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Abstract

COVID-19 transmission has been widespread across the California prison sys-
tem, and at least two of these outbreaks were caused by transfer of infected
individuals between prisons. Risks of individual prison outbreaks due to in-
troduction of the virus and of widespread transmission within prisons due to
poor conditions have been documented. We examine the additional risk poten-
tially posed by transfer between prisons that can lead to large-scale spread of
outbreaks across the prison system if the rate of transfer is sufficiently high.

We estimated the threshold number of individuals transferred per prison
per month to generate supercritical transmission between prisons, a condition
that could lead to large-scale spread across the prison system. We obtained
numerical estimates from a range of representative quantitative assumptions,
and derived the percentage of transfers that must be performed with effective
quarantine measures to prevent supercritical transmission given known rates of
transfers occurring between California prisons.

Our mean estimate of the critical threshold rate of transfers was 14.38 indi-
viduals transferred per prison per month in the absence of quarantine measures.
Available data documents transfers occurring at a rate of 60 transfers per prison
per month. At that rate, estimates of the threshold rate of adherence to quar-
antine precautions had mean 76.03%. While the impact of vaccination and
possible decarceration measures is unclear, we include estimates of the above
quantities given reductions in the probability and extent of outbreaks.

We conclude that the risk of supercritical transmission between California
prisons has been substantial, requiring quarantine protocols to be followed rigor-
ously to manage this risk. The rate of outbreaks occurring in California prisons
suggests that supercritical transmission may have occurred. We stress that the
thresholds we estimate here do not define a safe level of transfers, even if super-
critical transmission between prisons is avoided, since even low rates of transfer
can cause very large outbreaks. We note that risks may persist after vaccination,
due for example to variant strains, and in prison systems where widespread vac-
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cination has not occurred. Decarceration remains urgently needed as a public
health measure.

1. Introduction

As the COVID-19 pandemic continues in the United States, its dynamics
in congregate settings of heightened transmission, including prisons, is crucial
to understanding its spread, addressing racial disparities in the burden of the
disease, and strategizing effective control.

Prisons are often overcrowded, unsanitary, and provide poor health care, and
have been the site of many of the most concentrated and brutal outbreaks of the
pandemic so far. Prevention of prison outbreaks is essential because standard
control measures such as social distancing and self-isolation are not generally
available to prison residents. One in five prisoners in the United States has
been infected with SARS-CoV-2, compared to one in 20 in the U.S. overall,
more than 1,700 have died, and prisoners continue to become infected.1 The
New York Times reported on January 29, 2021 that of the ten largest outbreaks
in U.S. correctional facilities to date, six of them have been in California state
prisons.2 Every single one of California’s 35 prisons has reported 200 or more
cases.3

Likely routes of introduction of the disease into prisons are via infected prison
staffers, admission of infected prison residents from outside the prison system,
and transfers of residents from other prisons. A widely reported outbreak at San
Quentin prison in California, which infected over 2200 of the 3563 inmates and
killed 28, was caused by a transfer of prisoners from the Correctional Institute
for Men in Chino, California [16], and a subsequent outbreak at California
Correctional Center in Susanville, California was likely caused by transfer from
San Quentin. Multiple outbreaks in winter 2020 appear to have been caused by
importation via staff members.

Prison outbreaks can be very large—the outbreak at San Quentin infected
over 60% of the prison population, and the outbreak in California’s Avenal State
Prison topped 80%—and because of well-known inequities in the criminal justice
system, they contribute to racial inequity in the burden of COVID infection
[9, 17, 13, 10]. In October 2020, the California Court of Appeals ruled that
the California Department of Corrections and Rehabilitation (CDCR) has been
guilty of “deliberate indifference” and that California prison populations must
be reduced by half to address the ongoing risk of SARS-CoV-2 transmission.4

1https://www.themarshallproject.org/2020/12/18/1-in-5-prisoners-in-the-u-s-has-had-covid-19,
retrieved January 29, 2021.

2https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html,
retrieved January 29, 2021.

3UCLA Covid Behind Bars Project, retrieved March 26, 2021 from https://github.com/

uclalawcovid19behindbars/data.git
4https://www.courts.ca.gov/opinions/documents/A160122.PDF, retrieved January 29,

2021.
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This decision reflects the recommendation to decarcerate California prisons to
50% of capacity published by public health experts during the San Quentin
outbreak.5 The decision is undergoing appeal, substantial decarceration has
not occurred, and multiple outbreaks have occurred in California state prisons
in the time since the decision.

While the risks of outbreaks sparked by staff introductions or transfers and
spread within prisons due to poor conditions are well known, here we examine
the potential danger from another, potentially less apparent risk: the possibility
that transmission from prison to prison via transfer of prison residents may be
sufficient to lead to uncontrolled spread across the prison system. If such condi-
tions should occur, the disease could be expected to spread to substantially more
prisons than otherwise, and infect far more individuals (Figure 1). The risks
to prison residents, staff, and surrounding communities could be considerably
increased.

The CDCR currently has quarantine and testing policies in place to prevent
transfer of infective individuals. Unfortunately, adherence to CDCR policies has
not always been universal, and it can not be assumed that no risky transfers
occur.

We have addressed this question by using established theory of disease trans-
mission, specifically a patch model to be defined below, to estimate the threshold
rate of transfer associated with supercritical transmission between prisons, and
the rate of adherence to transfer policies needed to prevent supercritical trans-
mission at known rates of transfer.

2. Methods

A patch model of disease transmission can model a collection of discrete pop-
ulations in which transmission happens within a population, and at a separate
rate between populations. One such approach, the so-called household model
[4], assumes that the population is divided into many small groups (the house-
holds) in which local contacts occur frequently, whereas global contacts may
occur between any two individuals in the population, albeit at a much lower
rate.

In such a model, there are two types of outbreaks: local ones, in which
the infection spreads widely within a single group, but remains confined to that
group, and global outbreaks, in which the epidemic spreads among many groups.
Global outbreaks are governed by a group-to-group reproduction number R∗
whose value is the expected number of groups infected by transmission from a
single group: the critical value is 1, and a large global outbreak is possible if
the value is greater than 1 (Figure 1).

