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Abstract
We study a acceleration phenomenon arising in monostable integro-differential equations with a weak

Allee effect. Previous works have shown its occurrence and have given correct upper bounds on the rate
of expansion, but precise lower bounds were still missing. In this paper, we provide a sharp lower bound
of acceleration for a large class of dispersion operators. Our results cover fractional Laplace operators and
standard convolutions in a unified way. To achieve this, we construct a refined sub-solution that captures
the expected dynamics of the accelerating solution. We also take advantage of a general flattening
estimate for the solution, that we prove along the way and is of independent interest.

Keywords: generic nonlocal dispersion operators, fractional laplacian, convolution operator, acceleration,
level lines.

1 Introduction
In this paper, we are interested in describing quantitatively propagation phenomena in the following (non-
local) integro-differential equation:

ut(t, x) = D[u ](t, x) + f(u(t, x)) for t > 0, x ∈ R, (1.1)
u(0, ·) = u0(x) ≥ 0,

where f is a monostable nonlinearity specified later on and

D[u ](t, x) := P.V.

(ˆ
R
[u(t, y)− u(t, x)]J(x− y) dy

)
.

Here, J is a nonnegative function satisfying the following properties.

Hypothesis 1.1. Let s > 0. The kernel J is nonnegative, symmetric and such that there exists positive
constants J0,J1 and R0 ≥ 1 verifying

ˆ
|z|≤1

J(z)|z|2 dz ≤ 2J1 and J0

|z|1+2s1{|z|≥1} ≥ J(z) ≥ J0
−1

|z|1+2s1{|z|≥R0}.
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The operator D[ ] describes the dispersion process of the individuals. Roughly, the kernel J gives the
probability of a jump from a position x to a position y, so that the tails of J are of crucial importance
to quantify the dynamics of the population. As a matter of fact, the parameter s will appear in rates
we obtain later. One may readily notice that our hypothesis on J allows us to cover both broad types of
integro-differential operators D[u ] usually considered in the literature : the fractional laplacian (−∆)su and
the standard convolution operators with integrable kernels often written J ? u− u. This universality is one
main contribution of this paper.

Without further notice, we will consider that f satisfies

Hypothesis 1.2. The nonlinearity f ∈ C1([0, 1],R) is of the monostable type, in the sense that
f(0) = f(1) = 0, f(u) > 0, for u ∈ (0, 1),

f ′(1) < 0,

lim
u→0

f(u)
uβ
≥ r,

for some r > 0, β > 1.

The parameter β above describes the possibility of a weak Allee effect that the population overcomes.
A biological description and discussion about the origin and relevance of such an effect may be found in a
book by Courchamp et al. [20] but also in [7, 27, 10]. In crude terms, the Allee effect means that a too small
population will not have enough strength to survive and expand. This effect is said to be weak whenever the
growth rate of a very small population is eventually extremely small but still positive as opposed to a strong
Allee effect leading to negative growth rates for small populations. In the sequel, and without further notice,
we take β > 1 (again, yielding small growth rates for small densities). The initial data u0 ∈ C(R, [0, 1]) is
such that

Hypothesis 1.3. 1 ≥ u0(x) ≥ a1(−∞,b](x) for some a > 0 and b ∈ R.

Existing works and earlier results
Let us review existing works relevant to position our work. Propagation phenomena in reaction diffusion and
integro-differential equations has been the object of intense studies in the last decades. Starting from the
work of Fisher on the propagation of an advantageous gene [29] and its analysis by Kolmogorov Petrovski
and Piskunov [38] and related works by e.g. Aronson and Weinberger [8], the quantitative description of
spreading gave birth to various mathematical tools and techniques such as travelling waves, accelerating
profiles, transition fronts, among many others.

When β = 1 and f satisfies f(s) ≤ f ′(0)s, that is f is a Fisher-KPP nonlinearity, it is known that (1.1)
exhibits some propagation phenomena: starting with some nonnegative nontrivial compactly supported
initial data, the corresponding solution u converges to 1 locally uniformly in space when time gets large.
This is referred as the hair trigger effect [8]. Moreover, in many cases, the convergence to 1 can be precisely
characterised. Indeed, when the dispersion kernel J is exponentially bounded, travelling waves are known to
exist and solutions of the Cauchy problem typically propagate at a constant speed [46, 49, 19, 24, 23, 39, 50].
On the other hand, when the dispersion kernel J has heavy tails, travelling waves do not exist and then the
Cauchy problem exhibits an acceleration phenomenon [40, 50, 30]. More precisely, Garnier [30] gave the first
acceleration estimates and then the first author with Garnier, Henderson and Patout [15] provided sharp
level sets for convolution operators; a group around Cabré and Roquejoffre studied the fractional Fisher-KPP
equation concluding to an exponential propagation behaviour [18, 17]. Related but different, since playing
with the tails of the initial data, acceleration phenomena for positive solutions of a local Cauchy problem
also appear in reaction diffusion equations [33]. We emphasise that in the present paper, the acceleration is
only due to the structure of the dispersal operator.

When an Allee effect is introduced, the study of propagation is more subtle. Alfaro started the program
with a paper about the interplay between heavy tailed initial data and Allee effect in local reaction-diffusion
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equations [3]. Coville et. al. [24, 23, 22] have proved existence of travelling fronts when the dispersal kernel
J is exponentially bounded and the Cauchy problem typically does not lead to acceleration [51]. When not,
the competition between heavy tails and Allee effect leads to intense discussions. Gui and Huan discuss
the existence or not of travelling waves for a fractional equation with an Allee effect in [32]. They obtain
existence and thus finite speed propagation when β

2s(β−1) < 1. However, in this latter paper, no description
of acceleration nor precise rate of acceleration were given in the opposite case. In the same spirit, for
algebraic decaying kernels, Alfaro and Coville [4] provide the exact separation between existence and non
existence of travelling waves for convolution type equations, showing also the exact separation between non
acceleration and acceleration in the Cauchy problem. Before reviewing the last-to-date results on (1.1), let
us also mention that acceleration phenomenon also appears in some porous medium equations [37, 47, 5, 6].

As far as (1.1) is concerned, bounds on the expansion of the level sets of u have been already obtained
by the second author together with Gui and Zhao in [25] and by Alfaro in [4] showing a delicate interplay
between the tails of J and the power β. Namely, they obtained an upper bound of acceleration when D[ ] is
a fractional laplacian (J ∝ | · |−(1+2s)) or when J is integrable with a finite first moment (this corresponds
to s > 1

2 here): the solution spreads at at most t
β

2s(β−1) when β
2s(β−1) > 1. However, they were unable to

provide a matching lower bound leaving as an open question the exact speed of the level lines. We do not
state the exact exponents they get to avoid misunderstandings while reading this paper, but refer to [4, 25]
where they are explicit. To have a clearer view, the next figures, Figure 1a and 1b summarize the different
known behaviours for this two particular situations.

s

β s = 1
2

β = 2s
2s−1

β = 1
xλ(t) � eρt

Ì

Ê

Ë

xλ(t) � c∗t

(a) The convolution case

s

β s = 1
2

β = 2s
2s−1

β = 1
xλ(t) � eρt

Ê

Ë

xλ(t) � c∗t

(b) The fractional case

Figure 1: For the convolution case, Figure 1a, we have: In the green zone, the model enjoys linear
propagation with existence of travelling fronts [21]: xλ(t) � c∗t. In the white zone, zone Ì, no estimates
are known. In the blue zone, zone Ê, only an upper bounds has been derived, see [4]: xλ(t) . t

β
2s(β−1) . In

the purple zone, zone Ë, non matching lower an upper bounds has been derived, see [4]: t
1

2s(β−1) . xλ(t) .
t

β
2s(β−1) . The orange zone is a zone of exponential propagation, Garnier [30], Bouin et al [15]: xλ(t) � exp(ρt).

For the fractional case, Figure 1b, we have: In the green zone, the model enjoys linear propagation
with existence of travelling fronts [32, 25]: xλ(t) � c∗t. In the blue zone, zone Ê, non matching upper and
lower bounds have been derived, see [25]: t 1

2s . xλ(t) . t
β

2s(β−1) . In the purple zone, zone Ë, non matching
lower an upper bounds have been derived, see [25]: t

1
2s(β−1) . xλ(t) . t

β
2s(β−1) . The orange zone is a zone of

exponential propagation, Roquejoffre et al. [17]: xλ(t) � exp(ρt).
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In a preliminary version of this work [14] (made while completing the current program), assuming that
J satisfies 1.1, s ∈ (0, 1), the present authors provide a lower bound of the acceleration of the level lines
of solutions of (1.1) showing for the first time that spreading is of order t

β
2s(β−1) and thus getting a sharp

exponent of acceleration. This preliminary work being fully complete, we were informed by Zhang and Zlatos
that they managed to obtain in [52] similar bounds on the fractional laplacian version of the equation using
a different approach that relies strongly on the properties of this operator. The present version of our work
consists in presenting the full general approach initiated in [14]. We obtain the sharp estimate with the
fewest possible assumptions on the measure J , in particular with the fewest restriction on s.

Statement of the result
To follow the propagation, we may define the level sets of height λ ∈ (0, 1) of the solution,

xλ(t) := sup {x ∈ R, u(t, x) ≥ λ} .

Let us now state precisely our main theorem.

Theorem 1.4. Assume that J, u0 and f satisfy respectively Hypothesis 1.1, Hypothesis 1.3 and Hypothesis 1.2
and that

β < 1 + 1
2s− 1 .

Then for any λ ∈ (0, 1), the level line xλ(t) of the solution of (1.1) accelerates with the following rate1,

xλ(t) �λ t
β

2s(β−1) .

To give the reader a clear panorama of the scope of our result, we have summarised our and previous
contributions in Figure 2.

s

β s = 1
2

β = 2s
2s−1

β = 1
xλ(t) � eρt

xλ(t) � t
β

2s(β−1)

xλ(t) � c∗t

Figure 2: In the green zone, based on the previous work [4, 21, 25, 32] the model is expected to enjoy a linear
propagation with existence of travelling fronts: xλ(t) ∼ c∗t. In the blue zone, we provide the sharp lower and
upper bounds : xλ(t) � t

β
2s(β−1) . The orange zone is a zone of exponential propagation, by straightforward

extension of the work of Bouin et al [15]: xλ(t) � exp(ρt).
1We use the notation u �λ v for the existence of a positive constant Cλ such that Cλv ≤ u ≤ C−1

λ
v.
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Up to our knowledge, this is the first, sharp, unified estimate of the level sets in this generic context. As
already explained above, previous papers were able to derive correct upper bounds in particular setting but
failed to obtain a precise lower bound in a generic context. Note that the condition on β fits and unifies all
related papers [4, 14, 25, 32, 52]. Note also that we obtain the rate of invasion for a convolution operator
when s ∈ (0, 1

2 ], which remained open after [25].
The constructions made in [4, 25] to obtain upper bounds are robust and can be adapted to the range

of parameters considered here for kernels satisfying (1.1). To avoid unnecessary computations, we will not
duplicate here these constructions. Our contribution is thus a generic way of obtaining a lower bound that
matches the already known upper bounds.

To illustrate our result, the position of the level line of height λ = 0.5 is plotted in Figure 3 as a function
of time for two different values of β and several values of the fractional Laplacian exponent s. In one of
the two configurations, namely for β = 1.5, the critical value of the exponent s above which there exists a
travelling front is strictly greater than 1. As a consequence, the level set accelerates for any of the chosen
values for s, but this acceleration clearly decreases to zero as s tends to 1, as expected from the existing
results with local diffusion.

This is no more the case for β = 3, as one can observe a switching from an accelerated regime to a travel
at constant speed around the critical value s = 0.75 (the corresponding curve is plotted with a dashed line).
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(a) β = 1.5.
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(b) β = 3.

Figure 3: Position of the level line of height 1
2 of numerical approximations of the solution to the problem

with fractional diffusion, plotted as a function of time, for two different values of β and several values of s
in (0, 1).

Comments on the strategy
The first step of the proof is to study how the initial data evolves for short times, and it particular which
decay at infinity is created by the dispersion with fat tails. We prove in Proposition 2.2 that at time 1,
the decay of u solving (1.1) with u0 satisfying Hypothesis 1.3 is of order x−2s near +∞. When s ≥ 1, it is
sufficient for the rest of the proof.

When s ∈ (0, 1), an important aspect in our construction is to know that if u is a positive solution to
(1.1) with u0 satisfying Hypothesis 1.3 then the solution of (1.1) flattens through time:

∀C > 0, ∃tC , lim
x→+∞

x2su(t, x) ≥ C, for all t ≥ tC .

