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Abstract
We study an acceleration phenomenon arising in monostable integro-differential equations with a weak

Allee effect. Previous works have shown its occurrence and have given correct upper bounds on the rate of
expansion in some particular cases, but precise lower bounds were still missing. In this paper, we provide
a sharp lower bound for this acceleration rate, valid for a large class of dispersion operators. Our results
manage to cover fractional Laplace operators and standard convolutions in a unified way, which is new in
the literature. A first very important result of the paper is a general flattening estimate of independent
interest: this phenomenon appears regularly in acceleration situations, but getting quantitative estimates
is most of the time open. This estimate at hand, we construct a very subtle sub-solution that captures the
expected dynamics of the accelerating solution (rates of expansion and flattening) and identifies several
various regimes that appear in the dynamics depending on the parameters of the problem.

Keywords: generic nonlocal dispersion operators, fractional laplacian, convolution operator, acceleration,
level lines.

1 Introduction
In this paper, we are interested in describing quantitatively the propagation phenomenon in the following
(non-local) integro-differential equation, complemented with an initial condition:

ut(t, x) = D[u ](t, x) + f(u(t, x)) for t > 0, x ∈ R, (1.1)
u(0, x) = u0(x) for x ∈ R, (1.2)

where the function u represents a density of population and thus takes its values in [0, 1], the function f is a
monostable nonlinearity to be specified, the nonnegative function u0 is the initial density, and the dispersal
operator D[ · ] is defined by

D[u ](t, x) := P.V.
(ˆ

R
[u(t, y)− u(t, x)]J(x− y) dy

)
,

the kernel J being a nonnegative function satisfying the following properties.

Hypothesis 1.1. Let s be a positive real number. The kernel J is nonnegative, symmetric and such that
there exist positive constants J0, J1 and R0 ≥ 1 verifying

ˆ 1

−1
J(z)z2 dz ≤ 2J1 and J0

|z|1+2s1{|z|≥1}(z) ≥ J(z) ≥ J0
−1

|z|1+2s1{|z|≥R0}(z).
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The operator D[ · ] describes the dispersion process of individuals. Roughly speaking, the value of J(x−y)
gives the probability of a jump from position x to position y, which makes the tails of the dispersal kernel J
of crucial importance when quantifying the dynamics of the population. As a matter of fact, the parameter
s will appear in the rates we obtain. One may readily notice that the hypothesis on J allows us to cover the
two main types of integro-differential operators usually considered in the literature: the fractional Laplace
operator (−∆)su on the one hand, and a standard convolution operator with an integrable kernel, often
written J ? u− u, on the other. This universality is one of the main contributions of the present paper.

Without further notice, we will assume that f satisfies the following.

Hypothesis 1.2. The nonlinearity f belongs to C 1([0, 1],R) and is of the monostable type, in the sense that
f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1),

f ′(1) < 0,

lim
u→0

f(u)
uβ
≥ r,

for some real numbers r > 0 and β > 1.

The parameter β above describes the possibility of a weak Allee effect that the population has to overcome.
A biological description and discussion about the origin and relevance of such an effect may be found in a
book by Courchamp et al. [20], and also in [7, 27, 10]. In crude terms, the Allee effect means that a
population with too few individuals will not be fit enough to persist and grow. It is is said to be weak
whenever the growth rate of a very small population is eventually extremely small but still positive, as
opposed to a strong effect, which leads to negative growth rates for small populations. In the sequel, and
without further notice, we take β > 1, thus yielding small growth rates for small densities, and assume that
the initial datum satisfies the following hypothesis.

Hypothesis 1.3. The initial datum u0 belongs to C (R, [0, 1]) and is such that 1 ≥ u0 ≥ a1(−∞,b] for some
real numbers a > 0 and b.

Existing works and previous results
Let us review the existing literature in order to position our work. Propagation phenomena in reaction-
diffusion and integro-differential equations have been the object of intense studies in the last decades. Start-
ing from the work of Fisher on the propagation of an advantageous gene [29] and its analysis by Kolmogorov,
Petrovski and Piskunov [38] and related works by e.g. Aronson and Weinberger [8], the quantitative de-
scription of spreading gave birth to various mathematical tools and techniques such as travelling waves,
accelerating profiles, transition fronts, among many others.

When β = 1 and the nonlinearity f satisfies f(s) ≤ f ′(0)s, meaning it is a Fisher-KPP nonlinearity,
it is known that solutions to problem (1.1)-(1.2) exhibit some propagation phenomenon: starting with
a nonnegative nontrivial compactly supported initial datum, the corresponding solution u converges to 1
locally uniformly in space as time gets large. This is referred as the hair trigger effect [8]. Moreover, in many
cases, this convergence can be precisely characterised. Indeed, when the dispersion kernel J is exponentially
bounded, travelling waves are known to exist and solutions to the Cauchy problem typically propagate at
constant speed, see [46, 49, 19, 24, 23, 39, 50]. On the other hand, when the kernel J possesses heavy tails,
travelling waves do not exist and the solutions exhibit an acceleration phenomenon, see [40, 50, 30]. More
precisely, Garnier [30] gave the first acceleration estimates and the first author with Garnier, Henderson and
Patout [15] next provided sharp level sets for convolution operators; a group around Cabré and Roquejoffre
[18, 17] studied the fractional Fisher-KPP equation concluding to an exponential propagation behaviour. A
related, but different, acceleration phenomenon for positive solutions of a local Cauchy problem also appears
in reaction-diffusion equations when playing with the tails of the initial datum [33]. We emphasise that, in
the present work, the acceleration is solely due to the structure of the dispersal operator.
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When an Allee effect is introduced, the study of propagation becomes more subtle. Alfaro [3] started a
program with a paper about the interplay between a heavy tailed initial datum and the Allee effect in local
reaction-diffusion equations. Coville et al. [24, 23, 22] have proved existence of travelling fronts when the
dispersal kernel J is exponentially bounded and the Cauchy problem typically does not lead to acceleration
[51]. When not, the competition between heavy tails and the Allee effect leads to intense discussions. Gui
and Huan [32] discussed the existence or not of travelling waves for a fractional equation with an Allee
effect. They obtained existence (and thus propagation at a fixed speed) when β

2s(β−1) < 1. However,
neither a description of acceleration nor a precise rate of acceleration were given in the opposite case. In the
same spirit, for algebraically decaying kernels, Alfaro and Coville [4] provided the exact separation between
existence and non-existence of travelling waves for convolution type equations, showing the exact separation
between non-accelerated and accelerated solutions in the Cauchy problem. Before reviewing the last-to-date
results on problem (1.1)-(1.2), let us also mention that an acceleration phenomenon is also present in some
porous medium equations, see [37, 47, 5, 6].

As far as problem (1.1)-(1.2) is concerned, bounds on the expansion of the level sets of solutions have
been obtained by the second author with Gui and Zhao [25] and by Alfaro [4], showing a delicate interplay
between the tails of J and the parameter β. Namely, an upper bound for acceleration is known when D[ · ]
is a fractional Laplace operator (i.e., J ∝ | · |−(1+2s)) or when the kernel J is integrable with a finite first
moment (which corresponds to having s > 1

2 ): solutions spread as at most t
β

2s(β−1) when β
2s(β−1) > 1.

However, these authors were unable to provide a matching lower bound, leaving the determination of the
exact speed of the level lines an open question. We do not recall here the exact exponents they got in order
to avoid misunderstandings while reading the present paper, but instead refer to [4] and [25] where they are
given. Nevertheless, to provide a clear picture, we summarized in the Figures 1a and 1b the already known
behaviours in these two particular situations.

In a preliminary version of the present paper [14] (published during the completion of the current program)
we provided, under the assumptions that J satisfies Hypothesis 1.1 and that the parameter s belongs to (0, 1),
a lower bound for the acceleration of the level lines of solutions to (1.1)-(1.2), showing for the first time that
the spreading is of order t

β
2s(β−1) and thus getting a sharp exponent for acceleration. This preliminary result in

hand, we were informed that Zhang and Zlatoš [52] had managed to obtain similar bounds in the particular
case of a fractional Laplace operator, using a different approach that relies strongly on the properties of
this fractional operator. The present version of our work introduces the full range of the general approach
initiated in [14]. The sharp estimate is obtained with the fewest possible assumptions on the kernel J , in
particular with the fewest restrictions on the parameter s.

Statement of the main result
To follow the propagation of the population modelled by system (1.1)-(1.2), we may define the level set of
height λ, with λ a real number in (0, 1), of a solution u to the problem, that is

∀t ∈ (0,+∞), xλ(t) := sup {x ∈ R, u(t, x) ≥ λ} .

Let us now state precisely our main result.

Theorem 1.4. Assume that J , u0 and f respectively satisfy Hypotheses 1.1, 1.3 and 1.2 and that the
parameters s and β are such that

β < 1 + 1
2s− 1 . (1.3)
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Figure 1: For the convolution case, Figure 1a, we have: In the green zone, the model enjoys linear
propagation with existence of travelling fronts [21]: xλ(t) � c∗t. In the white zone Ì, no estimates are
known. In the blue zone Ê, only an upper bound has been derived, see [4]: xλ(t) . t

β
2s(β−1) . In the purple

zone Ë, non matching lower and upper bounds have been derived [4]: t
1

2s(β−1) . xλ(t) . t
β

2s(β−1) . The orange
zone is a zone of exponential propagation, see Garnier [30], Bouin et al. [15]: xλ(t) � exp(ρt).
For the fractional case, Figure 1b, we have: In the green zone, the model enjoys linear propagation with
existence of travelling fronts [32, 25]: xλ(t) � c∗t. In the blue zone Ê, non matching upper and lower bounds
have been derived, see [25]: t 1

2s . xλ(t) . t
β

2s(β−1) . In the purple zone Ë, non matching lower and upper
bounds have been derived, see [25]: t

1
2s(β−1) . xλ(t) . t

β
2s(β−1) . The orange zone is a zone of exponential

propagation, see Roquejoffre et al. [17]: xλ(t) � exp(ρt).

Then, for any λ in (0, 1), the level line xλ of a solution to problem (1.1)-(1.2) accelerates with a rate equal
to β

2s(β−1) , that is
1

xλ(t) �λ t
β

2s(β−1) .

To give the reader a clear panorama of the scope of this result, we have summarised previous contributions
and ours in Figure 2.

To the best of our knowledge, Theorem 1.4 provides the first sharp, unified, estimate for level sets in
such a generic context. As we already mentionned, correct upper bounds in some particular settings had
been previously derived, but no precise lower bound was provided in general. Note that condition (1.3) in
Theorem 1.4 fits with and unifies the ones in the related papers [4, 14, 25, 32, 52]. Note that we also obtain
the rate of invasion for a convolution operator when s belongs to (0, 1

2 ], which remained open in [25].
The constructions made in [4, 25] to obtain upper bounds are robust and can be adapted to the range

of parameters considered in the present paper for kernels satisfying Hypothesis 1.1. In order to avoid
unnecessary computations, we will not duplicate them here. Our contribution is thus a generic way of
obtaining a lower bound that matches the already known upper bounds.

Finally, let us illustrate our result with some numerical simulations (see Section 6 for details on the
numerical approximation used). In Figure 3, the position of the level line of height λ = 0.5 is plotted as a

1The notation u �λ v means that there exists a positive constant Cλ such that Cλv ≤ u ≤ Cλ
−1v.
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β = 1
xλ(t) � eρt

xλ(t) � t
β

2s(β−1)

xλ(t) � c∗t

Figure 2: In the green zone, based on the previous works [4, 21, 25, 32], the model is expected to enjoy a
linear propagation with existence of travelling fronts: xλ(t) ∼ c∗t. In the blue zone, we provide the sharp
lower and upper bounds : xλ(t) � t

β
2s(β−1) . The orange zone is a zone of exponential propagation, by

straightforward extension of the work of Bouin et al. [15]: xλ(t) � exp(ρt).

function of time for two different values of β and several values of the fractional Laplacian exponent s. In
one of the two configurations, namely for β = 1.5, the theoretic critical value of the exponent s above which
there exists a travelling front is strictly greater than 1. As a consequence, the level set accelerates for any of
the chosen values for s in (0, 1), but this acceleration clearly decreases to none as s tends to 1, as expected
from the existing results for local diffusion.