5The Amend Project, Urgent Memo COVID-19 Outbreak: San Quentin Prison, retrieved
January 29, 2021 from https://amend.us/wp-content/uploads/2020/06/COVID19-Outbreak-
SQ-Prison-6.15.2020.pdf.
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A. Transmission between individuals 
below critical threshold

B. Transmission between individuals
above critical threshold

C. Transmission between prisons 
below critical threshold

D. Transmission between prisons 
above critical threshold

Figure 1: Scenarios for transmission between individuals and between prisons. A.
When the reproduction number R between individuals — the mean number of cases caused
by a case — is below the critical threshold of 1, transmission chains are short and outbreaks
are small. B. When R is above the critical threshold, a large outbreak is possible. C. When
the reproduction number R∗ between prisons — the mean number of prison outbreaks caused
by a prison outbreak — is below the critical threshold of 1, transmission between prisons may
still occur, but spread between prisons will be relatively limited. D. When R∗ is above the
critical threshold, transmission between prisons can cascade and cause spread throughout the
prison system.
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For our purposes, we assumed that all contacts are local, within groups,
except when a transfer occurs of an individual from one group to another. We
assumed also that the rate of transfer is low enough that an individual will
transfer to at most one group while infective. We found (see Appendix) that
the group-to-group reproduction number has the form

R∗ = µPG,

where µ is the total number of people infected in a group belonging to a ran-
domly selected individual and PG is the probability that an individual will
transmit to a group other than the one where they were infected.

In order to evaluate how prison transfers affect prison-to-prison transmission,
we modeled the group-to-group reproduction number in terms of the average
number of individuals transferred between prisons per prison per month, a quan-
tity which we call n. We expressed the above relation in terms of the transfer
rate n, and solved for a threshold rate n∗ at which the critical value R∗ = 1.

We modeled an ensemble of scenarios for these quantities, to cover the range
of possibilities.

1. Optimistic vs. pessimistic reproduction number. As an estimate
of the basic reproduction number RL within a prison we used the value 8.44
(95% credible interval: 5.00–13.13) estimated from a COVID-19 outbreak in a
large urban jail in the U.S. [19]. Because this value is estimated from a setting
in which a large outbreak occurred, and conditions in some prisons may be
less conducive to transmission than those in which the largest outbreaks have
occurred, we took the above number as a pessimistic estimate for RL. For an
optimistic estimate, we calculated the probability PG that a transfer event leads
to transmission between prisons using the more optimistic value of 2.87 (95% CI,
2.39–3.44) that was estimated for a basic reproduction number for COVID-19
in general community transmission [5], and cut the probability in half to reflect
the possibility that conditions may be better in roughly half of prisons.

2. Optimistic vs. pessimistic attack rate within prisons. Data
from California Department of Corrections and Rehabilitation, collected by the
UCLA Covid Behind Bars project,6 (Figure 2) provides outbreak sizes to date in
California prisons. We took each prison at which the number of cases recorded
to date is nonzero, which now includes all prisons in California, to represent an
outbreak size to date. Using these numbers, the size-weighted mean outbreak
size µ was 1513 cases. We took this value as a lower bound estimate of final
outbreak sizes in California prisons. A conservative upper bound for µ may be
the size-weighted mean of the overall population of each prison7 (see Appendix
B), which was 2900.5 as of March 26, 2021.

6Retrieved March 26, 2021 from https://github.com/uclalawcovid19behindbars/data.

git.
7Population sizes published by CDCR, retrieved April 24, 2021 from https://www.

cdcr.ca.gov/research/wp-content/uploads/sites/174/2021/03/Tpop1d210324.pdf, Cali-
fornia City Correctional Facility population retrieved April 24, 2021 from https://www.cdcr.

ca.gov/covid19/population-status-tracking/.
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3. Optimistic vs. pessimistic secondary case distribution. Evidence
is accumulating that transmission of SARS-CoV-2 has an overdispersed pattern,
in which many people cause few or no infections and a relatively large number
of infections are caused by a few people [3, 2, 20]. This pattern may make the
probability PG lower than it could be, because relatively more people infect
nobody. We estimated PG given this pattern by assuming a negative binomial
distribution of secondary cases, as is standard. However, this overdispersed
pattern may be caused partially by wide variation in the number of people
contacted by individuals socially [20], and it is not clear that this variation
in contact structure is possible to the same degree in a prison setting, where
individuals’ movements and locations are heavily constrained and regulated.
For this reason, we also considered the possibility that secondary cases may
be Poisson distributed within the prison setting, though they are more highly
dispersed in community transmission.

4. Optimistic vs. pessimistic timing of transmission events. We also
considered that the way in which the timing of transmission events is distributed
can affect the probability of transmitting to another prison. If transmission
tends to occur in bursts, for example driven by exceptional events when multiple
people gather, such a burst might happen either before or after an individual is
transferred from prison to prison. If transmission events are independent and
happen all at different times, on the other hand, it is more likely that at least
one of them will occur after a transfer. We model both of these cases.

We used each combination of the above assumptions to estimate a threshold
transfer rate for the California prison system, above which transfers may create
a risk of global spread of the coronavirus across the prison system. Calculations
detailed in the Appendix provided a threshold value of the rate ρG of transfer
between prisons per person per day for each combination of the above assump-
tions, which we transformed to a threshold rate n∗ of transfers per prison per
month, using conversion factors of 30 days per month and the average number
2676.6 of individuals per prisons in the CDCR system as of March 26, 2021.

We note that this threshold number of transfers concerns potentially infec-
tive transfers who are exposed to the prison resident population in the facility
where they arrive. Prisons, of course, have policies for quarantine of trans-
ferred residents and for testing before transfer to prevent transfer of infected
individuals, and these policies are likely to reduce the risk due to transfer.

Transfers between California state prisons are regulated by a policy called the
movement matrix8. Residents are tested five days before transfer, rapid tested
one day before transfer, and quarantined for 14 days after transfer. Quarantine
is in celled housing with a solid door if possible, and otherwise in cohorts of
no more than four people. Residents in quarantine are screened for symptoms
daily, tested if symptomatic, and isolated if they test positive. All of them are
tested after five days post-transfer, again after 12 to 14 days post-transfer, and

8https://www.cdcr.ca.gov/covid19/wp-content/uploads/sites/197/2021/01/COVID-19-
Screening-and-Testing-Matrix-Final-21-01-08.pdf, accessed February 4, 2021.
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then released if negative and asymptomatic. Both residents and staff are to wear
N95 masks during transfer. Residents who have been diagnosed with COVID-19
and subsequently resolved are considered immune for 90 days and exempt from
quarantine and testing. After 90 days they are considered susceptible again and
subject to the above measures.

