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A B S T R A C T

COVID-19 transmission has been widespread across the California prison system, and at least two of these
outbreaks were caused by transfer of infected individuals between prisons. Risks of individual prison outbreaks
due to introduction of the virus and of widespread transmission within prisons due to poor conditions have
been documented. We examine the additional risk potentially posed by transfer between prisons that can lead
to large-scale spread of outbreaks across the prison system if the rate of transfer is sufficiently high.

We estimated the threshold number of individuals transferred per prison per month to generate supercritical
transmission between prisons, a condition that could lead to large-scale spread across the prison system.
We obtained numerical estimates from a range of representative quantitative assumptions, and derived the
percentage of transfers that must be performed with effective quarantine measures to prevent supercritical
transmission given known rates of transfers occurring between California prisons.

Our mean estimate of the critical threshold rate of transfers was 27 individuals transferred per prison
per month, with standard deviation 26, in the absence of quarantine measures. Available data documents
transfers occurring at a rate of 61 transfers per prison per month. At that rate, estimates of the threshold
rate of adherence to quarantine precautions had mean 61%, with standard deviation 32%. While the impact
of vaccination and possible decarceration measures is unclear, we include estimates of the above quantities
given reductions in the probability and extent of outbreaks.

We conclude that the risk of supercritical transmission between California prisons has been substantial,
requiring quarantine protocols to be followed rigorously to manage this risk. The rate of outbreaks occurring
in California prisons suggests that supercritical transmission may have occurred. We stress that the thresholds
we estimate here do not define a safe level of transfers, even if supercritical transmission between prisons is avoided,
since even low rates of transfer can cause very large outbreaks. We note that risks may persist after vaccination,
due for example to variant strains, and in prison systems where widespread vaccination has not occurred.
Decarceration remains urgently needed as a public health measure.
1. Introduction

As the COVID-19 pandemic continues in the United States, its
dynamics in congregate settings of heightened transmission, includ-
ing prisons, is crucial to understanding its spread, addressing racial
disparities in the burden of the disease, and strategizing effective
control.

Prisons are often overcrowded, unsanitary, and provide poor health
care, and have been the site of many of the most concentrated and
brutal outbreaks of the pandemic so far. Prevention of prison outbreaks
is essential because standard control measures such as social distancing
and self-isolation are not generally available to prison residents. One
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in five prisoners in the United States has been infected with SARS-CoV-
2, compared to one in 20 in the U.S. overall, more than 1700 have
died, and prisoners continue to become infected (The Marshall Project,
2020). The New York Times reported on January 29, 2021 that of the
ten largest outbreaks in U.S. correctional facilities to date, six of them
have been in California state prisons (The New York Times, 2021).
Every single one of California’s 35 prisons has reported 200 or more
cases (Covid Behind Bars, 2021).

Likely routes of introduction of the disease into prisons are via
infected prison staffers, admission of infected prison residents from
outside the prison system, and transfers of residents from other prisons.
A widely reported outbreak at San Quentin prison in California, which
vailable online 25 November 2021
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infected over 2200 of the 3563 inmates and killed 28, was caused by a
transfer of prisoners from the Correctional Institute for Men in Chino,
California (Office of the Inspector General, 2021), and a subsequent
outbreak at California Correctional Center in Susanville, California
was likely caused by transfer from San Quentin. Multiple outbreaks
in winter 2020 appear to have been caused by importation via staff
members.

Prison outbreaks can be very large – the outbreak at San Quentin
infected over 60% of the prison population, and the outbreak in Cali-
fornia’s Avenal State Prison topped 80% – and because of well-known
inequities in the criminal justice system, they contribute to racial in-
equity in the burden of COVID infection (Fortuna et al., 2020; Okonkwo
et al., 2020; Lee and Ahmed, 2021; Franco-Paredes et al., 2020). In
October 2020, the California Court of Appeals ruled that the California
Department of Corrections and Rehabilitation (CDCR) has been guilty
of ‘‘deliberate indifference’’ and that California prison populations must
be reduced by half to address the ongoing risk of SARS-CoV-2 trans-
mission (Anon, 2020a). This decision reflects the recommendation to
decarcerate California prisons to 50% of capacity published by public
health experts during the San Quentin outbreak (The Amend Project,
2020). The decision is undergoing appeal, substantial decarceration has
not occurred, and multiple outbreaks have occurred in California state
prisons in the time since the decision.

While the risks of outbreaks sparked by staff introductions or trans-
fers and spread within prisons due to poor conditions are well known,
here we examine the potential danger from another, potentially less
apparent risk: the possibility that transmission from prison to prison via
transfer of prison residents may be sufficient to lead to uncontrolled
spread across the prison system. If such conditions should occur, the
disease could be expected to spread to substantially more prisons than
otherwise, and infect far more individuals (Fig. 1). The risks to prison
residents, staff, and surrounding communities could be considerably
increased.

The CDCR currently has quarantine and testing policies in place to
prevent transfer of infective individuals. Unfortunately, adherence to
CDCR policies has not always been universal, and it cannot be assumed
that no risky transfers occur.

We have addressed this question by using established theory of
disease transmission, specifically a patch model to be defined below,
to estimate the threshold rate of transfer associated with supercritical
transmission between prisons, and the rate of adherence to transfer
policies needed to prevent supercritical transmission at known rates of
transfer.

2. Methods

2.1. Data

Numbers of Covid-19 cases in each CDCR facility were obtained
from data from California Department of Corrections and Rehabilita-
tion, collected by the UCLA Covid Behind Bars project (Covid Behind
Bars, 2021). Overall population sizes as of March 26, 2021 were
extracted directly from data released by CDCR (California Department
of Corrections and Rehabilitation, 2021c) (California City Correctional
Facility population extracted from California Department of Corrections
and Rehabilitation (2021b))

Records released in the course of ongoing legal proceedings docu-
ment the rate of transfers between prisons in the period from September
21 through October 11, 2020 at about 500 individuals transferred per
week (Anon, 2020b, p. 7, line 8). There are 35 institutions in the
California prison system, making that equivalent to approximately 61
2

ransfers per prison per month.
2.2. Analysis

A patch model of disease transmission can model a collection of dis-
crete populations in which transmission happens within a population,
and at a separate rate between populations. One such approach, the so-
called household model (Ball et al., 1997), assumes that the population is
divided into many small groups (the households) in which local contacts
ccur frequently, whereas global contacts may occur between any two
ndividuals in the population, albeit at a much lower rate.

In such a model, there are two types of outbreaks: local ones, in
hich the infection spreads widely within a single group, but remains

onfined to that group, and global outbreaks, in which the epidemic
preads among many groups. Global outbreaks are governed by a
roup-to-group reproduction number 𝑅∗ whose value is the expected
umber of groups infected by transmission from a single group: the
ritical value is 1, and a large global outbreak is possible if the value
s greater than 1 (Fig. 1).

For our purposes, we assumed that all contacts are local, within
roups, except when a transfer occurs of an individual from one group
o another. We assumed also that the rate of transfer is low enough that
n individual will transfer to at most one group while infective. We
ound (see Appendix A) that the group-to-group reproduction number
as the form

∗ = 𝜇𝑝𝐺 ,

where 𝜇 is the expected size of a major outbreak at a randomly chosen
facility and 𝑝𝐺 is the probability that an individual will be transferred to
a new site and cause a major outbreak in the new site (see Appendix A
for details).

In order to evaluate how prison transfers affect prison-to-prison
transmission, we modelled the group-to-group reproduction number in
terms of the average number of individuals transferred between prisons.
We expressed the probability 𝑝𝐺 in terms of the transfer rate, used
empirical prison data to obtain upper and lower bound estimates for
𝜇, and then solved for a threshold rate at which the critical value 𝑅∗ is
equal to one.

We modelled an ensemble of scenarios for these quantities, to
cover the range of possibilities. We characterize these as optimistic or
pessimistic according to whether they will lead to a lower or higher
estimate of 𝑅∗ within the current modelling framework.

1. Optimistic vs. pessimistic reproduction number. As an esti-
mate of the basic reproduction number 𝑅𝐿 within a prison we used
the value 8.44 (95% credible interval: 5.00–13.13) estimated from a
COVID-19 outbreak in a large urban jail in the U.S. (Puglisi et al.,
2020). Because this value is estimated from a setting in which a
large outbreak occurred, and conditions in some prisons may be less
conducive to transmission than those in which the largest outbreaks
have occurred, we took the above number as a pessimistic estimate
for 𝑅𝐿. For an optimistic estimate, we calculated the probability 𝑝𝐺
that a transfer event leads to transmission between prisons using the
more optimistic value of 2.87 (95% CI, 2.39–3.44) that was estimated
for a basic reproduction number for COVID-19 in general community
transmission (Arif Billah et al., 2020), and cut the probability in half
to reflect the possibility that conditions may be better in roughly half
of prisons. The factor of one half was chosen arbitrarily, to obtain a
conservative bound.

2. Optimistic vs. pessimistic outbreak sizes. We constructed
lower and upper bound estimates of the size-weighted mean final out-
break size 𝜇 from reported case counts in CDCR prisons. We calculated
outbreak sizes to date by taking sequences of reported resident cases
at a prison separated by 14 days or more of no cases as separate
outbreaks. Because our model results exclude ‘‘outbreaks’’ that end
after only a few cases, we exclude these from our estimation. In
Appendix E, we estimate the mean and standard deviation of such
small outbreaks by computing the total number infected in a branching

process conditioned on extinction.
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Fig. 1. Scenarios for transmission between individuals and between prisons. A. When the reproduction number 𝑅 between individuals – the mean number of cases caused by a
case – is below the critical threshold of 1, transmission chains are short and outbreaks are small. B. When 𝑅 is above the critical threshold, a large outbreak is possible. C. When
the reproduction number 𝑅∗ between prisons – the mean number of prison outbreaks caused by a prison outbreak – is below the critical threshold of 1, transmission between
prisons may still occur, but spread between prisons will be relatively limited. D. When 𝑅∗ is above the critical threshold, transmission between prisons can cascade and cause
spread throughout the prison system.
Using outbreaks of size 3 and larger (Figs. 2, 3), the size-weighted
mean outbreak size 𝜇 was 660 cases. Given the realities of asymptomatic
infections, incomplete and imperfect testing, and under-reporting, this
is likely to underestimate the true sizes of outbreaks. We thus took this
value as an estimated lower bound of final outbreak sizes in California
prisons. We take the mean overall population of each prison as a
conservative upper bound for 𝜇 (see Appendix D), which was 3000 as
of March 26, 2021.