Figure 4 illustrates this particular behaviour, showing the deformation of the profile of the solution through
time. This flattening property is more clearly seen on the right plot where solutions are shifted back to have
the same value at 0. We see that there is no stabilisation of the profile and the shape of the solution changes
through time, which is usually not the case when the long time behaviour is a finite speed propagation.
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Figure 4: Numerical approximations of the solution to the problem with fractional diffusion at different times
for s equal to 0.6 and β equal to 1.5. On the right, the graphs have been shifted by setting the position of
the level line of value 1

2 at x = 0, for comparison purposes. The latter exhibits more clearly the deformation
of the solution.

To have a more convincing picture of this flattening effect, we may also plot the evolution over time of
the best constant C such that the tail of the solution fits with C

x2s in the least square sense. After a rapid
transition the graph obtained describes a linear growth of this constant C. We also refer to Figure 13 for
various plots showing the adequation between u and x−2s at the edge of the invasion.
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(a) s = 0.4.
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(b) s = 0.5.

Figure 5: Evolution over time of the fitting constant for the part of the tail of the approximation solution
at time t = 1 bounded by value 10−2 on the left and value 10−5 on the right using the function C

x2s for the
solution of the problem with fractional diffusion and β = 1.5 and s = 0.4/0.5.

The proof relies on two ingredients. We first show an invasion property in this general context Proposi-
tion 2.4. We then combine it with a subtle construction of a sub-solution of the linear problem that mimics
the expected scaling behaviour of the heat kernel. Very importantly, this flattening property is in fact true
for any s > 1, as we show in Section 2. It is worth mentioning that the regime s ≥ 1 being a regime for
which the heat kernel is supposed to behave at large time like a Gaussian diffusion kernel, the flattening
of the solution of (1.1) cannot be uniquely explained through the diffusion process and is truly a nonlinear
feature. This is a clear dichotomy between the two regimes s < 1 and s ≥ 1.

For particular diffusion operators such as the fractional laplacian, such flattening estimate can be ob-
tained through time and space scaling properties of the associated heat kernel. However, although the
characterisation of the heat kernel associated to the generator of a Levy process is a well known problem
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in probability theory and analysis that dates back to the original work of Pólya [45] and Blumenthal and
Getoor [11] on α-stable processes, up to our knowledge characterisations of the heat kernel that may induce
such flattening estimates have only been established for some specific class of Levy processes [12, 26, 31, 36]
and do not exist for a generic Levy process.

Once the initial data has been properly prepared for small times, to achieve the lower bound for large
times, our strategy consists in the construction of a new type of sub-solution that captures all the expected
dynamics of the solution u. In particular, it turns out to be mandatory to identify several zones of space
over which the behaviour of the solution u is given by one specific part of the equation. This is something
new compared to previous papers. Roughly, the dynamics close to t

β
2s(β−1) are due to the nonlinearity only

via the related ODE, the far-field zone is purely dissipative and has the behaviour of the linearised equation,
and the transition zone between the two is a subtle interplay between the two effects. This dichotomy will be
detailed and illustrated in Section 5. Lastly, and related to what has just been explained, it is interesting to
notice the fact that the exponent of acceleration is a function of β but not the way that the solution flattens
with time: it is purely related to the rate of dispersion and will be shown numerically. See Figure 6 for a
schematic view of the expected behaviour of the solution.

x

� t
β

2s(β−1)

∼ t 1
2s

Figure 6: Schematic view of the expected behaviour of solution at a given time t.

Further comments and structure of the paper
It is worth adding that the propagation of a compactly supported initial data would lead to a certain amount
of different considerations. In particular, the possibility of invasion is related to the size of the initial data
due to the existence or not of the so-called hair-trigger effect. Depending on the choice of parameter, s and
β, for compactly supported initial datum, it may happen that the solution get extinct at large time, which is
referred as the quenching phenomenon [2, 53], and thus no propagation occur. We have chosen not to focus
on this particular issue to concentrate on the description of the acceleration process.

It is important to have in mind that from the point of view of applications, having results at this level
of generality of assumptions is of great interest. In particular in ecology, where dispersal is a fundamental
process which strongly impacts the evolution species and for which our understanding is still partial [42, 43,
44]. In a sense, by giving access to the right speed of acceleration for a large class of measures, our results
provide a unified view of the consequences of potential large jumps in the dispersal process.

It is worth noticing that the asymptotic behaviour obtained in Figure 5 suggests some particular behaviour
of the asymptotic of the solution of the nonlinear problem u. Here for the fractional laplacian, we numerically
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observe the following asymptotic behaviour: u(t, x) ∼ C0t/x
2s for large x. Such scaling is indeed satisfied by

the sub-solution we construct to estimate from below the speed of the level set, however the super-solution
used to control this speed does not enjoy it. Obtaining rigorously such asymptotic behaviour is an open
question that requires a more precise description of the super-solution in the spirit of our construction. Some
investigations in this direction are currently underway.

Lastly, our approach is rather robust and can be extended to more singular monostable nonlinearities
such as ignition type nonlinearities. See our companion paper [13].

The rest of the paper is organised as follows. We first derive in Section 2 some estimates on the asymptotic
behaviour of the solution (1.1) and prove Proposition 2.4. Then Section 3 describes in broad lines the
construction of the sub-solution. We proceed in deeper calculations to achieve Theorem 1.4 in Section 5 and
Section 4. We illustrate Theorem 1.4 with numerical experiments in Section 6.

2 Tails and flattening estimates.
2.1 About the tails of u at t = 1.
In this section, we show that starting from an Heaviside initial data, the solution immediately gets polynomial
tails of order 2s, for any positive value of s. For this, we construct a sub-solution for short times.

Let us introduce the function v defined by,

v(t, x) =
{

1
ν for t > 0, x ≤ 0,

κt
x2s+κνt for t > 0, x > 0.

(2.2)

where ν and κ are positive constants to be fixed later on. Note that v(0, ·) = 1
ν1(−∞,0].

Lemma 2.1. For all ν, κ verifying κν ≤ 1
2sJ0

then

vt −D[ v ] ≤ J0

2s v for all t ∈ (0, 1), x > R0 + 1.

Proof. For x > 0, t > 0, compute,

vt(t, x) = κx2s

(x2s + κνt)2 ,

vxx(t, x) = 2sv2(t, x)x
2s−2

κt

[
4s x2s

x2s + νκt
− 2s+ 1

]
= 2sv2(t, x)x

2s−2

κt

[
2s+ 1− νκt

x2s + νκt

]
.

Note that v is always convex in x for all times t > 0 and κν > 0.
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Let us now estimate D[ v ](t, x) for t ≥ 0 and x ≥ R0 + 1. We have,

D[ v ](t, x) =
ˆ −1

−∞
[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ +∞

1
[v(t, x+ z)− v(t, x)]J(z) dz,

≥
ˆ −1

−∞
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

1
J(z) dz,

≥
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ −x
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ −1

−x
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

1
J(z) dz,

≥
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz +

[
1
ν
− v(t, x)

]ˆ +∞

x

J(z) dz − v(t, x)
ˆ +∞

1
J(z) dz,

≥
ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz + J

−1
0
2s

[
1
ν
− v(t, x)

]
1
x2s −

J0

2s v(t, x).

We have used that v is monotone decreasing in x for all t at the third line and Hypothesis 1.1 at the last
one. The remaining integral is estimated using the regularity of v and the convexity in x, together with the
symmetry of J , we can rewrite it as follows

ˆ 1

−1
[v(t, x+ z)− v(t, x)]J(z) dz =

ˆ 1

0

ˆ 1

0

ˆ 1

−1
vxx(t, x+ τσz)τz2J(z) dzdτdσ ≥ 0,

since x ≥ R0 + 1 ≥ 2 and thus vxx(t, x+ ξ) ≥ 0 for ξ ∈ (−1, 1). We conclude,

D[ v ](t, x) ≥ J
−1
0
2s

[
1
ν
− v(t, x)

]
1
x2s −

J0

2s v(t, x).

We continue writing, for t ∈ (0, 1) and x ≥ R0 + 1 ≥ 1,

vt(t, x)−D[ v ](t, x) ≤ κx2s

(x2s + κνt)2 −
J−1

0
2s

[
1
ν
− v(t, x)

]
1
x2s + J0

2s v(t, x),

≤ κ

x2s + κνt
− J

−1
0

2sν

[
1− κνt

x2s + νκt

]
1
x2s + J0

2s v(t, x),

= κ

x2s + κνt
− J

−1
0

2sν
1

x2s + νκt
+ J0

2s v(t, x),

= κ

x2s + κνt

(
1− J

−1
0

2sνκ

)
+ J0

2s v(t, x) ≤ J0

2s v(t, x),

when κν ≤ 1
2sJ0

.

Equipped with the above lemma, we obtain,

Proposition 2.2. Let u be a solution to (1.1), with J satisfying Hypothesis 1.1. Then, there exists D > 0
such that,

lim
x→+∞

x2su(1, x) ≥ D2s.
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Proof. Observe that thanks to comparison principle and since u0 satisfies Hypothesis 1.3 it is enough to
prove this proposition for monotone initial data u0. In this situation, i.e. u0 is monotone non-increasing,
by a straightforward application of the comparison principle so does x 7→ u(t, x) for all times, and we have
u(t, x) ≥ u(t, R0 + 1) for all times t > 0 and x ≤ R0 + 1. Since u(t, x) > 0 for all t > 0 and all x ∈ R, we
have δ := inf

t∈[ 1
2 ,

3
2 ]
u(t, R0 + 1) > 0 and thus u(t, x) ≥ δ for all t ∈ ( 1

2 ,
3
2 ), x = R0 + 1.

Consider now z as above with ν > 1
δ and κ so that κν ≤ 1

2sJ0
. Then for such a choice of parameters, the

function ṽ(t, ·) := (1− t) e−
J0
2s tz(t, ·) satisfies
ṽt(t, x) ≤ D[ ṽ ](t, x) for t ∈ (0, 1), x > R0 + 1,
ṽ(0, ·) = 1

ν1(−∞,0],

ṽ(1, ·) = 0, for x ≥ R0 + 1,
ṽ(t, x) ≤ 1

ν , for t ∈ (0, 1), x ≤ R0 + 1.

(2.3)

The function ũ := u(·+ 1
2 , ·) satisfies,
ũt(t, x) ≥ D[ ũ ](t, x) for t ∈ (0, 1), x > R0 + 1,
ũ(0, ·) = u( 1

2 , ·) >
1
ν1(−∞,0],

ũ(1, ·) ≥ 0, for x ≥ R0 + 1,
ũ(t, x) ≥ δ > 1

ν , for t ∈ (0, 1), x ≤ R0 + 1.

(2.4)

Using the parabolic comparison principle it follows that for all (t, x) ∈ (0, 1)× [R0 + 1,+∞[, one has u(t+
1
2 , x) ≥ ṽ(t, x) and thus

lim
x→+∞

x2su(1, x) ≥ lim
x→+∞

x2sṽ( 1
2 , x) = κ

2
(
1− 1

2
)
e−
J0
4s lim

x→∞

x2s

x2s + 1
2κν

= κ
4 e
−J0

4s := D2s.

2.2 Flattening estimates for large times.
Here we push further our analysis of the tail of the solution of (1.1) and obtain a flattening estimate in the
following sense. For any C > 0 there exists a positive time tC such that u(t, x) the solution of the nonlinear
problem (1.1), satisfies

lim
x→+∞

x2su(tC , x) ≥ C.

More precisely, we prove the following proposition,

Proposition 2.3. Assume J and u0 satisfy respectively (1.1) and (1.3) and let u be a positive solution to
(1.1). Then for all C > 0, there exits tC > 0 such that u(tC , x) satisfies the following

lim
x→+∞

x2su(tC , x) ≥ C.

Before showing this proposition, let us establish some invasion properties of the solution of (1.1). Namely,

Proposition 2.4. Assume J, u0 and f satisfy respectively Hypothesis 1.1, Hypothesis 1.3 and Hypothesis 1.2
then the solution to (1.1) satisfies for all A > 0,

u(t, x)→ 1 uniformly in (−∞, A] as t→∞.