We estimated that these procedures are likely to reduce the risk of transmis-
sion by transfer substantially. However, compliance with safety policies may not
be perfect. For example, the California Inspector General has documented ex-
tensive noncompliance with mask guidelines in the California prisons, including
during the San Quentin outbreak [15]. If protective policies reduce the number
of transfers who can potentially transmit the virus by some percentage, it is
the number of unprotected transfers that must be compared to the threshold
value. If transfers are occurring at a known rate nt, and the threshold transfer
rate for uncontrolled transmission between prisons is n∗, then the percentage of
transfers that must be conducted in adherence to the protective policy in order
to reduce unprotected transfers to the threshold rate is a = 100(nt− n∗)/nt, or
zero if n∗ exceeds nt.

2.1. Vaccination and decarceration

Vaccination in the California prison system is underway, with CDCR report-
ing that 40% of prison residents have received COVID-19 vaccination. A recent
legal filing reported that accounting for previously infected prisoners, 76% of
incarcerated people may have immunity [14].

Both increasing immunity and decarceration are likely to affect the spread
of infections in at least two important ways, firstly by reducing the reproduction
number and relatedly the probability that an introduction leads to an outbreak,
and second by reducing the sizes of outbreaks if they occur. Both of these
changes will affect our estimates of the rate of transfers needed to produce
cascading outbreaks.

We look at the relation between increasing immunity and the critical thresh-
old for cascading outbreaks by estimating the threshold transfer rate and associ-
ated quarantine adherence rate, as above, while reducing the local reproduction
number parameters discussed above (RL) by half (which affects our estimate of
how often a transfer causes an outbreak, but not of outbreak size), reducing the
characteristic outbreak size µ by half, and reducing both by half simultaneously.

3. Results

We first estimated the threshold transfer rate (n∗) under all combinations
of the above listed model assumptions, without protective measures (Table 1,
Figure 3). The values estimated for n∗ ranged from 3.6 to 40.28 individuals
transferred per prison per month, with mean 14.38. The generation time dis-
tribution used in these estimates was that estimated in a recent meta-analysis
[8]: a Weibull distribution with mean 5.5 days and standard deviation 1.8 days
(parameters α = 3.89, β = 6.08).
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Figure 2: Sizes of COVID-19 outbreaks in California prisons as of March 26, 2021. La-
bels and bar charts show the number of cases to date (blue) and total population (black/gray)
at each prison.
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Threshold transfer rates Threshold rates of adherence
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Figure 3: Estimated threshold transfer rates and levels of adherence to policy.
(Left) threshold number of individuals transferred per prison per month, under multiple sce-
narios (Table 1), (Right) rate of adherence to transfer policy needed to reach threshold number
of transfers, under the assumption of 60 total transfers per prison per month. Box plots display
median and inter-quartile range.

Records released in the course of ongoing legal proceedings document the rate
of transfers between prisons in the period from September 21 through October
11, 2020 at about 500 individuals transferred per week [1, p. 7, line 8]. There
are 35 institutions in the California prison system, making that equivalent to
about 60 transfers per prison per month. We converted our threshold estimates
to the percentage of transfers that must be conducted in compliance with the
safety policy in order to achieve the threshold number of unprotected transfers
or below, given a total of 60 transfers per prison per month (Table 1, Figure 3).
Our estimates of this threshold rate of adherence to quarantine precautions
ranged widely but clustered in the upper third of the percentage scale, with
mean 76.03%.

As a look at the sensitivity of our estimates to reductions in risk due to
vaccination and/or decarceration, we estimated the same quantities while re-
ducing the probability of an outbreak, the size of outbreaks, or both, by half
(Figure 4). We estimated that while under our most optimistic assumptions the
risk of cascading outbreaks is reduced substantially at 60 transfers per facility
per month, to the point where quarantine measures could be ignored entirely
without exceeding the estimated threshold (which could of course cause sub-
stantial risks other than cascading outbreaks), the change in the median and
mean estimates is much more modest. We estimated the mean threshold trans-
fers per prison per month (n∗) at 28.25, 28.88, and 57.11 respectively when
reducing the assumed parameter R by half for estimation of the probability of
an outbreak, reducing the characteristic outbreak size µ by half, and both. The
mean estimate of threshold rate of adherence to policy was 59.35%, 54.76%, and
40.13% respectively.
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Table 1: Estimates of critical threshold for supercritical transmission between prisons in
individuals transferred per prison per month and needed levels of adherence, given partial
adherence with California’s transfer policy.

Optimistic µ Optimistic R Optimistic Case
Distribution

Optimistic
Timing

n∗ Threshold
Adherence

Y Y Y Y 40.28 32.87
N Y Y Y 20.22 66.30
Y N Y Y 14.20 76.33
N N Y Y 6.18 89.70
Y Y N Y 20.22 66.30
N Y N Y 10.19 83.02
Y N N Y 10.19 83.02
N N N Y 4.17 93.05
Y Y Y N 33.47 44.22
N Y Y N 17.54 70.77
Y N Y N 9.57 84.05
N N Y N 5.59 90.69
Y Y N N 17.54 70.77
N Y N N 9.57 84.05
Y N N N 7.58 87.37
N N N N 3.60 94.00

++++ ++++ ++++ ++++

++++ ++++ ++++ ++++

++++ ++++ ++++ ++++

++ + ++ + + +++ + ++ + + +

+ + + ++ ++ ++ + + ++ ++ +

+ + + ++ + + ++ + + ++ + ++

Threshold transfer rates Threshold rates of adherence

C
ut R

, µ by half
C

ut µ by half
C

ut R
 by half

0 50 100 150 200 0 25 50 75

Figure 4: Estimated threshold transfer rates and levels of adherence to policy
given vaccination and/or decarceration, as in previous figure with reductions in re-
production number and/or outbreak size assumed. (Left) threshold number of individuals
transferred per prison per month, under multiple scenarios as above, (Right) rate of adher-
ence to transfer policy needed to reach threshold number of transfers, under the assumption
of 60 total transfers per prison per month. Box plots display median and inter-quartile range.
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4. Discussion

We have constructed a range of values of a threshold rate of mixing between
prisons above which transmission between prisons is likely to be supercritical.
Supercriticality between prisons means that a prison outbreak is expected to
produce more than one other prison outbreak on average, potentially leading to
uncontrolled spread throughout the prison system.