3. Optimistic vs. pessimistic secondary case distribution. Evi-
dence is accumulating that transmission of SARS-CoV-2 has an overdis-
persed pattern, in which many people cause few or no infections and a
relatively large number of infections are caused by a few people (Alt-
house et al., 2020; Adam et al., 2020; Susswein and Bansal, 2020). This
pattern may make the probability 𝑝𝐺 lower than it could be, because
relatively more people infect nobody, which reduces the likelihood of a
major outbreak (Lloyd-Smith et al., 2005). We estimated 𝑝𝐺 given this
pattern by assuming a negative binomial distribution of secondary cases
(mean = 𝑅𝐿, shape = 0.5 (Susswein and Bansal, 2020)), as is standard.
However, this overdispersed pattern may be caused partially by wide
variation in the number of people contacted by individuals socially
(Susswein and Bansal, 2020), and it is not clear that this variation in
contact structure is possible to the same degree in a prison setting,
where individuals’ movements and locations are heavily constrained
3

and regulated. For this reason, we also considered the possibility that
secondary cases may be Poisson distributed within the prison setting,
though they are more highly dispersed in community transmission.

4. Optimistic vs. pessimistic timing of transmission events. We
also considered that the way in which the timing of transmission events
is distributed can affect the probability of transmitting to another
prison. If transmission tends to occur in bursts, for example driven by
exceptional events when multiple people gather, such a burst might
happen either before or after an individual is transferred from prison
to prison. If transmission events are independent and happen all at
different times, on the other hand, it is more likely that at least one
of them will occur after a transfer. We model both of these cases.

We used each combination of the above assumptions to estimate
a threshold transfer rate for the California prison system, above which
transfers may create a risk of global spread of the coronavirus across the
prison system. Calculations detailed in Appendix C use branching pro-
cess approximations to express the probability 𝑝𝐺 in terms of the rate 𝜌𝐺
of transfer between prisons per person per day for each combination of
the above assumptions. These were used, together with our upper and
lower bounds on 𝜇, to numerically solve for the threshold rate 𝜌⋆𝐺 at
which 𝑅∗ = 1 under each scenario. We transformed 𝜌⋆𝐺 to a threshold
rate 𝑛⋆ of transfers per prison per month, using conversion factors of 30
days per month and the average number 2700 of individuals per prisons
in the CDCR system as of March 26, 2021.
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We note that this threshold number of transfers concerns potentially
infective transfers who are exposed to the prison resident population
in the facility where they arrive. Prisons, of course, have policies for
quarantine of transferred residents and for testing before transfer to
prevent transfer of infected individuals, and these policies are likely to
reduce the risk due to transfer.

Transfers between California state prisons are regulated by a policy
called the movement matrix (California Department of Corrections and
Rehabilitation, 2021a). Residents are tested five days before transfer,
rapid tested one day before transfer, and quarantined for 14 days after
transfer. Quarantine is in celled housing with a solid door if possible,
and otherwise in cohorts of no more than four people. Residents in
quarantine are screened for symptoms daily, tested if symptomatic,
and isolated if they test positive. All of them are tested after five days
post-transfer, again after 12 to 14 days post-transfer, and then released
if negative and asymptomatic. Both residents and staff are to wear
N95 masks during transfer. Residents who have been diagnosed with
COVID-19 and subsequently resolved are considered immune for 90
days and exempt from quarantine and testing. After 90 days they are
considered susceptible again and subject to the above measures.

We assume that these procedures are likely to reduce the risk of
transmission by transfer substantially. However, compliance with safety
policies may not be perfect. For example, the California Inspector Gen-
eral has documented extensive noncompliance with mask guidelines
in the California prisons, including during the San Quentin outbreak
(Office of the Inspector General, 2020). If protective policies reduce
the number of transfers who can potentially transmit the virus by some
percentage, it is the number of unprotected transfers that must be
compared to the threshold value. If transfers are occurring at a known
rate 𝑛𝑡, and the threshold transfer rate for uncontrolled transmission
etween prisons is 𝑛∗, then the percentage of transfers that must be
onducted in adherence to the protective policy in order to reduce
nprotected transfers to the threshold rate is 𝑎 = 100(𝑛𝑡 − 𝑛∗)∕𝑛𝑡, or

zero if 𝑛∗ exceeds 𝑛𝑡.

2.3. Vaccination and decarceration

Vaccination in the California prison system is underway, with
CDCR reporting that 40% of prison residents have received COVID-
19 vaccination. A recent legal filing reported that accounting for
previously infected prisoners, 76% of incarcerated people may have
immunity (Miller, 2021).

Both increasing immunity and decarceration are likely to affect
the spread of infections in at least two important ways, firstly by
reducing the reproduction number and relatedly the probability that an
introduction leads to an outbreak, and second by reducing the sizes of
outbreaks if they occur. Both of these changes will affect our estimates
of the rate of transfers needed to produce cascading outbreaks.

We look at the relation between increasing immunity and the crit-
ical threshold for cascading outbreaks by estimating the threshold
transfer rate and associated quarantine adherence rate, as above, while
reducing the local reproduction number parameters discussed above
(𝑅𝐿) by half (which affects our estimate of how often a transfer causes
an outbreak, but not of outbreak size), reducing the characteristic
outbreak size 𝜇 by half, and reducing both by half simultaneously.

3. Results

We first estimated the threshold transfer rate (𝑛∗) under all com-
inations of the above listed model assumptions, without protective
easures (Table 1, Fig. 4). The values estimated for 𝑛∗ ranged from
.6 to 92 individuals transferred per prison per month, with mean 27
nd standard deviation 26. The generation time distribution used in
hese estimates was that estimated in a recent meta-analysis (Ferretti
t al., 2020): a Weibull distribution with mean 5.5 days and standard
eviation 1.8 days (parameters 𝛼 = 3.37, 𝛽 = 6.12).
4

able 1
stimates of critical threshold for supercritical transmission between prisons in indi-
iduals transferred per prison per month and needed levels of adherence, given partial
dherence with California’s transfer policy.
Optimistic 𝜇 Optimistic 𝑅 Optimistic case

distribution
Optimistic
timing

𝑛∗ Threshold
adherence

Y Y Y Y 92.0 0
N Y Y Y 20.0 67
Y N Y Y 30.0 51
N N Y Y 6.2 90
Y Y N Y 48.0 21
N Y N Y 10.0 83
Y N N Y 22.0 64
N N N Y 4.2 93
Y Y Y N 77.0 0
N Y Y N 18.0 71
Y N Y N 24.0 62
N N Y N 5.6 91
Y Y N N 39.0 36
N Y N N 9.6 84
Y N N N 16.0 75
N N N N 3.6 94

We converted our threshold estimates to the percentage of transfers
that must be conducted in compliance with the safety policy in order
to achieve the threshold number of unprotected transfers or below,
given a total of 61 transfers per prison per month (Table 1, Fig. 4). Our
estimates of this threshold rate of adherence to quarantine precautions
ranged widely but clustered in the upper third of the percentage scale,
with mean 61% and standard deviation 32%.

As a look at the sensitivity of our estimates to reductions in risk due
to vaccination and/or decarceration, we estimated the same quantities
while reducing the probability of an outbreak, the size of outbreaks,
or both, by half (Fig. 5). We estimated that while under our most
optimistic assumptions the risk of cascading outbreaks is reduced sub-
stantially at 61 transfers per facility per month, to the point where
quarantine measures could be ignored entirely without exceeding the
estimated threshold (which could of course cause substantial risks other
than cascading outbreaks), the change in the median and mean esti-
mates is much more modest. We estimated the mean threshold transfers
per prison per month (𝑛∗) at 30, 54, and 61 respectively when reducing
the assumed parameter 𝑅 by half for estimation of the probability of
an outbreak, reducing the characteristic outbreak size 𝜇 by half, and
both (standard deviation 26, 53, 53). The mean estimate of threshold
rate of adherence to policy was 55%, 40%, and 34% respectively, with
standard deviation 33, 34, 35.

4. Discussion

We have constructed a range of values of a threshold rate of mixing
between prisons above which transmission between prisons is likely to
be supercritical. Supercriticality between prisons means that a prison
outbreak is expected to produce more than one other prison outbreak
on average, potentially leading to uncontrolled spread throughout the
prison system.

We estimate that the reported rate of transfers that has been occur-
ring in the California prison system has likely exceeded this threshold.
We estimate that at these rates of transfers, the quarantine precautions
must be highly effective and rates of compliance must be high to avoid
risk of supercritical transmission between prisons. The rate of outbreaks
occurring in California prisons suggests that supercritical transmission
may already have occurred or may be occurring.