This is no more the case for β = 3, as one can observe a switching from an accelerated regime to a travel
at constant speed around the critical value s = 0.75 (the corresponding curve is plotted with a dashed line).
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Figure 3: Position of the level line of height 1
2 of numerical approximations of the solution to the problem

with fractional diffusion, plotted as a function of time, for two different values of β and several values of s
in (0, 1).
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Comments on the strategy
The first step in proving the result is to study how the solution evolves from the initial datum for short
times, and, in particular, what is decay at infinity created by the dispersion with fat tails. We prove in
Proposition 2.2 that a solution to (1.1)-(1.2) with initial datum satisfying Hypothesis 1.3 behaves as x−2s

at infinity at time 1. When s ≥ 1, this is enough to conclude.
When s belongs to (0, 1), an important aspect is to know that a positive solution to (1.1)-(1.2), with u0

satisfying Hypothesis 1.3, flattens through time, that is

∀C > 0, ∃tC > 0, lim
x→+∞

x2su(t, x) ≥ C for all t ≥ tC .

Figure 4 illustrates this particular behaviour using numerical simulations, showing the deformation of the
profile of a solution over time. The flattening property is more clearly seen in the right hand side plot, where
profiles of the solution at different times are shifted back to have the same value at x = 0. We see that there
is no stabilisation of the profile and that the shape of the solution keeps changing through time, which is
usually not the case when the long time behaviour is a constant speed propagation.
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Figure 4: Numerical approximations of the solution to the problem with fractional diffusion at different times
for s equal to 0.6 and β equal to 1.5. On the right, the graphs have been shifted by setting the position of
the level line of value 1

2 at x = 0, for comparison purposes. The latter exhibits more clearly the deformation
of the solution.

A more convincing picture of the flattening effect may be obtained by plotting the evolution over time
of the best constant C such that the tail of the solution fits with C

x2s in the least square sense. The graphs
in Figure 5 show that, after a rapid transition, the constant grows linearly. We also refer to Figure 13 for
various plots showing the adequation between u(t, ·) and x−2s at the edge of the invasion profile.
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Figure 5: Evolution over time of the fitting constant for the part of the tail of the approximation solution
at time t = 1 bounded by value 10−2 on the left and value 10−5 on the right using the function C

x2s for the
solution of the problem with fractional diffusion and β = 1.5 and s = 0.4 and 0.5.

Let us now comment on the proof of Theorem 1.4 relies on two ingredients. We first show an invasion
property in this general context, given in Proposition 2.4. We then combine it with a subtle construction
of a subsolution of the linear problem that mimics the expected scaling behaviour of the heat kernel. Very
importantly, this flattening property is in fact true for any s > 1, as shown in Section 2. It is worth
mentioning that the regime s ≥ 1 is one for which the heat kernel is supposed to behave at large times like a
Gaussian diffusion kernel, implying that the flattening of the solution of (1.1) cannot be uniquely explained
through the diffusion process and is truly a nonlinear feature. This is a clear dichotomy between the two
regimes s < 1 and s ≥ 1.

For particular diffusion operators like the fractional Laplace operator, such flattening estimate can be
obtained through time and space scaling properties of the associated heat kernel. However, although the
characterisation of the heat kernel associated to the generator of a Levy process is a well known problem in
probability theory and analysis that dates back to the original works of Pólya [45] and Blumenthal and Getoor
[11] on α-stable processes, characterisations of the heat kernel that may induce such flattening estimates have,
as far as we know, only been established for some specific classes of Levy process (see [12, 26, 31, 36]) and
do not exist for a generic Levy process.

Once the initial datum has been properly prepared for small times, our strategy to achieve a lower bound
for large times consists in the construction of a new type of subsolution capturing all the expected dynamics
of the solution u. In particular, it turns out to be mandatory to identify several zones of space over which the
behaviour of the solution u is governed by one specific part of the equation. This appears to be something
new compared to previous approaches. Roughly, the dynamics close to t

β
2s(β−1) are due to the nonlinearity

only via the related ordinary differential equation, the far-field zone is ruled by purely dissipative effects and
has the behaviour of the linearised equation, and the transition zone between the two sees a subtle interplay
occur between the two effects. This dichotomy will be detailed and illustrated in Section 5. Lastly, in relation
with what has just been explained, it is interesting to notice the fact that the exponent of acceleration is a
function of β but not the way that the solution flattens with time: it is purely related to the rate of dispersion
and will be shown numerically. See Figure 6 for a schematic view of the expected behaviour of the solution.

Further comments and structure of the paper
It is worth adding that the propagation of a compactly supported initial datum would lead to different
considerations. In particular, the possibility of invasion is related to the size of the initial datum due to
the existence or not of the so-called hair trigger effect. Depending on the choice of parameters s and β, for
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Figure 6: Schematic view of the expected behaviour of solution at a given time t.

a compactly supported initial datum, it may happen that the solution gets extinct at large time, which is
referred to as the quenching phenomenon [2, 53], and no propagation occurs. We have not chosen to focus
on this particular issue in order to concentrate on an accurate description of the acceleration process.

It is important to keep in mind that, from the point of view of applications, having results with as-
sumptions at such a level of generality is of great interest, in particular in ecology where dispersal is a
fundamental process which strongly impacts the evolution of species and for which understanding is still
partial (see [42, 43, 44]). In a sense, by giving access to the correct speed of acceleration for a large class of
measures, our results provide a unified view of the consequences of potentially large jumps in the dispersal
process.

It is worth noticing that the numerical graphs in Figure 5 suggest some particular asymptotic behaviour of
solutions to problem (1.1)-(1.2). For the fractional Laplace operator, we observed numerically the following
behaviour: u(t, x) ∼ C0t/x

2s for large x. Such scaling is indeed satisfied by the subsolution we construct to
estimate the speed of level sets from below. However, the super-solution used to control this speed does not.
Obtaining rigorously such asymptotic behaviour remains an open question which requires a more precise
description of the super-solution in the spirit of our construction. Some investigations in this direction are
currently underway.

Lastly, our approach is rather robust and can be extended to more singular monostable nonlinearities,
notably ignition-type ones (see the companion paper [13]).

The paper is organised as follows. We first derive some estimates on the asymptotic behaviour of the
solution of (1.1) and prove Proposition 2.4 in Section 2. Section 3 then describes in broad lines the con-
struction of the subsolution. The deeper calculations needed for the proof of Theorem 1.4 are the object of
Section 4 and 5. Finally, Theorem 1.4 is illustrated with numerical experiments in Section 6.

2 Tails and flattening estimates
2.1 About the tails of u at t = 1
In this section, we show that, starting from a Heaviside initial datum, the solution immediately gets poly-
nomial tails of order 2s, for any positive value of s. For this, we construct a subsolution for short times.
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Let us introduce the function v defined by

v(t, x) =
{

1
ν for t > 0, x ≤ 0,

κt
x2s+κνt for t > 0, x > 0,

where ν and κ are positive constants to be fixed. Note that v(0, ·) = 1
ν1(−∞,0].

Lemma 2.1. For all positive real numbers ν and κ verifying κν ≤ 1
2sJ0

, one has

vt(t, x)−D[ v ](t, x) ≤ J0

2s v(t, x) for all t ∈ (0, 1), x > R0 + 1.

Proof. For x > 0, t > 0, compute

vt(t, x) = κx2s

(x2s + κνt)2 ,

vxx(t, x) = 2sv2(t, x)x
2s−2

κt

[
4s x2s

x2s + νκt
− 2s+ 1

]
.

Note that v is always convex in x for all times t > 0 and κν > 0.
Let us now estimate D[ v ](t, x) for t > 0 and x ≥ R0 + 1. We have, using that v(t, ·) is monotone

decreasing for all t and Hypothesis 1.1.

D[ v ](t, x) =
ˆ −1

−∞
[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ +∞

1
[v(t, x+ z)− v(t, x)]J(z) dz,

≥
ˆ −1

−∞
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

1
J(z) dz,

=
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ −x
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ −1

−x
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

1
J(z) dz

≥
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

[
1
ν
− v(t, x)

]ˆ +∞

x

J(z) dz − v(t, x)
ˆ +∞

1
J(z) dz

≥
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz + J0

−1

2s

[
1
ν
− v(t, x)

]
1
x2s −

J0

2s v(t, x).

The remaining integral is estimated using the regularity of v, its convexity with respect to x, and the
symmetry of J . Indeed, one can rewrite it as follows

ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz =

ˆ 1

0

ˆ 1

0

ˆ 1

−1
vxx(t, x+ τσz)τz2J(z) dzdτdσ ≥ 0,

since x ≥ R0 + 1 ≥ 2 and thus vxx(t, x+ ξ) ≥ 0 for any ξ in (−1, 1). We hence conclude that

D[ v ](t, x) ≥ J0
−1

2s

[
1
ν
− v(t, x)

]
1
x2s −

J0

2s v(t, x).
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We then have, for t in (0, 1) and x ≥ R0 + 1 ≥ 1,

vt(t, x)−D[ v ](t, x) ≤ κx2s

(x2s + κνt)2 −
J0
−1

2s

[
1
ν
− v(t, x)

]
1
x2s + J0

2s v(t, x)

≤ κ

x2s + κνt
− J0

−1

2sν

[
1− κνt

x2s + νκt

]
1
x2s + J0

2s v(t, x)

= κ

x2s + κνt
− J0

−1

2sν
1

x2s + νκt
+ J0

2s v(t, x)

= κ

x2s + κνt

(
1− J0

−1

2sνκ

)
+ J0

2s v(t, x) ≤ J0

2s v(t, x),

when κν ≤ 1
2sJ0

.

Equipped with the above lemma, we can prove the following result.

Proposition 2.2. Let u be a solution to problem (1.1), with the kernel J satisfying Hypothesis 1.1. Then,
there exists D > 0 such that

lim
x→+∞

x2su(1, x) ≥ 2D2s.

Proof. Observe that due to a comparison principle and since u0 satisfies Hypothesis 1.3 it is enough to
prove this proposition for monotone initial data u0. In this situation, i.e. u0 is monotone non-increasing,
by a straightforward application of the comparison principle so does x 7→ u(t, x) for all times, and we have
u(t, x) ≥ u(t, R0 + 1) for all times t > 0 and x ≤ R0 + 1. Since u(t, x) > 0 for all t > 0 and all x ∈ R, we
have δ := inf

t∈[ 1
2 ,

3
2 ]
u(t, R0 + 1) > 0 and thus u(t, x) ≥ δ for all t ∈ ( 1

2 ,
3
2 ), x = R0 + 1.

Consider now z as above with ν > 1
δ and κ so that κν ≤ 1

2sJ0
. Then for such a choice of parameters, the

function ṽ(t, ·) := (1− t) e−
J0
2s tz(t, ·) satisfies
ṽt(t, x) ≤ D[ ṽ ](t, x) for t ∈ (0, 1), x > R0 + 1,
ṽ(0, ·) = 1

ν1(−∞,0],

ṽ(1, ·) = 0, for x ≥ R0 + 1,
ṽ(t, x) ≤ 1

ν , for t ∈ (0, 1), x ≤ R0 + 1.

(2.4)

The function ũ := u(·+ 1
2 , ·) satisfies
ũt(t, x) ≥ D[ ũ ](t, x) for t ∈ (0, 1), x > R0 + 1,
ũ(0, ·) = u( 1

2 , ·) >
1
ν1(−∞,0],

ũ(1, ·) ≥ 0, for x ≥ R0 + 1,
ũ(t, x) ≥ δ > 1

ν , for t ∈ (0, 1), x ≤ R0 + 1.

(2.5)

Using the parabolic comparison principle, it follows that for all (t, x) ∈ (0, 1) × [R0 + 1,+∞[, one has
u(t+ 1

2 , x) ≥ ṽ(t, x) and thus

lim
x→+∞

x2su(1, x) ≥ lim
x→+∞

x2sṽ( 1
2 , x) = κ

2
(
1− 1

2
)
e−
J0
4s lim

x→∞

x2s

x2s + 1
2κν

= κ
4 e
−J0

4s := 2D2s.
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2.2 Flattening estimates for large times
Let us now push further our analysis of the tail of the solution of (1.1) by obtaining a flattening estimate in
the following sense: for any C > 0, there exists a positive time tC such that the solution u of the nonlinear
problem (1.1) satisfies

lim
x→+∞

x2su(tC , x) ≥ C.

More precisely, we prove the following proposition.

Proposition 2.3. Assume J and u0 respectively satisfy Hypotheses 1.1 and 1.3, and let u be a positive
solution to (1.1). Then, for all C > 0, there exits tC > 0 such that u(tC , x) satisfies the following

lim
x→+∞

x2su(tC , x) ≥ C.

Before showing it, let us establish some invasion properties of the solution to (1.1).

Proposition 2.4. Assume J and u0 and f respectively satisfy Hypotheses 1.1, 1.3 and 1.2. Then the solution
to (1.1) satisfies for any positive real number R

u(t, x)→ 1 uniformly in (−∞,R] as t→∞.