We estimate that the reported rate of transfers that has been occurring in the
California prison system has likely exceeded this threshold. We estimate that
at these rates of transfers, the quarantine precautions must be highly effective
and rates of compliance must be high to avoid risk of supercritical transmission
between prisons. The rate of outbreaks occurring in California prisons suggests
that supercritical transmission may already have occurred or may be occurring.

We offer these estimates as a way of assessing one of the multiple risks posed
by infectous disease transmission in the prison system. It is important to note
that this threshold can not be understood as providing a safe or acceptable
rate of transfers, since transfer rates below the critical threshold can still cause
huge outbreaks in multiple prisons. We are discussing an additional risk beyond
the clear dangers of prisons’ unsafe conditions and spread due to transfers: the
risk that in addition to having multiple large and deadly prison outbreaks of
COVID-19, the rate of transfers could be sufficient to cause uncontrolled spread
across a large portion of the prison system. This situation would likely lead to
a great deal more harm to prison residents and staff than even the known risks
of multiple large prison outbreaks, and could place communities throughout the
state at risk as well.

The program of vaccination that is underway in the California prison system
is crucial in reducing transmission and saving lives, and will likely help to end
the pandemic more broadly as prison transmission poses risks to communities
beyond the prison walls. We caution that substantial risks may continue to
exist in the CDCR system, as spread of the SARS-CoV-2 virus can still occur,
prison conditions continue to be overcrowded and unsanitary, and the effects
of variant strains are yet unknown, not to mention the other diseases currently
circulating and the potential of future emerging pandemics. Our results and
methods may also be relevant to other prison systems where vaccination is not
yet widespread. Decarceration remains a crucial public health measure to bring
disease spread under control.

While these estimates are necessarily imprecise due to limited availability of
data, such that risks could in fact be lower than we have estimated, we note as
well that in addition to the mechanism of transfer of prison residents considered
here, transmission between prison facilities may also be occurring resulting from
travel of infected staff who work at multiple facilities. For this reason, the risk
of uncontrolled transmission between prisons may in fact have been higher than
we have estimated here.

These results have a number of limitations. We have assumed that individ-
uals are removed from the epidemic process at the end of their infective period,
as we consider the final size of each local epidemic, and thus do not account for
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the possibility of reinfection. In using a branching process, we have implicitly
assumed a very large number of local communities, so that at least initially,
each global transmission is to a new site, and ignores the possibility of a second
epidemic in the same location. This assumption is reasonable in the context of
prisons, where there are indeed many sites. The assumption of a homogeneous
rate of transfer per individual across all prisons may be limiting as heterogeneity
may be important.

This approach is applicable to analysis of risk due to transmission between
sites in a variety of hotspot settings of transmission including but not limited
to prisons. Transfer, migration, and mixing between sites may be important
sources of risk in other locations of high transmission as well, such as jails,
ICE facilities, skilled nursing care facilities, meat packing plants, and other
agricultural operations.
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Appendix A. Patch Model Results

A patch model of disease transmission can model a collection of discrete pop-
ulations in which transmission happens within a population, and at a separate
rate between populations. One such approach, the so-called household model
[4], assumes that the population is divided into many small groups (the house-
holds) in which local contacts occur frequently, whereas global contacts may
occur between any two individuals in the population, albeit at a much lower
rate. In such a model, there are two types of outbreaks, local ones, in which the
infection spreads widely within a single subpopulation, but remains confined to
that subpopulation, and global outbreaks, in which the epidemic spreads among
many subpopulations.

A branching process approximation allows us to compute the probability
that a global outbreak occurs: if there are a large number of households, the
probability that two or more members of the same household are infected by in-
dividuals from different households is negligible, so, at the beginning at least, we
can assume that each global contact is with a new household. Now, a branching
process either goes extinct rapidly say with probability q, or grows indefinitely,
with probability 1 − q. The latter corresponds to a major epidemic. Now we
focus on the first individual infected, and the number that they infect in their
household. If the number of households is large, then to first approximation,
each of those individuals starts a branching process of infected households. If

12

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.12.21255363doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255363
http://creativecommons.org/licenses/by-nc/4.0/


the branching process goes extinct, then necessarily, the branching processes
started by each infected individual in the first household go extinct as well,
which occurs independently for each branching process with probability q as
well; this gives us a recursive formula for q.

Suppose that the fraction of households with i individuals is hi. If we were
to choose a household at random, hi gives the probability of choosing a house-
hold of size i; if, on the other hand we choose an individual at random, then the
probability that individual comes from a household of size i, say πi, is propor-
tional to ihi (we have equal chance of choosing each individual from the same
household). Now, given a household of size i, let Pij be the probability that
j ≤ i individuals in that household are ultimately infected. We then have

q =
∞∑
i=1

πi

i∑
j=1

PijE[qZ1+···+Zj ]

where Z1, . . . , Zj are the number of households infected by each of the j infected
individuals in the first household. We will assume that Z2, . . . , Zj are identi-
cal and independent copies of a random variable Z, and all are independent
of the Z1, the number of subsequent households infected by the first infected
individual. Because the first individual has already infected one household,
we have additional information on that individual, and Z1 must be distributed
differently in light of that information; for example, the first individual may
be symptomatic and thus will not be transferred again during their infectious
period.

