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Human Posture Prediction during Physical Human-Robot Interaction

Lorenzo Vianello1,2, Jean-Baptiste Mouret1, Eloise Dalin1, Alexis Aubry2, Serena Ivaldi1

Abstract— When a human is interacting physically with
a robot to accomplish a task, his/her posture is inevitably
influenced by the robot movement. Since the human is not
controllable, an active robot imposing a collaborative trajectory
should predict the most likely human posture. This predic-
tion should consider individual differences and preferences of
movement execution, and it is necessary to evaluate the impact
of the robot’s action from an ergonomics standpoint. Here,
we propose a method to predict, in probabilistic terms, the
human postures of an individual for a given robot trajectory
executed in a collaborative scenario. We formalize the problem
as the prediction of the human joints velocity given the current
posture and robot end-effector velocity. The key idea of our
approach is to learn the distribution of the null space of the
Jacobian and the weights of the weighted pseudo-inverse from
demonstrated human movements: both carry information about
human postural preferences, to leverage redundancy and ensure
that the predicted posture will be coherent with the end-effector
position. We validate our approach in a simulated toy problem
and on two real human-robot interaction experiments where a
human is physically interacting with a Franka robot.

pHRI; Posture Prediction; Ergonomics.

I. INTRODUCTION
Cobots (i.e., industrial manipulators for collaboration) and

exoskeletons are designed to physically interact with humans
and to assist their movement in accomplishing one or more
tasks [1]. The general objective is to reduce the human
physical effort and improve his/her ergonomics, which re-
quires the evaluation of several ergonomics criteria, most
often determined by the human posture [2]. The way this
assistance is provided depends on the platform and on the
type of the collaboration, which often translates to defining
contact points, collaboration control laws with structured
roles (e.g., leader-follower) and the amount of provided
assistance [3]. Recent works in collaborative robotics suggest
that the robot’s knowledge of the task to be executed could be
used to plan movements that are less physical demanding [4]
and more ergonomic [5]. This is particularly relevant in
industrial scenarios because it has the potential to reduce
work-related musculoskeletal disorders, which are currently
the second largest cause of disabilities worldwide [6].
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Fig. 1. The human posture is influenced by the robot’s trajectory during
physical interaction, but the human may adopt different postures during each
task execution. In this paper we want the robot to predict the human posture
given a known Cartesian trajectory of its end-effector and prior observations
of the task executed by the human. The human posture is measured online
by a wearable Xsens MVN suit.

An open problem, when a robot wants to assist the human,
is that humans are not entirely “controllable”: humans are
highly redundant systems that are over-actuated for many
manipulation tasks. For instance, lifting a box from the floor
might be performed by bending the back, but also by bending
the knees. Individual preferences of movement and musculo-
skeletal problems might add to the intrinsic variability of
the human movement, thus increasing the variance of all
possible postures in response to a robot action. For these
reasons, when the human is physically coupled with the robot
to accomplish a task, it is not possible to know with certainty
how a human will move when the robot imposes a trajectory,
which makes it challenging to select the best trajectories for
the robot in collaborative tasks. In this context, data-driven
probabilistic models of human movements, learned from
demonstrations, can provide interesting insights into human
preferences while capturing the variance of demonstrated
movements. A limit of this kind of solutions is that a small
error in the joint estimation can cause a large error in the
estimation of the end-effector position (i.e., the human hand),
which makes the prediction kinematically inconsistent. This
error poses a nontrivial problem, especially when the human
is physically coupled to the robot because it can compromise
the quality of the collaboration.

In this paper, we consider a leader robot that is physically
coupled with the human follower at the level of the end-
effector / hand (see Fig. 1). This asymmetric role assignment
represents the case where a collaborative robots leads the
human towards more ergonomic trajectories. It applies to
both cobots (i.e., manipulators physically coupled to the hu-



man at their hands) and upper-body exoskeletons (physically
attached to the human body at the level of the hands and/or
arms, depending on the application – maintenance, rehabil-
itation, etc.). For a known end-effector trajectory and an
initial human posture, we want to determine the probability
distribution of the human postures along the trajectory of
the end-effector1. We record several demonstrations of the
human interacting with the robot. We start by modeling the
human with a Digital Human Model (DHM) which is a rigid
body model, similar to a humanoid robot. We constrain the
DHM and the robot’s end-effectors to be physically linked.