Proof. As above, let us observe that, due to the parabolic comparison principle and since the function u0
satisfies Hypothesis 1.3, it is enough to prove this proposition for a monotone initial datum. Observe also
that, when the kernel J belongs to L1(R) or D is the fractional Laplacian, the above invasion statement has
already been shown in [4, 25]. We will not repeat the proof here and consider from now on that J has a
non-integrable singularity and D is not the fractional Laplacian operator. Since f satisfies Hypothesis 1.2,
we may also find r0 small enough so that f(s) ≥ r0s

β(1 − s) with β > 1 and, using again the parabolic
comparison principle, it then is enough to prove the this invasion proposition for nonlinearity f of the form
f(s) := r0s

β(1 − s) with β > 1. So let us assume that f(s) := r0s
β(1 − s) with β > 1. The idea is now to

construct a subsolution to (1.1) that fills all the space. Let us observe that for any nonnegative nonlinearity
f and any function v and R ≥ R0 we have

D[ v ](x) + f(v(x)) =
ˆ +∞

−∞
[v(x+ h)− v(x)]J(h) dh+ f(v(x))

=
ˆ
|h|<R

[u(x+ h)− u(x)]J(h) dh+
ˆ
|h|≥R

[v(x+ h)− v(x)]J(h) dh+ f(v(x))

≥
ˆ
|h|<R

[v(x+ h)− v(x)]J(h) dh− v(x)
ˆ
|h|≥R

J(h) dh+ f(v(x))

≥
ˆ
|h|<R

[v(x+ h)− v(x)]J(h) dh− J0

R2s v(x) + f(v(x)).

Set fR(s) := − J0
R2s s+ f(s) and let us denote by DR the diffusion operator with the kernel J(h)1BR(0)(h)

instead of J . Then, from the above computations, we have, for any positive solution u to (1.1),

∂tu(t, x)−DR[u ](t, x)− fR(u(t, x)) ≥ ∂tu(t)−D[u ](t, x) + f(u(t, x)) = 0.

Let 0 < θ < a := lim inf
x→∞

u0(x) and for θ < 1
2 , let us introduce a bistable function fθ such that fθ(0) =

fθ(θ) = fθ(1− θ) = 0, fθ ′(1− θ) < 0 and f(x) > fθ(x) > 0 for all x ∈ [θ, 1− θ]. We then choose θ < a
8 small,

so that 1− θ > a and
´ 1−θ

0 fθ(s) ds > 0.
Since fR → f as R→ +∞, we may find Rθ such that fθ ≤ fRθ and so we have for R ≥ Rθ

∂tu(t, x)−DR[u ](t, x)− fθ(u(t, x)) ≥ 0. (2.6)

11



Let us smoothly extend fθ outside [0, 1− θ] as follow:
fθ
′(0)s when s < 0

fθ(s) when 0 ≤ s ≤ 1− θ
f ′θ(1− θ)(s− 1 + θ) when 1− θ < s,

and, for convenience, let us still denote by fθ this extension. Let us now consider the following problem

∂tv(t, x)−DR[ v ](t, x)− fθ(v(t, x)) = 0. (2.7)

Observe that from (2.6), u is a supersolution to (2.7). Let us now construct an adequate subsolution to
(2.7). From [1], we know the problem (2.7) admits a unique monotonally decreasing travelling wave solution
(ϕθ, cθ) connecting 1− θ to 0, which is smooth since J has a non-integrable singularity. That is (ϕθ, cθ) is a
smooth solution to

cθϕθ
′(x) +DR[ϕθ ](x) + fθ(ϕθ(x)) = 0 for all x ∈ R,

lim
x→−∞

ϕθ(x) = 1− θ, lim
x→+∞

ϕθ(x) = 0.

By definition of fθ, we must have cθ > 0, since the sign of the speed in such context is given by the sign
of
´ 1−θ

0 fθ(s) ds. Let us next normalise ϕθ to have ϕθ(0) = θ and set

wε,κ,L(t, x) := ϕθ
(
x− cθt+ κ(1− e−εt) + L

)
−
(

1− a

2

)
e−εt,

with ε, κ and L some free parameters to be fixed later. Observe that at t = 0, we have

wε,κ,L(0, x) ≤ a

2 − θ < a for all κ, L, ε, x,

wε,κ,L(0, x) ≤ a

2 + θ − 1 < 0 for all κ > 0, L > 0, ε > 0, x > 0.

As a consequence, since ϕθ is monotone for ε and κ fixed, we can always find L0 such that u0 ≥ wε,κ,L0(t, x).
Let us now show that, for an adequate choice of ε and κ, the function wε,κ,L0(t, x) is a subsolution to (2.7).

Claim 2.5. There exist values for parameters ε and κ such that, for all L, wε,κ,L is a subsolution to (2.7).

Let us postpone the proof of the claim for the moment. Having this result at hand and using the parabolic
comparison principle, we then deduce that u ≥ wε,κ,L0 and thus for all real number R, limt→∞ u(t, x) ≥ 1−θ
in (−∞,R]. The parameter θ being arbitrary small the latter argument then implies that u(t, x)→ 1 locally
uniformly in (−∞,R] as t → +∞ and, since u is monotone non increasing in x, the convergence is then
uniform.

To complete the above proof, let us establish the claim.

Proof of the Claim. Computing ∂twε,κ,L, we have

∂twε,κ,L(t, x) = (−cθ + εκe−εt)ϕθ ′
(
x− cθt+ κ(1− e−εt) + L

)
+ ε

(
1− a

2

)
e−εt.

Set ξ(t, x) := x− cθt+ κ(1− e−εt) + L. Using the equation satisfied by ϕθ, we have

∂twε,κ,L(t, x)−DR[wε,κ,L ](t, x)− fθ(wε,κ,L(t, x)) = εκe−εtϕθ
′ (ξ(t, x)) + ε

(
1− a

2

)
e−εt

+ fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
.
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Choose 0 < δ0 <
a
8 such that fθ satisfies

fθ(s) ≤
f ′θ(0)

2 s for s ∈ (0, δ0),
3
2fθ
′(1− θ) ≤ fθ ′(s) ≤

1
2fθ
′(1− θ) for s ∈ (1− θ − 4δ0, 1− θ).

Then, taking inspiration in the construction in [16], let δ < δ0 and choose A(δ) >> 1 such that ϕθ(z) ≤ δ if
z ≥ A and ϕθ(z) ≥ 1− θ − δ for z ≤ −A. We now distinguish the three situations ξ(t, x) > A, ξ(t, x) < −A
and |ξ(t, x)| < A and treat each of them separately.

The case ξ(t, x) > A. In this case, there are two possibilities, either ϕθ(ξ(t, x)) −
(
1− a

2
)
e−εt > 0 or

ϕθ(ξ(t, x))−
(
1− a

2
)
e−εt ≤ 0. With the latter one, we have fθ(ϕθ(ξ(t, x))) ≤ f ′θ(0)

2 ϕθ(ξ(t, x)) and

fθ

(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
= f ′θ(0)

[
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

]
.

Since ϕθ ′ < 0, we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ ε
(

1− a

2

)
e−εt + f ′θ(0)

2 ϕθ(ξ(t, x))− f ′θ(0)
[
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

]
≤
[
ε+ f ′θ(0)

2

](
1− a

2

)
e−εt − f ′θ(0)

2

[
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

]
≤ 0,

as soon as ε ≤ − f
′
θ(0)
2 . In the other situation, we have δ ≥ ϕθ(ξ(t, x))−

(
1− a

2
)
e−εt ≥ 0 and therefore

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ f ′θ(0)

2

(
1− a

2

)
e−εt.

As above, we conclude that

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤
[
ε+ f ′θ(0)

2

](
1− a

2

)
e−εt ≤ 0,

as soon as ε ≤ − f
′
θ(0)
2 .

The case ξ(t, x) < −A. Let us now assume that ξ(t, x) < −A. First, if
(
1− a

2
)
e−εt ≤ 3δ0, then

ϕθ(ξ(t, x))−
(
1− a

2
)
e−εt ≥ 1− θ − 4δ0 and therefore

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ fθ

′(1− θ)
2

(
1− a

2

)
e−εt.

One thus has

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤
[
ε+ fθ

′(1− θ)
2

](
1− a

2

)
e−εt ≤ 0,

provided that ε ≤ − fθ
′(1−θ)

2 .
Otherwise, one has

(
1− a

2
)
e−εt > 3δ0 so that

3a
8 − δ <

a

2 − θ − δ ≤ ϕθ(ξ(t, x))−
(

1− a

2

)
e−εt < 1− θ − 3δ0.
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Since δ < a
8 , and by definition of fθ, we can ensure that

fθ

(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≥ m0 := min

s∈[ a4 ,1−θ−3δ0]
fθ(s).

In addition, using that ϕθ(ξ(t, x)) ≥ 1− θ − δ, it follows that

fθ(ϕθ(ξ(t, x))) = fθ(ϕθ(ξ(t, x)))− fθ(1− θ) ≤ −
3
2fθ
′(1− θ) (1− θ − ϕθ(ξ(t, x))) ≤ −3

2fθ
′(1− θ)δ.

As a consequence, we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ ε
(

1− a

2

)
− 3fθ ′(1− θ)

2 δ −m0 ≤ 0,

provided that ε and δ are chosen small enough, for instance ε ≤ m0
2−a and δ ≤ m0

3fθ ′(1−θ) .

The case |ξ(t, x)| < A. Let us finally assume that |ξ(t, x)| < A. In that region, one has ϕθ ′ < 0 and
therefore

ϕθ
′(ϕ(ξ(t, x)) ≤ −ν0 := sup

z∈[−A,A]
ϕθ
′(z) < 0.

Recalling that fθ is a Lipschitz function, so we also have

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ ‖fθ ′‖∞

(
1− a

2

)
e−εt,

and thus end up with

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ −κεe−εtν0 + (ε+ ‖fθ ′‖∞)
(

1− a

2

)
e−εt

≤
(
−κεν0 + (ε+ ‖fθ ′‖∞)

(
1− a

2

))
e−εt

≤ 0,

provided that κ is chosen large enough, for instance κ ≥ (ε+‖fθ ′‖)(2−a)
2εν0

.

Remark 2.6. The above proof does not need any specific form of the nonlinearity f , only that it is of
monostable-type, in the sense that f(0) = f(1) = 0 and f > 0 in (0, 1). As a consequence, it holds for any
monostable nonlinearity. In addition, with some minor adaptations in the manner the bistable function fθ
is constructed, the proof will also be valid for an ignition-type nonlinearity.

Let us now prove Proposition 2.3.

Proof of Proposition 2.3. As in the proof of Proposition 2.2, we will construct an adequate subsolution. To
this end, let v be the parametric function defined in that proof in which we set ν = 2, that is

v(t, x) =
{

1
2 for t > 0, x ≤ 0,

κt
x2s+2κt for t > 0, x > 0.

and assume that κ = J0
−1

8s . We will now estimate D[ v ].
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Let R be a real number greater than 1 chosen as in the proof of Proposition 2.2. For t > 0 and x ≥ R0+R,
we have

D[ v ](t, x) =
ˆ −R
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ +∞

R

[v(t, x+ z)− v(t, x)]J(z) dz

≥
ˆ −R
−∞

[v(t, x+ z)− v(t, x)]J(z) dz +
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

R

J(z) dz

=
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ −x
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ −R
−x

[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)
ˆ +∞

R

J(z) dz

≥
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

[
1
2 − v(t, x)

] ˆ +∞

x

J(z) dz − v(t, x)
ˆ +∞

R

J(z) dz

≥
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz + J0

−1

2s

[
1
2 − v(t, x)

]
1
x2s −

J0

2sR2s v(t, x).

The remaining integral is estimated similarly using the regularity of v and the convexity in x, together
with the symmetry of J , and thus, for x > R0 +R,

D[ v ](t, x) ≥ J0
−1

2s

[
1
2 − v(t, x)

]
1
x2s −

J0

2sR2s v(t, x).

Altogether, we have for t > 0 and x ≥ R0 +R,

vt(t, x)−D[ v ](t, x) ≤ κx2s

(x2s + 2κt)2 −
J0
−1

2s

[
1
2 − v(t, x)

]
1
x2s + J0

2sR2s v(t, x)

≤ 1
x2s + 2κt

(
−J0

−1

8s + J0κt

2sR2s

)
.

For any positive real number C, let us now define t∗ := 2C
κ and choose R large enough, for instance

R ≥ RC :=
(
8CJ0

2) 1
2s . From the above computation, we then have

vt(t, x)−D[ v ](t, x) ≤ 0 for all t ∈ (0, t∗), x ≥ R0 +RC . (2.8)

Equipped with this subsolution, let us now conclude. By using the invasion property stated in Proposi-
tion 2.4, there exists tC such that for all t ≥ tC , we have

u(t, x) ≥ 3
4 for all t > 0, x ≤ R0 +RC .