Thus,

q =
∞∑
i=1

πi

i∑
j=1

PijE[qZ1 ]E[qZ ]j−1. (A.1)

(N.B. it is here that we are assuming the number of households is very large,
so that each infected individual is making contact with distinct households).
Write F (q) for the expression on the right in (A.1); solving q = F (q) exactly is
generally impossible, though we always have F (1) = 1. An epidemic is possible
if and only if this equation has a second solution 0 < q < 1. Notice that

F (0) =
∞∑
i=1

πiPi1,

the probability that the first individual infects no other individuals in their
household, so F (0) > 0. Now, a quick sketch shows that there is a second
solution if and only if R∗ = F ′(1) > 1:

F ′(1) =

∞∑
i=1

πi

i∑
j=1

Pij (E[Z1] + (j − 1)E[Z]) =

∞∑
i=1

πi (E[Z1] + µi−1E[Z]) .

where µi−1 is the average number of the i− 1 remaining individuals in a house-
hold of size i who are infected by the first infected (see Appendix B for an
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approximation of µi−1

i when i is large). Thus

µ = 1 +
∞∑
i=1

πiµi−1

is the size-biased mean size of a local outbreak and

R∗ = E[Z1] + (µ− 1)E[Z].

R∗ thus reflects the fact that transmission between households is propor-
tional to the number of individuals within the house, who each individually
make global contacts with other households. In the same way that the criti-
cal threshold R0 = 1 for the basic reproduction number separates subcritical
from supercritical transmission in non-patch models, the boundary R∗ = 1 is
the global critical threshold above which transmission is globally supercritical,
meaning that an outbreak in one group is expected to infect more than one
other group on average and can cause a large outbreak across the system of
groups.

The branching process approximation we have chosen has considerable flex-
ibility beyond the application presented here. At the cost of making the param-
eter µ something of a black box, we need only make minimal assumptions about
individual epidemic dynamics: for example, we do not need to make specific
assumptions about the duration of the infectious or latent periods, and the re-
sults are equally compatible with SIR or SEIR dynamics. Each of these choices,
however, will result in different values of µ; while the distribution of prison sizes
πi is an empirical and observable quantity, the mean number of infections in a
site will have to be computed. When individual facilities are sufficiently large
that an ordinary differential equation (ODE) model is reasonable approximation
to the local dynamics, we can use standard compartmental models of estimate
the final size of the epidemic (see Appendix B for estimates for the SIR and
SEIR models; unfortunately, adding a class of asymptomatic infectives, which
is appropriate for COVID-19, leaves us unable to obtain exact results). When
local facilities are small, more computationally intensive methods are required
(see [18]).

We next turn our attention to computing E[Z1] and E[Z] in the context of
transfer between prisons.

Appendix A.1. Computing E[Z1] and E[Z]

Recall that, by assumption, an individual can infect a new site if and only
if they are transferred during their generation interval. We will assume that
transfers occur as a Poisson point process with rate ρG, which for simplicity
is sufficiently small that the probability that a given individual is transferred
multiple times is negligibly small. Thus, each individual waits an exponen-
tially distributed time with mean 1/ρG before being transferred. Under these
assumptions, E[Z1] and E[Z] are simply the probability that the first infected
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individual or a subsequently infected individual, respectively, causes at least one
new infection in the new site, say p1

I and pI respectively.
To obtain a range of plausible values for pI , we will consider two extreme

scenarios that bookend the degree of correlation between infection times:

(i) A compound Poisson model in which infections happen individually and
independently with a time-dependent rate, its hazard function, and

(ii) A “burst” model in which all infections occur simultaneously; note that in
this case, the first infected individual has already burst, so p1

I = 0.

We first present the former, and then show how the latter can be understood
as a limiting case of a generalized version of the former.

Appendix A.1.1. The Hazard Function of the Infection Point Process and the
Generation Interval Density

To derive the probabilities p1
I and pI , we first relate the generation interval

density, g(t), to the hazard function of an inhomogeneous Poisson process. Fix
t = 0 as the time that a given primary individual is infected, and assume
secondary infections at random times t1, t2, . . .. If no two points coincide, i.e.
if the infection is a simple point process, then it can be represented as an an
inhomogeneous Poisson process (n.b., while no two points coincide, we do allow
points to be arbitrarily close). It is convenient to represent the latter via its
counting measure, N : given a subset A ⊆ [0,∞),

N(A) = #{ti : ti ∈ A}.

Because of our assumption of distinct points,

N(dt) =

{
1 if ti ∈ dt for some i, and

0 otherwise.

One can integrate with respect to N(dt):∫ t

0

f(t)N(dt) =
∑
i

f(ti),

whenever the sum on the right hand side exists.
We define the hazard function of the point process, h(t) by

h(t) dt = E[N(dt)] = P{ti ∈ dt for some i},

i.e. h(t) is the probability rate function for points. If
∫∞

0
h(s) ds <∞, then we

can normalize h(t) to obtain a probability density function,

g(t) =
h(t)∫∞

0
h(s) ds

,
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which is the generation interval density.
By definition of the hazard function,

E
[∫ t

0

f(s)N(ds)

]
=

∫ t

0

f(s)h(s) ds.

In particular, the total expected number of infections, the local reproduction
number, is

RL = E[N([0,∞))] = E
[∫ ∞

0

N(ds)

]
=

∫ ∞
0

h(s) ds,

Thus, h(t) = RLg(t).
Now, by definition of the inhomogeneous Poisson process and its hazard

function,
P{N([t,∞)) = 0} = e−

∫∞
t
h(s) ds = e−RL

∫∞
t
g(s) ds,

and, if we assume that transfer happens as a Poisson point process with rate
ρG, then the probability of no infections after transfer (1− pI) is∫ ∞

0

ρGe
−ρGtP{N([t,∞)) = 0} dt =

∫ ∞
0

ρGe
−ρGte−RL

∫∞
t
g(s) ds dt

=

∫ ∞
0

ρGe
−ρGte−RLG(t) dt,

(A.2)

where we set G(t) =
∫∞
t
g(s) ds. We can compute this integral numerically using

a suitable choice of g(t), e.g. the empirical generation interval distribution.
For the first individual, we must account for the fact that they have already

infected at least one other individual before transfer, and that, if symptomatic,
we assume that the probability of transfer is greatly reduced, by some factor
f < 1. Thus, rather than take time t = 0 to be the time of infection, we take it
to be the time T of some (arbitrary) infection in the first site, so T is distributed
according to g(t):

1− p1
I =

∫ ∞
0

∫ ∞
0

fρGe
−fρGte−RLG(s+t) dt g(s) ds

Appendix A.1.2. Compound Poisson Processes

More generally, we can consider the case when events occur according to a
hazard rate h(t), but now the number of infections occurring at the ith contact
is given by i.i.d. random variables νi; for example, if we can only poorly resolve
infection times, we may be unable to separate them in time. We then have that
the number of infections occuring at times in the set A is

Ñ(A) =

N(A)∑
i=1

νi
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Then, as before,
E[Ñ(dt)] = E[ν]h(t) dt,

and

RL = E[Ñ([0,∞))] = E[ν]

∫ ∞
0

h(t) dt.