Our main idea is to learn, from the human demonstrations,
a model in the null space of the DHM Jacobian, which
describes a set of human configurations that lead to the same
end-effector position. For each point of the robot trajectory,
our method consists of first projecting the postures in the null
space defined by the end-effector position and the kinematic
model of the human, then learning Gaussian processes (GP)
that predict projected configurations, and finally projecting
back to the original joint space. We use GP [7] for predictors
because they make accurate and smooth predictions with
little data compared to alternatives like neural networks. In
addition, they associate each prediction with an estimate of
its uncertainty.

We demonstrate the method on a toy problem first (a 5-
revolute (5R) joints planar robot) and then on a human in-
teracting with a robot manipulator (Franka) in a cooperative
pick & place task. We show in the experiments that our
method can predict the future movement “planned” by the
human with high accuracy and kinematic consistency.

II. RELATED WORK

A. Human Posture Measurement and Inverse Kinematics

Collaborative robots need to have an estimation of the
current human posture and its future intended evolution to
plan appropriate collaborative actions. The human posture
can be retrieved in real-time essentially using cameras or
wearable motion tracking sensors [8]. However, robots often
do not have access to the human posture measurement in
real-time, and the only information they have is the fact
that human is physically attached to their end-effector in
some tasks. In such cases, Inverse Kinematics (IK) is used
to predict the human pose starting from the end-effector
position using simplified human models as in [5].
The problem is that the human posture is not uniquely
defined by its end-effector position, because of the intrinsic
human body redundancy but also task preferences and other
individual factors; for a robot, it is hard to predict the human
posture given only the task description. Indeed, IK alone
cannot solve this problem given the overactuated nature of

1There are many situations, even in manufacturing, where the initial
posture of the operator can be known. It can be estimated by cameras or
wearable sensors. In the case of ergonomic optimization (i.e., the offline
procedure for optimizing the workstation and the robot’s movements to
maximize the ergonomics comfort of a group of operators), workers are
often allowed to use wearable sensors to measure their movement. If the
human posture cannot be measured, we can assume it known and fixed by
the procedures for the ergonomic use of a robotic workstation.

q ∈ Rn vector of joints values
x ∈ Rm hand Cartesian pose

k = n−m > 0 degrees of redundancy
f(.) : Rn → Rm forward kinematics function

q̇ and ẋ joint and Cartesian velocities
J(q) ∈ Rm×n Jacobian Matrix

y ∈ Rk null space of the Jacobian J(q)

D = {(qi, ẋi), q̇i}ND
i=1 Dataset of ND demonstrations

TABLE I
NOTATION

the human.
To address this kind of problem, a common approach is
to sample in the space of the possible solutions and to
evaluate them accordingly to the kinematic properties [9] and
to task-specific loss functions [10]. We refer to these kinds
of methods as sampling based approaches. These kinds of
methods are computationally expensive and highly dependent
on the choice of the parameters. Moreover, they are not
well designed to integrate human demonstrations that capture
human preferences of movement.

B. Human Posture Prediction

Predicting the human intention, i.e., the future intended
movement [11] is an active field of research, where tradi-
tionally movements are represented by trajectories or move-
ment primitives issued with a probabilistic description. The
prediction with motion primitives is most often done in
the task space, e.g., the Cartesian space, and IK is used
to find the most appropriate corresponding joint trajectories
to fulfill the robot task. Motion primitives can also be
learned in the joint space. However, each joint primitive
cannot be learned independently as all the primitives must
be kinematically consistent, and conditioning may not be
sufficient to properly ensure this property [12]. In [13], this
problem was solved using Probabilistic Motion Primitives
(ProMPs), by conditioning the motion primitive in the joint-
space with the one in the operational space. A limit of this
approach is that it requires the knowledge of the ProMP for
each possible movement, which only makes sense for specific
applications and gestures.

Recurrent neural networks have also been proposed for
predicting future human postures [14], [15]. One of the main
challenges of these methods is to encode the multi-value
behaviour of the human, coming by its redundant structure,
and to evaluate the different solutions [16]. Data-driven
methods are, in general, time efficient and they do not require
hard coded evaluation functions because they learn directly
from demonstrations. The main limit of these algorithms is
the loss of the kinematic consistency in the prediction: it
was demonstrated that applying regression for mapping from
task space to joint space using standard regression can lead
to inconsistent predictions [17]. In [18] the human pose is
predicted using learned models (e.g. nearest neighbour); but
then an IK correction is required to fix the hand positions to
match the kinematic constraints imposed by the collaborative
robot. Also, authors reported it was too computationally
expensive to be used for online planning.