We offer these estimates as a way of assessing one of the multiple
risks posed by infectious disease transmission in the prison system. It
is important to note that this threshold cannot be understood as provid-
ing a safe or acceptable rate of transfers, since transfer rates below the
critical threshold can still cause huge outbreaks in multiple prisons. We

are discussing an additional risk beyond the clear dangers of prisons’
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Fig. 2. Sizes of COVID-19 outbreaks in California prisons as of March 26, 2021. Bars show the number of cases per outbreak (blue) for each outbreak of size 3 or more, and total
population (grey) at each prison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Distribution of sizes of COVID-19 outbreaks in California prisons, up to size
0.
5

unsafe conditions and spread due to transfers: the risk that in addition
to having multiple large and deadly prison outbreaks of COVID-19,
the rate of transfers could be sufficient to cause uncontrolled spread
across a large portion of the prison system. This situation would likely
lead to a great deal more harm to prison residents and staff than even
the known risks of multiple large prison outbreaks, and could place
communities throughout the state at risk as well.

The programme of vaccination that is underway in the California
prison system is crucial in reducing transmission and saving lives,
and will likely help to end the pandemic more broadly as prison
transmission poses risks to communities beyond the prison walls. We
caution that substantial risks may continue to exist in the CDCR system,
as spread of the SARS-CoV-2 virus can still occur, prison conditions
continue to be overcrowded and unsanitary, and the effects of variant
strains are yet unknown, not to mention the other diseases currently
circulating and the potential of future emerging pandemics. Our results
and methods may also be relevant to other prison systems where
vaccination is not yet widespread. Decarceration remains a crucial
public health measure to bring disease spread under control.

While these estimates are necessarily imprecise due to limited avail-
ability of data, such that risks could in fact be lower than we have
estimated, we note as well that in addition to the mechanism of trans-
fer of prison residents considered here, transmission between prison
facilities may also be occurring resulting from travel of infected staff
who work at multiple facilities. For this reason, the risk of uncontrolled
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Fig. 4. Estimated threshold transfer rates and levels of adherence to policy. (Left) threshold number of individuals transferred per prison per month, under multiple scenarios
(Table 1), (Right) rate of adherence to transfer policy needed to reach threshold number of transfers, under the assumption of 61 total transfers per prison per month. Box plots
display median and inter-quartile range.
Fig. 5. Estimated threshold transfer rates and levels of adherence to policy given vaccination and/or decarceration, as in previous figure with reductions in reproduction number
and/or outbreak size assumed. (Left) threshold number of individuals transferred per prison per month, under multiple scenarios as above, (Right) rate of adherence to transfer
policy needed to reach threshold number of transfers, under the assumption of 61 total transfers per prison per month. Box plots display median and inter-quartile range.
transmission between prisons may in fact have been higher than we
have estimated here.

These results have a number of limitations. We have assumed that
individuals are removed from the epidemic process at the end of their
infective period, as we consider the final size of each local epidemic,
and thus do not account for the possibility of reinfection. In using a
branching process, we have implicitly assumed a very large number of
local communities, so that at least initially, each global transmission
is to a new site, and ignores the possibility of a second epidemic in
the same location. This assumption is reasonable in the context of
prisons, where there are indeed many sites. Branching processes are
thus most relevant to modelling emerging pathogens, novel strains, and
regions with lower rates of vaccination/acquired immunity. We have
thus limited ourselves to retrospective conclusions about supercritical
transmission in the California prison system; such methods could,
however, inform decisions in the face of e.g. vaccine resistant variants.
The assumption of a homogeneous rate of transfer per individual across
all prisons may be limiting as heterogeneity may be important; with
sufficient data on site-to-site transfer rates, this could potentially be
addressed by dividing facilities into classes with class-specific transfer
rates and using a multi-type branching processes, but that is beyond
the scope of this study.

This approach is applicable to analysis of risk due to transmission
between sites in a variety of hotspot settings of transmission including
but not limited to prisons. Transfer, migration, and mixing between
sites may be important sources of risk in other locations of high
6

transmission as well, such as jails, ICE facilities, skilled nursing care
facilities, meat packing plants, and other agricultural operations.

CRediT authorship contribution statement

Todd L. Parsons: Designed the research, Performed the research,
Wrote the paper. Lee Worden: Designed the research, Performed the
research, Wrote the paper.

Declaration of competing interest

Lee Worden received partial support from the office of the fed-
eral receiver, J. Clark Kelso, for research not including this project.
Otherwise the authors declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

LW acknowledges NIH R01 GM130900/GM/NIGMS. We are grate-
ful to Travis Porco, Seth Blumberg, and Jianda Monique, to Martha
Lincoln, Sarah Ackley, and multiple colleagues in the Amend and
CalPROTECT projects and at CCHCS and CDCR for helpful comments
on this work, and to Michael Bien and Ernest Galvan at Rosen, Bien,
Galvan & Grunfeld LLP for helpful information regarding transfers.



Epidemics 37 (2021) 100532T.L. Parsons and L. Worden

p
f
s
(
c
h
T
o
l

i
i
W

𝑞

w
b
p
𝑍
a
i
o
a
e
b
i

(
l
h
f
n
p
n
e
p
n
h

e

𝐹

i
t
𝐹
𝑞
s

𝐹

w
h
A

s
w

𝐹

g
i
c

p
i
w
n
p
a
o
g
g
r
b

e
m
m
f
d
c
e
o

Appendix A. General household models

A patch model of disease transmission can model a collection of
discrete populations in which transmission happens within a popula-
tion, and at a separate rate between populations. One such approach,
the so-called household model (Ball et al., 1997), assumes that the
population is divided into many small groups (the households) in which
local contacts occur frequently, whereas global contacts may occur
between any two individuals in the population, albeit at a much lower
rate. In such a model, there are two types of outbreaks, local ones,
in which the infection spreads widely within a single subpopulation,
but remains confined to that subpopulation, and global outbreaks, in
which the epidemic spreads among many subpopulations. Here, we
consider a variant of the model of Ball et al. (1997); whereas there,
global contacts were assumed to occur between individuals that remain
in their respective households, here we consider a pandemic caused by
individuals moving between households.

A branching process approximation allows us to compute the prob-
ability that a global outbreak occurs: if there are a large number of
households, at the beginning at least, the probability that the same
household receives two or more infected individuals is negligible, so,
we can assume to first approximation that each global contact is with
a new household. Thus, each infected individual potentially starts a
branching process of infected households. The so-called ‘‘merciless
dichotomy’’ (Jagers, 1992) tells us that a branching process either
goes extinct rapidly, say with probability 𝑞, or grows indefinitely, with
probability 𝑝 = 1 − 𝑞. The latter corresponds to a major pandemic.
If the branching process goes extinct, then necessarily, the branching
processes started by each infected individual in the first household go
extinct as well, which occurs independently for each branching process
with probability 𝑞 as well; this gives us a recursive formula for 𝑞.

Let 𝜋𝑖 be the probability that a global contact is made with a
household with 𝑖 individuals. Suppose that the fraction of households
with 𝑖 individuals is ℎ𝑖. If we were to choose a household at random,
taking 𝜋𝑖 = ℎ𝑖 gives the probability of choosing a household of size
𝑖. if, on the other hand we choose an individual at random, then the
probability that individual comes from a household of size 𝑖, 𝜋𝑖, is
roportional to 𝑖ℎ𝑖 (we have equal chance of choosing each individual
rom the same household), and households are chosen according to a
ize-biased distribution. The latter is the distribution used in Ball et al.
1997), where transmission is assumed to happen between individuals
irculating globally but residing in fixed households, so larger house-
olds with more members are more likely to have infectious contacts.
he distribution 𝝅 = (𝜋1, 𝜋2,…) only enters our model in the calculation
f the mean household outbreak size; we will use empirical upper and
ower bounds for this mean size, so we shall not need to specify 𝝅.

Given a household of size 𝑖, let 𝑃𝑖𝑗 be the probability that 𝑗 ≤ 𝑖
ndividuals in that household are ultimately infected by an incoming
nfected individual (‘‘patient zero’’ to whom we associate the label 0).

e then have

=
∞
∑

𝑖=1
𝜋𝑖

𝑖
∑

𝑗=1
𝑃𝑖𝑗E[𝑞𝑍0+𝑍1+⋯+𝑍𝑗 ]

here 𝑍1,… , 𝑍𝑗 are the number of households subsequently infected
y each of the 𝑗 infected individuals from the household into which
atient zero was introduced (‘‘household one’’). We will assume that
1,… , 𝑍𝑗 are identical and independent copies of a random variable 𝑍,
nd all are independent of 𝑍0, the number of households subsequently
nfected by patient zero. Because patient zero has already infected
ne household, we have additional information on that individual,
nd 𝑍0 may be distributed differently in light of that information. For
xample, when an outbreak follows the arrival of patient zero, they may
e subsequently quarantined and thus not relocate again during their
nfectious period, so 𝑍 = 0.
7

0 w
By independence,

𝑞 =
∞
∑

𝑖=1
𝜋𝑖

𝑖
∑

𝑗=1
𝑃𝑖𝑗E[𝑞𝑍0 ]E[𝑞𝑍 ]𝑗 . (A.1)

n.b. it is here that we are assuming the number of households is very
arge, so that each infected individual is making contact with distinct
ouseholds). Write 𝐹 (𝑞) for the expression on the right in (A.1); the
unction 𝐹 (𝑧) is the probability generating function (PGF) for the total
umber of households infected by patient zero. 𝐹 (𝑧) and 𝐹 ′(𝑧) are
ositive and increasing for 𝑧 > 0. 𝐹 (1) = 1 and 𝐹 ′(1) is the expected
umber of households infected by individuals from household one (see
.g. Bartlett (1956), Jagers (1975) for results on PGFs for branching
rocesses). The branching process has the possibility of growing indefi-
itely (i.e. a major pandemic occurs) if and only if the equation 𝐹 (𝑞) = 𝑞
as a second solution 0 < 𝑞 < 1.