Unlike previously, this relation does not fix
∫∞

0
h(t) dt: rather, for any λ ∈

(0,∞), we can have
∫∞

0
h(t) dt = λ, provided E[ν] = RL/λ. We then have

h(t) = λg(t), so λ determines the intensity of points, whereas an increased
intensity must correspond to fewer infections on average per event and vice
versa. In particular, for a given RL, we can potentially have arbitrarily large
clusters of infections, provided they occur sufficiently rarely.

Appendix A.1.3. Doubly Stochastic Poisson Processes and Overdispersion

Whilst the compound Poisson process allows for temporal clustering of in-
fections, the number of infections in any interval [a, b] is Poisson distributed

with rate
∫ b
a
h(t) dt = RL

∫ b
a
g(t) dt and thus has index of dispersion of 1. To

allow for varying dispersion – as well as individual variation in contact rates –
we can instead consider a doubly stochastic Poisson (or Cox) process, drawing
an individual reproductive ratio, r, for each individual from a fixed distribution
with mean RL.

If we assume each individual’s r is gamma distributed with shape parameter
k and scale parameter RL

k for some k > 0, then the probability of m infections
in an interval [a, b] caused by a randomly chosen individual is∫ ∞

0

(rg[a,b])
m

m!
e−rg[a,b]rk−1e

− k
RL

r
dt

=
Γ(m+ k)

m! Γ(k)

(
k

RLg[a,b] + k

)k ( RLg[a,b]

RLg[a,b] + k

)m
,

which we recognize as a negative binomial distribution with success probability
RLg[a,b]

RLg[a,b]+k
and k failures. Thus, the mean number of infections in [a, b] is thus

RLg[a,b] and the index of dispersion of infections in [a, b] is D = 1 +
RLg[a,b]

k .
In particular, taking [a, b] to be the whole real line, we see that the mean
total number of infections caused by a single individual is negative binomially
distributed with mean RL and index of dispersion 1 + RL

k .
Under this Cox process model, the probability of causing an infection after

transfer is obtained by averaging (A.2) over a Gamma
(
k, RLk

)
-distribution. Be-

cause the reproductive ratio only appears in the exponential e−rG(t), we can use
the known probability generating function for the gamma distribution to get
that

1− pI =

∫ ∞
0

ρGe
−ρGt

(
1 +

RL
k
G(t)

)−k
dt. (A.3)

and

1− p1
I =

∫ ∞
0

∫ ∞
0

fρGe
−fρGt

(
1 +

RL
k
G(t+ s)

)−k
dt g(s) ds.
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Appendix A.1.4. Conditioning on a Single Event

As an extreme case, we consider a scenario in which all transmission from
a given individual occurs in a single event, for instance reflecting temporal het-
erogeneity in the number of social contacts. Observe that the probability of
exactly one event in an inhomogeneous Poisson point process is∫ ∞

0

h(t) dt e−
∫∞
0
h(t) dt = λe−λ,

whereas the joint probability of having a single point at t is

h(t)e−
∫∞
0
h(t) dt,

so the probability of a single point at t conditional on only one point is the ratio
of these two probabilities,

h(t)e−
∫∞
0
h(t) dt∫∞

0
h(t) dte−

∫∞
0
h(t) dt

=
h(t)∫∞

0
h(t) dt

= g(t)

whereas if we require that the expected number of infections remains equal to
RL, then E[ν] = RL.

The probability that no infections happen after transfer is then the sum
of the probability of two independent events, that the single infection event
happens prior to transfer, and that the event happens post-transfer, but results
in no successful infections:∫ ∞

0

ρGe
−ρGt

∫ t

0

g(t) dt+ P{ν = 0}
∫ ∞

0

ρGe
−ρGt

∫ ∞
t

g(t) dt

=

(
1−

∫ ∞
0

ρGe
−ρGtG(t) dt

)
+ P{ν = 0}

∫ ∞
0

ρGe
−ρGtG(t) dt.

(A.4)

If, for example, we assume that ν is negative binomially distributed, say ν ∼
NB(p, k), then for a given k, we have RL = E[ν] = pk

1−p , so p = RL
k+RL

and

P{ν = 0} = (1− p)k =

(
k

k +RL

)k
.

Finally, we note that∫ ∞
0

ρGe
−ρGtG(t) dt = ρGĜ(ρG),

where Ĝ(s) is the Laplace transform of G(t). In particular,

Ĝ(s) =

∫ ∞
0

e−st
∫ ∞
t

g(u) du dt

=
1

s

∫ ∞
0

g(u) du− 1

s

∫ ∞
0

e−stg(t) dt

=
1− ĝ(s)

s
.
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Thus, if we know a priori the distribution of the generation interval (e.g. lognor-
mal, gamma or Weibull distributions are frequently posited), then the Laplace
transform ĝ(s) = Mg(−s), where Mg(s) is the moment generating function is
commonly available. Additionally, when ρG is small, we have

ρGĜ(ρG) ≈ ρGĜ(0) = ρG

∫ ∞
0

G(t) = ρGḡ.

where ḡ is the mean length of the generation interval.

Appendix A.2. Probability of a Large Local Outbreak
Appendix A.2.1. Poisson Distributed Infections

To compute the probability of a local large outbreak under our generation
interval approach, we must take care to distinguish between the first individual
initiating the epidemic, for whom some fraction of the infectious period has
already elapsed, and the newly infected individuals in the new site.