Proof. As above, let us observe that thanks to the parabolic comparison principle and since u0 satisfies
Hypothesis 1.3 it is enough to prove this proposition for monotone initial data u0. Observe also that when
J ∈ L1 or D is the Fractional Laplacian then the above invasion statement have already been proved in
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[4, 25]. So we won’t repeat this proof and only consider that J has a non-integrable singularity and D is not
the Fractional Laplacian. Let us also observe that since f satisfies Hypothesis 1.2 we may find r0 small so
that f(s) ≥ r0s

β(1−s) with β > 1 and again thanks to the parabolic comparison principle, it then is enough
to prove the this invasion proposition for nonlinearity f of the form f(s) := r0s

β(1−s) with β > 1. So let us
assume that f(s) := r0s

β(1− s) with β > 1. The idea is now to construct a subsolution to (1.1) that fills all
the space. Let us observe that for any nonnegative nonlinearity f and any function v and R ≥ R0 we have

D[ v ](x) + f(v(x)) =
ˆ +∞

−∞
[v(x+ h)− v(x)]J(h) dh+ f(v(x)), (2.5)

=
ˆ
|h|<R

[u(x+ h)− u(x)]J(h) dh+
ˆ
|h|≥R

[v(x+ h)− v(x)]J(h) dh+ f(v(x)), (2.6)

≥
ˆ
|h|<R

[v(x+ h)− v(x)]J(h) dh− v(x)
ˆ
|h|≥R

J(h) dh+ f(v(x)), (2.7)

≥
ˆ
|h|<R

[v(x+ h)− v(x)]J(h) dh− J0

R2s v(x) + f(v(x)). (2.8)

Set fR(s) := − J0
R2s s+ f(s) and let us denote by DR the diffusion operator with the kernel J(h)1BR(0)(h)

instead of J , then from the above computations we have for any positive solution u(t, x) to (1.1),

∂tu(t, x)−DR[u ](t, x)− fR(u(t, x)) ≥ ∂tu(t)−D[u ](t, x) + f(u(t, x)) = 0.

Let 0 < θ < a := lim inf
x→∞

u0(x) and for θ < 1
2 let us consider fθ ≤ f a bistable function such that fθ(0) =

fθ(θ) = fθ(1 − θ) = 0, and fθ(x) > 0 for all x ∈ (θ, 1 − θ). Choose θ < a
8 small, so that 1 − θ > a and´ 1−θ

0 fθ(s) ds > 0.
Now since fR → f as R→∞, we may find Rθ such that fθ ≤ fRθ and so we have for R ≥ Rθ

∂tu(t, x)−DR[u ](t, x)− fθ(u(t, x)) ≥ 0. (2.9)

Let us smoothly extend fθ outside [0, 1− θ] as follow:
f ′θ(0)s when s < 0
fθ(s) when 0 ≤ s ≤ 1− θ
f ′θ(1− θ)(s− 1 + θ) when 1− θ < s

and for convenience let us denote fθ this extension. Let us now consider the following problem

∂tv(t, x)−DR[ v ](t, x)− fθ(v(t, x)) = 0. (2.10)

Observe that from (2.9), u is a supersolution to (2.10). Let us now construct a adequate subsolution to
(2.10). Thanks to [1], we know that the problem (2.10) admits a unique monotone travelling wave solution
(ϕθ, cθ) connecting 0 to 1− θ which is smooth since J has a non integrable singularity. That is (ϕθ, cθ) is a
smooth solution to

cθϕ
′
θ(z) +DR[ϕθ ](z) + fθ(ϕθ(z)) = 0 for all z ∈ R

lim
z→−∞

ϕθ(z) = 1− θ, lim
z→+∞

ϕθ(z) = 0.

Observe that by definition of fθ we must have cθ > 0 since the sign of the speed in such context is given
by the sign of

´ 1−θ
0 fθ(s) ds. Let us now normalize ϕθ by ϕθ(0) = θ and set

wε,κ,L(t, x) := ϕθ
(
x− cθt+ κ(1− e−εt) + L

)
−
(

1− a

2

)
e−εt,

11



with ε, κ, L as free parameters to be fixed later on. Observe that at t = 0, we have

wε,κ,L(0, x) ≤ a

2 − θ < a for all κ, L, ε, x (2.11)

wε,κ,L(0, x) ≤ a

2 + θ − 1 < 0 for all κ > 0, L > 0, ε > 0, x > 0. (2.12)

As a consequence, since ϕθ is monotone for ε and κ fixed we may always find L0 such that u0 ≥ wε,κ,L0(t, x).
Let us now show that for the right choice of parameters, ε, κ, the function wε,κ,L0(t, x) is a sub-solution to
(2.10).

Claim 2.5. There exists, ε, κ such that for all L, wε,κ,L is a sub-solution to (2.10).

Let us postpone the proof of the claim for the moment, then having this result at hand by using the
parabolic comparison principle we then deduce that u(t, x) ≥ wε,κ,L0 and thus for all A ∈ R, limt→∞ u(t, x) ≥
1−θ in (−∞, A]. θ being arbitrary small the latter argument then implies that u(t, x)→ 1 locally uniformly
in (−∞, A] as t→ +∞ and since u(t, x) is monotone non increasing in x, the convergence is then uniform.

To complete the above proof, let us established the claim.

Proof of the Claim. Compute ∂twε,κ,L, then we have

∂twε,κ,L = (−c+ κεe−εt)ϕ′
(
x− cθt+ κ(1− e−εt) + L

)
+ ε

(
1− a

2

)
e−εt

Set ξ(t, x) := x− cθt+ κ(1− e−εt) + L, then by using the equation satisfied by ϕθ we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) = κεe−εtϕ′ (ξ(t, x)) + ε
(

1− a

2

)
e−εt

+ fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
(2.13)

Choose 0 < δ0 <
a
8 such that fθ(s) satisfies

fθ(s) ≤
f ′θ(0)

2 s for s ∈ (0, δ0)

fθ(s) ≤
f ′θ(1− θ)

2 (s− 1− θ) for s ∈ (1− θ − 4δ0, 1− θ)

Inspired by the construction made in [16], let δ < δ0 and choose now A(δ) >> 1 such that ϕθ(z) ≤ δ if
z ≥ A and ϕθ(z) ≥ 1 − θ − δ for z ≤ −A. We now treat the three situations ξ(t, x) > A, ξ(t, x) < −A and
|ξ(t, x)| < A separately.

The case ξ(t, x) > A : When ξ(t, x) > A, we have two possibilities, either ϕθ(ξ(t, x)) −
(
1− a

2
)
e−εt > 0

or ϕθ(ξ(t, x))−
(
1− a

2
)
e−εt ≤ 0. In the latter case, we have fθ(ϕθ(ξ(t, x))) ≤ f ′θ(0)

2 ϕθ(ξ(t, x)) and

fθ

(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
= f ′θ(0)

[
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

]
So, since ϕ′θ < 0, we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ ε
(

1− a

2

)
e−εt + f ′θ(0)

2 ϕθ(ξ(t, x))− f ′θ(0)
[
ϕθ(ξ(t, x)))−

(
1− a

2

)
e−εt

]
,

≤
[
ε+ f ′θ(0)

2

](
1− a

2

)
e−εt − f ′θ(0)

2

[
ϕθ(ξ(t, x)))−

(
1− a

2

)
e−εt

]
,

≤ 0,

12



as soon as ε ≤ − f
′
θ(0)
2 . In the other situation, we have δ ≥ ϕθ(ξ(t, x))−

(
1− a

2
)
e−εt ≥ 0 and therefore

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ f ′θ(0)

2

(
1− a

2

)
e−εt.

As above, we conclude that

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤
[
ε+ f ′θ(0)

2

](
1− a

2

)
e−εt

≤ 0,

as soon as ε ≤ − f
′
θ(0)
2 .

The case ξ(t, x) < −A: Let us now assume that ξ(t, x) < −A. We then have ϕθ(ξ(t, x)) ≥ 1− θ − δ and
f(ϕ(ξ(t, x))) ≤ − f

′
θ(1−θ)

2 δ. If
(
1− a

2
)
e−εt ≤ 3δ0 then ϕ(ξ(t, x))−

(
1− a

2
)
e−εt ≤ 1− θ − 4δ0 and therefore

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ f ′(1)

2

(
1− a

2

)
e−εt.

Thus we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤
[
ε+ f ′θ(1)

2

](
1− a

2

)
e−εt

≤ 0,

provided ε ≤ − f
′
θ(1)
2 .

In the other situation, we have
(
1− a

2
)
e−εt ≥ 3δ0 and

3a
8 − δ ≤

a

2 − θ − δ ≤ ϕθ(ξ(t, x))−
(

1− a

2

)
e−εt ≤ 1− θ − 3δ0.

Since δ ≤ a
8 , we can ensure that

fθ(ϕθ(ξ(t, x))−
(

1− a

2

)
e−εt) ≥ m0 := min

s∈[ a4 ,1−θ−3δ0]
fθ(s).

As a consequence, we have

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ ε
(

1− a

2

)
− f ′θ(1− θ)

2 δ −m0

≤ 0,

provided ε and δ are chosen small enough says ε ≤ m0
2−a and δ ≤ m0

f ′
θ
(1−θ) .

The case |ξ(t, x)| < A: Lastly, let us assume that |ξ| < A. On that region ϕ′θ(z) < 0 and therefore

ϕ′θ(ϕ(ξ(t, x)) ≤ −ν0 := sup
z∈[−A,A]

ϕ′θ(z) < 0.

Recall that fθ is a Lipschitz function, so we also have

fθ(ϕθ(ξ(t, x)))− fθ
(
ϕθ(ξ(t, x))−

(
1− a

2

)
e−εt

)
≤ ‖f ′θ‖

(
1− a

2

)
e−εt.
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Thus, we end up with

∂twε,κ,L −DR[wε,κ,L ]− fθ(wε,κ,L) ≤ −κεe−εtν0 + (ε+ ‖f ′θ‖)
(

1− a

2

)
e−εt

≤
[
−κεν0 + (ε+ ‖f ′θ‖)

(
1− a

2

)]
e−εt

≤ 0

provided κ is chosen large enough, says κ ≥ (ε+‖f ′‖)(2−a)
2εν0

.

Remark 2.6. The above proof do not need any specific form of the nonlinearity f , we only need that f is
a monostable nonlinearity, in the sense that f(0) = f(1) = 0 and f > 0 in (0, 1). As a consequence, the
Proposition then holds true for any monostable f . In addition with some minor adaptation in the way the
bistable function is construct, the proof will also stand for ignition type nonlinearity f .

Let us now obtain the flattening result and prove Proposition 2.3.

Proof of Proposition 2.3. As in the proof of Proposition 2.2, we will construct an adequate subsolution. To
this end, let v be the parametric function defined in the proof of Proposition 2.2 where we have set ν = 2
and κ = J−1

0
8s

v(t, x) =
{

1
2 for t > 0, x ≤ 0,

κt
x2s+κ2t for t > 0, x > 0.

(2.14)

Let us now refine our estimate of D[ v ]. Let R > 1 to be chosen then as in the proof of Proposition 2.2 for
t > 0 and x ≥ R0 +R, we have

D[ v ](t, x) =
ˆ −R
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ +∞

R

[v(t, x+ z)− v(t, x)]J(z) dz,

≥
ˆ −R
−∞

[v(t, x+ z)− v(t, x)]J(z) dz +
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)

ˆ +∞

R

J(z) dz,

≥
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

ˆ −x
−∞

[v(t, x+ z)− v(t, x)]J(z) dz

+
ˆ −R
−x

[v(t, x+ z)− v(t, x)]J(z) dz − v(t, x)
ˆ +∞

R

J(z) dz,

≥
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz +

[
1
2 − v(t, x)

]ˆ +∞

x

J(z) dz − v(t, x)
ˆ +∞

R

J(z) dz,

≥
ˆ R

−R
[v(t, x+ z)− v(t, x)]J(z) dz + J

−1
0
2s

[
1
2 − v(t, x)

]
1
x2s −

J0

2sR2s v(t, x).

As well the remaining integral is estimated similarly using the regularity of v and the convexity in x,
together with the symmetry of J , and thus for x > R0 +R,

D[ v ](t, x) ≥ J
−1
0
2s

[
1
2 − v(t, x)

]
1
x2s −

J0

2sR2s v(t, x).

All together, we then have for t > 0 and x ≥ R0 +R,
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vt(t, x)−D[ v ](t, x) ≤ κx2s

(x2s + κνt)2 −
J−1

0
2s

[
1
2 − v(t, x)

]
1
x2s + J0

2sR2s v(t, x),

≤ 1
x2s + 2κt

(
−J

−1
0
8s + J0κt

2sR2s

)
.

For any C > 0, let us now define t∗ := 2C
κ and choose R large enough says R ≥ RC :=

(
8CJ 2

0
) 1

2s . From the
above computation we then have for all t ∈ (0, t∗) and x ≥ R0 +RC

vt(t, x)−D[ v ](t, x) ≤ 0 for all t ∈ (0, t∗), x ≥ R0 +RC . (2.15)

Equipped with this subsolution, let us now conclude our proof. By using the invasion property, Proposi-
tion 2.4, there exists tC such that for all t ≥ tC we have

u(t, x) ≥ 3
4 for all t > 0, x ≤ R0 +RC .

So the function ũ(t, x) := u(t+ tC , x) then satisfies

ũt(t, x)−D[ ũ ](t, x) ≥ 0 for all t ∈ (0, t∗), x ∈ R,
ũ(t, x) ≥ v(t, x) for all t ∈ [0, t∗], x ≤ R0 +RC .