Solving 𝐹 (𝑞) = 𝑞 analytically is generally impossible, but we can
asily derive a criterion for the existence of a second solution. Since

(0) =
∞
∑

𝑖=1
𝜋𝑖𝑃𝑖0

s the probability that the patient zero infects no other individuals in
heir household, we must have 𝐹 (0) > 0. Rolle’s Theorem tells us that
(𝑞) = 𝑞 has a solution 𝑞 < 1 if and only if 𝐹 ′(𝑞′) = 1 for some
< 𝑞′ < 1. Since 𝐹 ′(𝑧) is increasing, this shows that there is a second

olution if and only if 𝐹 ′(1) > 1.
Now,

′(1) =
∞
∑

𝑖=1
𝜋𝑖

𝑖
∑

𝑗=1
𝑃𝑖𝑗

(

E[𝑍1] + 𝑗E[𝑍]
)

=
∞
∑

𝑖=1
𝜋𝑖

(

E[𝑍1] + 𝜇𝑖E[𝑍]
)

.

here 𝜇𝑖 =
∑𝑖

𝑗=1 𝑗𝑃𝑖𝑗 is the expected number of the 𝑖 individuals in a
ousehold of size 𝑖 who are infected by the incoming patient zero (see
ppendix D for an approximation for 𝜇𝑖

𝑖 when 𝑖 is large). Now let

𝜇 =
∞
∑

𝑖=1
𝜋𝑖𝜇𝑖,

o 𝜇 is the expected number of individuals infected in household one,
hen the household is drawn according to 𝝅 = (𝜋1, 𝜋2,…), and
′(1) = E[𝑍1] + 𝜇E[𝑍]

ives the expected total number of households infected by the first
nfected individual (E[𝑍1]) and their contacts (each one makes E[𝑍]
ontacts), i.e. 𝑅∗.

𝑅∗ thus reflects the fact that transmission between households is
roportional to the number of individuals within the house, who each
ndividually make global contacts with other households. In the same
ay that the critical threshold 𝑅0 = 1 for the basic reproduction
umber separates subcritical from supercritical transmission in non-
atch models, the boundary 𝑅∗ = 1 is the global critical threshold
bove which transmission is globally supercritical, meaning that an
utbreak in one group is expected to infect more than one other
roup on average and can cause a large outbreak across the system of
roups. To emphasize the distinction between 𝑅∗ and the usual basic
eproduction number, in what follows we will use 𝑅𝐿 to denote the
asic reproduction number for a local epidemic at a single site.

The branching process approximation we have chosen has consid-
rable flexibility beyond the application presented here. At the cost of
aking the parameter 𝜇 something of a black box, we need only make
inimal assumptions about individual epidemic and transfer dynamics:

or example, we do not need to make specific assumptions about the
uration of the infectious or latent periods, and the results are equally
ompatible with SIR or SEIR dynamics. In particular, we do not make
xplicit use of the values 𝜋𝑖, which only enter into the weighted mean
utbreak size 𝜇.

Each of these choices, however, will result in different values of 𝜇;

hile the distribution of prison sizes (ℎ𝑖) is an empirical and observable
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quantity, the mean number of infections at a site will have to be
either computed or observed empirically. When individual facilities are
sufficiently large that an ordinary differential equation (ODE) model is
reasonable approximation to the local dynamics, we can use standard
compartmental models of estimate the final size of the epidemic. When
local facilities are small, more computationally intensive methods are
required (see Picard and Lefevre (1990)). Here, we will use facility sizes
as an upper bound for the size of the local outbreak (the total fraction
infected for e.g. in the SIR compartmental model, the total fraction
infected is approximately 1 − 𝑒−𝑅𝐿 , which is very close to 1 for values
of 𝑅𝐿 estimated for SARS-CoV-2), and the average size of reported epi-
demics as a lower bound: underreporting and asymptomatic infections
ensure that reported sizes underestimate the true size of outbreaks.

In what follows, we will assume that individuals are moved suffi-
ciently infrequently between sites that the probability that they move
twice during their infectious period is negligible i.e. E[𝑍1] = 0 whereas
E[𝑍] is the probability that an individual moves to a new household
during their infectious period and causes an outbreak in their new
household, 𝑝𝐺. As a result, we are underestimating the probability of a
major pandemic.

In large populations, outbreaks tend to two extremes: they either
‘‘fizzle’’, resulting in an average of fewer than 1

𝑅𝐿
new infections, or

they result in a large outbreak in which almost all of the susceptible
population is eventually infected. The former are likely to go unde-
tected, so we neglect outbreaks that fizzle, and only consider large
outbreaks in computing 𝑝𝐺. Again, this results in an underestimation
of the probability of a major pandemic. After an interlude explaining
the approach we take to modelling individual transmission, we turn our
attention to computing this probability.

Appendix B. Point processes for infections

B.1. Intensity functions and the generation interval density

The Crump-Mode-Jagers general branching process (Crump and
Mode, 1968, 1969; Jagers, 1975) provides an extremely supple frame-
work in which to investigate the initial phase of an epidemic, giving
an individual-based stochastic model that corresponds to the renewal
equation at the early phase of an epidemic when, in a large population,
we may assume that each new contact made by an infectious individual
is with a susceptible individual who has not been previously contacted.
Fix 𝑡 = 0 as the time that a given focal individual is infected, and assume
secondary infections at random times 𝑡1, 𝑡2,…. The ensemble of times
is an example of a point process, which is represented by its counting
measure, 𝑁 : given a subset 𝐴 ⊆ [0,∞),

𝑁(𝐴) = #{𝑡𝑖 ∶ 𝑡𝑖 ∈ 𝐴}.

We may similarly assign such a point process to each secondary infec-
tion, with the points 𝑡𝑖 now corresponding to the time elapsed between
their infection and the tertiary infections they cause.

One can integrate an arbitrary function 𝑓 with respect to 𝑁(𝑑𝑡) =
#{𝑡𝑖 ∶ 𝑡𝑖 ∈ 𝑑𝑡}:

∫

𝑡

0
𝑓 (𝑡)𝑁(𝑑𝑡) =

∑

𝑖
𝑓 (𝑡𝑖),

henever the sum on the right hand side exists.
If no two points coincide, i.e. if the infection is a simple point process,

in which case

𝑁(𝑑𝑡) =

{

1 if 𝑡𝑖 ∈ 𝑑𝑡 for some 𝑖, and
0 otherwise.

(n.b., while no two points coincide, we do allow points to be arbitrarily
close). A simple point process is characterized by its intensity function
8

𝜆(𝑡|𝑡) 𝑑𝑡 = P{𝑡𝑖 ∈ 𝑑𝑡 for some 𝑖|𝑡}, c
where 𝑡 denotes the information available at time 𝑡, which includes
the infection times 𝑡𝑖 ≤ 𝑡, but may also include information about other
hidden variables (we illustrate this with an example below). For a set
𝐴 ⊂ [0,∞), 𝑁(𝐴) is a Poisson point process with rate ∫𝐴 𝜆(𝑡|𝑡) 𝑑𝑡. When
𝜆(𝑡|𝑡) is a random function independent of the prior infection times, then
the point process is a Cox process or doubly stochastic Poisson process;
when it is a deterministic function of time, it is an inhomogeneous
Poisson process; finally, if the intensity function is a constant 𝜆, then
the point process is the classical Poisson process.

Example 1. The classical SIR compartmental differential equation
model can be interpreted as the large population limit of a stochastic
model in which, upon being infected, makes infectious contacts at rate
𝛽 during an infectious period that is exponentially distributed with (re-
covery) rate 𝛾. If 𝐿 denotes the infectious period of the first infectious
individual, and we measure time with 𝑡 = 0 corresponding to their time
of infection, then their infection point process has intensity 𝜆(𝑡|𝑡) =
𝛽1{𝐿≥𝑡}, where 1{𝐿≥𝑡} is the indicator function of their infectious period:

{𝐿≥𝑡} =

{

1 if 𝐿 ≥ 𝑡, and
0 otherwise.

his is an example of a Cox process: the intensity function is random,
s it depends on the infectious period 𝐿, but the probability of an
nfectious contact at time 𝑡 is independent of any previous contacts.
ere, 𝑡 contains the information of whether or not 𝐿 ≥ 𝑡 (n.b. it
oes not include the value 𝐿 itself unless 𝐿 ≤ 𝑡, as 𝑡 contains no
nformation about the future beyond time 𝑡).

In general, each individual has a distinct intensity function, which
ay depend on one or more hidden variables (e.g. in Example 1 above,

ach individual has a distinct – random – infectious period). We may
lso consider the expected intensity function of the point process, ℎ(𝑡),
iven by

(𝑡) = E[𝜆(𝑡|𝑡)].