The function ũ(t, x) := u(t+ tC , x) then satisfies =

ũt(t, x)−D[ ũ ](t, x) ≥ 0 for all t ∈ (0, t∗), x ∈ R,
ũ(t, x) ≥ v(t, x) for all t ∈ [0, t∗], x ≤ R0 +RC .

Using the comparison principle, it follows that, for all (t, x) ∈ (0, t∗)× [R0 +RC ,+∞[, one has ũ(t, x) ≥
v(t, x) and thus

lim
x→+∞

x2su(tC + t∗/2, x) ≥ lim
x→+∞

x2sv(t∗/2, x) = C.
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3 Strategy for the construction of subsolutions
As previously mentioned, our main strategy is to construct a subsolution to (1.1) that mimics some expected
behaviours. As observed in the previous section, since f satisfies Hypothesis 1.2, we have for r0 small enough,
f(s) ≥ r0s

β(1− s). Consequently, we only need to construct a subsolution for equation (1.1) with f having
this specific form. Let us also observe that by scaling in both time and space the solution as well as the
kernel J , i.e. considering v(t, x) := u

(
t
r0
, xr0

)
and taking J( zr0

) dz, we can reduce the construction to finding
a subsolution to the following equation:

∂tv(t, x) = Dr0 [v](t, x) + vβ(t, x)(1− v(t, x)). (3.9)

where Dr0 denote the operator D with the rescaled measure J( zr0
) dz. In the sequel, to keep tractable

notations, we will drop the subscript of this diffusion operator.
In addition, we will assume that Hypotheses 1.1, 1.2, 1.3 and inequality (1.3) for the parameters s and

β hold throughout.

3.1 Form of the subsolution
We are looking for a subsolution u to (3.9) that satisfies everywhere

ut ≤ D[u ] + (1− ε)uβ and u ≤ ε, (3.10)

for some ε in (0, 1). Indeed, this would give, if u(0, ·) ≤ u(t′, ·) for some t′ > 0,

ut ≤ D[u ] + (1− ε)uβ ≤ D[u ] + (1− u)uβ

and thus u is a subsolution to (1.2). We construct a piecewise function u of class C 2 at least,

u := ε on {x ≤ X(t)} ,
u := φ else,

with φ(t,X(t)) = ε. The point X(t) is unknown at that stage. We expect φ to solve an ODE of the form
n′ = nβ near x = X(t) and to look like a solution to a standard fractional diffusion-reaction equation with
Heaviside initial datum at the far edge. A natural candidate would be given by

w(t, x) :=
[(

κt

x2s

)1−β
− γ(β − 1)t

]− 1
β−1

. (3.11)

We emphasize for the sake of clarity that ε, γ and κ here have nothing to do with similar previously
introduced notations that where local in some earlier proofs. Note that the last function is well-defined for
t ≥ 1 and x > X0 := κ

1
2s (γ(β − 1)t)

β
2s(β−1) and has visually the structure of a solution to the ordinary

differential equation n′ = nβ . The expected decay in space of a solution of the standard fractional Laplace
equation with Heaviside initial data [11, 12, 26] being at least of order tx−2s, such a function w would have
the good asymptotics. Let us define X(t) such that w(t,X(t)) = ε, that is

∀t ∈ [0,+∞), X(t) = (κt) 1
2s
[
ε1−β + γ(β − 1)t

] 1
2s(β−1) , (3.12)

the positive constants κ and γ being free parameters to be chosen later. One may observe that X(t) moves
with the velocity expected from Theorem 1.4. Note that taking φ equal to w would not lead to a class C 2

function at x = X(t). To remedy this issue, we achieve the construction by taking φ such that

∀t ∈ [0,+∞), u(t, x) :=


ε for all x ≤ X(t),

3
(

1− w(t, x)
ε

+ w2(t, x)
3ε2

)
w(t, x) for all x > X(t),

(3.13)

16



for t > 1.
Start by observing that u satisfies (3.10) if and only if

0 ≤ D[u ] + εβ(1− ε), for all x ≤ X(t), (3.14)
φt ≤ D[u ] + (1− ε)φβ , else. (3.15)

As a consequence, the main task is to derive estimates for D[u ] in both regions x ≤ X(t) and x ≥ X(t).
The estimate in the first region will be rather direct to get and will rely mostly on the fact that u is constant
there together with the tails of J . In the latter region, things are more intricate. We have to split it into
three zones, as depicted on Figure 7 below, each of them being the stage of one specific character of the
model, thus demanding a specific way to estimate D[u ].

x

x = X(t) x = Y (t) x = 2
1

2s(β−1)X(t)

ε

Figure 7: Schematic view of the subsolution at a given time t. For estimations, several zones have to be
considered. The exact expression of Y (t) will appear naturally later. The blue zone is where u is constant,
making computations easier. In the orange zone, we use crucially the fact that u looks like a solution to an
ODE of the form n′ = nβ . In the brown (far-field) zone, a decay imitating that of the solution to a fractional
Laplace equation provides the right behaviour. Finally, the construction in the green zone is more subtle
and based on a mixture between both surrounding zones.

3.2 Facts and formulas on X and w

First, from direct computations, we have:

ut = ux = uxx = 0 for all t > 0, x < X(t), (3.16)

ut = 3wt
(

1− w

ε

)2
for all t > 1, x > X(t), (3.17)

ux = 3wx
(

1− w

ε

)2
for all t > 1, x > X(t), (3.18)

uxx(t, x) = 3
(

1− w

ε

)[
wxx

(
1− w

ε

)
− 2w2

x

ε

]
for all t > 1, x > X(t). (3.19)
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Note crucially that u is then a function of class C 2 in x and of class C 1 in t. For convenience, let us denote

Φ(t, x) := κt

x2s , U := w

Φ . (3.20)

We will repeatedly need the following information on derivatives of w at any point (t, x) where w is defined:

wt = wβ
(
γ + Φt

Φβ

)
, (3.21)

wx = wβ
Φx
Φβ = UβΦx = −2swβ x

2s(β−1)−1

(κt)β−1 , (3.22)

wxx = βwβ−1wx
Φx
Φβ + wβ

ΦxxΦβ − |Φx|2βΦβ−1

Φ2β =
[
Φxx + β|Φx|2Φ−1 (Uβ−1 − 1

)]
Uβ . (3.23)

Since U ≥ 1, it follows from the latter identity that w is convex. In addition, by rewriting uxx in terms of
U and Φ, we observe that

uxx = 3
(

1− w

ε

)[
|Φx|2Φ−1Uβ

[(
1 + 1

2s

)
+ β

(
Uβ−1 − 1

)] (
1− w

ε

)
− 2
ε
U2β |Φx|2

]
= 3

(
1− w

ε

)
|Φx|2U2β

[
Φ−1U−β

[(
1 + 1

2s

)
+ β

(
Uβ−1 − 1

)] (
1− w

ε

)
− 2
ε

]
= 3ε

(
1− w

ε

)
|Φx|2U2β

[[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
− 2
]
,

so that u(t, x) is convex with respect to x, i.e. uxx(t, x) ≥ 0, for x and t ≥ 1 such that[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
≥ 2.

Lemma 3.1. We have uxx(t, x) ≥ 0 as soon as w(t, x) ≤ ε
δc
, where

δc := 1 + 2
min

(
β, 1 + 1

2s
) .

Proof. Recall first that U ≥ 1, so that 0 ≤ U1−β ≤ 1. Assume first that 1+ 1
2s−β ≥ 0, then, if w(t, x) ≤ ε

1+ 2
β

,
one has from the above inequality[(

1 + 1
2s − β

)
U1−β(t, x) + β

] (
εw−1(t, x)− 1

)
≥ β

(
εw−1(t, x)− 1

)
≥ 2

and so uxx(t, x) ≥ 0 if w(t, x) ≤ ε
1+ 2

β

. When 1 + 1
2s − β ≤ 0, if w(t, x) ≤ ε

1+ 2
1+ 1

2s

, one has

[(
1 + 1

2s − β
)
U1−β(t, x) + β

] (
εw−1(t, x)− 1

)
≥
(

1 + 1
2s

)(
εw−1(t, x)− 1

)
≥ 2.

Proposition 3.2. Let (t, x) be such that x ≥ 2
1

2s(β−1)X(t). One has

w(t, x) ≤ 2
1

β−1κt

x2s .
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Proof. Using (3.11), we have

w(t, x) = κt

x2s

(
1− γ(β − 1)tβκβ−1

x2s(β−1)

)− 1
β−1

.

As a consequence, for all x ≥ 2
1

2s(β−1)X(t), by using definition (3.12) of X, it follows that

w(t, x) ≤ κt

x2s

(
1− γ(β − 1)tβκβ−1

2X(t)2s(β−1)

)− 1
β−1

= κt

x2s

(
1− γ(β − 1)tβκβ−1

2(κt)β−1 [ε1−β + γ(β − 1)t]

)− 1
β−1

= κt

x2s

(
1− γ(β − 1)t

2 [ε1−β + γ(β − 1)t]

)− 1
β−1

≤ 2
1

β−1κt

x2s .

Finally, let us observe that for all t ≥ 1, X(t) satisfies the following:

t

X(t) ≤
(

1
κ

1
2s (γ(β − 1))

1
2s(β−1)

)
t1−

β
2s(β−1) so that lim

t→+∞

t

X(t) = 0, (3.24)

κt

X2s(t) = ε

(1 + εβ−1γ(β − 1)t)
1

β−1
so that lim

t→+∞

κt

X2s(t) = 0. (3.25)

From the above estimates, we can also derive the following useful limits:

lim
t→+∞

t ln t
X(t) = 0, (3.26)

lim
t→+∞

wx(t,X(t)) = 0. (3.27)

The second assertion is based on the fact that, using the definition of X(t), we deduce that, for t ≥ 1,

wx(t,X(t)) = −2sεβ

(κt)β−1 (X(t))2s(β−1)−1 = −2sε
( ε
κ

) 1
2s
(

1
t

+ εβ−1γ(β − 1)
)1− 1

2s(β−1)

t1−
β

2s(β−1) . (3.28)

4 Proof of Theorem 1.4 when s ≥ 1
4.1 Choice of parameters and consequences
Let us define tε := σ

ε for some σ > 0 and let us show that for a right choice of the previously introduced
parameters ε, κ, σ and γ, the function u defined in (3.13) is indeed a subsolution to (3.10) for all t ≥ tε.

In the rest of the present section, let us set

κ := D2s

2
ε

σ
, γ := ε2−β

β − 1 ,

the positive constantD being given in Proposition 2.2. Let us also define the functionsXc and Y , respectively
given by

Y (t) = (κt) 1
2s

[
(2δc)β−1

ε1−β + γ(β − 1)t
] 1

2s(β−1)
, (4.29)

Xc(t) = (κt) 1
2s
[
δβ−1
c ε1−β + γ(β − 1)t

] 1
2s(β−1) . (4.30)
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and such that Xc(t) < Y (t), w(t,Xc(t)) = ε
δc

and w(t, Y (t)) = ε
2δc . As a consequence, one has, for t ≥ tε,

Y (t)−Xc(t) = (κt) 1
2s

([
(2δc)β−1

ε1−β + γ(β − 1)t
] 1

2s(β−1) −
[
δβ−1
c ε1−β + γ(β − 1)t

] 1
2s(β−1)

)
≥ (κt) 1

2s
2β−1 − 1
2s(β − 1)δ

β−1
c ε1−β [ζs,βδβ−1

c ε1−β + γ(β − 1)t
] 1

2s(β−1)−1

where

ζs,β =
{

1 if 2s(β − 1) < 1,
2β−1 if 2s(β − 1) > 1.

The latter being increasing in t in both configurations, we obtain, using the values of κ and γ,

Y (t)−Xc(t) ≥ (κtε)
1

2s
2β−1 − 1
2s(β − 1)δ

β−1
c ε1−β [ζs,βδβ−1

c ε1−β + γ(β − 1)tε
] 1

2s(β−1)−1

= D

2 1
2s

2β−1 − 1
2s(β − 1)δ

β−1
c ε1−βε

(1−β)
(

1
2s(β−1)−1

) [
ζs,βδ

β−1
c + σ

] 1
2s(β−1)−1

= D

2 1
2s

2β−1 − 1
2s(β − 1)δ

β−1
c ε−

1
2s
[
ζs,βδ

β−1
c + σ

] 1
2s(β−1)−1

:= C1ε−
1

2s .