Using the comparison principle it follows that for all (t, x) ∈ (0, t∗) × [R0 +RC ,+∞[, one has ũ(t, x) ≥
v(t, x) and thus

lim
x→+∞

x2su(tC + t∗/2, x) ≥ lim
x→+∞

x2sv(t∗/2, x) = C.

3 Strategy for the construction of sub-solutions.
As previously mentioned, our main strategy is to construct a sub-solution to (1.1) that will mimic some
expected behaviours. As observed in the previous section, since f satisfies Hypothesis 1.2, we have for r0
small, f(s) ≥ r0s

β(1− s). Consequently, we only need to construct a sub-solution for equation (1.1) with f
having this specific form. Let us also observe that by scaling in space in time the solution as well the measure
J , i.e. v(t, x) := u

(
t
r0
, xr0

)
and taking J( zr0

) dz, we can reduce our construction to finding a sub-solution to
the following problem:

∂tv(t, x) = Dr0 [v](t, x) + vβ(t, x)(1− v(t, x)). (3.16)

where Dr0 denote the operator D with the rescaled measure J( zr0
) dz. In the sequel, to keep tractable

notations, we drop the subscript of the diffusion operator.

3.1 The form of the sub-solutions.
We are looking for a sub-solution u to (3.16) that satisfies everywhere

ut ≤ D[u ] + (1− ε)uβ and u ≤ ε, (3.17)

for some ε ∈ (0, 1). Indeed, this would give, if u(0, ·) ≤ u(t′, ·), for some t′ > 0,

ut ≤ D[u ] + (1− ε)uβ ≤ D[u ] + (1− u)uβ
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and thus u is a subsolution to u. We construct an at least of class C 2 function u piecewise,

u := ε, on {x ≤ X(t)} ,
u := φ, else,

with φ(t,X(t)) = ε. The point X(t) is unknown at that stage. We expect φ to solve an ODE of the form
n′ = nβ near x = X(t) and to look like a solution of the standard fractional Laplace equation with Heaviside
initial data at the far edge. A natural candidate would be given by

w(t, x) :=
[(

κt

x2s

)1−β
− γ(β − 1)t

]− 1
β−1

. (3.18)

Note that this function is well defined for t ≥ 1 and x > X0 := κ
1

2s (γ(β − 1)t)
β

(β−1)2s and has visually the
structure of a solution to the ODE n′ = nβ . The expected decay in space of a solution of the standard
fractional Laplace equation with Heaviside initial data being at least of order tx−2s, such a w would have
the good asymptotics. Let us define X(t) such that w(t,X(t)) = ε, that is

X(t) = (κt) 1
2s
[
ε1−β + γ(β − 1)t

] 1
2s(β−1) . (3.19)

The positive constants κ and γ are for the moment free parameters to be chosen later on. One may observe
that X(t) moves with the speed that we expect in Theorem 1.4. However, taking φ as this w would not lead
to a C 2 function at x = X(t). To remedy this issue, we complete our construction by taking φ such that

u(t, x) :=


ε for all x ≤ X(t),

3
(

1− w(t, x)
ε

+ w2(t, x)
3ε2

)
w(t, x) for all x > X(t),

(3.20)

for t > 1.
Start by observing that u satisfies (3.17) if and only if,

0 ≤ D[u ] + εβ(1− ε), x ≤ X(t), (3.21)
φt ≤ D[u ] + (1− ε)φβ , else (3.22)

As a consequence, the main work is to derive good estimates for D[u ] in both regions x ≤ X(t) and
x ≥ X(t). The estimate in the first region will be rather direct to get and will rely mostly on the fact that
u is constant there together with the tails of J . In the latter region, things are more intricate. We have to
split it into three zones, as depicted on Figure 7 below, each one been the stage of one specific character of
the model and thus demanding a specific way to estimate D[u ].

3.2 Facts and formulas on X and w.
First, from direct computations we have:

ut = ux = uxx = 0 for all t > 0, x < X(t) (3.23)

ut = 3wt
(

1− w

ε

)2
for all t > 1, x > X(t) (3.24)

ux = 3wx
(

1− w

ε

)2
for all t > 1, x > X(t) (3.25)

uxx(t, x) = 3
(

1− w

ε

)[
wxx

(
1− w

ε

)
− 2w2

x

ε

]
for all t > 1, x > X(t) (3.26)
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x

x = X(t) x = Y (t) x = 2
1

2s(β−1)X(t)

ε

Figure 7: Schematic view of the sub-solution at a given time t. Several zones have to be considered. The exact
expression of Y (t) will appear naturally later. The blue zone is where u is constant, making computations
easier. In the orange zone, the fact that u looks like a solution to an ODE n′ = nβ is crucial. In the brown
(far-field) zone, the decay imitating a fractional Laplace equation gives the right behaviour. The green zone
is subtle and needs a mixture between both surrounding zones.

Note crucially that u is then at a C 2 function in x and C 1 in t. For convenience, let us denote

Φ(t, x) := κt

x2s U := w

Φ .

We will need repeatedly the following information on derivatives of w at any point (t, x) where w is defined.

wt = wβ
(
γ + Φt

Φβ

)
(3.27)

wx = wβ
Φx
Φβ = −2swβ x

2s(β−1)−1

(κt)β−1 = UβΦx (3.28)

wxx = βwβ−1wx
Φx
Φβ + wβ

ΦxxΦβ − |Φx|2βΦβ−1

Φ2β =
[
Φxx + β|Φx|2Φ−1 (Uβ−1 − 1

)]
Uβ (3.29)

Since U ≥ 1, we deduce from the latter that w is convex. In addition, by rewriting uxx in terms of U and Φ
let us observe that

uxx = 3
(

1− w

ε

)[
|Φx|2Φ−1Uβ

[(
1 + 1

2s

)
+ β

(
Uβ−1 − 1

)] (
1− w

ε

)
− 2
ε
U2β |Φx|2

]
,

= 3
(

1− w

ε

)
|Φx|2U2β

[
Φ−1U−β

[(
1 + 1

2s

)
+ β

(
Uβ−1 − 1

)] (
1− w

ε

)
− 2
ε

]
,

= 3ε
(

1− w

ε

)
|Φx|2U2β

[[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
− 2
]
,

and so u(t, x) is convex, i.e. uxx(t, x) ≥ 0, for x such that[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
≥ 2.
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Lemma 3.1. We have uxx(t, x) ≥ 0 as soon as w(t, x) ≤ ε
δc
, where

δc := 1 + 2
min

(
β, 1 + 1

2s
) .

Proof. Recall first that U ≥ 1, so that 0 ≤ U1−β ≤ 1. Assume first that 1+ 1
2s−β ≥ 0, then in this situation,

if w ≤ ε
1+ 2

β

, from the above inequality we have[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
≥ β

(
εw−1 − 1

)
≥ 2

and so uxx(t, x) ≥ 0 if w ≤ ε
1+ 2

β

. When 1 + 1
2s − β ≤ 0, if w ≤ ε

1+ 2
1+ 1

2s

,

[(
1 + 1

2s − β
)
U1−β + β

] (
εw−1 − 1

)
≥
(

1 + 1
2s

)(
εw−1 − 1

)
≥ 2.

Proposition 3.2. For all x ≥ 2
1

2s(β−1)X(t),

w(t, x) ≤ 2
1

β−1κt

x2s .

Proof. By using (3.18), the definition of w, since we have

w(t, x) = κt

x2s

(
1− γ(β − 1)tβκβ−1

x2s(β−1)

)− 1
β−1

As a consequence, for all x ≥ 2
1

2s(β−1)X(t), by using the definition of X(t), (3.19), we have the following
estimate for w,

w(t, x) ≤ κt

x2s

(
1− γ(β − 1)tβκβ−1

2X(t)2s(β−1)

)− 1
β−1

≤ κt

x2s

(
1− γ(β − 1)tβκβ−1

2(κt)β−1 [ε1−β + γ(β − 1)t]

)− 1
β−1

≤ κt

x2s

(
1− γ(β − 1)t

2 [ε1−β + γ(β − 1)t]

)− 1
β−1

≤ 2
1

β−1κt

x2s .

Last, let us observe that for all t ≥ 1, X(t) satisfies the following:

t

X(t) ≤
(

1
κ

1
2s (γ(β − 1))

1
2s(β−1)

)
t1−

β
2s(β−1) so that lim

t→∞

t

X(t) = 0, (3.30)

κt

X2s(t) ≤
ε

(1 + εβ−1γ(β − 1)t)
1

β−1
so that lim

t→∞

κt

X2s(t) = 0. (3.31)

From the above estimates we can also derive the following useful limits

lim
t→∞

t ln t
X(t) = 0, (3.32)

lim
t→∞

wx(t,X(t)) = 0. (3.33)
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4 Proof of Theorem 1.4 when s ≥ 1.
4.1 Choice of parameters and consequences.
Let us define tε := σ

ε for some σ > 0 and let show that for the right choice of ε, κ, σ and γ the function u
defined in (3.20) is indeed a subsolution to (3.17) for all t ≥ tε. In the rest of the section, let us fix

κ := D2s

2 σ−1ε, γ := ε2−β

β − 1 ,

withD the positive constant given in Proposition 2.2. Let us also defineXc(t) < Y (t) so that w(t,Xc(t)) = ε
δc

and w(t, Y (t)) = ε
2δc , this is

Y (t) = (κt) 1
2s

[
(2δc)β−1

ε1−β + γ(β − 1)t
] 1

2s(β−1)
, Xc(t) = (κt) 1

2s
[
δβ−1
c ε1−β + γ(β − 1)t

] 1
2s(β−1) .

Consequently,

Y (t)−Xc(t) = (κt) 1
2s

([
(2δc)β−1

ε1−β + γ(β − 1)t
] 1

2s(β−1) −
[
δβ−1
c ε1−β + γ(β − 1)t

] 1
2s(β−1)

)
≥ (κt) 1

2s
2β−1 − 1
2s(β − 1)δ

β−1
c ε1−β [ζs,βδβ−1

c ε1−β + γ(β − 1)t
] 1

2s(β−1)−1

where

ζs,β =
{

1, if 2s(β − 1) < 1,
2β−1, if 2s(β − 1) > 1.

The latter being increasing in t in both configurations, we obtain,

Y (t)−Xc(t) ≥ (κtε)
1

2s
2β−1 − 1
2s(β − 1)δ

β−1
c ε1−β [ζs,βδβ−1

c ε1−β + γ(β − 1)tε
] 1

2s(β−1)−1

≥ D 2β−1 − 1
2s(β − 1)δ

β−1
c ε1−βε

(1−β)
(

1
2s(β−1)−1

) [
ζs,βδ

β−1
c + σ

] 1
2s(β−1)−1

≥ D 2β−1 − 1
2s(β − 1)δ

β−1
c ε−

1
2s
[
ζs,βδ

β−1
c + σ

] 1
2s(β−1)−1 := C1ε−

1
2s .

We end this section with a useful computation for further use. Since w is decreasing and convex we have

|wx(t,X(t))|2 ≤ |wx(tε, X(tε))|2 := 4s2 [1 + σ]2−
2

(β−1)2s

D2 ε2(1−β+ 1
2s )ε2β . (4.34)

4.2 Estimating D[ u ] when x ≤ X(t).
On this region, by definition of u, we have

D[u ](t, x) =
ˆ
y≥X(t)

[u(t, y)− ε]J(x− y) dy.

This section aims at showing (3.21). For the convenience of the reader, we shall state this is the following

Proposition 4.1. For all σ there exists ε0(σ) such that for t ≥ tε and ε ≤ ε0(σ) we have

D[u ](t, x) + εβ

2 (1− ε) ≥ 0 for all x ≤ X(t).

Proof. We split the interval (−∞, X(t)] into two sub-intervals (−∞, X(t) − B] and (X(t) − B,X(t)] with
B > 1 to be chosen later, and thus estimate D[u ] on both subsets.
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When x ≤ X(t)−B: On this subset, then a short computation gives

D[u ](t, x) =
ˆ
y≥X(t)

u(t, y)− ε
|x− y|1+2s J(x− y)|x− y|1+2s dy ≥ −εJ0

ˆ
y≥X(t)

dy

(y − x)1+2s

≥ −εJ0

2s
1

(X(t)− x)2s ≥ −
εJ0

2s
1
B2s .