Under the assumption of a large local population, we can continue to use
branching process recursive formulas to determine the probability that no locally
infected individual gives rise to a significant outbreak, say qL:

qL = E
[
q
N([0,T ))
L

]
(A.5)

where N([0, T )) is the number of individuals infected by a given individual
before they are transferred at time T ; as before, T is exponentially distributed
with rate ρG, whereas conditional on T , N([0, T )) is Poisson distributed with

rate RL
∫ T

0
g(t) dt. Now,

qL = E
[
E
[
q
N([0,T ))
L

∣∣∣T]] ,
where the outer expectation is for the random variable T . Recognizing the inner
expectation as the probability generating function for a Poisson random variable
gives us

qL = E
[
eRL(qL−1)

∫ T
0
g(t) dt

]
=

∫ ∞
0

ρGe
−ρGteRL(qL−1)

∫ t
0
g(u) du dt.

Now consider the initial infected individual. Let T , still exponentially dis-
tributed with rate ρG be the time after the start of their infectious period at
which that individual was introduced into the local community. Then, they will
infect N([T,∞)) individuals in the new site, whence the probability that there
is not a major outbreak is

qG = E
[
q
N([T,∞))
L

]
.

Again, first taking the conditional expectation of N([T,∞)) given T , which is a
Poisson random variable with rate RL

∫∞
T
g(t) dt = RLG(T ), and then over T ,

gives

qG =

∫ ∞
0

ρGe
−ρGteRLG(t)(qL−1) dt. (A.6)
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Appendix A.2.2. Individually Varying Reproductive Number

More generally, as before, we can consider the possibility that each individual
has an i.i.d. reproductive number, say Ri drawn according to a Gamma

(
k, RLk

)
distribution, in which case, we may proceed as before to obtain (A.5), which we
must now average over the gamma distribution to obtain

qL = E
[
qN([0,T ))

]
= E

[
E
[
E
[
qN([0,T ))

∣∣∣Ri, T]∣∣∣T]]
= E

[
E
[
eRi

∫ T
0
g(t) dt(qL−1)

∣∣∣T]]
= E

(1− RL(qL − 1)

k

∫ T

0

g(t) dt

)−k
=

∫ ∞
0

ρGe
−ρGt

(
1 +

RL(1− qL)

k

∫ t

0

g(u) du

)−k
du,

which we may solve numerically for qL. Proceeding similarly, averaging (A.6)
over the gamma distribution and interchanging the order of integration yields

qG =

∫ ∞
0

ρGe
−ρGt

(
1− RL

k
G(t)(qL − 1)

)−k
dt

=

∫ ∞
0

ρGe
−ρGt

(
1 +

RL
k
G(t)pL

)−k
dt,

where pL = 1− qL.

Appendix A.2.3. Compound Poisson Processes

Now, suppose that at the ith time of the inhomogeneous Poisson processes
N([0, T )) and N([T,∞)) (as previously, T indicates either the transfer time out
of, or into, the focal site respectively) the individual independently infects νi
individuals, where νi is a random variable with probability generating function
Pν(z) = E[zν ].

Now, since the νi are independently and identically distributed and indepen-
dent of their arrival times in N([0, T )),

qL = E
[
q
∑N([0,T ))
i=1 νi

L

]
= E

N([0,T ))∏
i=1

qνiL

 = E

N([0,T ))∏
i=1

E [qνiL |N([0, T ))]


= E

N([0,T ))∏
i=1

E [qνiL ]

 = E

N([0,T ))∏
i=1

Pν(qL)

 = E
[
Pν(qL)N([0,T ))

]
.
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Now, proceeding as before,

E
[
Pν(qL)N([0,T ))

]
= E

[
E
[
Pν(qL)N([0,T ))

∣∣∣T]]
= E

[
eRL(Pν(qL)−1)

∫ T
0
g(t) dt

]
=

∫ ∞
0

ρGe
−ρGteRL(Pν(qL)−1)

∫ t
0
g(u) du dt,

giving us the relation qL =
∫∞

0
ρGe

−ρGteRL(Pν(qL)−1)
∫ t
0
g(u) du dt.

Proceeding similarly gives us

qG =

∫ ∞
0

ρGe
−ρGteRLG(t)(Pν(qL)−1) dt.

Appendix A.2.4. Bursts of Infections

Suppose each individual waits a randomly distributed time with probability
density function g(t) before causing a random number ν of infections, indepen-
dent of the time of transmission. Fix a given individual, and suppose that they
are transferred at time T , exponentially distributed with rate ρG and that their
transmission event happens at time T ′. Then, their local chain of infection goes
extinct if either they are transferred prior to transmission, or if not, if all those
they infect have finite chains of infection:

qL = E
[
1{T<T ′} + 1{T<T ′}q

ν
L

]
= P{T < T ′}+ P{T > T ′}E [qνL] .

Again, the expectation on the right is the probability generating function for ν
evaluated at qL, Pν(qL).

The calculation thus depends on the choice of law for the random variables νi,
or equivalently the choice of distribution and its probability generating function
Pν(z). For example, if each νi is negatively binomially distributed with mean
RL and k successes (and thus success probability p = RL

k+RL
) we have Pν(z) =(

k
k+RL(1−qL)

)k
, whereas for a Poisson process with the same mean RL we have

Pν(z) = eRL(z−1).
On the other hand,

P{T > T ′} = E [P {T > T ′|T ′}]

= E
[
e−ρGT

′
]

=

∫ ∞
0

e−ρGtg(t) dt

= ĝ(ρG),

where ĝ(p) indicates the Laplace transform of g(t). Thus,

qL = (1− ĝ(ρG)) + ĝ(ρG)Pν(qL).

21

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.12.21255363doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255363
http://creativecommons.org/licenses/by-nc/4.0/


For the initial individual, we need to take into account the possibility that
the individual had their “burst” prior to being transferred to the focal site,

qG = P{T > T ′}+ P{T < T ′}E [qνL]

= ĝ(ρG) + (1− ĝ(ρG))Pν(qL)

= ĝ(ρG) + (1− ĝ(ρG))
qL − (1− ĝ(ρG))

ĝ(ρG)

= ĝ(ρG) +
(1− ĝ(ρG))(ĝ(ρG)− pL)

ĝ(ρG)

or, rearranging,

pG = pL
1− ĝ(ρG)

ĝ(ρG)
.