We end this section with a useful computation for further use. Since w is decreasing and convex w.r.t.
x > 0, we have

∀t ∈ [tε,+∞), |wx(t,X(t))|2 ≤ |wx(tε, X(tε))|2 = 4s2 (1 + σ)2− 1
s(β−1)

D2 ε2(1+ 1
2s ). (4.31)

4.2 Estimating D[ u ] when x ≤ X(t)
In this region, by definition of u, we have

D[u ](t, x) =
ˆ
y≥X(t)

[u(t, y)− ε]J(x− y) dy.

This section aims at showing (3.14). For the convenience of the reader, we shall state the following result.

Proposition 4.1. For all positive σ, there exists ε0(σ) such that for, ε ≤ ε0(σ), we have

∀t ∈ [tε,+∞), ∀x ∈ (−∞, X(t)], D[u ](t, x) + εβ

2 (1− ε) ≥ 0.

Proof. Let us split the interval (−∞, X(t)] into two sub-intervals (−∞, X(t)−B] and (X(t)−B,X(t)], with
B > 1 to be chosen later, and estimate D[u ] on both subsets.

When x ≤ X(t)−B: in this subset, Hypothesis 1.1 and a short computation give

D[u ](t, x) =
ˆ +∞

X(t)

u(t, y)− ε
|x− y|1+2s J(x− y)|x− y|1+2s dy ≥ −εJ0

ˆ +∞

X(t)

dy

(y − x)1+2s

≥ −εJ0

2s
1

(X(t)− x)2s ≥ −
εJ0

2s
1
B2s .
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When X(t)−B < x ≤ X(t): in this subset, by making the change of variable z = y − x, since B > 1 and
u(t, x) = ε, a short computation gives

D[u ](t, x) =
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− ε]J(z) dz +

ˆ +∞

X(t)−x+B
[u(t, x+ z)− ε]J(z) dz

≥
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dz − εJ0

ˆ +∞

X(t)−x+B

dz

z1+2s

=
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dy − εJ0

2s
1

(X(t) +B − x)2s

≥
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dy − εJ0

2s
1
B2s .

By using Taylor’s theorem with integral form of the remainder, we have

u(t, x+ z)− u(t, x) = z

ˆ 1

0
ux(t, x+ τz) dτ,

and thus we can estimate the remaining integral by

I :=
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ X(t)−x+B

X(t)−x

ˆ 1

0
ux(t, x+ τz)zJ(z) dτ dz.

Since ux is a C 1 function w.r.t. x, we can again apply Taylor’s theorem in order to rewrite the last integral
as

I =
ˆ 1

0

ˆ 1

0

ˆ B+X(t)−x

X(t)−x
uxx(t, x+ τωz)J(z)τz2 dzdτdω.

Since uxx(t, x) = 0 for x ≤ X(t) (see (3.16)), the integral further reduces to

I =
ˆ 1

0

ˆ 1

0

ˆ B+X(t)−x

0
uxx(t, x+ τωz)J(z)τz2 dzdτdω.

From (3.19) and the convexity of w, we get, for x ≥ X(t),

I ≥ −6
ε
wx(t,X(t))2

ˆ 1

0

ˆ 1

0

ˆ 2B

0
J(z)τz2 dzdτdω,

≥ −6
ε
wx(t,X(t))2

(ˆ 1

0

ˆ 1

0

ˆ 1

0
J(z)τz2 dτdωdz +

ˆ 2B

1

ˆ 1

0

ˆ 1

0
J(z)τz2 dτdωdz

)
,

≥ −3
ε
wx(t,X(t))2

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
,

using again Hypothesis 1.1. As a consequence, we obtain the following estimate:

D[u ] ≥ −εJ0

2s
1
B2s −

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2. (4.32)

Setting B :=
(

2J0
sεβ−1(1−ε) + 1

) 1
2s then implies that one has, in both cases,

D[u ] ≥ −ε
β(1− ε)

4 − 3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2

≥ −ε
β(1− ε)

4 − 3
ε

(J1 + J0 ln(2B))wx(t,X(t))2,
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which, using (4.31), leads to

∀t ∈ [tε,+∞), D[u ] ≥ −
[

1− ε
4 + 12s2 [1 + σ]2−

2
(β−1)2s

D2 (J1 + J0 ln(2B)) ε1−β+ 1
s

]
εβ .

Since (1.3) holds, the fact that s ≥ 1 implies that 1−β+ 1
s > 0. As a consequence, ε

2−β
2s (J1 + J0 ln (2B))

tends to 0 with ε and there exists an explicit positive real number ε0 (depending on σ) such that, for all
ε ≤ ε0,

∀t ∈ [tε,+∞), D[u ] + εβ

2 (1− ε) ≥ 0.

4.3 Estimate of D[ u ] when x > X(t)
As exposed earlier and shown in Figure 7, we shall estimate D[u ] differently in the three separate intervals
[X(t), Y (t)], [Y (t), 2

1
2s(β−1)X(t)] et [2

1
2s(β−1)X(t),+∞). Recall that the exact expression of Y (t) is explicit

and is such that w(t, Y (t)) = ε
2δc . Note also that by definition Y > Xc and that Y (t) ≥ X(t) + R0 for t in

[tε,+∞) when ε is small enough.

4.3.1 The region X(t) ≤ x ≤ Y (t)

Let us begin with a technical estimate.

Lemma 4.2. For all B > 1, one has

D[u ](t, x) ≥ − J0ε

sB2s −
6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
(wx(t,X(t)))2

.

Proof. By definition of u, for any δ ≥ R0 we have, using Hypothesis 1.1,

D[u ](t, x) =
ˆ X(t)−x−δ

−∞

ε− u(t, x)
|z|1+2s J(z)|z|1+2s dz +

ˆ +∞

X(t)−x−δ
[u(t, x+ z)− u(t, x)]J(z) dz

≥
ˆ +∞

X(t)−x−δ
[u(t, x+ z)− u(t, x)]J(z) dz,

which leads to

D[u ](t, x) =
ˆ
x+z≥X(t)−δ,|z|≤B

[u(t, x+ z)− u(t, x)]J(z) dz

+
ˆ
x+z≥X(t)−δ,|z|≥B

[u(t, x+ z)− u(t, x)]J(z) dz. (4.33)

The second integral in the right hand side of the above equality is the easiest to deal with. Since u is
positive and J satisfies Hypothesis 1.1, we have for B > 1,

ˆ
x+z≥X(t)−δ,|z|≥B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ −u(t, x)J0

ˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s .
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When X(t)− δ ≤ x−B, a short computation shows that
ˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s =
ˆ −B
X(t)−x−δ

dz

|z|1+2s +
ˆ +∞

B

dz

|z|1+2s

=
ˆ −B
X(t)−x−δ

dz

z1+2s +
ˆ +∞

B

dz

z1+2s

= 1
2sB2s −

1
2s(x+ δ −X(t))2s + 1

2sB2s .

On the other hand, if X(t)− x− δ ≥ −B, one has
ˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s =
ˆ +∞

B

dz

z1+2s = 1
2sB2s .

In each situation, we have
ˆ
x+z≥X(t)−δ,|z|≥B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ −u(t, x)J0

sB2s ≥ − J0ε

sB2s .

Let us now estimate the first integral of the right hand side of the inequality (4.33), that is, let us estimate

I :=
ˆ
x+z≥X(t)−δ,|z|≤B

[u(t, x+ z)− u(t, x)]J(z) dz.

Following the same steps as for proving Proposition 4.1, since u(t, x) is C 1 with respect to x, we have, for
all t ≥ 1 and x ∈ R,

I =
ˆ
x+z≥X(t)−δ,|z|≤B

ˆ 1

0

ˆ 1

0
uxx(t, x+ ωτz)τz2J(z) dτdωdz

≥ min
−B<ξ<B

uxx(t, x+ ξ)
(ˆ
|z|≤B

ˆ 1

0

ˆ 1

0
τz2J(z) dτdωdz

)

≥ min
−B<ξ<B

uxx(t, x+ ξ)
(ˆ
|z|≤1

ˆ 1

0

ˆ 1

0
τz2J(z) dτdωdz +

ˆ
1≤|z|≤B

ˆ 1

0

ˆ 1

0
τz2J(z) dτdωdz

)
.

By using properties (3.16), (3.19) and the convexity of w, we deduce that

I ≥ −6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
sup

−B<ξ<B,
x+ξ>X(t)

wx(t, x+ ξ)2,

≥ −6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
wx(t,X(t))2.

Gathering the previous results then yields the expected estimate.

With this lemma at hand, we claim the following.

Proposition 4.3. For all σ, there exists ε1(σ) such that for all ε ≤ ε1, we have

∀t ∈ [tε,+∞), ∀x ∈ [X(t), Y (t)], D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 0.
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Proof. Let us set B = νε
1−β

2s with ν > 1 to be chosen later. Note that B > 1 since ν > 1, β > 1 and ε ≤ 1.
With this choice, the inequality from Lemma 4.2 reads

D[u ](t, x) ≥ −J0ε
β

sν2s −
6
ε

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 (wx(t,X(t)))2
.

Next, observe that it follows from the explicit form of u (see (3.13)) that 3w(t, x) ≥ u(t, x) ≥ w(t, x) for
all x>X(t). Since we also have w(t, x) ≥ ε

2δc for x ≤ Y (t), we get u(t, x) ≥ ε
2δc . As a consequence, one has

D[u ](t, x) + (1− ε)
2 uβ(t, x) ≥ εβ 1− ε

2(2δc)β
− J0ε

β

sν2s −
6
ε

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 (wx(t,X(t)))2

≥ εβ 1− ε
4(2δc)β

− 6
ε
wx(t,X(t))2

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 ,

where we have set ν := max
{(

4(2δc)βJ0
s(1−ε)

) 1
2s ; 1

}
. We may now reproduce the argument used in the proof of

Proposition 4.1 to find an adequate positive real number ε1, thus ending the proof.

4.3.2 A preliminary estimate in the range x ≥ Y (t)

In this zone, the function u is convex w.r.t. x since Y (t) ≥ Xc(t).
Lemma 4.4. There exists a constant C0 such that, for any time t > 1, any x ≥ Y (t), and B > R0 such that
x−B ≥ Xc(t),

D[u ] ≥ ε− u
2sJ0x2s −

C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ . (4.34)

Proof. Let us consider the expression for D[u ](t, x), that we split into three parts:

D[u ](t, x) =
ˆ −B
−∞

[u(t, x+z)−u(t, x)]J(z) dz+
ˆ B

−B
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ +∞

B

[u(t, x+z)−u(t, x)]J(z) dz.

To obtain an estimate of the second integral, we actually follow the same steps as several times previously
to obtain, using Taylor’s theorem,

ˆ B

−B
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ B

−B

ˆ 1

0

ˆ 1

0
uxx(t, x+ τωz)τz2J(z) dτdωdz ≥ 0,

since u is convex w.r.t. x in the zone of integration. Next, using again Taylor’s theorem, the last integral in
the decomposition may be rewritten asˆ +∞

B

[u(t, x+ z)− u(t, x)]J(z) dz =
ˆ +∞

B

ˆ 1

0
ux(t, x+ τz)zJ(z) dτdz.

Observe that since x ≥ Y (t) and w is convex w.r.t. x, identity (3.18) implies

ux(t, x+ τz) = 3wx(t, x+ τz)
(

1− w(t, x+ τz)
ε

)2
≥ 3

(
1− 1

2δc

)2
wx(t, x).

It then follows from Hypothesis 1.1 that
ˆ ∞
B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ 3
(

1− 1
2δc

)2(ˆ ∞
B

zJ(z) dz
)
wx(t, x)

≥ 3
(

1− 1
2δc

)2 J0
−1

(2s− 1)B2s−1 wx(t, x).
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Finally, since X(t)− x ≤ X(t)−Xc(t)−B ≤ −B, the first integral can be estimated as follows:
ˆ −B
−∞

[u(t, x+ z)− u(t, x)]J(z) dz ≥ J0
−1
ˆ X(t)−x

−∞

u(t, x+ z)− u(t, x)
|z|1+2s dz +

ˆ −B
X(t)−x

[u(t, x+ z)− u(t, x)]J(z) dz,

≥ J0
−1

2s
ε− u(t, x)

(x−X(t))2s≥
J0
−1

2s
ε− u(t, x)

x2s ,

taking advantage of the fact that u is decreasing w.r.t. x. Finally, collecting these estimates and recalling
the expression of wx in (3.22) give the result by setting C0 = 6s

(2s−1)J0

(
1− 1

2δc

)2
.

4.3.3 The region Y (t) < x < 2
1

2s(β−1)X(t)

Let us now estimate D[u ](t, x) when x ≥ Y (t).