C. Digital Human Models for Ergonomics

A collaborative robot can be used to assist the human
worker and improve ergonomics at work [19]. Ergonomics
scores typically rely on kinematics and dynamics information
about the human’s movement, which are often extracted from
simulations of Digital Human Models (DHMs). There are
two main types of DHMs: the first are musculo-skeletal
models, which are rather complex, have many degrees of
freedom, and allow the analysis of the human movement by
simulating the muscular efforts [20]; the second are rigid
body models, which are simplified models with less degrees
of freedom, where the human is basically represented as
a humanoid robot made of rigid body links [19]. Such
a DHM can be used to reproduce a variety of motions
demonstrated by humans operators and captured via motion
tracking devices [21]. While the first ones are rather complex
and expensive in terms of computational resources (it can
take several minutes to simulate a small movement), the
second ones are simpler but faster to simulate. As such, they
are better suited for real-time applications such as model-
based prediction, control and ergonomics assessment [19].
Several ergonomics scores exist (e.g., RULA, REBA), and
they are primarily based on postural information [22].

III. PROBLEM FORMULATION

Notation: In our study, the human is represented by a
DHM, a rigid body model with n degrees of freedom. The
notation presented in Table I is used for the DHM. The robot
state is determined by xR, ẋR, i.e., the Cartesian position and
velocity of its end-effector (EE).

We consider a cooperating human-robot interaction sce-
nario, where human and a robot manipulator interact to
perform a joint task. The robot’s task trajectory at the EE is
known at each time step2: {ẋR(t)}T−1

t=0 . The two agents are
physically coupled at their EEs; the robot is leading (leader
role), while the human (follower role) is guided by the robot;
hence, we assume ẋ = ẋR. We assume a rigid, constant
roto-translation between the two frames. Given the current
human joint configuration q (known, we suppose its measure
is accessible to the robot) and the robot EE velocity ẋR,
we want to predict the human joint velocity q̇. Since the
human is over-actuated, we want to predict a distribution of
solutions that capture the “preference” of human movement
(i.e., analogously to the concept of most likely solutions
[10]); such solutions must be kinematically feasible, i.e., they
must verify that ẋ = J(q)q̇. The problem can be formalized
as computing the conditional probability:

p(q̇|q, ẋ) s.t. ẋ = J(q)q̇ , (1)

where the second term is the kinematic constraint which
determines the set of possible solutions.

2In the following, we drop the time dependence t in the equations, unless
necessary, to improve the readability of the equations.

IV. BACKGROUND

A. Kinematics for redundant DHMs

A redundant3 DHM is a DHM that has more degrees of
freedom than the number nominally required to perform a
given set of tasks (n > m). Redundancy yields increased
dexterity and versatility for performing a task due to the
infinite number (∞n−m) of joint motions which produce the
same EE motion. Given an EE pose x ∈ Rm, the space which
contains all the solutions of the IK equation {q : x = f(q)}
is defined as the inverse kinematics’s manifold Mx. It is
considered a union of more simple and continuous manifolds,
called “self-motion manifold” (Ms) [23]. Any change of
joint configuration (q̇s) along a self-motion manifold is called
“self-motions” and it does not change the position of the EE
(J(q)q̇s = 0). The space containing these joint velocities is
the null-space of the Jacobian matrix evaluated in q, which
is the set of vectors q̇s which satisfy J(q)q̇s = 0 and with
q̇s 6= 0. A basis for the null space of J(q) is composed of
the columns of the matrix VN = [µ1, ..., µn−m]; this matrix
can be obtained by singular value decomposition:

J = USV > = U(SR 0)

(
V >R
V >N

)
(2)

where VR and VN are the range and the null-space com-
ponents, respectively [17]. Thus, each self-motion velocity
could be represented by a linear combination of the columns
of VN : q̇s = VN (q)y, where y ∈ Rk is the vector of the coef-
ficients of the linear combination. This consideration is par-
ticularly useful for interpreting local redundancy resolution
technique: each movement in the joint state can be seen as the
sum of the minimal velocity needed to match ẋ plus a move-
ment in the joint space which has no effect in the workspace.
In the literature, this approach is usually referred to as the
dual projection method: the joint velocity is computed as
q̇ = J†W (q)ẋ + [I − J†W (q)J(q)] z(q), with the weighted
pseudo-inverse J†W (q) = WJ>(q)[J(q)WJ>(q)]−1 that
instantaneously minimizes the symmetric weighted quadratic
form q̇>W−1q̇, and z(q) ∈ Rn is a joint velocity projected
onto the null space of the manipulator Jacobian and thus on
the tangent space of the self-motion manifold. Typically, z(q)
is designed as a potential function that minimizes a desired
cost function C(.) [24][25].