When X(t) − B < x ≤ X(t): On this subset, by making the change of variable z = y − x, since B > 1
and u(t, x) = ε, a short computation gives

D[u ](t, x) =
ˆ
z≥X(t)−x+B

[u(t, x+ z)− ε]J(z) dz +
ˆ
X(t)−x+B≥z≥X(t)−x

[u(t, x+ z)− ε]J(z) dz

≥ −εJ0

ˆ
z≥X(t)−x+B

dz

z1+2s +
ˆ
X(t)−x+B≥z≥X(t)−x

[u(t, x+ z)− u(t, x)]J(z) dz

≥ −εJ0

2s
1

(X(t) +B − x)2s +
ˆ
X(t)−x+B≥z≥X(t)−x

[u(t, x+ z)− u(t, x)]J(z) dy

≥ −εJ0

2s
1
B2s +

ˆ
X(t)−x+B≥z≥X(t)−x

[u(t, x+ z)− u(t, x)]J(z) dy.

By using the Taylor formula we have

u(t, x+ z)− u(t, x) = z

ˆ 1

0
ux(t, x+ τz) dτ

and thus we can estimate the last integral by

I :=
ˆ X(t)−x+B

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ X(t)−x+B

X(t)−x

ˆ 1

0
ux(t, x+ τz)zJ(z) dzdτ.

Since ux is a C 1 function, we can reapply a Taylor formula and the last integral may be rewritten as follows

I =
ˆ 1

0

ˆ 1

0

ˆ B+X(t)−x

X(t)−x
uxx(t, x+ τσz)J(z)τz2 dzdτdσ.

We have uxx(t, x) = 0 for x ≤ X(t), see (3.23), so I reduces to

I =
ˆ 1

0

ˆ 1

0

ˆ B+X(t)−x

0
uxx(t, x+ τσz)J(z)τz2 dzdτdσ.

Using the definition of uxx, (3.26), for x ≥ X(t) and the convexity of w, we get

I ≥ −6
ε
wx(t,X(t))2

ˆ 1

0

ˆ 1

0

ˆ 2B

0
J(z)τz2 dzdτdσ,

≥ −6
ε
wx(t,X(t))2

(ˆ 1

0

ˆ 1

0

ˆ 1

0
J(z)τz2 dτdσdz +

ˆ 2B

1

ˆ 1

0

ˆ 1

0
J(z) |z|

1+2s

|z|1+2s τz
2 dσdτdz

)
,

≥ −3
ε
wx(t,X(t))2

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
,

where we have used Hypothesis 1.1 to estimate the integrals. As a consequence, we obtain the following
estimate:

D[u ] ≥ −εJ0

2s
1
B2s −

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2. (4.35)
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We are now ready to choose B :=
(

2J0
sεβ−1(1−ε) + 1

) 1
2s above. This implies then in both cases

D[u ] ≥ −ε
β(1− ε)

4 − 3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2,

≥ −ε
β(1− ε)

4 − 3
ε

(J1 + J0 ln(2B))wx(t,X(t))2,

which for all t ≥ tε using (4.34) leads to

D[u ] ≥ −
[

1− ε
4 + 12s2 [1 + σ]2−

2
(β−1)2s

D2 (J1 + J0 ln(2B)) ε1−β+ 1
s

]
εβ .

Rewrite 1−β+ 1
s = 2−β+β−2s(β−1)

2s . Since s ≥ 1, we have β < 2 and thus 1−β+ 1
s > 0. As a consequence,

ε
2−β

2s (J1 + J0 ln (2B))→ 0 as ε→ 0, we may find an explicit ε0(σ) such that for all ε ≤ ε0 and for all t ≥ tε,

D[u ] + εβ

2 (1− ε) ≥ 0.

4.3 Estimate of D[ u ] on x > X(t).
As exposed earlier and shown in Figure 7, we shall estimate D[u ] in three separate intervals

[X(t), Y (t)], [Y (t), 2
1

2s(β−1)X(t)], [2
1

2s(β−1)X(t),+∞).

The exact expression of Y (t) is explicit and is such that w(t, Y (t)) = ε
2δc . Note that by definition Y (t) > Xc(t)

for all t and that Y (t) ≥ X(t) +R0 for t ≥ tε, when ε is small enough.

4.3.1 The region X(t) ≤ x ≤ Y (t).

We start this with an estimate

Lemma 4.2. For all B > 1,

D[u ](t, x) ≥ − J0ε

sB2s −
6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
(wx(t,X(t)))2

.

Proof. By definition of u, for any δ ≥ R0 we have, using Hypothesis 1.1,

D[u ](t, x) =
ˆ
x+z≤X(t)−δ

ε− u(t, x)
|z|1+2s J(z)|z|1+2s dz +

ˆ
x+z≥X(t)−δ

[u(t, x+ z)− u(t, x)]J(z) dz,

≥
ˆ
x+z≥X(t)−δ

[u(t, x+ z)− u(t, x)]J(z) dz,

which leads to

D[u ](t, x) =
ˆ
x+z≥X(t)−δ,|z|≤B

[u(t, x+ z)− u(t, x)]J(z) dz

+
ˆ
x+z≥X(t)−δ,|z|≥B

[u(t, x+ z)− u(t, x)]J(z) dz. (4.36)
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The second integral in the right hand side of the above expression is the easiest. Since u is positive and
J satisfies (1.1) we then have for B > 1,ˆ

x+z≥X(t)−δ,|z|≥B
[u(t, x+ z)− u(t, x)]J(z) dz ≥ −u(t, x)J0

ˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s .

When X(t)− δ ≤ x−B, a short computation shows thatˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s =
ˆ
X(t)−x−δ≤z≤−B

dz

|z|1+2s +
ˆ
z≥B

dz

|z|1+2s

=
ˆ
X(t)−x−δ≤z≤−B

dz

z1+2s +
ˆ
z≥B

dz

z1+2s

= 1
2sB2s −

1
2s(x+ δ −X(t))2s + 1

2sB2s .

On the other hand if X(t)− δ ≥ x−B thenˆ
x+z≥X(t)−δ,|z|≥B

dz

|z|1+2s =
ˆ
z≥B

dz

|z|1+2s =
ˆ
z≥B

dz

z1+2s = 1
2sB2s .

In each situation we then have
ˆ
x+z≥X(t)−δ,|z|≥B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ −u(t, x)J0

sB2s ≥ − J0ε

sB2s .

Let us now estimate the first integral of the right hand side of the inequality (4.36), that is, let us estimate

I :=
ˆ
x+z≥X(t)−δ,|z|≤B

[u(t, x+ z)− u(t, x)]J(z) dz.

Following the same steps as for the proof of Proposition 4.1, since u(t, x) is C 1 in x we have, for all t ≥ 1
and x ∈ R,

I =
ˆ
x+z≥X(t)−δ,|z|≤B

ˆ 1

0

ˆ 1

0
uxx(t, x+ στz)τz2J(z) dτdσdz,

≥ min
−B<ξ<B

uxx(t, x+ ξ)
(ˆ
|z|≤B

ˆ 1

0

ˆ 1

0
τz2J(z) dτdσdz

)

≥ min
−B<ξ<B

uxx(t, x+ ξ)
(ˆ
|z|≤1

ˆ 1

0

ˆ 1

0
τz2J(z) dτdσdz +

ˆ
1≤|z|≤B

ˆ 1

0

ˆ 1

0
τz2J(z) dτdσdz

)
.

By using (3.23) and (3.26) and the convexity of w, we deduce that

I ≥ −6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
sup

−B<ξ<B,
x+ξ>X(t)

wx(t, x+ ξ)2,

≥ −6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
wx(t,X(t))2,

the latter since w(t, x) is convex. Collecting all previous steps, we get the following estimate for all B > 1,

D[u ](t, x) ≥ − J0ε

sB2s −
6
ε

(
J1 + J0

ˆ B

1
z1−2s dz

)
(wx(t,X(t)))2

.

with ends the proof of the lemma.
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With this lemma at hand, we claim that

Proposition 4.3. For all σ there exists ε1(σ) such that for t ≥ tε and ε ≤ ε1 we have, on [X(t), Y (t)],

D[u ] + 1
2(1− ε)uβ ≥ 0.

Proof. Specify in the previous lemma B = νε
1−β

2s with ν > 1 to be chosen later on. Note that B > 1 since
ν, β > 1 and ε ≤ 1. With this B we get from the above inequality that

D[u ](t, x) ≥ −J0ε
β

sν2s −
6
ε

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 (wx(t,X(t)))2
.

Observe that the definition of u gives 3w(t, x) ≥ u(t, x) ≥ w(t, x) for all x ≥ X(t). Since for x ≤ Y (t) we
have w(t, x) ≥ ε

2δc , we get u(t, x) ≥ ε
2δc . As a consequence,

D[u ](t, x) + (1− ε)
2 uβ(t, x) ≥ εβ 1− ε

2(2δc)β
− J0ε

β

sν2s −
3
ε

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 (wx(t,X(t)))2
,

≥ εβ 1− ε
4(2δc)β

− 6
ε
wx(t,X(t))2

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz


where we have chosen ν := sup

{(
4(2δc)βJ0
s(1−ε)

) 1
2s ; 1

}
. We may now reproduce the argument used in the proof

of Proposition 4.1 and find a explicit ε1 so that for all ε ≤ ε1, t ≥ tε,

D[u ](t, x)(t, x) + 1− ε
2 uβ(t, x) ≥ 0.

4.3.2 A preliminary estimate in the range x ≥ Y (t).

In this zone, u is convex since Y (t) ≥ Xc(t).

Lemma 4.4. For any time t > 1, any x ≥ Y (t), and B > R0 such that x−B ≥ Xc(t),

D[u ] ≥ ε− u
2sJ0x2s −

C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ . (4.37)

Proof. Let us go back to the definition of D[u ](t, x), that we split into three parts:

D[u ](t, x) =
ˆ −B
−∞

[u(t, x+z)−u(t, x)]J(z) dz+
ˆ B

−B
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ ∞
B

[u(t, x+z)−u(t, x)]J(z) dz.

To obtain an estimate of the second integral, we actually follow the same steps as several times previously
to obtain via Taylor expansion,

ˆ B

−B
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ B

−B

ˆ 1

0

ˆ 1

0
uxx(t, x+ τσz)τz2J(z) dτdσdz ≥ 0,

since u is convex in the zone of integration. By using again a Taylor formula, the last integral may be
rewritten as ˆ ∞

B

[u(t, x+ z)− u(t, x)]J(z) dz =
ˆ ∞
B

ˆ 1

0
ux(t, x+ τz)zJ(z) dτdz.
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Observe that since x ≥ Y (t) and w is convex, (3.25) implies

ux(t, x+ τz) = 3wx(t, x+ τz)
(

1− w(t, x+ τz)
ε

)2
≥ 3

(
1− 1

2δc

)2
wx(t, x).

It follows that
ˆ ∞
B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ 3
(

1− 1
2δc

)2(ˆ ∞
B

zJ(z) dz
)
wx(t, x)

≥ 3
(

1− 1
2δc

)2 J0

(2s− 1)B2s−1 wx(t, x).

using Hypothesis 1.1. Finally, since X(t)− x ≤ X(t)−Xc(t)−B ≤ −B, the first integral can be estimated
as follows:
ˆ −B
−∞

[u(t, x+ z)− u(t, x)]J(z) dz ≥ J−1
0

ˆ X(t)−x

−∞

u(t, x+ z)− u(t, x)
|z|1+2s dz +

ˆ −B
X(t)−x

[u(t, x+ z)− u(t, x)]J(z) dz,

≥ J
−1
0
2s

ε− u(t, x)
(x−X(t))2s ,

taking advantage of the fact that u is decreasing. Collecting all previous steps and recalling the expression
of wx set in (3.28) gives the lemma.

4.3.3 The region Y (t) < x < 2
1

2s(β−1)X(t).

The previous lemma at hand, let us now estimate D[u ] when x ≥ Y (t).

Proposition 4.5. For all σ there exists ε2(σ) such that for t ≥ tε and ε ≤ ε2 we have

D[u ] + 1
2(1− ε)uβ ≥ 0 for all Y (t) < x < 2

1
2s(β−1)X(t).

Proof. Let us recall that Y (t) is such that w(t, Y (t)) = ε
2δc and consider x ≥ Y (t). For such x, as long as B

is chosen such that x−B ≥ Xc(t), we get by Lemma 4.4,

D[u ] ≥ − C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ .

The rest of the proof will explain the choice of B. Since X(t) < x < 2
1

2s(β−1)X(t), we have directly

x2s(β−1)−1

(κt)β−1 ≤ 2X(t)2s(β−1)−1

(κt)β−1 = 2(κt)− 1
2s
[
ε1−β + γ(β − 1)t

]1− 1
2s(β−1)

≤ 2D−1 [1 + σ]1−
1

2s(β−1) ε(β−1)( 1
2s(β−1)−1)

Consequently,

D[u ] + 1
2(1− ε)uβ ≥

1
2(1− ε)− 2C0

D
[1 + σ]1−

1
2s(β−1)

ε
−(β−1)

(
1− 1

2s(β−1)

)
B2s−1

wβ .
Observe that if the last bracket is positive, the proof is finished. This is where the choice of B is crucial.
Define

B =
[

4C0
(1− ε)D

] 1
2s−1

(1 + σ)
1

2s−1−
1

2s(2s−1)(β−1) ε−
β−1
2s−1 (1− 1

2s(β−1) )+ .
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Once this choice is made, since ε ≤ 1, the proof is finished. Recall that the limitation in the choice of
B is due to the fact that we need to ensure that for all t ≥ tε and x ≥ Y (t), x − Xc(t) − B ≥ 0. Since
Y (t) −Xc(t) ≥ C1ε−

1
2s , this is satisfied as long as B ≤ C1ε−

1
2s . Since 1

2s −
β−1
2s−1 (1 − 1

2s(β−1) ) = 2−β
2s−1 > 0,

one may observe that the condition is, somewhat miraculously, satisfied by taking ε small, after any wanted
choice of σ.

4.3.4 The region x > 2
1

2s(β−1)X(t)

Let us now obtain an estimate for the last region, x ≥ 2
1

2s(β−1)X(t). In this region we claim

Proposition 4.6. There exists σLR such that for all σ ≥ σLR, we have for t ≥ tε and x ≥ 2
1

2s(β−1)X(t)

D[u ](t, x) ≥ ε(1− τ)
4J0sx2s .

with τ := 3
2δc (1− 1

2δc + 1
3

1
(2δc)2 ).

Proof. For a given x, we define B = x
K with K = 2

1
2s(β−1) +1

2
1

2s(β−1)−1
. Note that by definition of K, we have then

2
1

2s(β−1)
(
1− 1

K

)
= 2

1
2s(β−1) +1

2 := C2. As a consequence, x − B ≥ C2X(t). A straightforward computation
shows that C2X(t) ≥ Xc(t) for all t ≥ tε as soon as

1 + σ

δβ−1
c + σ

≥ C−2s(β−1)
2 .

Since C2 > 1 and limu→∞
1+u

δβ−1
c +u

= 1, the above inequality is always true for large σ, says σ ≥ σ1. We may
thus apply Lemma 4.4 to get

D[u ] ≥ ε− u(t, x)
2sJ0x2s −

C0
B2s−1

x2s(β−1)−1

(κt)β−1 wβ ,

Let us recall that Y (t) is such that w(t, Y (t)) = ε
2δc and so u(t, Y (t)) = 3ε

2δc (1− 1
2δc + 1

3
1

(2δc)2 ) := τ . We can
easily check that since 1

2δc < 1, we have τ < 1. Therefore, we have

D[u ](t, x) ≥ ε(1− τ)
2J0sx2s −

C0
B2s−1w

β(t, x)x
2s(β−1)−1

(κt)β−1 ,

≥ ε(1− τ)
2J0sx2s −

C02
β
β−1

B2s−1
1
x2s

κt

x
=
[

1− τ
2J0s

− C02
β
β−1K2s−1 κt

εx2s

]
ε

x2s ,

≥
[

1− τ
2J0s

− 2C0K2s−1 κt

εX(t)2s

]
ε

x2s =
[

1− τ
2J0s

− 2C0K2s−1

[1 + εt]
1

β−1

]
ε

x2s .

We have used Proposition 3.2 to estimate w after the first line. We then get for t ≥ tε,

D[u ](t, x) ≥
[

1− τ
2J0s

− 2C0K2s−1

[1 + σ]
1

β−1

]
ε

x2s ≥
ε(1− τ)
4J0sx2s ,

choosing σ large enough.
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4.4 Tuning the parameters σ and ε.
In this last part of the proof, we choose our parameters σ and ε in order that for t > tε, u is indeed a
sub-solution to (3.16) Recall that u is a subsolution if and only if (3.21) and (3.22) hold simultaneously.
Since (3.21) holds unconditionally for t ≥ tε and ε ≤ ε0, the only thing left to check is that (3.22) holds for
a suitable choice of σ.

By using (3.24) and (3.27), (3.22) holds if particular

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , x > X(t),

Set ε∗ := inf{ε0, ε1, ε2}, where ε0, ε1 and ε2 are respectively determined by Proposition 4.1, Proposi-
tion 4.3, and Proposition 4.5. To make our choice, let us decompose the set [X(t),+∞) = I1 ∪ I2 into two
subsets defined as follows

I1 := [X(t), 2
1

2s(β−1)X(t)], I2 := [2
1

2s(β−1)X(t),+∞).

On the first interval, we have

Lemma 4.7. There exists ε4 such that for all ε ≤ ε4 and all σ ≥ 1 one has, for t ≥ tε,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ , for all x ∈ I1.

Proof. By definition of Φ, we have, at (t, x),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β .

By exploiting the definition of X(t) it follows that for x ≤ 2
1

2s(β−1)X(t),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β ≤

[
6
t

(
1
ε

)β−1
+ 6ε2−β

]
wβ .

So for t ≥ tε, since σ ≥ 1 we have

3 Φt
Φβw

β ≤ 6ε2−β [1 + σ−1]wβ ≤ 12ε2−βwβ .

From the above, we see that for ε′ :=
( 1

96
) 1

2−β we have for all ε ≤ ε′

3 Φt
Φβw

β ≤ (1− ε)
4 wβ .

Recall that by Proposition 4.3 and Proposition 4.5, we have for all x ∈ I1 and t ≥ tε, and ε ≤ ε∗

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − ε2−β

β − 1

)
wβ ,

since u ≥ w for all x ≥ X(t). We then end our proof by taking ε ≤ ε4 := inf
{
ε′,
(

(1−ε)(β−1)
4

) 1
2−β
}
.

Finally, let us check what happens on I2,

Lemma 4.8. There exists σ ≥ 1 such that for all ε ≤ ε4, one has for all t ≥ tε,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ , for all x ∈ I2.
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Proof. As in the above proof, by definition of Φ we have

3 Φt
Φβw

β = 3κx
2s(β−1)

(κt)β wβ .

By Proposition 3.2, we have for x ∈ I2 and t ≥ tε,

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ .

Therefore, we have

3 Φt
Φβw

β ≤ 3κx
2s(β−1)

(κt)β 2
β
β−1

(κt)β

x2sβ = 2
β
β−1

3D2sσ−1ε

x2s .

Observe that for σ ≥ sup
{

1, D2s2
β
β−1 12J0s

1−τ

}
we have

3 Φt
Φβw

β ≤ ε(1− τ)
4J0sx2s .

Now recall that by Proposition 4.6, we have for all x ∈ I2, ε ≤ ε∗ and t ≥ tε,

D[u ] + (1− ε)uβ − (β − 1)−1ε2−βwβ ≥
(
1− ε− (β − 1)−1ε2−β)wβ + ε(1− τ)

4J0sx2s ,

since u ≥ w for all x ≥ X(t). The claim is then proved by taking ε ≤ ε4.

4.5 The final argument
From the above, section, we may find ε small so that u(t, x) is a subsolution to (3.16) for all t ≥ tε. Having
now this sub-solution u(t, x) at hand, to conclude the proof of Theorem, we only need to check that for some
R∗ and T we have u(T, x+R∗) ≥ u(tε, x). Indeed, if so then by the parabolic comparison principle, we will
then have u(t+ 1, x+R∗) ≥ u(tε + t, x) for all t and the level set

Eε(t) := {x ∈ R|u(t+ 1, x+R∗) ≥ ε} ⊃ (∞, X(tε + t)].

So let us find the adequate R∗ and T . To do so, let us first recall that by Proposition 2.2 we have

lim
x→+∞

x2su(1, x) = D2s.

On the other hand by definition of u a quick computation shows that

lim
x→+∞

x2su(tε, x) = D2s

2 .

Therefore there exists R1 > 0 such that for all x ≥ R1, u(1, x) ≥ u(tε, x) and in particular we have
u(1, x−R1) ≥ u(tε, x) for all x ≥ R1 since u(1, x) is monotone non increasing. To conclude, we just need to
ensure that lim infx→∞ u(1, x) > ε. Indeed, if so, then there exist R2 > such that for all x < −R2 we have
u(1, x) > u(tε, x) and thus we conclude that u(1, x−R1−R2) ≥ u(tε, x) since by monotonicity of u(1, x) we
have u(1, x−R1 −R2) ≥ ε ≥ u(tε, x) for x ∈ (∞, R1] and u(1, x−R1 −R2) ≥ u(1, x−R1) ≥ u(tε, x) for all
x ≥ R1

To prove that lim infx→∞ u(1, x) > ε, we just need to observe that by a straightforward application of
the comparison principle, we have u(t, x) ≥ p(t, x) where p(t, x) is the solution of the linear problem

pt = D[ p ] for t > 0, x ∈ R, (4.38)
p(0, ·) = a1(−∞,b].
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By denoting by G(t, x) the Green function associated to the above linear equation, that is the solution
defined by

Gt = D[G ] for t > 0, x ∈ R, (4.39)
G(0, ·) = δx=0,

the solution p is then given by

p(t, x) = aG(t, ·) ? 1(−∞,b](·)(x) = a

ˆ +∞

x−b
G(t, y) dy,

and thus lim inf
x→−∞

u(1, x) ≥ lim inf
x→−∞

p(1, x) = a lim
x→−∞

ˆ +∞

x−b
G(1, y) dy = a.

Having the lower bound at hand, to obtain the lower bound for all level lines, we can argue as in the
proof in [4, 25] using the adequate invasion property, namely Proposition 2.4.

5 Proof of Theorem 1.4 when s < 1.
In this section, we prove Theorem 1.4 when s < 1. In such a situation, the above construction based on a
fine control of the time tε = σ

ε , is inadequate for a large set of parameters (s, β), especially when β ≥ 2. In
particular, in this latter case, the constraint imposed on the form of tε would make the proof fail. To cover
all the possible situations new ideas have then to be developed. When s < 1, the diffusion process plays a
much important role by inducing by himself a flattening of the solution. So, having this in mind, our idea
is to exploit the flattening properties of the solution to (3.16) to remove the constraint imposed on tε in the
above construction hoping that we can find a time t∗ after which u(t, x) is a sub-solution. By doing so, we
get more flexibility on the construction but at the expense of a clear understanding of the time after which
the true acceleration regime starts.

Let us now show that for the right choice of ε, κ and γ the function u is indeed a subsolution to (3.17)
for all t ≥ t∗ for some t∗.

5.1 Estimating D[ u ] when x ≤ X(t).
On this region, by definition of u, we have

D[u ](t, x) =
ˆ
y≥X(t)

[u(t, y)− ε]J(x− y) dy.

This section aims at showing (3.21). For the convenience of the reader, we shall state this is the following

Proposition 5.1. For all ε ≤ 1
2 , γ and κ there exists t0(ε, κ, γ, β, s) such that for all t ≥ t0

D[u ](t, x) + εβ

2 (1− ε) ≥ 0 for all x ≤ X(t).

Proof. The starting point is the same as for Proposition 4.1 so we shall now reproduce the exact same proof,
but start right away from (4.35), that is

D[u ] ≥ −εJ0

2s
1
B2s −

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
wx(t,X(t))2.

As in the proof of Proposition 4.1 by choosing B :=
(

2J0
sεβ−1(1−ε) + 1

) 1
2s we then get

D[u ] ≥ −ε
β(1− ε)

4 − 3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
(wx(t,X(t)))2.
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Since by (3.33), (wx(t,X(t)))2 → 0 as t→ +∞ we may then find a t0 so that for all t ≥ t0

3
ε

(
J1 + J0

ˆ 2B

1
z1−2s dz

)
(wx(t,X(t)))2 ≤ εβ(1− ε)

4 ,

and thus for t ≥ t0 we then achieve

D[u ] + εβ

2 (1− ε) ≥ 0.

5.2 Estimate of D[ u ] on x > X(t).
As exposed earlier and shown in Figure 7, we shall again estimate D[u ] in the three separate intervals

[X(t), Y (t)], [Y (t), 2
1

2s(β−1)X(t)], [2
1

2s(β−1)X(t),+∞).

where we recall that Y (t) > Xc(t) for all t is such that w(t, Y (t)) = ε
2δc .

Note that for all ε, γ, κ, s, β we may find t# > 0 such that Y (t) ≥ Xc(t) +R0 for t ≥ t#.

5.2.1 The region X(t) ≤ x ≤ Y (t).

In this region, owing to Lemma 4.2, we claim that

Proposition 5.2. For all ε < 1
2 , κ and γ there exists t1 such that

D[u ] ≥ −1
2(1− ε)uβ for all t ≥ t1, X(t) < x < Y (t).