Proposition 4.5. For all σ, there exists ε2(σ) such that for t ≥ tε and ε ≤ ε2 we have

D[u ] + 1
2(1− ε)uβ ≥ 0 for all Y (t) < x < 2

1
2s(β−1)X(t).

Proof. Let us recall that Y (t) is such that w(t, Y (t)) = ε
2δc and consider x ≥ Y (t). As long as B is chosen

such that x−B ≥ Xc(t), it follows from Lemma 4.4 that

D[u ] ≥ − C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ .

The rest of the proof will deal with the choice of B. Since X(t) < x < 2
1

2s(β−1)X(t), we have directly

x2s(β−1)−1

(κt)β−1 ≤ 2X(t)2s(β−1)−1

(κt)β−1 = 2(κt)− 1
2s
[
ε1−β + γ(β − 1)t

]1− 1
2s(β−1)

≤ 21+ 1
2s

D
[1 + σ]1−

1
2s(β−1) ε(β−1)( 1

2s(β−1)−1).

Consequently, one has

D[u ] + 1
2(1− ε)uβ ≥

1
2(1− ε)− 2C0

D
[1 + σ]1−

1
2s(β−1)

ε
−(β−1)

(
1− 1

2s(β−1)

)
B2s−1

wβ .
Observe that, if the last bracket is positive, the proof is ended. This is where the choice of B is critical. We
thus set

B =
(

4C0
(1− ε)D

) 1
2s−1

(1 + σ)
1

2s−1−
1

2s(2s−1)(β−1) ε−
β−1
2s−1 (1− 1

2s(β−1) )+ ,

which is adequate since ε ≤ 1.

Let us point out that the limitation on the choice of B is due to the fact that we need to ensure that
x − Xc(t) − B ≥ 0 for all t ≥ tε and x ≥ Y (t). Since Y (t) − Xc(t) ≥ C1ε−

1
2s , this is satisfied as long as

B ≤ C1ε−
1

2s . Since 1
2s −

β−1
2s−1 (1 − 1

2s(β−1) ) = 2−β
2s−1 > 0, one may observe that the condition is, somewhat

miraculously, satisfied by taking ε small after any choice of σ.
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4.3.4 The region x > 2
1

2s(β−1)X(t)

In this region we claim

Proposition 4.6. There exists σLR such that for all σ ≥ σLR, we have for t ≥ tε and x ≥ 2
1

2s(β−1)X(t)

D[u ](t, x) ≥ ε(1− τ)
4J0sx2s .

with τ := 3
2δc (1− 1

2δc + 1
3

1
(2δc)2 ).

Proof. For a given x, let us define B = x
K with K = 2

1
2s(β−1) +1

2
1

2s(β−1)−1
. Note that by definition of K, we have

2
1

2s(β−1)
(
1− 1

K

)
= 2

1
2s(β−1) +1

2 := C2. As a consequence, x − B ≥ C2X(t). A straightforward computation
shows that C2X(t) ≥ Xc(t) for all t ≥ tε as soon as C2X(tε) ≥ Xc(tε), that is,

1 + σ

δβ−1
c + σ

≥ C−2s(β−1)
2 .

Since C2 > 1 and limu→∞
1+u

δβ−1
c +u

= 1, the above inequality is always true for large σ, says σ ≥ σ1. We may
thus apply Lemma 4.4 to get

D[u ] ≥ ε− u(t, x)
2sJ0x2s −

C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ .

Let us recall that Y (t) is such that w(t, Y (t)) = ε
2δc and so u(t, Y (t)) = 3ε

2δc (1− 1
2δc + 1

3
1

(2δc)2 ) := τ0. We can
easily check that since 1

2δc < 1, we have τ0 < 1 (see it as a level set for the subsolution). Therefore, we have,
using Proposition 3.2,

D[u ](t, x) ≥ ε(1− τ0)
2J0sx2s −

C0
B2s−1w

β(t, x)x
2s(β−1)−1

(κt)β−1

≥ ε(1− τ0)
2J0sx2s −

C02
β
β−1

B2s−1
1
x2s

κt

x
=
[

1− τ0
2J0s

− C02
β
β−1K2s−1 κt

εx2s

]
ε

x2s

≥
[

1− τ0
2J0s

− 2C0K2s−1 κt

εX(t)2s

]
ε

x2s =
[

1− τ
2J0s

− 2C0K2s−1

[1 + εt]
1

β−1

]
ε

x2s .

We then get, for t ≥ tε,

D[u ](t, x) ≥
[

1− τ0
2J0s

− 2C0K2s−1

[1 + σ]
1

β−1

]
ε

x2s ≥
ε(1− τ0)
4J0sx2s ,

by choosing σ large enough.

4.4 Tuning the parameters σ and ε

In the last part of the proof, we choose the parameters σ and ε in order that u is indeed a subsolution to
(3.9) for t > tε. Recall that u is a subsolution if and only if (3.14) and (3.15) hold simultaneously. Since
(3.14) holds unconditionally for t ≥ tε and ε ≤ ε0, one only needs to check that (3.15) holds for a suitable
choice of σ.

By using (3.17) and (3.21), (3.15) holds if, in particular, t > tε and,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , for x > X(t),
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and proving this is the purpose of this section.
Set ε∗ := inf{ε0, ε1, ε2}, where ε0, ε1 and ε2 are respectively introduced in Propositions 4.1, 4.3, and 4.5.

To make our choice, let us decompose the set [X(t),+∞) = I1 ∪ I2 into two subsets defined as follows

I1 := [X(t), 2
1

2s(β−1)X(t)], I2 := [2
1

2s(β−1)X(t),+∞).

On the first interval, we have

Lemma 4.7. There exists ε4 such that for all ε ≤ ε4 and all σ ≥ 1 one has, for t ≥ tε,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ , for all x ∈ I1.

Proof. By definition of Φ, (3.20), we have

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β .

By exploiting (3.12), it follows that for x ≤ 2
1

2s(β−1)X(t),

3 Φt
Φβw

β ≤
(

6
t
ε1−β + 6ε2−β

)
wβ .

So for t ≥ tε, since σ ≥ 1 we have

3 Φt
Φβw

β ≤ 6ε2−β [1 + σ−1]wβ ≤ 12ε2−βwβ .

From the above, we see that we have, for all ε ≤ ε′ :=
( 1

96
) 1

2−β ,

3 Φt
Φβw

β ≤ 1
4w

β .

Recall that by Proposition 4.3 and Proposition 4.5, we have for all x ∈ I1 and t ≥ tε, and ε ≤ ε∗

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − ε2−β

β − 1

)
wβ ,

since u ≥ w for all x ≥ X(t). We end the proof by taking ε ≤ ε4, where ε4 is such that 1−ε
2 −

ε2−β

β−1 ≥
1
4 for

ε ≤ ε4 (which is possible since β < 2 in that case, see (1.3), and this is crucial here).

Finally, let us check what happens on I2.

Lemma 4.8. There exists σ ≥ 1 such that for all ε ≤ ε4, one has for all t ≥ tε,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ , for all x ∈ I2.

Proof. As in the preceding proof, by definition of Φ, we have

3 Φt
Φβw

β = 3κx
2s(β−1)

(κt)β wβ .

By Proposition 3.2, we have for x ∈ I2 and t ≥ tε,

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ .
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Therefore, we have

3 Φt
Φβw

β ≤ 3κx
2s(β−1)

(κt)β 2
β
β−1

(κt)β

x2sβ = 2
β
β−1−1 3D2sσ−1ε

x2s .

Observe that for σ ≥ sup
{

1, D2s2
β
β−1 6J0s

1−τ

}
, we have

3 Φt
Φβw

β ≤ ε(1− τ0)
4J0sx2s .

Now recall that by Proposition 4.6, we have for all x ∈ I2, ε ≤ ε∗ and t ≥ tε,

D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ ≥
(
1− ε− (β − 1)−1ε2−β)wβ + ε(1− τ0)

4J0sx2s ,

since u ≥ w for all x ≥ X(t). The claim is then proved by taking ε ≤ ε4.

4.5 Final argument
From the above, section, we may find ε small so that u is a subsolution to (3.9) for all t ≥ tε. Having
this subsolution at hand, to conclude the proof, we only need to check that, for some R∗ and T , we have
u(T, x+R∗) ≥ u(tε, x). Indeed, if so by the parabolic comparison principle, we will then have u(t+T, x+R∗) ≥
u(tε + t, x) for all t and the level set

Eε(t) := {x ∈ R|u(t+ T, x+R∗) ≥ ε} ⊃ (−∞, X(tε + t)].

Let us find the adequate R∗ and T . An adequate T is T = 1 since, we have by Proposition 2.2

lim
x→+∞

x2su(1, x) ≥ 2D2s.

On the other hand, by the definition of u, a quick computation shows that

lim
x→+∞

x2su(tε, x) = 3D2s

2 .

Therefore, there exists R1 > 0 such that for all x ≥ R1, u(1, x) ≥ u(tε, x) and in particular we have
u(1, x−R1) ≥ u(tε, x) for all x ≥ R1 since u(1, x) is monotone non increasing. To conclude, we just need to
ensure that lim infx→∞ u(1, x) > ε. Indeed, if so, then there exists R2 > 0 such that for all x < −R2 we have
u(1, x) > u(tε, x) and thus we conclude that u(1, x−R1−R2) ≥ u(tε, x) since by monotonicity of u(1, x) we
have u(1, x−R1 − R2) ≥ ε ≥ u(tε, x) for x ∈ (−∞, R1] and u(1, x− R1 − R2) ≥ u(1, x− R1) ≥ u(tε, x) for
all x ≥ R1.

To prove that lim infx→+∞ u(1, x) > ε, we just need to observe that by a straightforward application of
the comparison principle, we have u(t, x) ≥ p(t, x) where p(t, x) is the solution of the linear problem

pt = D[ p ] for t > 0, x ∈ R,
p(0, ·) = a1(−∞,b].

By denoting by G(t, x) the Green function associated to the above linear equation, that is the solution
defined by

Gt = D[G ] for t > 0, x ∈ R,
G(0, ·) = δx=0,

the solution p is then given by

p(t, x) = aG(t, ·) ? 1(−∞,b](·)(x) = a

ˆ +∞

x−b
G(t, y) dy,
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and thus lim inf
x→−∞

u(1, x) ≥ lim inf
x→−∞

p(1, x) = a lim
x→−∞

ˆ +∞

x−b
G(1, y) dy = a.

Having this lower bound at hand, we can obtain one for any level line by arguing as in the proof in [4, 25],
using the adequate invasion property, namely Proposition 2.4.

5 Proof of Theorem 1.4 when s < 1
In this section, we prove Theorem 1.4 when s < 1. In such a situation, the above construction based on a
fine control of the time tε = σ

ε , is inadequate for a large set of parameters (s, β), especially when β ≥ 2.
In this case, the constraint imposed on the form of tε would make the proof fail. To cover all the possible
situations new ideas have to be developed. When s < 1, the diffusion process plays a much important role
by inducing a flattening of the solution. So, with in mind, we exploit the flattening properties of the solution
to (3.9) to remove the constraint imposed on tε in the above construction hoping that we can find a time
t∗ after which u(t, x) is a subsolution. By doing so, we get more flexibility in the construction, but at the
expense of a clear understanding of the time after which the true acceleration regime starts.

We shall show that, for the right choice of ε, κ and γ, the function u is indeed a subsolution to (3.10) for
all t ≥ t∗ for some t∗.

5.1 Estimating D[ u ] when x ≤ X(t)
In this region, by definition of u, we have

D[u ](t, x) =
ˆ
y≥X(t)

[u(t, y)− ε]J(x− y) dy.

This section aims at showing (3.14), stated as the following result.

Proposition 5.1. For all ε ≤ 1
2 , γ and κ there exists t0(ε, κ, γ, β, s) such that for all t ≥ t0

D[u ](t, x) + εβ

2 (1− ε) ≥ 0 for all x ≤ X(t).

Proof. The starting point being the same as in Proposition 4.1, we shall not reproduce the beginning of the
proof and follow from (4.32), that is

D[u ] ≥ −εJ0

2s
1
B2s −

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2.

Choosing B :=
(

2J0
sεβ−1(1−ε) + 1

) 1
2s , we get

D[u ] ≥ −ε
β(1− ε)

4 − 3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
(wx(t,X(t)))2.

It then follows from (3.27) that we can find a time t0 such that, for all t ≥ t0,

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
(wx(t,X(t)))2 ≤ εβ(1− ε)

4 ,

thus ending the proof.
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5.2 Estimate of D[ u ] on x > X(t)
As exposed earlier and shown in Figure 7, we shall estimate D[u ] in the three separate intervals

[X(t), Y (t)], [Y (t), 2
1

2s(β−1)X(t)], [2
1

2s(β−1)X(t),+∞).

where we recall that Y (t) > Xc(t) for all t is such that w(t, Y (t)) = ε
2δc .