B. Gaussian Processes

A Gaussian Process (GP) [7] is a collection of random
variables such that any finite collection has a joint Gaussian
distribution. In regression the random variables represent the
value of the function f(x) ∈ Y for the given input x ∈ X .

A GP, denoted by f(x) ∼ GP(m(x), k(x, x′)), is entirely
characterized by the mean m(x) = E[f(x)] and covariance
k(x, x′) = E[(f(x) − m(x))(f(x) − m(x))]>, which is
symmetric and positive semi-definite.

Let D = {(xi, yi)|xi ∈ X , yi ∈ Y} be a training set and
(x∗, y∗) a point we did not observe in D. The GP predictive

3The reader may notice that “redundant DHM” is equivalent to “redundant
robot”, since the DHM is modeled essentially as a robot with rigid bodies.



Fig. 2. Flowchart of the offline training: (1) We collect human movements using a motion capture suit. The joint states are passed to a digital human
model and they are used to calculate the Jacobian at each joint configuration. From the digital human model we record also the dataset D. (2) We project
the joint velocities q̇ on the null space of the Jacobian; at the first iteration of the algorithm the matrix W used for the pseudo-inverse is an identity matrix.
(3) The projected dataset is used to train k independent GP. (4) We invert the projection to obtain a distribution over q̇ and we calculate the likelihood;
(5) We optimize the W matrix accordingly to the likelihood using a gradient free optimizer and we repeat from point (2).

Fig. 3. Flowchart of the online prediction: Given an EE trajectory imposed
by the robot and the knowledge of the initial human state we can predict a
distribution over the future human states. To do that we sample on the human
joint velocity q̇ calculated with our method (MI-NsGP) then we integrate the
current human state, in this way we could propagate the uncertainty to the
next human state. We repeat this procedure throughout the EE trajectory, in
this way we create a probabilistic estimation of the human joint trajectory
(Monte Carlo rollout).

distribution for the output y∗ at the test input x∗, given in
vector form, is

p(y∗|D, x∗) = N (µ∗,Σ∗),

µ∗ = k>∗ (k +Kerr)
−1y,

Σ∗ = k∗∗ − k>∗ (k +Kerr)
−1k∗

where, given a kernel function k(., .) : R × R → R we use
the notation k = k(x, x), k∗ = k(x, x∗), k∗∗ = k(x∗, x∗)
and Kerr is the measurement error variance. In this work,
we use the radial basis function (RBF) kernel: kσ2,λ(x, y) =

σ2exp(− ||x−y||
2

2λ ), λ > 0, where, the parameters (σ2, λ) are
chosen by maximizing the marginal likelihood P (y|(σ2, λ)).

V. METHOD

We consider a DHM with n degrees of freedom. We
assume that the human/DHM follows this classic control law
from robotics (section IV-A, [24], [25]):

q̇ = J†W (q)ẋ+ (I − J†W (q)J(q))z(q) (3)

where z(q) is an unknown vector of null-space velocities,
often it is calculated as the gradient of a cost function C(.).

The weights W of the weighted pseudo-inverse J†W are also
unknown. The EE velocity ẋ is known. Our objective is to
learn z(q) and W from data. In this way, the solutions we
find must always satisfy the kinematic constraint: ẋ = J(q)q̇.

A. Learning the null-space velocity with Gaussian processes

Let us consider a dataset D of DHM motions, composed
of ND pairs: a tuple with the current joint state q ∈ Rn
and the EE velocity ẋ ∈ Rm, and the joint velocity q̇ ∈
Rn: D = {(qi, ẋi), q̇i}ND

i=1. Such a dataset can be generally
acquired via human motion tracking (see (1) in Fig. 2).

At this stage, we consider the values of the weight matrix
W of Eq. 3 to be known, for example W = I , where I is
the identity matrix (see section V-B for learning W ).

Instead of learning directly the value of z(q), we notice
that we can write [26]:

VN (q)y = (I − J†W (q)J(q))z(q) (4)

where VN (q) is the basis of the null space of the Jaco-
bian J(q), which is computed using Singular Value Decom-
position (SVD), and y ∈ Rk represents the coordinates of
the self-motion joint velocity in the null space.