Proof. The proof follows essentially the same step as the proof of Proposition 4.3. Namely, by using Lemma

4.2 with B := νε
1−β

2s where ν := sup
{(

4(2δc)βJ0
s(1−ε)

) 1
2s ; 1

}
and the fact that in the zone x ≤ Y (t), we have

u(t, x) ≥ u(t, Y (t)) ≥ w(t, Y (t)) = ε
2δc , one has

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 1

4(1− ε) εβ

(2δc)β
− 6
ε

(wx(t,X(t)))2

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 .

From there we can argue as in the proof of Proposition 5.1 using that lim
t→+∞

(wx(t,X(t)))2 = 0 and find
find a t1 such that for all t ≥ t1

6
ε

(wx(t,X(t)))2

J1 + J0

ˆ νε
1−β

2s

1
z1−2s dz

 ≤ 1
4(1− ε) εβ

(2δc)β
,

enforcing
D[u ](t, x) + 1

2(1− ε)uβ(t, x) ≥ 0.
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5.2.2 A preliminary estimate in the range x ≥ Y (t).

In this region the estimate of Lemma 4.4 does not hold for all s < 1 and we need to derive a new generic
estimate of D[u ]. We then start by deriving an estimate of D[u ](t, x) only valid in the range x ≥ Y (t).

Lemma 5.3. For any time t > t#, B > 1 and x ≥ Y (t),

D[u ](t, x) ≥ ε(1− τ)
2sJ0x2s −

J0ετ

2sB2s + 3J0

(ˆ B

1
z−2s dz

)
wx(t, x). (5.40)

with τ := 3
2δc

(
1− 1

2δc + 1
3(2δc)2

)
.

Proof. Let us go back to the definition of D[u ](t, x) that we split into three parts:

D[u ](t, x) =
ˆ −1

−∞
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ 1

−1
[u(t, x+z)−u(t, x)]J(z) dz+

ˆ ∞
1

[u(t, x+z)−u(t, x)]J(z) dz.

Since for t ≥ t#, x ≥ Y (t) ≥ Xc(t) +R0 ≥ X(t) +R0 and u is decreasing, the first integral can be estimated
as follows:

ˆ −1

−∞
[u(t, x+ z)− u(t, x)]J(z) dz

≥ J−1
0

ˆ X(t)−x

−∞

u(t, x+ z)− u(t, x)
|z|1+2s dz +

ˆ −1

X(t)−x
[u(t, x+ z)− u(t, x)]J(z) dz

≥ J
−1
0
2s

ε− u(t, x)
(x−X(t))2s . (5.41)

To obtain an estimate of the second integral, we actually follow the same steps as several times previously
to obtain via Taylor expansion,

ˆ 1

−1
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ 1

−1

ˆ 1

0

ˆ 1

0
uxx(t, x+ τσz)τz2J(z) dτdσdz

≥ J1 min
−1<ξ<1

uxx(t, x+ ξ) ≥ 0, (5.42)

since x− 1 ≥ Y (t)− 1 ≥ Xc(t) +R0 − 1 ≥ Xc(t) so that u is convex there.
Finally, let us estimate the last integral and for B > 1 let us split it up into two parts. Namely,

I :=
ˆ +∞

1
[u(t, x+ z)− u(t, x)]J(z) dz

=
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz +

ˆ +∞

B

[u(t, x+ z)− u(t, x)]J(z) dz.

Since u is positive we have
ˆ ∞
B

[u(t, x+ z)− u(t, x)]J(z) dz ≥ −J0u(t, x)
2sB2s . (5.43)

By using again a Taylor formula, the last integral rewrites
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz =

ˆ B

1

ˆ 1

0
ux(t, x+ τz)zJ(z) dτdz.
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Observe that by definition of ux,(3.25), for all τz ≥ 0 we have

ux(t, x+ τz) ≥ 3wx(t, x+ τz) ≥ 3wx(t, x),

since w is convex.
It then follows that
ˆ B

1
[u(t, x+ z)− u(t, x)]J(z) dz ≥ 3

(ˆ B

1
zJ(z) dz

)
wx(t, x) ≥ 3J0

(ˆ B

1
z−2s dz

)
wx(t, x) (5.44)

using Hypothesis 1.1. Collecting (5.41), (5.42),(5.43), (5.44), we find for x ≥ Y (t), and t ≥ t#

D[u ](t, x) ≥ ε− u(t, x)
2sJ0x2s −

J0u(t, x)
2sB2s + 3J0

(ˆ B

1
z−2s dz

)
wx(t, x).

The Lemma is then proved by observing that for x ≥ Y (t), u(t, x) ≤ u(t, Y (t)) = ετ .

5.2.3 The region Y (t) < x < 2
1

2s(β−1)X(t).

The previous lemma at hand, let us now estimate D[u ](t, x) when x ≥ Y (t).

Proposition 5.4. For any 0 < ε ≤ 1
2 and any γ, κ > 0, there exists t2 > 0 such that for all t ≥ t2,

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 0 for all Y (t) < x < 2

1
2s(β−1)X(t).

Proof. First let us observe that since Y (t)→ +∞ we may find t′ > t# such that for all t ≥ t′(
2τJ 2

0
1− τ

) 1
2s

Y (t) > 1.

Fix B :=
(

2τJ 2
0

1−τ

) 1
2s
x, then from Lemma 5.3 and by using the definition of wx(t, x), (3.28), we deduce that

for t ≥ t′ and x ≥ Y (t)

D[u ](t, x) ≥ ε(1− τ)
4sJ0x2s − 6sJ0w

β(t, x)x
2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)
.

Therefore, since u(t, x) ≥ w(t, x) we get

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0

x2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)]
.

Set C3 :=
(

2τJ 2
0

1−τ

) 1
2s and let us now treat the three cases 1

2 < s < 1, s = 1
2 and s < 1

2 separately.

Case 1
2 < s < 1: In this situation, the above integral is bounded from above by 1

2s−1 and we have

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0

2s− 1
x2s(β−1)−1

(κt)β−1

]
.

Since X(t) ≤ x ≤ 2
1

2s(β−1)X(t),
tx2s(β−1)−1

κβ−1tβ
≤ 2X(t)2s(β−1)−1

κβ−1tβ−1 .
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which by using the definition of X(t), (3.19), enforces

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0

2s− 1

[
ε1−β + γ(β − 1)t

]
X(t)

]
.

Using that 1
X(t) → 0 and t

X(t) → 0, (3.30), we may find t2 so that for all t ≥ t2

1
2(1− ε) ≥ 12sJ0

2s− 1

[
ε1−β + γ(β − 1)t

]
X(t) .

Case s = 1
2 : In this situation, the above integral is bounded from above by ln(B) and as above since

X(t) ≤ x ≤ 2
1

2s(β−1)X(t) we have

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0

[
ε1−β + γ(β − 1)t

]
ln(2

1
2s(β−1) C3X(t))

X(t)

]
.

Using the definition of X(t), (3.19), we have ln(X(t)) . ln(t) and thus since by (3.32), t ln(t)
X(t) → 0, we may

find t2 so that for all t ≥ t2

1
2(1− ε) ≥ −12sJ0

[
ε1−β + γ(β − 1)t

]
ln(2

1
2s(β−1) C3X(t))

X(t) .

Case 0 < s < 1
2 : In this last situation, the integral is bounded from above by C

1−2s
3 x1−2s

1−2s and therefore

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 6sJ0C1−2s

3
1− 2s

x2s(β−1)−2s

(κt)β−1

]
.

which using that X(t) ≤ x ≤ 2
1

2s(β−1)X(t) enforces

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ wβ(t, x)

[
1
2(1− ε)− 12sJ0C1−2s

3
1− 2s

[
ε1−β + γ(β − 1)t

]
X2s(t)

]
.

Again using the definition of X(t), (3.19) and since by (3.31), t
X2s(t) → 0, we may find t2 so that for all

t ≥ t2
1
2(1− ε) ≥ 12sJ0C1−2s

3
1− 2s

[
ε1−β + γ(β − 1)t

]
X2s(t) .

In each situation, we then find t2 such that for all t ≥ t2 and Y (t) ≤ x ≤ 2
1

2s(β−1)X(t)

D[u ](t, x) + 1
2(1− ε)uβ(t, x) ≥ 0.

5.2.4 The region x ≥ 2
1

2s(β−1)X(t)

Let us now obtain an estimate for the last region. In this region we claim

Proposition 5.5. For all ε ≤ 1
2 , γ and κ there exists t3 such that for all t ≥ t3

D[u ](t, x) ≥ ε(1− τ)
8sJ0x2s for all x ≥ 2

1
2s(β−1)X(t)

with τ := 3
2δc

(
1− 1

2δc + 1
3(2δc)2

)
.
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Proof. We follow the same steps as for the proof of Proposition 5.4 but with some adaptations. Set B, t′ > t#

as in the proof of Proposition 5.4, and observe that from the definition of X(t),(3.19), by a straightforward
computation, we see that there exists t′′ > 0 so that for all t ≥ t′′ we have 2

1
2s(β−1)X(t) > Y (t).

So from Lemma 5.3 we have, for t ≥ sup{t′, t′′} and x ≥ 2
1

2s(β−1)X(t)

D[u ](t, x) ≥ ε(1− τ)
4sJ0x2s − 6sJ0w

β(t, x)x
2s(β−1)−1

(κt)β−1

(ˆ B

1
z−2s dz

)
.

By using Proposition 3.2, we have

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ

and therefore we get

D[u ](t, x) ≥ ε(1− τ)
4sJ0x2s −

6sJ02
β
β−1

x2s
κt

x

(ˆ B

1
z−2s dz

)
,

≥ 1
x2s ·

[
ε(1− τ)

4sJ0
− 6sJ02

β
β−1

κt

x

(ˆ B

1
z−2s dz

)]
.

By considering separately the three cases 1
2 < s < 1, s = 1

2 , 0 < s < 1
2 and reproducing the argument used

in the proof of Proposition 5.4 we may find t3 such that for all t ≥ t3 and x ≥ 2
1

2s(β−1)X(t),

D[u ](t, x) ≥ ε(1− τ)
8sJ0x2s .

5.3 Tuning the parameters κ and γ

In this last part of the proof, we choose our parameters γ and κ in order that for some t∗ > 0, u is indeed a
sub-solution to (3.16) for t ≥ t∗

Recall that u is a subsolution if and only if (3.21) and (3.22) hold simultaneously. Since (3.21) holds
unconditionally for t sufficiently large, the only thing left to check is that (3.22) holds for a suitable choice
of γ and κ.

By using (3.24) and (3.27), (3.22) holds if particular

3 Φt(t, x)
Φβ(t, x)w

β(t, x) ≤ D[u ](t, x) + (1− ε)uβ(t, x)− γwβ , x > X(t),

Set t∗ := sup{t0, t1, t2, t3}, where t0, t1, t2 and t3 are respectively determined by Proposition 5.1,
Proposition 5.2, Proposition 5.4 and Proposition 5.5. To make our choice, let us decompose the set
[X(t),+∞) = I1 ∪ I2 into two subsets defined as follows

I1 := [X(t), 2
1

2s(β−1)X(t)], I2 := [2
1

2s(β−1)X(t),+∞).

On the first interval, we have

Lemma 5.6. For all ε < 1
2 , there exists γ

∗ such that for all κ and γ ≤ γ∗, one has, for t ≥ sup{ 48
εβ−1(1−ε) , t

∗},

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , for all x ∈ I1.
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Proof. By definition of Φ, we have, at (t, x),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β .

By exploiting the definition of X(t) it follows that for x ≤ 2
1

2s(β−1)X(t),

3 Φt
Φβw

β = 3
t

x2s(β−1)

(κt)β−1 w
β ≤

[
6
t

(
1
ε

)β−1
+ 6γ(β − 1)

]
wβ .

Let γ0 := 1−ε
48(β−1) , then for all γ ≤ γ0 we have

3 Φt
Φβw

β ≤

[
6
t

(
1
ε

)β−1
+ 1− ε

8

]
wβ ,

which for t large, say t ≥ 48ε1−β

1−ε , gives 3 Φt
Φβw

β ≤ 1−ε
4 wβ .

Recall that by Proposition 5.2 and Proposition 5.4, we have for all x ∈ I1 and t ≥ t∗,

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − γ

)
wβ ,

since u ≥ w for all x ≥ X(t). We then end our proof by taking γ∗ := inf{γ0,
1−ε

4 } and t ≥ sup{ 48ε1−β

1−ε , t∗}.

Finally, let us check what happens on I2,

Lemma 5.7. For all ε ≤ 1
2 , there exists κ∗ such that for all γ ≤ γ∗ and κ ≤ κ∗, one has for all t ≥ t∗,

3 Φt
Φβw

β ≤ D[u ] + (1− ε)uβ − γwβ , for all x ∈ I2.

Proof. As in the above proof, by definition of Φ we have

3 Φt
Φβw

β = 3κx
2s(β−1)

(κt)β wβ .