(𝑡) the corresponds to the ensemble average intensity function over
large population. If ∫ ∞

0 ℎ(𝑠) 𝑑𝑠 < ∞, then we can normalize ℎ(𝑡) to
btain a probability density function,

(𝑡) =
ℎ(𝑡)

∫ ∞
0 ℎ(𝑠) 𝑑𝑠

,

hich is the generation interval density. In particular, the total ex-
ected number of infections caused by patient zero, the local reproduc-
ion number, is

𝐿 = E[𝑁([0,∞))] = E
[

∫

∞

0
𝑁(𝑑𝑠)

]

= ∫

∞

0
ℎ(𝑠) 𝑑𝑠,

hus, ℎ(𝑡) = 𝑅𝐿𝑔(𝑡) e.g. in Example 1, we see that

(𝑡) = E[𝛽1{𝐿≥𝑡}] = 𝛽P{𝐿 ≥ 𝑡} = 𝛽𝑒−𝛾𝑡,

nd ∫ ∞
0 ℎ(𝑡) 𝑑𝑡 = 𝛽

𝛾 = 𝑅𝐿.
Given the abundance of data regarding the generation interval, and

the relative paucity of information on individual hidden variables, we
will use ℎ(𝑡) = 𝑅𝐿𝑔(𝑡) for the empirical generation interval distri-
bution for each individual’s intensity function — approximating each
individual by the population average. This allows us to make full use
of available information about the timing of infection events, rather
than imposing e.g. a compartmental model. It is not, however, without
consequence, e.g. the total number of infections caused by ‘‘patient
zero’’, 𝑁([0,∞)), is a Poisson process with rate

∫

∞

0
ℎ(𝑡) 𝑑𝑡 = 𝑅𝐿 ∫

∞

0
𝑔(𝑠) 𝑑𝑠 = 𝑅𝐿.

n the other hand, if we compute the probability generating function
the PGF, which uniquely characterizes a random variable) for the SIR
ompartmental model of Example 1 above, where the total number
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of infections caused by a single individual is Poisson distributed with
(random) rate

∫

∞

0
𝛽1{𝐿≥𝑡} 𝑑𝑡 = 𝛽𝐿,

we have

E[𝑧𝑁[0,∞)] = E
[

E[𝑧𝑁[0,∞)
|𝐿]

]

= E
[

𝑒𝛽𝐿(𝑧−1)
]

=
𝛾

𝛾 − 𝛽(𝑧 − 1)

.e. the total number of infections is geometrically distributed with
uccess probability 𝑝 = 𝛾

𝛽+𝛾 = 1
1+𝑅𝐿

, which, despite having the same
mean, is not Poisson distributed with rate 𝑅𝐿.

This might otherwise might be considered a deficiency, but for us it
ecomes a virtue: the geometric distribution has variance to mean ratio
VMR) of 1

𝑝 = 1+𝑅𝐿 > 1 and the Poisson process has VMR one, whereas
he VMR for empirically observed individual transmission lies between
he two. As we discuss below, however, our inhomogeneous Poisson
rocess model can be used to construct a family of processes with the
ame reproduction number 𝑅𝐿 and generation interval 𝑔(𝑡) whose total

number of infections per infected are negative binomially distributed,
and thus include both the Poisson and geometric distributions as well
as processes with VMRs taking all values in [1,∞).

B.2. Incorporating overdispersion

To allow for varying dispersion – as well as individual variation
in contact rates – we consider a doubly stochastic Poisson (or Cox)
process, drawing an individual reproductive ratio, 𝑟, for each individual
from a fixed distribution with mean 𝑅𝐿.

Given 𝐴 ⊂ [0,∞), set 𝑔𝐴 = ∫𝐴 𝑔(𝑡) 𝑑𝑡. If we assume each individual’s
𝑟 is gamma distributed with shape parameter 𝑘 and scale parameter 𝑅𝐿

𝑘
or some 𝑘 > 0, then the probability of 𝑚 infections in an interval [𝑎, 𝑏]
aused by a randomly chosen individual is
∞

0

(𝑟𝑔𝐴)𝑚

𝑚!
𝑒−𝑟𝑔𝐴 𝑟𝑘−1𝑒

− 𝑘
𝑅𝐿

𝑟
𝑑𝑡 =

𝛤 (𝑚 + 𝑘)
𝑚!𝛤 (𝑘)

(

𝑘
𝑅𝐿𝑔𝐴 + 𝑘

)𝑘

×
(

𝑅𝐿𝑔𝐴
𝑅𝐿𝑔𝐴 + 𝑘

)𝑚
,

hich we recognize as a negative binomial distribution with success
robability 𝑅𝐿𝑔𝐴

𝑅𝐿𝑔𝐴+𝑘
and 𝑘 failures. The mean number of infections

occurring at times in 𝐴 is thus 𝑅𝐿𝑔𝐴 and the VMR of the number of
those infections is 1+ 𝑅𝐿𝑔𝐴

𝑘 . In particular, taking 𝐴 to be the whole real
line, we see that the mean total number of infections caused by a single
individual is negative binomially distributed with mean 𝑅𝐿 and index
of dispersion 1 + 𝑅𝐿

𝑘 ; taking 𝑘 = 1, we obtain a geometric distribution
with success probability 1

1+𝑅𝐿
, whereas taking 𝑘 → ∞ yields a Poisson

distribution with rate 𝑅𝐿.

B.3. Compound Poisson processes

More generally, we can consider the case when events occur with
intensity function ℎ(𝑡), but now the number of infections occurring
at the 𝑖th contact is given by a random variables 𝜈𝑖, where 𝜈1, 𝜈2,…
are independent and identically distributed (i.i.d.). For example, given
low-resolution temporal data, we may be unable to distinguish nearby
infection times. The number of infections occurring at times in the set
𝐴 is then

𝑁̃(𝐴) =
𝑁(𝐴)
∑

𝑖=1
𝜈𝑖,

where, as before, 𝑁(𝑑𝑡) is a simple point process and

E[𝑁̃(𝑑𝑡)] = E[𝜈]ℎ(𝑡) 𝑑𝑡,
9

and

𝑅𝐿 = E[𝑁̃([0,∞))] = E[𝜈]∫

∞

0
ℎ(𝑡) 𝑑𝑡.

Unlike previously, this relation does not fix the value of ∫ ∞
0 ℎ(𝑡) 𝑑𝑡.

Rather, for any 𝜆 ∈ (0,∞), we can have ∫ ∞
0 ℎ(𝑡) 𝑑𝑡 = 𝜆, provided E[𝜈] =

𝑅𝐿∕𝜆. We then have ℎ(𝑡) = 𝜆𝑔(𝑡), so 𝜆 determines the number of points:
an increased 𝜆 will correspond to fewer infections on average per event
and vice versa. In particular, for a given 𝑅𝐿, we can potentially have
arbitrarily large clusters of infections, provided they occur sufficiently
rarely.

B.3.1. Conditioning on a single event
As an extreme case, we consider a scenario in which all transmission

from a given individual occurs at a single point in time. The probability
of exactly one event in the inhomogeneous Poisson point process is

∫

∞

0
ℎ(𝑡) 𝑑𝑡 𝑒− ∫ ∞

0 ℎ(𝑡) 𝑑𝑡 = 𝜆𝑒−𝜆,

whereas the joint probability of having a single point at 𝑡 is

ℎ(𝑡)𝑒− ∫ ∞
0 ℎ(𝑡) 𝑑𝑡,

so the probability of a single point at 𝑡 conditional on only one point is
the ratio of these two probabilities,

ℎ(𝑡)𝑒− ∫ ∞
0 ℎ(𝑡) 𝑑𝑡

∫ ∞
0 ℎ(𝑡) 𝑑𝑡𝑒− ∫ ∞

0 ℎ(𝑡) 𝑑𝑡
=

ℎ(𝑡)
∫ ∞
0 ℎ(𝑡) 𝑑𝑡

= 𝑔(𝑡).

ince we require that the expected number of infections remains equal
o 𝑅𝐿, we must have that their number, 𝜈1, satisfies E[𝜈1] = 𝑅𝐿.

ppendix C. Probability of a large local outbreak, 𝒑𝑮

We now use the modelling framework described above to determine
he compute the probability, 𝑝𝐺 from Appendix A, that an infected
ndividual is transferred and causes a major outbreak in the new site.

e will work in the context of our prison to prison model, taking
he prisons as the ‘‘households’’ of the model. Recall that a minor
utbreak occurs when the branching process approximating the initial
ransmission goes extinct, and a major outbreak occurs otherwise. In
ractice, it is more transparent to compute the probability 𝑞𝐺 = 1− 𝑝𝐺.
hat a major outbreak does not occur, which we do below.

By assumption, an individual can infect a new site if and only if they
re transferred while infectious. We will assume that transfers occur as
Poisson point process with rate 𝜌𝐺 (transfers per individual per day),
hich for simplicity is assumed to sufficiently small that the proba-
ility that a given individual is transferred multiple times while infec-
ious is negligibly small. Thus, each individual waits an exponentially
istributed time with mean 1∕𝜌𝐺 before being transferred.

To obtain a range of plausible values for 𝑞𝐺/𝑝𝐺, we will consider
ach of the models discussed in Appendix B:

(i) a compound Poisson model in which infections happen individu-
ally and independently with a time-dependent intensity function
ℎ(𝑡) = 𝑅𝐿𝑔(𝑡),

(ii) a doubly-stochastic Poisson model, where individual reproduc-
tion number varies,

(iii) a compound Poisson process model where each event leads to
multiple infections, and

(iv) a ‘‘burst’’ model in which all infections occur simultaneously.

.1. Poisson distributed infections

To compute the probability of a local large outbreak under our
eneration interval approach, we must take care to distinguish between
he patient zero who initiated the epidemic, for whom some fraction
f the infectious period has already elapsed, and the newly infected
ndividuals in the new site.
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Under the assumption of a large local population, we can continue
to use branching process recursive formulas to determine the prob-
ability that no locally infected individual gives rise to a significant
outbreak, say 𝑞𝐿:

𝑞𝐿 = E
[

𝑞𝑁([0,𝑇 ))
𝐿

]

. (C.1)

Here 𝑁([0, 𝑇 )) is the number of individuals infected by a given in-
fectious individual before that infectious individual is transferred at a
random time 𝑇 after infection. As before, 𝑇 is exponentially distributed
with rate 𝜌𝐺, whereas conditional on 𝑇 , 𝑁([0, 𝑇 )) is Poisson distributed

ith rate 𝑅𝐿 ∫ 𝑇
0 𝑔(𝑡) 𝑑𝑡. Now,

𝐿 = E
[

E
[

𝑞𝑁([0,𝑇 ))
𝐿 |𝑇

]]

,

where the outer expectation is for the random variable 𝑇 . Recognizing
the inner expectation as the probability generating function for a
Poisson random variable gives us

𝑞𝐿 = E
[

𝑒𝑅𝐿(𝑞𝐿−1) ∫
𝑇
0 𝑔(𝑡) 𝑑𝑡

]

= ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡𝑒𝑅𝐿(𝑞𝐿−1) ∫
𝑡
0 𝑔(𝑢) 𝑑𝑢 𝑑𝑡.