We learn y instead of z(q) because it is the minimal size
representation for a self-motion joint velocity (see (2) in
Fig. 2). We therefore project every joint velocity q̇ of our
dataset to the null space of the Jacobian J(q) evaluated in
the current joint configuration q by applying:

y(q, ẋ) = V †N (q)
(
q̇ − J†W (q)ẋ

)
(5)

Thus, given the dataset D = {(qi, ẋi), q̇i}ND
i=1, we apply

Eq. 5 to obtain DNW = {(qi, ẋi), yi}ND
i=1.

We learn y(q, ẋ) using GPs (sec. IV-B) that map the
current joint state and the EE velocity to the joint velocity:

y|(q, ẋ) ∼ GP
(
m(q, ẋ), k((q, ẋ)i, (q, ẋ)j)

)
(6)

After experimental testing and, following [27], we train k
independent GP, one for each dimension of y. We choose
this approach to keep the method simple, but we expect that
the performance of our method could be improved with the



right choice of multidimensional GP and we will investigate
this improvement in future work. Since Eq. 5 is linear, given
the Gaussian distribution p(y) ∼ N (µy,Σy), we can get the
Gaussian distribution of p(q̇) ∼ N (µq̇,Σq̇) by inverting it:

µq̇(q, ẋ) = J†W (q)ẋ+ VN (q)µy (7)

Σq̇(q, ẋ) = J†WΣẋ(J†W )> + VN (q)ΣyVN (q)> (8)

where Σẋ is the covariance matrix of the noise of ẋ learned-
from the data (see (4) in Fig. 2).

B. Learning the parameters W

We want to find the values of W that maximizes the
likelihood of the q̇ of the training set (see (5) in Fig. 2). To do
so, we introduce a score function S(W ) that is maximized
with a non-linear optimizer: S(W ) = 1

ND

∑ND

i=1 L(q̇i|W ),
where L(q̇i|W ) is the likelihood of q̇i given a particular
value of W and ND is the size of the training set. For a
given W and q̇, L(q̇|W ) can be computed using µq̇ and Σq̇
from Eq. 8 (since µq̇ and Σq̇ define a multivariate Gaussian
distribution and we know ẋ and q from the training set):

L(W |q̇) =
1√

(2π)k|Σq̇|
exp

(
−1

2
(q̇ − µq̇)>Σ−1

q̇ (q̇ − µq̇)
)

where |Σq̇| denotes the determinant of Σq̇ , µq̇ = µq̇(q, ẋ),
and Σq̇ = Σq̇(q, ẋ).

Any non-linear optimizer can be used to maximize S(W ).
For simplicity and robustness, we used BIPOP-CMA-ES
[28], which is a gradient-free stochastic optimizer available
in the “pycma” Python library4. In each iteration of the
algorithm new candidate solutions of W are generated by
variation. Then, some solutions are selected to become the
parents in the next generation based on the score function
S(W ) evaluated after learning y(q, ẋ) using GPs as ex-
plained in the previous section.

C. Prediction Phase

Once the model is trained, it can be used to predict the
human joints’ trajectories given the current configuration
qt and the expected EE trajectory executed by the robot
{xd1, . . . , xdT }. At each time step we can sample the EE veloc-
ity as: ẋt ∼ 1

∆ t

(
xdt+1 − f(qt) +N (0,Σẋ)

)
, where ∆t is the

distance between two time-steps, Σẋ is the robot repeatability
when executing a trajectory (which we estimated empirically
by executing a desired trajectory 10 times).

At each time-step, given the current configuration qt, we
can get µq̇(qt, ẋt) and Σq̇(qt, ẋt) by querying the model
(Eq. 8). From this multivariate Gaussian distribution, we
can sample q̇t, which allows us to compute the value of
qt+1 ∼ qt + ∆t N (µq̇(qt, ẋt), σq̇(qt, ẋt)). To sample a
whole trajectory, we repeat this procedure by propagating the
sampling over time from t = 0 to T − 1. If we repeat this
sampling procedure many times for a given trajectory, we get
a Monte-Carlo estimation of the distribution over the human
joint trajectories according to our model [29]. A schema of
the prediction phase is depicted in Fig. 3.