Appendix A.3. Threshold mixing rates

Synthesizing the above results to derive a threshold rate of transfers, we
recall that the criterion for a major outbreak on the congregate level is R∗ > 1,
where R∗ = µE[Z], µ is the (size-biased) mean size of a major outbreak, and Z
is the number of facilities in which a given individual causes a major outbreak.
Assuming that each individual is transferred at most once, then E[Z] = pG =
1 − qG, where qG is calculated as above. To calculate the critical transfer rate
ρ∗G, one needs to solve R∗ = 1 for ρG.

Appendix B. Approximating the Final Size of the Epidemic

Given the large populations in individual prisons, we approximate the pro-
portion of susceptible, exposed and infective individuals by the classical SIR
ordinary differential equations [11]:

dS

dt
= −βSI

dI

dt
= βSI − (γ + α)I

dR

dt
= (γ + α)I,

(B.1)

where β is the individual contact rate, whereas γ is the rate of recovery and α
is the rate of disease-induced mortality. (For the SIR model and a wide class
of related models, the error in making this deterministic approximation to the
frequencies in each class in a population of N individuals is order O

(
1
N

)
; see

[12] for details).
Whilst these equations don’t admit an analytic solution, one can solve for

the trajectory in phase space, as Kermack & McKendrick observed in their
landmark paper. Dividing the first equation in (B.1) by the third yields

dS

dR
= − β

γ + α
S = −RLS,
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whence S(R) = e−RLRS0 = e−RLR, assuming the entire population is initially
susceptible. Let S∞ and R∞ be the fraction susceptible and recovered at the end
of the epidemic. By definition, the epidemic ends when no infected individuals
remain, whence

1 = S∞ +R∞ = e−RLR∞ +R∞ = e−RL(1−S∞) + 1− S∞.

Rearranging yields −RLS∞e−RLS∞ = −RLe−RL . This equation may be solved
via Lambert’s W -function [6], the transcendental (multi-)function satisfying x =
W (x)eW (x). In particular,

S∞ = − 1

RL
W0

(
−RLe−RL

)
,

where W0(x) is the principal branch of the W function, real valued and increas-
ing on [−e−1,∞), so S∞ is a decreasing function of RL.

Moreover, W0(x) = x + O(x2), and bounded below by x, so that for large
values of RL, S∞ = e−RL +O(e−2RL). For RL = 4, we have that S∞− e−RL ≈
0.0015, whereas S∞ ≈ 0.0198, so the relative error in approximating S∞ by
e−RL is already less than 8%, whereas approximately 98% of the population
will have been infected, thus justifying the use of the mean household size as a
reasonable upper bound on the final size of the epidemic.

We further note that for all values of RL ≥ 1, e−RL < 1
RL

and the remaining
fraction susceptible is well below the threshold of so-called herd immunity (the
latter indicates the point at which epidemic growth decelerates, not the end of
the epidemic).

In particular, after a first epidemic has run its course, assuming no change
in the fraction susceptible, the total number infected due to a subsequent global
infection is bounded above by a subcritical branching process with per-capita
birth and death rates βS∞ and γ + α respectively. The expected total progeny
of this branching process is 1

1−S∞ ≈
1

1−e−RL ≈ 1 + e−RL ≤ 2. Thus, when
households are very large, the impact of subsequent importations of infection
have a negligible effect on the final fraction infected.

We remark that the argument above is unchanged by introducing a latent
period of average length θ and a class of exposed, but non-infective individuals
(the SEIR model):

dS

dt
= −βSI

dE

dt
= βSI − θE

dI

dt
= θE − (γ + α)I

dR

dt
= (γ + α)I,

so the expression (and approximations) derived for S∞ remain valid (we note
that in the absence of natural mortality, RL = β

γ+α for the SEIR model as well).
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In modelling COVID-19, it is also important to include an asymptomatic
class that transmits the virus but does not experience excess mortality. We as-
sume that a fraction p of all exposed individuals become asymptomatic spread-
ers, who can either recover or subsequently enter the symptomatic class at rate
ν:

dS

dt
= −(βII + βAA)S

dE

dt
= (βII + βAA)S − θE

dI

dt
= pθE − (γI + α)I

dA

dt
= (1− p)θE − γAA

dR

dt
= (γI + α)I + γAA.

(B.2)

While this model is no longer analytically tractable, even in phase space, we
can still obtain upper and lower bounds for the final size of the epidemic. Set
β̄ = max{βI , βA} and

¯
β = min{βI , βA} and define γ̄ and

¯
γ similarly. Then,

−β̄(I +A)S ≤ dS

dt
≤ −

¯
β(I +A)S ≤ 0

and

(γ̄ + α)(I +A) ≥ dR

dt
≥

¯
γ(I +A) ≥ 0,

so that

− β̄

¯
γ
S ≤ dS

dR
≤ − ¯

β

γ̄ + α
S.

The comparison principle then tells us that

e
− β̄

¯
γR ≤ S ≤ e− ¯

β

γ̄+αR.

Proceeding as before, we find that

− γ̄

¯
β
W0

(
− β̄

¯
γ
e
− β̄

¯
γ

)
≤ S∞ ≤ −

γ̄ + α

¯
β

W0

(
− ¯

β

γ̄ + α
e− ¯

β

γ̄+α

)
.

We can compute RL using the next generation matrix method of [7]: linearized
about the initial state with all individuals susceptible, the dynamics of the
infected classes are described by a matrix equation:

d

dt

EI
R

 =

 −θ βI βA
pθ −γI − α 0

(1− p)θ 0 −γA


The transition matrix above is decomposed into matrices of transmissions (rates
of new infections) and transitions (rates of events by which infected individuals

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.12.21255363doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255363
http://creativecommons.org/licenses/by-nc/4.0/


change state):

T =

0 βI βA
0 0 0
0 0 0

 and Σ =

 −θ 0 0
pθ −γI − α 0

(1− p)θ 0 −γA


respectively. The next generation matrix is then

K = −TΣ−1 =

pβIγA+(1−p)βI(γi+α)
γA(γi+α)

βI
γI+α

βA
γA

0 0 0
0 0 0


Theorem A.1 in [7] then tells us that RL = pβIγA+(1−p)βI(γi+α)

γA(γI+α) . Thus, the

threshold for herd immunity must lie in the range
[

¯
γ

β̄
, γ̄+α

¯
β

]
.
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