Now consider patient zero. Let 𝑇 ′ (still exponentially distributed
ith rate 𝜌𝐺) be the time after the start of their infectious period at
hich patient zero was introduced into the local community. Then,

hey will infect 𝑁([𝑇 ′,∞)) individuals in the new site, whence the
robability that there is not a major outbreak is

𝐺 = E
[

𝑞𝑁([𝑇 ′ ,∞))
𝐿

]

.

gain, first taking the conditional expectation of 𝑁([𝑇 ′,∞)) given 𝑇 ′,
which is a Poisson random variable with rate 𝑅𝐿 ∫ ∞

𝑇 ′ 𝑔(𝑡) 𝑑𝑡 = 𝑅𝐿𝐺(𝑇 ′),
nd then over 𝑇 ′, gives

𝐺 = ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡𝑒−𝑅𝐿(1−𝑞𝐿)𝐺(𝑡) 𝑑𝑡 (C.2)

.g. for the Weibull distribution with shape 𝑎 and scale 𝑏, 𝐺(𝑡) = 𝑒−
(

𝑡
𝑏

)𝑎

.

C.2. Individually varying reproductive number

More generally, as before, we can consider the possibility that each
individual has an i.i.d. reproductive number, say 𝑅𝑖 drawn according
to a Gamma

(

𝑘, 𝑅𝐿
𝑘

)

distribution, in which case, we may proceed as
efore to obtain (C.1), which we must now average over the gamma
istribution to obtain

𝐿 = E
[

𝑞𝑁([0,𝑇 ))]

= E
[

E
[

E
[

𝑞𝑁([0,𝑇 ))
|𝑅𝑖, 𝑇

]

|𝑇
]]

= E
[

E
[

𝑒𝑅𝑖 ∫
𝑇
0 𝑔(𝑡) 𝑑𝑡(𝑞𝐿−1)

|𝑇
]]

= E

[

(

1 −
𝑅𝐿(𝑞𝐿 − 1)

𝑘 ∫

𝑇

0
𝑔(𝑡) 𝑑𝑡

)−𝑘]

and, recalling 𝐺(𝑡) = ∫ ∞
𝑡 𝑔(𝑢) 𝑑𝑢,

= E

[

(

1 −
𝑅𝐿(𝑞𝐿 − 1)(1 − 𝐺(𝑇 ))

𝑘

)−𝑘
]

= ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡
(

1 +
𝑅𝐿(1 − 𝑞𝐿)(1 − 𝐺(𝑡))

𝑘

)−𝑘
𝑑𝑡,

which we may solve numerically for 𝑞𝐿. Proceeding similarly, averag-
ing (C.2) over the gamma distribution and interchanging the order of
integration yields

𝑞𝐺 = ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡
(

1 −
𝑅𝐿
𝑘

𝐺(𝑡)(𝑞𝐿 − 1)
)−𝑘

𝑑𝑡

= ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡
(

1 +
𝑅𝐿
𝑘

𝐺(𝑡)𝑝𝐿

)−𝑘
𝑑𝑡,

where we recall 𝑝 = 1 − 𝑞 .
10

𝐿 𝐿
C.3. Compound Poisson processes

Now, suppose that at the 𝑖th time of the inhomogeneous Poisson
processes 𝑁([0, 𝑇 )) and 𝑁([𝑇 ′,∞)) (as previously, 𝑇 and 𝑇 ′ indicate the
transfer time out of, or into, the focal site respectively) the individual
independently infects 𝜈𝑖 individuals, where 𝜈𝑖 is a random variable with
probability generating function 𝑃𝜈 (𝑧) = E[𝑧𝜈 ].

Now, since the 𝜈𝑖 are independently and identically distributed and
independent of their arrival times in 𝑁([0, 𝑇 )),

𝑞𝐿 = E
[

𝑞
∑𝑁([0,𝑇 ))

𝑖=1 𝜈𝑖
𝐿

]

= E

[𝑁([0,𝑇 ))
∏

𝑖=1
𝑞𝜈𝑖𝐿

]

= E

[𝑁([0,𝑇 ))
∏

𝑖=1
E
[

𝑞𝜈𝑖𝐿 |𝑁([0, 𝑇 ))
]

]

= E

[𝑁([0,𝑇 ))
∏

𝑖=1
E
[

𝑞𝜈𝑖𝐿
]

]

= E

[𝑁([0,𝑇 ))
∏

𝑖=1
𝑃𝜈 (𝑞𝐿)

]

= E
[

𝑃𝜈 (𝑞𝐿)𝑁([0,𝑇 ))] .

Now, proceeding as before,

E
[

𝑃𝜈 (𝑞𝐿)𝑁([0,𝑇 ))] = E
[

E
[

𝑃𝜈 (𝑞𝐿)𝑁([0,𝑇 ))
|𝑇

]]

= E
[

𝑒𝑅𝐿(𝑃𝜈 (𝑞𝐿)−1) ∫
𝑇
0 𝑔(𝑡) 𝑑𝑡

]

= ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡𝑒𝑅𝐿(𝑃𝜈 (𝑞𝐿)−1) ∫
𝑡
0 𝑔(𝑢) 𝑑𝑢 𝑑𝑡,

giving us the relation 𝑞𝐿 = ∫ ∞
0 𝜌𝐺𝑒−𝜌𝐺 𝑡𝑒𝑅𝐿(𝑃𝜈 (𝑞𝐿)−1) ∫

𝑡
0 𝑔(𝑢) 𝑑𝑢 𝑑𝑡.

Proceeding similarly gives us

𝑞𝐺 = ∫

∞

0
𝜌𝐺𝑒

−𝜌𝐺 𝑡𝑒𝑅𝐿𝐺(𝑡)(𝑃𝜈 (𝑞𝐿)−1) 𝑑𝑡.

.4. Bursts of infections

Suppose each individual waits a randomly distributed time with
robability density function 𝑔(𝑡) before causing a random number 𝜈 of
nfections, independent of the time of transmission. Fix a given indi-
idual, and suppose that they are transferred at time 𝑇 ′, exponentially
istributed with rate 𝜌𝐺 and that their transmission event happens at
ime 𝑇 . Then, their local chain of infection goes extinct if either they
re transferred prior to transmission, or if not, if all those they infect
ave finite chains of infection:

𝐿 = E
[

1{𝑇 ′<𝑇 } + 1{𝑇 ′<𝑇 }𝑞
𝜈
𝐿
]

= P{𝑇 ′ < 𝑇 } + P{𝑇 ′ > 𝑇 }E
[

𝑞𝜈𝐿
]

.

gain, the expectation on the right is the probability generating func-
ion for 𝜈 evaluated at 𝑞𝐿, 𝑃𝜈 (𝑞𝐿).

The calculation thus depends on the choice of law for the random
ariables 𝜈𝑖, or equivalently the choice of distribution and its proba-
ility generating function 𝑃𝜈 (𝑧). For example, if each 𝜈𝑖 is negatively
inomially distributed with mean 𝑅𝐿 and 𝑘 successes (and thus success
robability 𝑝 = 𝑅𝐿

𝑘+𝑅𝐿
) we have 𝑃𝜈 (𝑧) =

(

𝑘
𝑘+𝑅𝐿(1−𝑞𝐿)

)𝑘
, whereas for a

Poisson process with the same mean 𝑅𝐿 we have 𝑃𝜈(𝑧) = 𝑒𝑅𝐿(𝑧−1).
On the other hand,

P{𝑇 ′ > 𝑇 } = E
[

P
{

𝑇 ′ > 𝑇 |𝑇
}]

= E
[

𝑒−𝜌𝐺𝑇
]

= ∫

∞

0
𝑒−𝜌𝐺 𝑡𝑔(𝑡) 𝑑𝑡

= 𝑔̂(𝜌𝐺),

where 𝑔̂(𝑝) indicates the Laplace transform of 𝑔(𝑡). Thus,

𝑞𝐿 = (1 − 𝑔̂(𝜌𝐺)) + 𝑔̂(𝜌𝐺)𝑃𝜈 (𝑞𝐿).

For the initial individual, we need to take into account the possibil-
ity that the individual had their ‘‘burst’’ prior to being transferred to
the focal site,

𝑞𝐺 = P{𝑇 ′ > 𝑇 } + P{𝑇 ′ < 𝑇 }E
[

𝑞𝜈𝐿
]

= 𝑔̂(𝜌 ) + (1 − 𝑔̂(𝜌 ))𝑃 (𝑞 )
𝐺 𝐺 𝜈 𝐿
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= 𝑔̂(𝜌𝐺) + (1 − 𝑔̂(𝜌𝐺))
𝑞𝐿 − (1 − 𝑔̂(𝜌𝐺))

𝑔̂(𝜌𝐺)

= 𝑔̂(𝜌𝐺) +
(1 − 𝑔̂(𝜌𝐺))(𝑔̂(𝜌𝐺) − 𝑝𝐿)

𝑔̂(𝜌𝐺)

r, rearranging,

𝐺 = 𝑝𝐿
1 − 𝑔̂(𝜌𝐺)
𝑔̂(𝜌𝐺)

.

