +

�̅�,𝑙 ̅

 

                ∑ ∑⟨𝜓𝑖  𝜓𝑎‖�̅�⟩

�̅�,𝑙 ̅

𝐺�̅�𝑙 ̅
−1⟨𝑙|̅𝑓𝑥𝑐[�̃�]|�̅�⟩𝐺�̅��̅�

−1

�̅�,𝑙 ̅

⟨�̅�‖𝜓𝑏 𝜓𝑗⟩ . 

 

 

(147) 

As can be seen from Eq. (146) the 𝑨 matrix has, in the diagonal, the energy differences between 

unoccupied, 𝜖𝑎, and occupied, 𝜖𝑖, canonical MO energies. This term, which is also known as single 

particle transition energy, is a few orders of magnitude bigger than the other contributions and 

therefore dominant in the calculation of the excitation energies. In this diagonal term the use of 

MM embedding contributes implicitly by shifting these molecular orbital energies, resulting in 

calculated excitation energies that are in good agreement with experiments, even in polar solutions 

[148,149]. 

The equation system in Eq. (145) can be reduced to the following eigenvalue problem 

𝜴𝑭 = 𝜔2𝑭 (148) 

with  

𝜴 = (𝑨 − 𝑩)1/2(𝑨 + 𝑩)(𝑨 − 𝑩)1/2 (149) 

and  

𝑭 = (𝑨 − 𝑩)−1/2(𝑿 + 𝒀). (150) 
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The calculation of (𝑨 − 𝑩)−1/2 is trivial if no Fock exchange is requested, which is the case of the 

TD-ADFT implementation in deMon2k [150,151]. Another simplification of the TD-ADFT 

equation system is the so-called Tamm-Dancoff approximation (TDA) [152] which is obtained by 

setting 𝑩 = 𝟎 as: 

𝑨𝑿 = 𝜔𝑿 (151) 

Although it is an approximation, it has been shown that using the TDA yields the same or in some 

cases even better accuracy than the full equation system [152].  

Regardless of the type of TD-ADFT, namely Eq. (148) or Eq. (151), the TD-ADFT matrix, 𝑨 or 

𝜴, is of dimension (𝑜𝑐𝑐 𝑥 𝑢𝑛𝑜)2, being 𝑜𝑐𝑐 and 𝑢𝑛𝑜 the number of occupied and unoccupied MOs, 

respectively. The diagonalization, or just storage, of this matrix can become computationally 

demanding even for very small systems (~20 atoms). Therefore, to avoid storage and explicit 

diagonalization of the full TD-ADFT matrix, the Davidson method [153,154], which is a direct 

diagonalization procedure, is implemented in deMon2k. With this method, it is possible to solve 

the TD-ADFT equation system for a given number of lowest excitation energies. As an example, 



 
 

60 

the calculated TD-ADFT visible spectrum of the Reichardt’s dye at the PBE/DZVP-GGA/GEN-

A2* level is shown in Fig. 12. For these calculations the molecular structures were optimized in 

vacuum, water, methanol and ethanol. All solvent molecules where calculated at the MM level, 

accounting for a total of around 1500 atoms. The OPLS-AA force field was used in all QM/MM 

calculations. As Fig. 12 shows the experimental observed solvent shifts in the excitation spectra 

are qualitatively correct reproduced by our QM/MM calculations. 

 

7. Transformation program for deMon2k input generation 

A major practical obstacle to run QM/MM simulations for complex molecular systems as 

those encountered in biology or in materials science is to prepare input files. For most systems, 

deMon2k requires to specify for each MM atom, its atom type, as defined in the FFDS file, and 

importantly its connectivity, i.e. the list of other MM atoms to which it is bonded.  Setting-up a 

QM/MM simulation by hand is thus a tedious task that turns impossible as soon as the system of 

interest contains more than a few tens of atoms. Actually, in practice, one has generally prepared 

and investigated the system at the MM level before switching to QM/MM, to investigate, for 

example, a chemical reaction energy profile or to evaluate electronic properties at a QM level of 

theory. Highly optimized packages for classical molecular simulations like NAMD, LAMMPS and 

GROMACS to name a few, are readily available to generate the topology of the systems and to set-

up classical MM simulations from atom geometries in standard formats (e.g. the Protein Data Bank 

PDB format). A powerful strategy is therefore to translate the information contained in the topology 

files provided by one’s favorite MM package to a deMon2k compatible input file. To this end, we 

have devised a dedicated program, called QIB (for QM/MM Input Builder). QIB is currently 

capable of converting topology files from the AMBER package, CHARMM and GROMACS to 



 
 

61 

the deMon2k format. QIB also permits to create a QM/MM input file from scratch, provided a 

reference PDB file. Another essential capability of QIB is to take care of a series of technical but 

important details appearing in QM/MM simulations. 

 

Figure 13: Pictogram for the automatically generation of deMon2k input files from standard MM 
package topology and geometry files by QIB for QM/MM simulations. The program generates a 
minimal deMon2k input file and a xyz file with the geometry of the QM region encompassing link 
atoms. 

 
To illustrate the capabilities of QIB, we take the example of a QM/MM simulation of a 

DNA/protein complex shown in Fig. 13. The latter has been solvated in a of 142 Å edge box of 

TIP3P water molecules and contains 258 550 atoms. QIB extracts important information from the 

AMBER prmtop file such as the atom names, the residue pointers and the connectivity. In a second 

step, it identifies for each atom the corresponding atom type within the deMon2k FFDS file. 

Together with a coordinate file that can be provided under various formats, this is all the 

information needed to prepare the geometry block in deMon2k. As currently deMon2k does not 

implement periodic boundary conditions but can account for remote electrostatic effect with the 

Onsager polarizable model (see Section 4), it is advisable to prune the system to fit within spheres, 

typically with a 30 to 40 Å radius. Using the information on the residues to which each atom 

belongs, the pruning can be operated keeping the molecular integrity of each residue. In the present 

case, this leads to a molecular system encompassing around 15,600 atoms. For QM/MM 
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simulations, the user can provide an atom selection that defines a primary QM region.  Eventually, 

the latter is enlarged by a distance criterion, as illustrated in Fig. 13. This option is useful to include 

solvation waters close to the primary QM region, or to simply generate a QM/MM set-up without 

the need to identify all atom indexes defining the QM region. A geometry file for the QM region 

is produced for checking. Note that QIB automatically handles the case of covalent bonds 

appearing across the QM/MM border. It further suggests a list of atom types for QM atoms in order 

to calculate Lennard-Jones interactions with MM atoms. Other options are available in QIB, and 

example of QM/MM simulations with the molecular systems depicted in Fig. 13 are reported in 

Chapter four of this book. 

 

8. Résumé 

In this chapter, we tried to give an overview over the current state-of-the-art of the QM/MM 

implementation in deMon2k and the corresponding input support program QIB. As this chapter 

shows the QM/MM implementation in deMon2k is a community effort and as such has various 

perspectives. Although most basic computational tasks such as QM/MM structure optimizations, 

molecular dynamics simulations and property calculations are now readily available within the 

QM/MM module of deMon2k, several larger implementation efforts are still under way. We tried 

to give a snapshot of this situation in this chapter. As a community, our aim is to provide a QM/MM 

approach that is easy to use and yet powerful enough to address challenging problems in chemistry, 

materials science and biology. Because our developments are in the framework of deMon2k, they 

will be general accessible, free of charge, to the academic community. 
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