By Proposition 3.2, we have for x ∈ I2,

wβ(t, x) ≤ 2
β
β−1

(κt)β

x2sβ ,

therefore, we have

3 Φt
Φβw

β ≤ 3κx
2s(β−1)

(κt)β 2
β
β−1

(κt)β

x2sβ = 3κ2
β
β−1

1
x2s .

Now recall that by Proposition 5.5, we have for all x ∈ I2 and t ≥ t∗,

D[u ] + (1− ε)uβ − γwβ ≥
(

1− ε
2 − γ

)
wβ + ε(1− τ)

8J0sx2s ,

since u ≥ w for all x ≥ X(t). The Lemma is then proved by taking γ ≤ γ0 and κ ≤ κ∗ := ε(1−τ)

24·2
β
β−1 J0s

.
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5.4 The final argument
From the above, for all fixed ε ≤ 1

2 there exists κ∗, γ∗ and t∗ such that u(t, x) is a subsolution to (3.16) for
all t ≥ t∗. As in Section 4 to conclude the proof, we need to check that for some T we have u(T, x) ≥ u(t∗, x)
for all x ∈ R.

To do so, let us observe that u(t∗, x) ≤ 3w(t∗, x) and by using the definition of w, we have

lim
x→+∞

x2su(t∗, x) ≤ 3κ∗t∗.

Now thanks to Proposition 2.3, there exists t3κ∗t∗ such that for all t ≥ t3κ∗t∗

lim
x→+∞

x2su(t, x) ≥ 3κ∗t∗.

Therefore, we achieve u(t∗, x) ≤ u(t3κ∗t∗ , x) for x >> 1 says, x > x0, and moreover thanks to the monotone
behaviour of u, we have for all t ≥ t3κ∗t∗ , u(t∗, x) ≤ u(t, x) for x > x0. On the other hand, by Proposition 2.4
u(t, x) → 1 uniformly in (−∞, x0] and since u ≤ 1

2 < 1 we can find t̂ so that u(t∗, x) ≤ 1
2 < u(t̂, x) for all

x ≤ x0. Thus, by taking T ≥ sup{t3κ∗t∗ , t̂} we then achieve u(t∗, x) ≤ u(T, x) for all x ∈ R.
The proof of Theorem 1.4 is then complete for all ε ≤ 1

2 . To obtain the speed of the level line for ε ≥ 1
2 ,

again we can reproduce the proof used in [4, 25] using the adequate invasion property, namely Proposition 2.4.

6 Numerical experiments
In this Section, we provide numerical experiments complementing/illustrating the quantitative findings re-
ported in the present work.

To compute approximations to the solution of the Cauchy problem (3.16), the PDE is first discretised
in space using a quadrature rule-based finite difference method on a uniform Cartesian grid, and then
integrated in time using an implicit-explicit (IMEX) scheme. To do so, one needs to set the problem on
a bounded domain, which is achieved by truncating the real line to a bounded interval and imposing an
exterior boundary condition.

Contrary to the nonlocal diffusion operator, for which the assumptions on the kernel J eliminate the
possibility of a singularity, the integral fractional Laplacian features the singular non-integral integrand, and
proper care is needed when discretising this operator. A common approach to dealing with this difficulty is to
split the singular integral into a sum of an isolated contribution from the singular part with another having a
smooth integrand and on which standard quadrature rules can be employed. Such a strategy has been used
to solve both nonlocal (see [48]) and fractional (see [34, 28, 41]) diffusion models. In the present work, we
followed the splitting approach introduced in [28]. It consists in writing the singular integral representation
of the fractional Laplacian as a weighted integral of a weaker singular function by introducing a splitting
parameter, namely

(−∆)su(x) = C1,s P.V.
ˆ
R

u(x)− u(y)
|x− y|γ

|x− y|γ−1−2s dy for s in (0, 1),

where γ is a real number appropriately chosen in (2s, 2). The discretisation of the fractional Laplacian on
the the one-dimensional bounded domain Ω = (0, L), L > 0, with the extended Dirichlet boundary condition
u = g in R \ Ω then works as follows. A uniform Cartesian grid {xj = jh | j ∈ Z}, with h = L

N for some
integer N , is used. The fractional operator, evaluated at a given gridpoint xj in Ω, is then decomposed into
two parts

(−∆)su(xj) = −C1,s

(ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz +

ˆ +∞

L

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz

)
.

(6.45)

35



The first integral in the decomposition being singular, the splitting is used. Denoting zk = kh, for k in
{0, . . . , N}, one writes

ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz =

ˆ L

0

u(xj − z)− 2u(xj) + u(xj + z)
zγ

|z|γ−1−2s dz

=
N∑
k=1

ˆ zk

zk−1

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz.

For k in {2, . . . , N}, the integrals in the above sum are regular and approximated by the weighted trapezoidal
rule, that is
ˆ zk

zk−1

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz ≈

1
2(γ − 2s)

(
u(xj − zk−1)− 2u(xj) + u(xj + zk−1)

zk−1γ
+ u(xj − zk)− 2u(xj) + u(xj + zk)

zkγ

)(
zk
γ−2s − zk−1

γ−2s) .
For k = 1, assuming that the solution u is smooth enough (of class C 2 for instance), the integral can also
be formally approximated by the weighted trapezoidal rule,

ˆ z1

z0

u(xj − z)− 2u(xj) + u(xj + z)
zγ

zγ−1−2s dz ≈ hγ−2s

2(γ − 2s)
u(xj−1)− 2u(xj) + u(xj+1)

hγ
,

using that
lim
z→0

u(xj − z)− 2u(xj) + u(xj + z)
zγ

≈ lim
z→0

z2−γu′′(z) = 0.

Note that an optimal convergence rate for this scheme is obtained for γ = 1 + s (see the discussion in [28]).
Next, for any z larger than L, xj ± z belongs to R \ Ω and thus the value of u(xj ± z) is given by the

extended Dirichlet boundary condition. The second integral in (6.45) then reduces to
ˆ +∞

L

u(xj − z)− 2u(xj) + u(xj + z)
z1+2s dz = − 1

sL2s u(xj) +
ˆ +∞

L

g(xj − z) + g(xj − z)
z1+2s dz,

and may be computed explicitly depending on the extended boundary datum g.
The discrete linear system resulting from this quadrature-based finite difference method is Toeplitz if a

uniform grid is used and its solution can be advantageously tackled by the Levinson recursion, for a cost of
O(N2) arithmetic operations. So-called superfast algorithms, which use the fast Fourier transform ot other
trigonometric transformations, also exist but may lack numerical stability in practice.

A forward-backward Euler (1, 1, 1) IMEX scheme (see [9]) is then applied to the semi-discretized equation,
the diffusion term in the equation being treated implicitly (by the backward Euler method) and the nonlinear
reaction term being dealt with explicitly (by the forward Euler method). Knowing that the solution tends
to 1 at −∞ and 0 at +∞, we used Dirichlet boundary conditions with constant data taking these values
where appropriate.

To cope with the algebraic decay of solutions and their spreading over a given period of time, which is
necessary in order to observe the setting of a travelling or accelerated front, we implemented a very crude
adaptation mechanism of the domain size along the iteration. At each time step, a criterion decides if the
discretisation grid is to be expanded on each side or not, according the measured spreading of the numerical
approximation at the current time and a given tolerance. This allows for discretisation points to be added
to the grid (the space step being fixed one and for all at the beginning) over the course of the computation,
which results in an ever increasing cost for each new iteration. The maximum number of added points at
each step is a fixed parameter in the code, and, to complete the values of the approximation at these points,
the boundary conditions are used, that id the value 1 on the left side of the grid, and the value 0 on the right
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one. This results in using extremely large computational domains as the simulation progresses, and thus an
ever increasing computational effort. Such crude approach nevertheless allowed to qualitatively confirm a
number of theoretical results established in the present paper, but it showed its limitations in experiments
in which smaller values of the fractional exponent where used, the computational domain being too small
(with the parameters chosen for the computations) to correctly account for the spreading of the solution.
As a consequence, the influence of the Dirichlet boundary conditions is felt and the asymptotic behaviour of
the approximation is affected.

A more refined, but also more biased, way of both adding points and completing the approximated
solution (or more generally of replacing the approximation by a Dirichlet problem by a problem set on the
whole real line, see Section 4.4 in [35]) would be to follow some ansatz based on existing results for the
asymptotic behaviour of solutions at infinity to construct an approximation of the solution outside of the
computational domain, see for instance Theorem 1.3 in [32] for a generalised Fisher–KPP model (or Corollary
3.9 in [35]).

The method presented above was implemented using the standard NumPy and SciPy Python libraries
and the scipy.linalg.solve_toeplitz routine to solve the Toeplitz linear system. In all the computations
below, we used a timestep of length 0.01 and started from a bounded computational domain equal to
[−1000, 1000], discretised with 10001 points, that is a stepsize equal to 0.2 in space. The maximum number
of points that could be added to each side of the domain at each iteration was 150.

Let us now show and describe our numerical results. We recover the expected dynamics of the invasion
solution with respect to the Allee effect parameter β. Namely, after a rather short transition period, the
dynamics stabilise in a regime where the level set of the solution evolves with order t

β
2s(β−1) . A first evidence

is given in Figure 8, where we plot in semi-log scale the position of the level line 1
2 with respect to time.

Except when β = 1 where the dynamics is known to be different (an exponential in time expansion, yielding
a linear in time curve in semi-log scale), the shape of position of the level lines are somehow identical i.e.
the log(xλ(t)) ∼ C(s, β) log(t). We also observe that C(s, β) becomes constant in β as β grows, as expected.

0 2 4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

101

102

103

β = 1

β = 1.5

β = 2

β = 3

β = 4

β = 5

β = 10

β = 15

β = 26

β = 51

β = 101

Figure 8: Logarithm of the position of the level line of height 1
2 of numerical approximations of the solution

to the problem with fractional diffusion, plotted as a function of time, for different values of β and s equal
to 1

2 .

We illustrate in Figure 9, Figure 10 and Figure 11 the different behaviour that can be observed when
s varies. For β = 1.5, Figure 9, we can see that acceleration always occur for all the values considered
(s = 0.3, 0.5, 0.7). For β = 3, depicted in Figure 10 and Figure 11, the picture is more complex. In
accordance with the theory we observe a transition from an accelerated invasion when s ≤ 0.7 to a constant
speed invasion when s = 0.8, the transition being captured for the value s = 0.75. As expected, we can also
see that for both Allee effect considered, acceleration always occurs when s < 1

2 .
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(b) s = 0.5.
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Figure 9: Numerical approximations of the solution to the problem with fractional diffusion at different times
for β = 1.5 and different values of s. On the right, the graphs have been shifted by setting the position of
the level line of value 1

2 at x = 0, for comparison purposes.

Beware crucially that the space range of values where profiles are plotted varies drastically between
plots: the flattening effect is larger and larger as s gets smaller and smaller. There is for example a factor
20 between the range of x used for s = 0.3 and for s = 0.5. This could lead to a possible misinterpretation
of the numerical results if one is not careful enough while taking notice of the figures. To cope with this
problem, we have plot in Figure 12, the shifted profile of the level-set at a given fixed time and on a given
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portion of space. By doing so, we see more easily the transition at s = 0.75: for s ≥ 0.75 the profiles become
rapidly very similar and front-like, whereas when s < 0.75 we observe a noticeable deformation.
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Figure 10: Numerical approximations of the solution to the problem with fractional diffusion at different
times for β = 3 and different values of the fractional Laplacian exponent s. On the right, the graphs have
been shifted by setting the position of the level line of value 1

2 at x = 0, for comparison purposes.
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(a) s = 0.7.
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(b) s = 0.75.
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Figure 11: Numerical approximations of the solution to the problem with fractional diffusion at different
times for β = 3 and different values of s. On the right, the graphs have been shifted by setting the position
of the level line of value 1

2 at x = 0, for comparison purposes.
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Figure 12: Numerical approximations of the solution to the problem with fractional diffusion at time t = 20
for β = 3 and different values of s. On the right, the graphs have been shifted by setting the position of the
level line of value 1

2 at x = 0, for comparison purposes.

Last, we illustrate in Figure 13, the expected asymptotic behaviour of the solution, showing that the
numerical solution at the front edge behaves like C

x2s . The fitting was achieved with the least squares
method in the scipy.optimize.curve_fit routine. Observe that for the smallest value of s, the effect of
the right boundary is huge and somehow ruins a little bit the adequation for large x. However, the routine
manages to maintain a good fit for intermediate values of x, which is rather satisfactory.
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(a) s = 0.4.
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Figure 13: Fitting of the part of the tail of the approximation solution at time t = 1 bounded by value 10−2

on the left and value 10−4 on the right using the function C
x2s for β = 1.5 and different values of s. The blue

line is the solution u and the black dashed line is the best function C
x2s .
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