Note that for all ε, γ, κ, s, β, we may find t# > 0 such that Y (t) ≥ Xc(t) +R0 for t ≥ t#.

5.2.1 The region X(t) ≤ x ≤ Y (t)

In this region, owing to Lemma 4.2, we claim the following.

Proposition 5.2. For all ε < 1
2 , κ and γ, there exists t1 such that

D[u ] ≥ −1
2(1− ε)uβ for all t ≥ t1, X(t) < x < Y (t).

Proof. The proof follows essentially the same steps as the proof of Proposition 4.3. That is, by using

Lemma 4.2 with B := ηε
1−β

2s , where η := sup
{(

4(2δc)βJ0
s(1−ε)

) 1
2s ; 1

}
, and the fact that in the zone x ≤ Y (t),

we have u(t, x) ≥ u(t, Y (t)) ≥ w(t, Y (t)) = ε
2δc , one has

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 1

4(1− ε) εβ

(2δc)β
− 6
ε

(wx(t,X(t)))2

J1 + J0

ˆ ηε
1−β

2s

1
z1−2s dz

 .

From there, we can argue as in the proof of Proposition 5.1 using that lim
t→+∞

(wx(t,X(t)))2 = 0 and find a
time t1 such that for all t ≥ t1

6
ε

(wx(t,X(t)))2

J1 + J0

ˆ ηε
1−β

2s

1
z1−2s dz

 ≤ 1
4(1− ε) εβ

(2δc)β
,

which concludes the proof.

5.2.2 A preliminary estimate in the range x ≥ Y (t)

The estimate obtained in Lemma 4.4 does not hold for all s < 1. We start by deriving an estimate of
D[u ](t, x) only valid in the range x ≥ Y (t).

Lemma 5.3. For any time t > t#, B > 1 and x ≥ Y (t),

D[u ](t, x) ≥ ε(1− τ)
2sJ0x2s −

J0ετ

2sB2s + 3J0

(ˆ B

1
z−2s dz

)
wx(t, x). (5.35)

with τ := 3
2δc

(
1− 1

2δc + 1
3(2δc)2

)
.

Proof. Let us split into three parts the integral defining D[u ](t, x):

D[u ](t, x) =
ˆ −1

−∞
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ 1

−1
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ ∞
1

[u(t, x+z)−u(t, x)]J(z) dz.
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Since for t ≥ t#, x ≥ Y (t) ≥ Xc(t) +R0 ≥ X(t) +R0 and u is decreasing, the first integral can be estimated
as follows, using Hypothesis 1.1,
ˆ −1

−∞
[u(t, x+ z)− u(t, x)]J(z) dz ≥ J0

−1
ˆ X(t)−x

−∞

u(t, x+ z)− u(t, x)
|z|1+2s dz +

ˆ −1

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dz

≥ J0
−1

2s
ε− u(t, x)

(x−X(t))2s . (5.36)

To obtain an estimate of the second integral, we actually follow the same steps as several times previously
to obtain, via Taylor’s theorem and Hypothesis 1.1 ,

ˆ 1

−1
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ 1

−1

ˆ 1

0

ˆ 1

0
uxx(t, x+ τωz)τz2J(z) dτdωdz

≥ J1 min
−1<ξ<1

uxx(t, x+ ξ) ≥ 0, (5.37)

since x− 1 ≥ Y (t)− 1 ≥ Xc(t) +R0 − 1 ≥ Xc(t) so that u is convex w.r.t. x there.
Finally, the last integral is estimated by splitting it into two parts, that is

I :=
ˆ +∞

1
[u(t, x+ z)− u(t, x)]J(z) dz

=
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz +

ˆ +∞

B

[u(t, x+ z)− u(t, x)]J(z) dz.

with B > 1. Since u is positive, we have
ˆ ∞
B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ −J0u(t, x)
2sB2s . (5.38)

Using again Taylor’s theorem, the last integral is rewritten as
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ B

1

ˆ 1

0
ux(t, x+ τz)zJ(z) dτdz.

Observe that by definition of ux,(3.18), for all τz ≥ 0 we have

ux(t, x+ τz) ≥ 3wx(t, x+ τz) ≥ 3wx(t, x),

since w is convex w.r.t. x.
It then follows that
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz ≥ 3

(ˆ B

1
zJ(z) dz

)
wx(t, x) ≥ 3J0

(ˆ B

1
z−2s dz

)
wx(t, x) (5.39)

using Hypothesis 1.1. Collecting (5.36), (5.37), (5.38) and (5.39), we find that for x ≥ Y (t), and t ≥ t#

D[u ](t, x) ≥ ε− u(t, x)
2sJ0x2s −

J0u(t, x)
2sB2s + 3J0

(ˆ B

1
z−2s dz

)
wx(t, x).

The Lemma is then proved by observing that for x ≥ Y (t), u(t, x) ≤ u(t, Y (t)) = ετ .
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5.2.3 The region Y (t) < x < 2
1

2s(β−1)X(t)

With the previous lemma at hand, let us now estimate D[u ](t, x) when x ≥ Y (t).
Proposition 5.4. For any 0 < ε ≤ 1

2 and any γ, κ > 0, there exists t2 > 0 such that for all t ≥ t2,

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 0 for all Y (t) < x < 2

1
2s(β−1)X(t).

Proof. First let us observe that since Y (t) tends to +∞ as t tends to +∞, we may find t′ > t# such that
for all t ≥ t′ (

2τ0J 2
0

1− τ0

) 1
2s

Y (t) > 1.

Fix B :=
(

2τ0J 2
0

1−τ

) 1
2s
x, with, again, τ0 := 3

2δc

(
1− 1

2δc + 1
3(2δc)2

)
, then from Lemma 5.3 and by using the

definition of wx(t, x), (3.22), we deduce that for t ≥ t′ and x ≥ Y (t)

D[u ](t, x) ≥ ε(1− τ0)
4sJ0x2s − 6sJ0w

β(t, x)x
2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)
.

Therefore, since u(t, x) ≥ w(t, x), we get

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0

x2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)]
.

Set C3 :=
(

2τ0J0
2

1−τ0

) 1
2s and let us now treat the three cases 1

2 < s < 1, s = 1
2 and s < 1

2 separately.

Case 1
2 < s < 1: In this situation, the above integral is bounded from above by 1

2s−1 and we have

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0

2s− 1
x2s(β−1)−1

(κt)β−1

]
.

Since X(t) ≤ x ≤ 2
1

2s(β−1)X(t),

x2s(β−1)−1

κβ−1tβ−1 = tx2s(β−1)−1

κβ−1tβ
≤ 2(X(t))2s(β−1)−1

κβ−1tβ−1 .

which, using (3.12), enforces

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0

2s− 1

[
ε1−β + γ(β − 1)t

]
X(t)

]
.

Using that 1
X(t) → 0 and t

X(t) → 0, (3.24), we may find t2 so that for all t ≥ t2

1
2(1− ε) ≥ 12sJ0

2s− 1

[
ε1−β + γ(β − 1)t

]
X(t) .

Case s = 1
2 : In this situation, the above integral is bounded from above by ln(B) and as above since

X(t) ≤ x ≤ 2
1

2s(β−1)X(t) we have

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0

[
ε1−β + γ(β − 1)t

]
ln(2

1
2s(β−1) C3X(t))

X(t)

]
.

Using (3.12), we have ln(X(t)) . ln(t) and it follows from (3.26) that we can find a time t2 so that, for all
t ≥ t2,

1
2(1− ε) ≥ −12sJ0

[
ε1−β + γ(β − 1)t

]
ln(2

1
2s(β−1) C3X(t))

X(t) .
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Case 0 < s < 1
2 : In this situation, the integral is bounded from above by C

1−2s
3 x1−2s

1−2s and therefore

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0C1−2s

3
1− 2s

x2s(β−1)−2s

(κt)β−1

]
.

which using that X(t) ≤ x ≤ 2
1

2s(β−1)X(t) enforces

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0C1−2s

3
1− 2s

[
ε1−β + γ(β − 1)t

]
X2s(t)

]
.

Using again (3.12) and since by (3.25), t
X2s(t) → 0, we may find t2 so that for all t ≥ t2

1
2(1− ε) ≥ 12sJ0C1−2s

3
1− 2s

[
ε1−β + γ(β − 1)t

]
X2s(t) .

In each situation, we then find t2 such that for all t ≥ t2 and Y (t) ≤ x ≤ 2
1

2s(β−1)X(t)

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 0.

5.2.4 The region x ≥ 2
1

2s(β−1)X(t)

In this region, we claim the following.
Proposition 5.5. For all ε ≤ 1

2 , γ and κ there exists t3 such that for all t ≥ t3

D[u ](t, x) ≥ ε(1− τ0)
8sJ0x2s for all x ≥ 2

1
2s(β−1)X(t)

with τ0 := 3
2δc

(
1− 1

2δc + 1
3(2δc)2

)
.

Proof. We follow the same steps as for the proof of Proposition 5.4 but with some adaptations. Set B, t′ > t#

as in the proof of Proposition 5.4, and observe that from the definition of X(t),(3.12), by a straightforward
computation, we see that there exists t′′ > 0 so that for all t ≥ t′′ we have 2

1
2s(β−1)X(t) > Y (t).

So from Lemma 5.3 we have, for t ≥ sup{t′, t′′} and x ≥ 2
1

2s(β−1)X(t)

D[u ](t, x) ≥ ε(1− τ0)
4sJ0x2s − 6sJ0w

β(t, x)x
2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)
.

By using Proposition 3.2, we have

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ

and therefore we get

D[u ](t, x) ≥ ε(1− τ0)
4sJ0x2s −

6sJ02
β
β−1

x2s
κt

x

(ˆ B

1
z−2s dz

)
,

≥ 1
x2s ·

[
ε(1− τ0)

4sJ0
− 6sJ02

β
β−1

κt

x

(ˆ B

1
z−2s dz

)]
.

By considering separately the three cases 1
2 < s < 1, s = 1

2 , 0 < s < 1
2 and reproducing the argument used

in the proof of Proposition 5.4 we may find t3 such that for all t ≥ t3 and x ≥ 2
1

2s(β−1)X(t),

D[u ](t, x) ≥ ε(1− τ0)
8sJ0x2s .
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5.3 Tuning the parameters κ and γ

In the last part of the proof, we choose the parameters γ and κ in order that for some t∗ > 0, u is indeed a
subsolution to (3.9) for t ≥ t∗

Recall that u is a subsolution if and only if (3.14) and (3.15) hold simultaneously. Since (3.14) holds
unconditionally for t sufficiently large, the only thing left to check is that (3.15) holds for a suitable choice
of γ and κ.

By using (3.17) and (3.21), (3.15) holds, in particular

3 Φt(t, x)
Φβ(t, x)w

β(t, x) ≤ D[u ](t, x) + (1− ε)uβ(t, x)− γwβ , for x > X(t).

Set t∗ := sup{t0, t1, t2, t3}, where t0, t1, t2 and t3 are respectively determined by Propositions 5.1, 5.2,
5.4 and 5.5. To make our choice, let us decompose the set [X(t),+∞) = I1 ∪ I2 into two subsets defined as
follows

I1 := [X(t), 2
1

2s(β−1)X(t)], I2 := [2
1

2s(β−1)X(t),+∞).

In the first interval, we have

Lemma 5.6. For all ε < 1
2 , there exists γ

∗ such that for all κ and γ ≤ γ∗, one has, for t ≥ sup{ 48
εβ−1(1−ε) , t

∗},

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , for all x ∈ I1.

Proof. By definition of Φ, we have, at (t, x),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β .

By exploiting the definition of X(t) it follows that for x ≤ 2
1

2s(β−1)X(t),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β ≤

[
6
t

(
1
ε

)β−1
+ 6γ(β − 1)

]
wβ .

Let γ0 := 1−ε
48(β−1) , then for all γ ≤ γ0, we have

3 Φt
Φβw

β ≤

[
6
t

(
1
ε

)β−1
+ 1− ε

8

]
wβ ,

which for t large, say t ≥ 48ε1−β

1−ε , gives 3 Φt
Φβw

β ≤ 1−ε
4 wβ .

Recall that by Propositions 5.2 and 5.4, we have for all x ∈ I1 and t ≥ t∗,

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − γ

)
wβ ,

since u ≥ w for all x ≥ X(t). We then end our proof by taking γ∗ := inf{γ0,
1−ε

4 } and t ≥ sup{ 48ε1−β

1−ε , t∗}.