C.5. Threshold mixing rates

Synthesizing the above results to derive a threshold rate of transfers,
we recall that the criterion for a major outbreak on the congregate level
is 𝑅∗ > 1, where 𝑅∗ = 𝜇E[𝑍], 𝜇 is the (size-biased) mean size of a major
outbreak, and 𝑍 is the number of facilities in which a given individual
causes a major outbreak. Assuming that each individual is transferred
at most once, then E[𝑍] = 𝑝𝐺 = 1−𝑞𝐺, where 𝑞𝐺 is calculated as above.
To calculate the critical transfer rate 𝜌∗𝐺, one needs to solve 𝑅∗ = 1 for
𝜌𝐺.

Appendix D. The final size of a large well-mixed epidemic

In this appendix, we sketch an argument that, in the limit of large
population sizes and under well-mixed assumptions, the final size of a
closed epidemic (i.e. the fraction of susceptible hosts who have been
infected over the duration of the epidemic, assuming no new indi-
viduals are introduced) is equal to that for the Kermack–McKendrick
SIR epidemic for a wide variety of models, provided all individuals
are indistinguishable. As will become clearer as we formulate the
argument, the result applies equally well to e.g. a SIR or SEIR epidemic,
but does not apply when e.g. individuals vary in their susceptibility or
in the size of their contact networks.

We consider the epidemic from a retrospective vantage point. Sup-
pose that the local population consists of 𝑛 individuals, labelled (ar-
bitrarily) 1,… , 𝑛. Let 1𝑖 be an indicator variable, equal to 1 if the
individual with label 𝑖 is eventually infected, and 0 if they are never
infected. Let 𝑁𝑖 be the number of potential transmissions by individual
𝑖: if individual 𝑖 is never infected (1𝑖 = 0), then none of these potential
transmissions result in a new infection; if on the other hand, 𝑖 is
eventually infected (1𝑖 = 1), then the potential infections result in new
infections if the contacted individual is susceptible. Thus, E[𝑁𝑖] = 𝑅𝐿
The variables 𝑁𝑖 and 1𝑖 are assumed to be independent (e.g. we exclude
the possibility that some individuals are highly susceptible and highly
transmissive, as might occur with a weakened immune system.

Let 𝑅𝑛(∞) =
∑𝑛

𝑖=1 1𝑖 denote the total number of individuals who
were infected over the course of the epidemic, and let 𝑆𝑛(∞) = 𝑛−𝑅𝑛(∞)
e the number who were never infected.

Now, consider the probability, 𝑝1 = P{11 = 0}, that the individual
ith label 1 was never infected; because the labelling is arbitrary,

his is simply the probability that we uniformly drew the one of the
𝑛(∞) individuals that were never infected, 𝑆𝑛(∞)

𝑛 = 1− 𝑅𝑛(∞)
𝑛 . Since all

ndividuals are identical up to an arbitrary labelling, 𝑝𝑖 = 𝑝1 for all 𝑖.
On the other hand, the probability that the first individual was

ever infected can be written as the probability that they were not
‘chosen’’ as a contact by an infectious individual (under the well-

ixed assumption, any individual 𝑖 has a contact with individual 1 with
robability 1

𝑛−1 ):
𝑛
∏

𝑖=2

(

1 − 1
𝑛 − 1

)𝑁𝑖1𝑖
= 𝑒

∑𝑛
𝑖=2 𝑁𝑖1𝑖 ln

(

1− 1
𝑛−1

)

= 𝑒−
∑𝑛

𝑖=2 𝑁𝑖1𝑖

(

1
𝑛−1+𝑂

(

1
𝑛2

))

.

ow, consider the sum ∑𝑛
𝑖=2 𝑁𝑖1𝑖. Let 𝑅̃𝑛(∞) be the number of individ-

als with labels {2,… , 𝑛} who were infected (thus 𝑅̃𝑛(∞) = 𝑅𝑛(∞) or
̃𝑛(∞)−1 according to whether individual 1 was infected or not). If the
imit

(∞) = lim
𝑅̃𝑛(∞)
11

𝑛→∞ 𝑛 z
exists and is non-zero, then the central limit theorem tells us that

lim
𝑛→∞

𝑛
∑

𝑖=2

𝑁𝑖1𝑖
𝑛 − 1

= lim
𝑛→∞

𝑅̃𝑛(∞)
𝑛 − 1

𝑛
∑

𝑖=2
1𝑖=1

𝑁𝑖

𝑅̃𝑛(∞)

= 𝑟(∞)E[𝑁𝑖]

= 𝑟(∞)𝑅𝐿.

On the other hand, if 𝑟(∞) = 0, which would be the case if the branching
process approximating the epidemic went extinct, then for any 𝜀 > 0
Markov’s inequality tells us that

P

{ 𝑛
∑

𝑖=2

𝑁𝑖1𝑖
𝑛 − 1

> 𝜀

}

≤ 1
𝜀
E

[ 𝑛
∑

𝑖=2

𝑁𝑖1𝑖
𝑛 − 1

]

= 1
𝜀
𝑅𝐿E[𝑅̃𝑛(∞)]

𝑛 − 1
,

which tends to 0 as 𝑛 → ∞. Since 𝜀 > 0 is arbitrary, the sum is zero
with probability 1.

Equating the two expressions for the probability that the first in-
dividual is never infected, and taking the limit as 𝑛 → ∞, we get the
tautology 1 − 𝑟(∞) = 1 if 𝑟(∞) = 0, and the Kermack–McKendrick final
size formula otherwise:

1 − 𝑟(∞) = 𝑒−𝑅𝐿𝑟(∞)

Rewriting this in terms of the final fraction susceptible, 𝑠(∞) = 1−𝑟(∞),
we get 𝑠(∞) = 𝑒𝑅𝐿(1−𝑠(∞))𝑅𝐿 , or, equivalently, −𝑅𝐿𝑠(∞)𝑒−𝑅𝐿𝑠(∞) =
−𝑅𝐿𝑒−𝑅𝐿 . Thus,

𝑠(∞) = − 1
𝑅𝐿

𝑊0
(

−𝑅𝐿𝑒
−𝑅𝐿

)

,

where 𝑊0(𝑥) is the principal branch of Lambert’s 𝑊 -function (Cor-
less et al., 1996), the transcendental (multi-)function satisfying 𝑥 =
𝑊 (𝑥)𝑒𝑊 (𝑥), where the principal branch is real valued and increasing
on [−𝑒−1,∞).

Moreover, 𝑊0(𝑥) = 𝑥 + 𝑂(𝑥2), so

𝑠(∞) = 𝑒−𝑅𝐿 + 𝑂(𝑅𝐿𝑒
−2𝑅𝐿 ).

For 𝑅𝐿 = 4, we have that 𝑒−𝑅𝐿 ≈ 0.0015, whereas 𝑠(∞) ≈ 0.0198, so the
relative error in approximating 𝑠(∞) by 𝑒−𝑅𝐿 is already less than 8%,

hereas approximately 98% of the population will have been infected,
hus justifying the use of the mean household size as a reasonable upper
ound on the final size of the epidemic.

ppendix E. The final size of a small outbreak

In what follows, we derive an estimate for the final size of a
ocal outbreak conditioned on extinction: for reasons of tractability, we
ill compute the final size of an outbreak assuming no transfers, and
ssuming that patient zero arrives at the time of their infection.

.1. Conditioning on extinction

Let 𝑁 = 𝑁([0,∞)) denote, as previously, the total number of
nfections caused by a focal individual in any of the models discussed
n Appendix B, and let

(𝑧) = E[𝑧𝑁 ] =
∞
∑

𝑛=0
P{𝑁 = 𝑛}𝑧𝑛

e the corresponding PGF. Then, as previously the unique solution
< 𝑞 < 1 to 𝑞 =  (𝑞) is the probability that the branching process of

nfections (i.e. as before, we ignore exhaustion of susceptible individ-
als) eventually goes extinct. Now, consider the process conditioned
n extinction: the branching process goes extinct if and only if the
ranching processes initiated by all individuals infected by patient

ero also go extinct; the independence of these secondary branching
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processes means the probability that each goes extinct is independent
wit probability 𝑞, and thus,

{𝑁 = 𝑛|extinction} =
P{𝑁 = 𝑛, extinction}

P{extinction} =
P{𝑁 = 𝑛}(𝑞)𝑛

𝑞
.

In particular, the PGF for the total number of infections conditioned on
extinction is 𝑒𝑥𝑡(𝑧) =

 (𝑞𝑧)
𝑞 .

.2. The PGF for the final size

In what follows, we will refer to generations of infections: the first
eneration consists of all individuals infected by patient zero, the
econd generation consists of all individuals infected by individuals in
he first generation, etc. Let 𝑋𝑘 be the number of infected individuals

in the 𝑘th generation, and let

𝑌𝑘 =
𝑘
∑

𝑖=0
𝑋𝑖

e the total number infected in the first 𝑘 generations. Let 𝑘(𝑤) =
[𝑤𝑌𝑘

|extinction] be the PGF for 𝑌𝑘 conditional on extinction. Now,
uppose that patient zero infects 𝑁 individuals, who each give rise to
ranching processes with 𝑋(𝑖)

𝑘 offspring in the 𝑘th generation and 𝑌 (𝑖)
𝑘

total offspring by the 𝑘th generation. Then,

𝑘(𝑤) = E
[

𝑤1+
∑𝑁

𝑖=1 𝑌
(𝑖)
𝑘−1

|

|

|

|

extinction
]

(n.b. the term 1 counts patient zero in the total outbreak size)

= E

[

𝑤
𝑁
∏

𝑖=1
𝑤𝑌 (𝑖)

𝑘−1
|

|

|

|

extinction
]

= E
[

𝑤E
[

𝑤𝑌𝑘−1 |

|

|

extinction
]𝑁

|

|

|

extinction
]

= E
[

𝑤𝑘−1(𝑤)𝑁 |

|

|

extinction
]

= 𝑤𝑒𝑥𝑡(𝑘−1(𝑤))

Taking 𝑘 → ∞, we get a functional equation for the final size of the
epidemic conditioned on extinction,