4https://github.com/CMA-ES/pycma

VI. EXPERIMENTS

To evaluate our method (denoted as MI-NsGP), we com-
pare it experimentally to alternative approaches that use only
a subsets of our elements (i.e., we make several ablation
experiments):

1) MI-NsGP: Null-Space Gaussian Process with weight
identification: our method, which learns both W and
y(q, ẋ) (Sec. V): q̇|(q, ẋ) ∼ J†W (q)ẋ+VN (q)GP(q, ẋ)

2) GP: learning directly from data: q̇|(q, ẋ) ∼ GP(q, ẋ).
3) W-IK: learning W but not y(q, ẋ) (i.e., y(q, ẋ) = 0)

q̇ = J†W (q)ẋ
4) NsGP: learning y(q, ẋ) but not W (i.e., W = I)

q̇|(q, ẋ) ∼ J†I (q)ẋ+ VN (q)GP(q, ẋ)
5) Sb-M: fitting a normal distribution N (µy,Σy) on the

training set for y(q, ẋ) and not learning W :
q̇|(q, ẋ) ∼ J†I (q)ẋ+ VN (q)N (µy,Σy)

where GP(q, ẋ) denotes the distribution that corresponds to
the GP model learned from data. The same training set and
test set was used for all the methods.
Moreover we compared our method with a state-of-the-art
method for predicting joint trajectory while satisfying a task
space motion primitive:

6) ProMP [13]: We fit both the joint space and opera-
tional space using probabilistic movement primitive.
And then we use Bayesian task prioritization to con-
dition the joint space using the operational space.

All methods were evaluated on three experiments. The first
(5R) consists of predicting the joint state of a simulated 5R
planar robot controlled by a biased IK function. The second
(EXP1) and third (EXP2) consist in predicting the human
posture (i.e., joints) during a co-manipulation trajectory,
where a human is physically attached to the Franka robot
to do a task.

A. Toy problem: 5R Manipulator

We simulate an overactuated planar robot with 5 degrees of
freedom. Like a human, this 5R planar robot is overactuated
for the two-dimensional position of its EE.

The robot controller is conceptually similar to the (un-
known) human controller (Eq. 3), except that the ground
truth is known (W, z(q)). The 5R robot is controlled using
the control law from Eq. 3, with:

z(q) =
∇C(q)
∇q

+N (0, σz) (9)

To define a z(q) similar to the human model, we hy-
pothesized, as in [10], that the joint velocity minimizes an
ergonomic cost function C(q) that depends on the joint con-
figuration. We designed a cost function similar to the RULA
continuous ergonomic score [22]. To define W , we assumed
that some joints have more contribution than others (for
example, in humans, the shoulders and elbows are typically
more involved than lumbar’s joints, but any musculoskeletal
disorder can change this distribution drastically). To model
these situations, we choose a weight matrix W that has
non-uniform values (e.g., a low value for the first joint



Fig. 4. Comparison of methods for joint velocity prediction: (a) Mean-Log-Likelihood of the predicted joint velocity (b) R-MSE between the mean of
the predicted joint velocity and real value (c) Mean-LogLikelihood of the EE velocity (d) R-MSE over the EE velocity. The methods were evaluated on
three experiments: (red) simulated 5R planar robot controlled by a biased IK function; (blue) human posture prediction during a human-robot collaboration
task; (green) human posture prediction during a human-robot collaboration task using different tasks in the training-set and in the test-set).

means that it is not used much). Specifically, we selected
a diagonal and positive definite matrix with values bounded
in [0 + ε, 2 − ε]. We choose to bound the values otherwise
we risk falling into a singular configuration in which a joint
never moves or always moves, which appears far from a
human-like behavior. Starting from a configuration q0, we
apply ND times the control law specified in Eq. 3 and 9, with
a random EE velocity ẋi ∈ [−umax, umax]. The successive
joint state is then updated as qt = qt−1 + q̇t−1∆t + ωa∆2