Finally, let us check what happens on I2,

Lemma 5.7. For all ε ≤ 1
2 , there exists κ∗ such that for all γ ≤ γ∗ and κ ≤ κ∗, one has for all t ≥ t∗,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , for all x ∈ I2.
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Proof. As in the above proof, by definition of Φ we have

3 Φt
Φβw

β = 3κx
2s(β−1)

(κt)β wβ .

By Proposition 3.2, we have for x ∈ I2,

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ ,

therefore, we have
3 Φt

Φβw
β ≤ 3κ2

β
β−1

1
x2s .

Now recall that by Proposition 5.5, we have for all x ∈ I2 and t ≥ t∗,

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − γ

)
wβ + ε(1− τ0)

8J0sx2s ,

since u ≥ w for all x ≥ X(t). The Lemma is then proved by taking γ ≤ γ0 and κ ≤ κ∗ := ε(1−τ0)

24·2
β
β−1 J0s

.

5.4 Conclusion
From the above, for all fixed ε ≤ 1

2 there exists κ∗, γ∗ and t∗ such that u(t, x) is a subsolution to (3.9) for all
t ≥ t∗. As in Section 4 to conclude the proof, we need to check that for some T we have u(T, x) ≥ u(t∗, x)
for all x ∈ R.

To do so, let us observe that u(t∗, x) ≤ 3w(t∗, x) and by using the definition of w, we have

lim
x→+∞

x2su(t∗, x) ≤ 3κ∗t∗.

Now thanks to Proposition 2.3, there exists t3κ∗t∗ such that for all t ≥ t3κ∗t∗

lim
x→+∞

x2su(t, x) ≥ 3κ∗t∗.

Therefore, we achieve u(t∗, x) ≤ u(t3κ∗t∗ , x) for x >> 1 says, x > x0, and moreover thanks to the monotone
behaviour of u, we have for all t ≥ t3κ∗t∗ , u(t∗, x) ≤ u(t, x) for x > x0. On the other hand, by Proposition 2.4
u(t, x) → 1 uniformly in (−∞, x0] and since u ≤ 1

2 < 1 we can find t̂ so that u(t∗, x) ≤ 1
2 < u(t̂, x) for all

x ≤ x0. Thus, by taking T ≥ sup{t3κ∗t∗ , t̂} we then achieve u(t∗, x) ≤ u(T, x) for all x ∈ R.
The proof of Theorem 1.4 is then complete for all ε ≤ 1

2 . To obtain the speed of the level line for ε ≥ 1
2 ,

again we can reproduce the proof used in [4, 25] using the adequate invasion property, namely Proposition 2.4.

6 Numerical experiments
In this Section, we provide, in the particular case of the fractional Laplace operator, numerical experiments
illustrating the theoretical findings reported in the present work.

To compute approximations to the solution of the Cauchy problem (3.9), the integro-differential equation
is first discretised in space using a quadrature rule-based finite difference method on a uniform Cartesian
grid, and then integrated in time using an implicit-explicit (IMEX) scheme. To do so, one needs to set
the problem on a bounded domain, which is achieved by truncating the real line to a bounded interval and
imposing an exterior boundary condition.

The integral representation of the fractional Laplacian involves a singular integrand, and proper care
is needed when discretising this operator. A common approach to deal with this difficulty is to split the
singular integral into a sum of an isolated contribution from the singular part with another having a smooth
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integrand and on which standard quadrature rules can be employed. Such a strategy has been used to solve
both nonlocal (see [48]) and fractional (see [34, 28, 41]) diffusion models.
In the present work, we followed the splitting approach introduced in [28]. It consists in writing the singular
integral representation of the fractional Laplacian as a weighted integral of a weaker singular function by
introducing a splitting parameter, namely

∀s ∈ (0, 1), ∀x ∈ R, (−∆)su(x) = C1,s P.V.
ˆ
R

u(x)− u(y)
|x− y|γ

|x− y|γ−1−2s dy,

where γ is a real number appropriately chosen in (2s, 2). The discretisation of the fractional Laplacian in a
bounded interval Ω = (a, b), such that b− a = L > 0, with the extended Dirichlet boundary condition u = g
in R \ Ω then works as follows. Using a uniform Cartesian grid {xj = a+ j(∆x) | j ∈ Z}, with ∆x = L

M for
some nonzero naturel integer M , the fractional operator, evaluated at a given gridpoint xj in Ω (that is, for
j in {0, . . . ,M}) is then decomposed into two parts

(−∆)su(xj) = −C1,s

(ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz +

ˆ +∞

L

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz

)
.

(6.40)
The first integral in the decomposition being singular, the splitting is used. Denoting zk = k(∆x), for any
integer k in {0, . . . ,M}, one writes

ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz =

ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
zγ

|z|γ−1−2s dz

=
M∑
k=1

ˆ zk

zk−1

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz.

For any index k in {2, . . . ,M}, the integral in the above sum is regular and approximated by the weighted
trapezoidal rule, that is
ˆ zk

zk−1

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz ≈

1
2(γ − 2s)

(
u(xj − zk−1)− 2u(xj) + u(xj + zk−1)

zk−1γ
+ u(xj − zk)− 2u(xj) + u(xj + zk)

zkγ

)(
zk
γ−2s − zk−1

γ−2s) .
For k = 1, assuming that the solution u is smooth enough (of class C 2 for instance), the integral can also
be formally approximated by the weighted trapezoidal rule, that is

ˆ z1

z0

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz ≈ (∆x)γ−2s

2(γ − 2s)
u(xj−1)− 2u(xj) + u(xj+1)

(∆x)γ .

Note that an optimal convergence rate for this scheme is obtained for γ = 1 + s (see the discussion in [28]).
Next, observe that, for any z larger than L, xj ± z belongs to R \ Ω and thus the value of u(xj ± z) is

given by the extended Dirichlet boundary condition. As a consequence, the second integral in (6.40) reduces
to ˆ +∞

L

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz = − 1

sL2s u(xj) +
ˆ +∞

L

g(xj − z) + g(xj − z)
z1+2s dz,

and may be computed explicitly depending on the extended boundary datum g. For the problem at hand,
it is known that the solution tends to 1 at −∞ and 0 at +∞ and we used boundary datum with constant
value 1 or 0 where appropriate.

A forward-backward Euler (1, 1, 1) IMEX scheme (see [9]) is then applied to the semi-discretized equation,
the diffusion term in the equation being treated implicitly (by the backward Euler method) and the nonlinear
reaction term being dealt with explicitly (by the forward Euler method).
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Due to the use of a uniform grid, the resulting linear system to be solved at each step possesses a
Toeplitz-type square matrix of order M − 1, with coefficients given by

1 + C1,s(∆t)
(1− s)(∆x)2s

(
M−2∑
k=2

(k + 1)1−s − (k − 1)1−s

k1+s + (M − 1)1−s − (M − 2)1−s

(M − 1)1+s + 21−s + 1− s
s

)
if j = i,

− C1,s(∆t)
2s(1− s)(∆x)2s if j = i± 1,

− C1,s(∆t)
(1− s)(∆x)2s

(|j − i|+ 1)1−s − (|j − i| − 1)1−s

2|j − 1|1+s if j 6= i, i± 1,

where ∆t denotes the stepsize used for the discretisation in time. Its solution can be advantageously tackled
by the Levinson recursion, for a cost of O(M2) arithmetic operations.

To cope with the algebraic decay of solutions and their spreading over a given period of time, which is
necessary in order to observe the setting of a travelling or accelerated front, we implemented a very crude
adaptation mechanism of the domain size along the iteration. At each time step, a criterion decides if the
discretisation grid is to be expanded on each side or not, according the measured spreading of the numerical
approximation at the current time and a given tolerance. This allows for discretisation points to be added
to the grid (the space step being fixed one and for all at the beginning) over the course of the computation,
which results in an ever increasing cost for each new iteration. The maximum number of added points at
each step is a fixed parameter in the code, and, to complete the values of the approximation at these points,
the boundary conditions are used, that is the value 1 on the left side of the grid, and the value 0 on the right
one. This results in using extremely large computational domains as the simulation progresses, and thus an
ever increasing computational effort2. Such crude approach nevertheless allowed to qualitatively confirm a
number of theoretical results established in the present paper, but it showed its limitations in experiments
in which smaller values of the fractional exponent where used, the computational domain being too small
(with the parameters chosen for the computations) to correctly account for the spreading of the solution.
As a consequence, the influence of the Dirichlet boundary conditions is felt and the asymptotic behaviour of
the approximation is affected.

Note that a more refined, but also more biased, way of both adding points and completing the approxi-
mated solution (or more generally of replacing the approximation by a Dirichlet problem by a problem set
on the whole real line, see Section 4.4 in [35]) would be to follow some ansatz based on existing results for
the asymptotic behaviour of solutions at infinity to construct an approximation of the solution outside of
the computational domain, see for instance Theorem 1.3 in [32] for a generalised Fisher–KPP model (or
Corollary 3.9 in [35]).

The numerical scheme was implemented with Python using standard NumPy and SciPy libraries, and
notably the scipy.linalg.solve_toeplitz routine to solve the Toeplitz linear system. In all the compu-
tations presented, a stepsize in time equal to 0.01 was used and the starting computational domain was the
interval to (−1000, 1000), discretised with 10001 points, that is a stepsize in space equal to 0.2 in space. The
maximum number of points that could be added to each side of the domain at each iteration was 150.

The first important feature we were able to recover numerically is the expected dynamics of the invasion
with respect to the Allee effect. Namely, after a transition period, stabilisation to a regime in which the level
set of the solution evolves with a speed of order t

1
2s(β−1) + 1

2s occurs, as seen in Figure 8 below. By plotting
the evolution of the position of a given level set using a semi-logarithmic scale for different values of the
parameter β and a fixed value of the parameter s, we observe that, except for β = 1 for which the dynamics
differs, the shapes of resulting curves are somehow identical, meaning that log(Xλ(t)) ∼ C(s, β) log(t).

2In practice, the stepsize in space ∆x is fixed and the integer M grows at each time step.
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Figure 8: Logarithm of the position of the level line of height 1
2 of numerical approximations of the solution

to the problem with fractional diffusion, plotted as a function of time, for different values of β and s equal
to 1

2 .

Conversely, Figures 9, 10 and 11 illustrate the different behaviours observed when the value of the
parameter s varies while the value of the parameter β is fixed. For β = 1.5, Figure 9 shows that acceleration
occurs for any of the values of s we considered, that is s = 0.3, 0.5, and 0.7. For β = 3, Figures 10 and 11
offer a more complex picture. In accordance with the theoretical prediction, one can observe a transition
from an accelerated invasion for values of s lower than 0.7 to an invasion at constant speed for s equal to 0.8,
the transition being captured for the value s = 0.75. In both cases, it is observed that acceleration always
occurs when s < 1

2 .
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Figure 9: Numerical approximations of the solution to the problem with fractional diffusion at different times
for β = 1.5 and different values of s. On the right, the graphs have been shifted by setting the position of
the level line of value 1

2 at x = 0, for comparison purposes.

The acceleration being more pronounced for small values of the parameter s, one may notice that the
ranges used to plot the profiles of the solution vary drastically from a case to another, which may lead to
some possible misinterpretations of the numerical results. There is for instance a factor 20 between the range
used for the case s = 0.3 and the one for the case s = 0.5. In order to properly compare the deformation
of the profile, we have plotted in Figure 12 the shifted profile of the level set at a given time and for
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several values of s. By doing so, we are able to observe more easily the transition occuring at s = 0.75, the
profiles associated with values of s greater than 0.75 being very much alike whereas they exhibit a noticeable
deformation for lower values.
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Figure 10: Numerical approximations of the solution to the problem with fractional diffusion at different
times for β = 3 and different values of the fractional Laplacian exponent s. On the right, the graphs have
been shifted by setting the position of the level line of value 1

2 at x = 0, for comparison purposes.
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(b) s = 0.75.
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Figure 11: Numerical approximations of the solution to the problem with fractional diffusion at different
times for β = 3 and different values of s. On the right, the graphs have been shifted by setting the position
of the level line of value 1

2 at x = 0, for comparison purposes.
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Figure 12: Numerical approximations of the solution to the problem with fractional diffusion at time t = 20
for β = 3 and different values of s. On the right, the graphs have been shifted by setting the position of the
level line of value 1

2 at x = 0, for comparison purposes.

Lastly, we tried to fit a part of the profiles to the expected asymptotic behaviour of the solution at the
front in Figure 13, in order to show that, despite the Dirichlet boundary conditions, one may still observe
a decay behaving like C

x2s in the numerical solutions. This fitting was achieved with the method of least
squares implemented in the scipy.optimize.curve_fit routine.
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