∞(𝑤) = 𝑤𝑒𝑥𝑡(∞(𝑤)). (E.1)

E.3. The Poisson final size distribution

In general, no exact solution for (E.1) is available, although we
can use Lagrange’s inversion formula to obtain the coefficients of the
series for ∞(𝑤) from those of 𝑒𝑥𝑡(𝑧). In the special case when 𝑁
is a Poisson(𝑅𝐿) random variable, we have  (𝑧) = 𝑒𝑅𝐿(𝑧−1), so that
𝑞 = 𝑒𝑅𝐿(𝑞−1). Thus, −𝑅𝐿𝑞𝑒−𝑅𝐿𝑞 = −𝑅𝐿𝑒−𝑅𝐿 , which we can solve as
above using Lambert’s 𝑊 function to obtain

𝑞 = − 1
𝑅𝐿

𝑊0
(

−𝑅𝐿𝑒
−𝑅𝐿

)

,

whereas 𝑒𝑥𝑡(𝑧) =
1
𝑞 𝑒

𝑞𝑅𝐿(𝑧−1). Then, ∞(𝑤) = 𝑤
𝑞 𝑒

𝑞𝑅𝐿(𝑤−1), so −𝑅𝐿∞(𝑤)
−𝑅𝐿∞(𝑤) = −𝑤𝑅𝐿𝑒−𝑅𝐿 , and again

∞(𝑤) = − 1
𝑞𝑅𝐿

𝑊0
(

−𝑤𝑅𝐿𝑒
−𝑅𝐿

)

=
𝑊0

(

−𝑤𝑅𝐿𝑒−𝑅𝐿
)

𝑊0
(

−𝑅𝐿𝑒−𝑅𝐿
) .

Using the power series 𝑊0(𝑥) =
∑∞

𝑛=0
(−𝑛)𝑛−1

𝑛! 𝑥𝑛 (obtained using La-
range’s inversion formula), we get

∞(𝑤) = − 1
𝑊0

(

−𝑅𝐿𝑒−𝑅𝐿
)

∞
∑

𝑛=0

𝑛𝑛−1
(

𝑅𝐿𝑒−𝑅𝐿
)𝑛

𝑛!
𝑤𝑛,

hence P{𝑊 = 𝑛|extinction} = − 𝑛𝑛−1
(

𝑅𝐿𝑒−𝑅𝐿
)𝑛

𝑛!𝑊0
(

−𝑅𝐿𝑒−𝑅𝐿
) .

While this could be used to establish a probabilistic cut-off to
haracterize small vs, large epidemics in the Poisson case (i.e. we
ould define an outbreak as large if its size, say 𝑁 , is such that
12

𝑜𝑢𝑡
{𝑊 = 𝑁𝑜𝑢𝑡|extinction} < 𝜀 for some small 𝜀 > 0), we will instead
se the mean size of a small epidemic to make the distinction (i.e. we
ill define an epidemic as large if its size is greater than some multiple
f the mean small size).

.4. The expected final size of a small outbreak

We thus turn our attention to computing the expected final size
f an outbreak, which we recall is ′∞(1) (n.b. ∞(1) = 1). Implicitly
ifferentiating (E.1), we have

′
∞(𝑤) = 𝑒𝑥𝑡(∞(𝑤)) +𝑤 ′

𝑒𝑥𝑡(∞(𝑤))′∞(𝑤),

hence

′
∞(𝑤) =

𝑒𝑥𝑡(∞(𝑤))
1 −𝑤 ′

𝑒𝑥𝑡(∞(𝑤))

nd ′∞(𝑤) = 1
1− ′

𝑒𝑥𝑡(1)
. Finally,  ′

𝑒𝑥𝑡(𝑧) =  ′(𝑞𝑧), so  ′
𝑒𝑥𝑡(1) =  ′(𝑞), so

′∞(1) = 1
1 −  ′(𝑞)

(n.b. in Appendix A, we show that  ′(𝑞) < 1). Recalling that ′′∞(𝑤)
gives the second factorial moment of the outbreak size, one may
proceed similarly to show that the variance in the outbreak size is

𝑞 ′′(𝑞) +  ′(𝑞)(1 −  ′(𝑞))
(1 −  ′(𝑞))3

.

In the Poissonian case, we have  ′(𝑧) = 𝑅𝐿𝑒𝑅𝐿(𝑧−1). Recalling that
𝑊0(𝑥)𝑒𝑊0(𝑥) = 𝑥, this gives us

 ′(𝑞) = 𝑅𝐿𝑒
𝑅𝐿(𝑞−1) = −𝑅𝐿𝑒

−𝑅𝐿𝑒−𝑊0
(

−𝑅𝐿𝑒−𝑅𝐿
)

= −𝑊0
(

−𝑅𝐿𝑒
−𝑅𝐿

)

= 𝑅𝐿𝑞,

whereas  ′′(𝑞) = 𝑅𝐿 ′(𝑞) = 𝑅𝐿𝑞2. In particular, the mean (standard
deviation) of the final size is approximately 1.25 (0.62) and 1.0018
(0.043) for our small and large values for 𝑅𝐿, 2.87 and 8.44. Applying
the 99% rule, we take outbreaks of 3 or fewer individuals to be small.

In the negative binomial case, we have  (𝑧) =
(

1−𝑝
1−𝑝𝑧

)𝑘
, where

= 𝑅𝐿
𝑅𝐿+𝑘

(see Appendix B). No exact solution is available for 𝑞, but
we can compute

 ′(𝑧) = 𝑘
(

1 − 𝑝
1 − 𝑝𝑧

)𝑘−1 𝑝(1 − 𝑝)
(1 − 𝑝𝑧)2

=
(

1 − 𝑝
1 − 𝑝𝑧

)𝑘 𝑘𝑝
1 − 𝑝𝑧

=  (𝑧)
𝑘𝑝

1 − 𝑝𝑧

(E.2)

and

 ′(𝑞) =  (𝑞)
𝑘𝑝

1 − 𝑝𝑞
=

𝑘𝑝𝑞
1 − 𝑝𝑞

=
𝑅𝐿𝑘𝑞

𝑅𝐿(1 − 𝑞) + 𝑘
≤ 𝑅𝐿𝑞.

n.b. this inequality is not sufficient to show that the expected final
size with the negative binomial distribution is smaller than that for
the Poisson distribution, as the extinction probability 𝑞 is larger for the
former than for the latter (Lloyd-Smith et al., 2005). We can, however,
find a condition under which this is true: recall from Appendix A that
𝑞 < 𝑞′, where  ′(𝑞′) = 1. We will use this to obtain an upper bound on
𝑞. Using (E.2), we have

1 − 𝑝𝑞′

𝑘𝑝
=  (𝑞′) =

(

1 − 𝑝
1 − 𝑝𝑞′

)𝑘
.

Substituting 𝑝 = 𝑅𝐿
𝑅𝐿+𝑘

yields

𝑅𝐿(1 − 𝑞′) + 𝑘
𝑘𝑅𝐿

=
(

𝑘
𝑅𝐿(1 − 𝑞′) + 𝑘

)𝑘
,

whence

1 =
(

𝑘
)𝑘+1

= ( (𝑞′))
𝑘+1
𝑘 .
𝑅𝐿 𝑅𝐿(1 − 𝑞′) + 𝑘
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Since 𝑞 ≤ 𝑞′ and  (𝑧) is increasing, we have  (𝑞′) ≥  (𝑞) = 𝑞, giving
us 𝑞 ≤ 𝑅

−1− 1
𝑘

𝐿 . Now, the final size of the Poisson process is larger than
hat for the negative binomial if and only if

𝑅𝐿𝑘𝑞
𝑅𝐿(1 − 𝑞) + 𝑘

≤ −𝑊0
(

−𝑅𝐿𝑒
−𝑅𝐿

)

.

𝑅𝐿𝑘𝑥
𝑅𝐿(1−𝑥)+𝑘

is an increasing function of 𝑥, so the left hand side is bounded

bove by 𝑅𝐿𝑘𝑞′

𝑅𝐿(1−𝑞′)+𝑘
=

𝑘𝑅
− 1
𝑘

𝐿

𝑅𝐿+𝑘−𝑅
− 1
𝑘

𝐿

, which is in turn less than 𝑘𝑅
− 1
𝑘

𝐿
𝑅𝐿+𝑘−1

,

iving us the sufficient condition

𝑘𝑅
− 1

𝑘
𝐿

𝑅𝐿 + 𝑘 − 1
≤ −𝑊0

(

−𝑅𝐿𝑒
−𝑅𝐿

)

.

Solving for 𝑘 (details omitted),

𝑘 ≤
ln𝑅𝐿(𝑅𝐿 − 1)

(𝑅𝐿 − 1)𝑊0

⎛

⎜

⎜

⎝

− ln𝑅𝐿𝑅
1

𝑅𝐿−1
𝐿

𝑊0
(

−𝑅𝑙𝑒−𝑅𝐿
)

(𝑅𝐿−1)

⎞

⎟

⎟

⎠

− ln𝑅𝐿

.

he right hand side is decreasing on 𝑅𝐿 ∈ [1,∞) and greater than
.54 for 𝑅𝐿 ≤ 9, so we conclude that the final size under a Poisson
istribution is an upper bound for the final size using a negative
inomial distribution for the parameters used here (𝑅𝐿 = 2.87 and
𝐿 = 8.44, 𝑘 = 0.5).

Finally, we note that in the burst model, 𝑁 = 𝜈1, where 𝜈1 is an
rbitrary distribution with expected value 𝑅𝐿, and we cannot compute
nything further without specifying the law of 𝜈1; here, we took 𝜈1 to be
egative binomial distribution above, so that the final size with Poisson
istribution remains an upper bound.
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