t ,
where ωa ∼ N (0,Σa) is a Gaussian noise. If the robot
falls in a singular configuration, the data collection stops and
restarts from the q0 configuration. At each time step t, we
collected {(q, ẋ), q̇}t to create the training set D. The dataset,
composed of ND = 103 points, was normalized and divided
into a training and a validation set following the proportion
70/30. We trained the models using the training set. Each
GP was implemented in Python using gpytorch library, with
a constant mean and the RBF kernel. The optimization was
done on a Intel CoreTM i7-8850H with 6 cores at 2.6GHz,
requiring about 10 hours. We repeated the experiment 10
times varying the starting point and the parameters of the
control model (W ).
Results: We first analyze the quality of the predicted distri-
bution by computing the mean log-likelihood over the test set
(red box-plots in Fig. 4a). Overall, our method (MI-NsGP)
leads to significantly better likelihood values than all the
other control approaches. The worst likelihoods are obtained
by the methods that do not use the null space. Among
the methods that use the null space, learning W makes a
significant difference. The low likelihood for ProMP is due
to the lack of a primitive for the movements, which results
in a large variance for the solution obtained using ProMP.
We then focused on the mean prediction by computing the
root mean square error on q̇ (red box-plots in Fig. 4b)
(we ignored the variance). As before, the best results are
obtained with our method, and using the null space makes a
significant difference. However, learning a simple Gaussian
model instead of a GP leads to very bad mean square errors

whereas it corresponds to high likelihood values (red box-
plots in Fig. 4a). This means that this method has a very large
variance, which makes the test set likely (high likelihood
score) but the predictions very inaccurate. Also in this case,
the solutions found using the ProMP are inaccurate.

Last, we computed the mean log-likelihood and the root-
MSE for the EE position (red boxplots in Fig. 4c and
Fig. 4d). As expected, perfect scores are obtained with the
methods that exploit the null space (W-IK, Sb-M, NsGP, MI-
NsGP), but learning directly a GP that predicts q̇ directly
leads to significant errors in the EE position. The solutions
obtained using ProMPs have lower score since the task space
has large variance trying to fit a ProMP to trajectories that are
not related to a movement primitive. These results suggest
that if the human’s IK model is similar to the one we used for
the 5R robot, our method is likely to improve the quality of
posture prediction while satisfying the kinematic constraint.

B. Human IK prediction
We then evaluated our method in two experiments (EXP1

and EXP2) where a human is interacting with the Franka
Emika Panda robot. The human is facing the robot, his
right hand is in physical contact with the robot’s EE (see
Fig. 1 and video attachment). The Xsens MVN suit is
used to capture the human posture (and to have the ground
truth of the posture prediction). The human poses are fitted
(retargeted) to a DHM of 66 segments (Fig. 5a), based on
the Xsens MVN model. The segments are scaled with the
human height, while the dynamic properties (e.g., mass) are
computed from anthropometric data available in literature
[19]. We modeled the human spherical joints collected by
the motion capture suit as a series of 3 one-dimensional
revolute joints, where each DoF is controlled by a single
actuator. The resulting DHM posture is represented by the 66
joints. A URDF (Universal Robot Description Format) model
is then created to represent the kinematics and dynamics of
the DHM, and used by the Pinocchio library [30] to calculate
the Jacobian going from the human pelvis to the right hand
for a given human joint configuration.



In this paper, we predicted only the joints that belong to
the active kinematic chain, i.e., joints that connect segments
from the pelvis to the right hand. The reason is twofold:
first, a simpler model speeds up the computation; second, it
is the set of joints that are used to compute ergonomics score
(e.g., RULA, back angle), which is our final objective. The
human posture is thus characterized by 24 revolute joints and
the resulting dataset D = {(qi, ẋi), q̇i}ND

i=0 contains q ∈ R24,
i.e., the joints which link the human pelvis to the right hand,
and x ∈ R6, i.e., the EE position and orientation.

We evaluated our method on two experiments: In EXP1
the training set used to train the algorithm consists of
postures recorded during the repeated execution of similar
co-manipulations. The robot executes four “pick and place”
trajectories spanning 50cm, and its orientation is maintained
constant. Each trajectory is repeated 10 times: during the
first experiment (EXP1) the first five trajectories comprise the
training set, and the five remaining ones, the test set. Fig. 6a
shows the intrinsic variability of the human repetitions (for
the same EE movement, the joint trajectories change). In
EXP2 the training set consists of pseudo-random trajectories
that do not necessarily refer to motion primitives. With
this second experiment we tested the ability of our method
to generalize to new movement primitives. To do that we
collected a not pre-defined training set of “pick and place”
movements controlling the robot using a Joystick. We trained
our algorithm on this dataset and we tested on the same
test-set as EXP1. In the prediction phase we sampled 10
trajectories using the Monte-Carlo approach and for each of
them we calculated four different ergonomics scores from the
state of the art in human ergonomics [19]: RULA, REBA,
RULA continuous and cumulative back angle (Fig. 5b). The
purpose is to show that the probabilistic IK also impacts the
prediction of ergonomics scores, which is critical information
for a collaborative robot.
Results: We evaluate the performance of our method on
predicting the human posture when both in the training
set and the test set are considered the same movement
primitive (EXP1). We analyze the quality of the predicted
distribution by computing the mean log-likelihood over the
test set (blue in Fig. 4a). Overall, our method (MI-NsGP)
leads to significantly better likelihood values than all the
control approaches. Moreover its performance is compa-
rable with the state-of-the-art method for human posture
prediction (ProMP). In fact MI-NsGP performs better in
the median and max value of the 95th percentile (MI-
NsGP: 9.32[8.81, 9.59], ProMP: 9.02[8.20, 9.46]). Regard-
ing the the root-mean-square error on q̇ (Fig. 4b), our
method is comparable with the SoA method (MI-NsGP:
(2.19[1.24, 3.38])×10−3, ProMP: (2.30[1.37, 3.83])×10−3)
and presents better results with respect to the other model-
based methods (W-IK, Sb-M, NsGP) and with respect to
using the GP in the original space (Fig. 4b). Regarding the
ability to satisfy the kinematic constraint, we observed a
behavior similar to the toy-problem. In fact, model based
methods (W-IK, Sb-M, NsGP, MI-NsGP) always have bigger
likelihood and smaller root-mean-square error with respect

(a)

(b)
Fig. 5. (a) The DHM in Simulation, showing the variance of the solutions
calculated via Monte-Carlo integration. (b) Ergonomic scores computed on
different sampled trajectories: RULA, REBA, RULA continuous, cumulative
back angle.

to GP regression. ProMP results are also accurate in this
case because the training set and the test set belong to the
same movement primitive. The superiority of model based
methods is even more evident at trajectory level: if we use the
GP alone to predict the DHM postures while the prediction
horizon is growing, the R-MSE between the EE of the DHM
and the robot’s EE (the red progression in Fig. 6b) grows
too fast to be used in a safe human-robot collaboration
scenario while if we use MI-NsGP (the green progression
in Fig. 6b) the error is acceptable. In the case of the human,
W is unknown; thus, it is not straightforward to evaluate
the resulting values from model identification. Nonetheless
some considerations are possible: even considering different
training-sets, the optimization converges to the same values
of W ; these values agree with our expectations regarding
the distribution of the joint velocity. In fact, the joints which
move less (e.g. lumbar joints) have a smaller value with
respect to those which are more involved in the execution
of the movement (e.g. shoulder and elbow). In EXP2 we
evaluate the ability of our method to generalize the informa-
tion learned for one trajectory to another. The results show
that our method outperforms the others both the likelihood
(MI-NsGP: 8.72[8.52, 8.81], ProMP: 8.0[7.44, 8.34]) and the
root-mean-square error (MI-NsGP: (4.34[3.93, 6.22])×10−3,
ProMP: (11.04[8.70, 15.25]) × 10−3) while continuing to
satisfy the kinematic constraint (green in Fig. 4). The results
suggest that our method could be used to have a probabilistic
estimation of the human posture also for trajectories which
do not share the same movement primitive.

VII. CONCLUSIONS

We presented a method for predicting human posture in
a Human-Robot Collaboration scenario where the human
hand motion is constrained by the robot’s end-effector. We
propose a two-phase method: in the first phase, we leverage
a dataset of human demonstrations to learn a distribution
over the null-space of the human Jacobian using a Gaussian
Process; in the second phase we optimize the weights of
the weighted pseudo-inverse of the Jacobian. Our method



(a)

(b)
Fig. 6. (a) Human joint trajectories (shoulder roll and pitch) in response
to the same EE movements. (b) MSE in offline prediction with GP and
MI-NsGP.

computes a probabilistic estimation of the future postures
that satisfy the kinematic constraints imposed by the physical
link between the human and the robot, and at the same time
is coherent with the human preferences of movement.

In the future, we want to consider the full human model
in the posture prediction and integrate the algorithm into our
framework for ergonomics control, which aims to optimize
a collaborative robot’s motions to maximize the comfort and
the ergonomics of the human collaborator. A byproduct of
our method is the probabilistic computation of ergonomics
scores for a given robot’s EE trajectory, which is a critical
element for planning the robot’s trajectories. Further, we
want to remove the leader/follower hypothesis, and address
the case where the leadership role may vary over time.
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