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Nonanalytic nonequilibrium field theory: Stochastic reheating of the Ising model

Camille Aron1,* and Manas Kulkarni2
1Laboratoire de Physique, École Normale Supérieure, CNRS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France

2International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, 560089 Bangalore, India

(Received 30 June 2020; accepted 28 November 2020; published 18 December 2020)

Many-body nonequilibrium steady states can be described by a Landau-Ginzburg theory if one allows
nonanalytic terms in the potential. We substantiate this claim by working out the case of the Ising magnet in
contact with a thermal bath and undergoing stochastic reheating: It is reset to a paramagnet at random times. By
a combination of stochastic field theory and Monte Carlo simulations, we unveil how the usual ϕ4 potential is
deformed by nonanalytic operators of intrinsic nonequilibrium nature. We demonstrate their infrared relevance
at low temperatures by a renormalization-group analysis of the nonequilibrium steady state. The equilibrium
ferromagnetic fixed point is thus destabilized by stochastic reheating and we identify the new nonequilibrium
fixed point.
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I. INTRODUCTION

The Landau-Ginzburg theory is a monumental cornerstone
of modern physics that unifies the various equilibrium phase
transitions of matter1 in a common framework. It relies on the
effective description of many-body systems in terms of a local
order-parameter field, say, ϕ(x). The probability distribution
at equilibrium is given by Peq[ϕ] ∼ exp(−Feq[ϕ]), where the
free-energy functional Feq[ϕ] is built on simple principles:
locality, symmetry, stability, and analyticity. Subsequently,
Feq[ϕ] can be fed to a renormalization-group (RG) analysis
in order to access the universal infrared features of the many-
body system.

Away from thermal equilibrium, nonequilibrium phase
transitions can be studied in the framework of nonequilibrium
extensions to the dynamical field theories classified by Hohen-
berg and Halperin [1]. The theories that perhaps have received
the most attention are those for which the dynamics conserve
a global quantity such as the particle number, i.e., whose
field-theoretic description revolves around the model B of
Hohenberg and Halperin. Examples include driven-diffusive
systems [2,3] such as the driven lattice gas [4,5], but also
active matter systems [6] displaying, e.g., phase separation
or pattern formation [7,8]. Another class of nonequilibrium
systems is the so-called driven-dissipative systems, with no
conserved quantity. This includes growth processes, such as
the directed percolation [9,10] or the Kardar-Parisi-Zhang
problems [11,12].
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1The exception being topological phase transitions.

While the quest for a unified principle-based approach to
all those nonequilibrium theories still seems out of reach, a
more reasonable ambition is to restrict the focus to nonequilib-
rium steady states (NESSs), i.e., time-translational invariant
nonthermal states described by a stationary probability mea-
sure PNESS[ϕ]. Recent developments have led us to propose
the following claim.

Claim. A Landau-Ginzburg theory can be developed for
NESSs at the cost of abandoning the principle of analyticity of
the Landau-Ginzburg functional FNESS[ϕ] ≡ − log PNESS[ϕ].

This idea emerged out of a heuristic observation in the con-
text of a driven-dissipative quantum antiferromagnet with a
Z2-symmetric staggered order parameter ϕ [13]. The idea was
then sharpened in Ref. [14] where the claim was formulated
in the framework of the Ising magnet undergoing driven-
dissipative dynamics. The explicit computations were made
possible by a mean-field approximation: The magnetization ϕ

was assumed to be homogeneous throughout the magnet. The
static steady state PNESS(ϕ) ∼ exp[−VNESS(ϕ)] was computed
in a couple of simple concrete examples, such as a two-bath
Ising model. They unveiled nonanalytic Landau potentials of
the form

VNESS(ϕ) = a2ϕ
2 + a4ϕ

4︸ ︷︷ ︸
analytic

+ cα|ϕ|2+α︸ ︷︷ ︸
nonanaltyic

+ · · · , (1)

where the exponent α, with 0 < α < 2, depends on the low-
energy features of the environment and can be noninteger
valued. The coefficients a2, a4, and cα are smooth functions
of the external parameters and cα vanishes at equilibrium. The
nonanalytic terms are therefore of intrinsic nonequilibrium
nature.2

The results of Ref. [14] definitely introduced an important
conceptual milestone to the construction of a field theory for

2Conversely, the absence of such nonanalytic terms does not imply
equilibrium.
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nonequilibrium steady states, specifically the loss of analytic-
ity of the Landau potential. This heralds a possible extension
of the concept of universality class to nonequilibrium steady
states: Critical exponents are determined not only by the
dimensions of the system and the symmetries of its order
parameter, but also by the low-energy features of its environ-
ment.

However, questions remain to ascertain that these find-
ings are not artifacts of the mean-field approximation that
was used, but are indeed robust nonequilibrium field-theoretic
hallmarks present in finite dimensions.

(i) Is there a finite upper critical dimension duc above which
fluctuations are irrelevant to the nonequilibrium steady state
and the mean-field approximation is exact?

(ii) Do the nonanalytic terms of the nonequilibrium Landau
potential survive in the infrared (IR)? Or are they washed
out when the order parameter is coarse grained on larger and
larger scales?

(iii) Do the nonanalytic terms survive fluctuations below
the upper critical dimension?

In this paper we address these general questions in the
specific framework of the driven-dissipative dynamics of the
Ising model undergoing stochastic reheating. We introduce
the nonequilibrium model and its field-theoretic description in
Sec. II. In Sec. III we present analytical arguments that give
positive and unambiguous answers to the first two questions
above. Importantly, these positive answers validate the claim
stated above beyond the scope of the specific nonequilibrium
dynamics studied here. We close in Sec. IV by presenting solid
numerical arguments in favor of a positive answer to the third
question and by discussing possible routes to complete the
field-theoretic picture initiated in this work.

Let us summarize the key results.
(a) The field theory for nonequilibrium steady states in

finite dimensions is found to be a deformation of the equi-
librium ϕ4 theory by nonanalytic operators.

(b) The nonanalytic operators are shown to be IR relevant
or IR irrelevant, depending on the bath temperature.

(c) The duc is conjectured to be 4, i.e., the same as the
equilibrium upper critical dimension.

(d) Above d = 4, the Landau potentials at the IR fixed
points are computed exactly.

(e) Supporting evidence from Monte Carlo numerics is
provided in both d = 4 and d = 2.

II. KINETIC ISING MODEL WITH STOCHASTIC
REHEATING

We address the questions listed above in a simple
framework: a driven-dissipative many-body system with no
conserved quantity and whose nonequilibrium steady state
is homogeneous and isotropic. Specifically, we consider the
infamous Z2-symmetric Ising magnet whose relaxation dy-
namics is generated by the coupling to an equilibrium bath
at temperature T (inducing thermal spin flips) and whose
nonequilibrium drive is realized by a stochastic reheating
protocol: The magnet is randomly reheated, with rate r, to
an infinite-temperature paramagnetic state. Between two re-
heating events, the dynamics is that of a quench from infinite
temperature to the bath temperature T .

The choice of stochastic reheating as the nonequilibrium
drive is guided by the expectation that the mean-field descrip-
tion of our many-body problem reduces to a diffusive single
particle undergoing so-called stochastic resetting: It is reset
to a given position at random times with rate r [15]. The
generation of nonequilibrium states by stochastic resetting
is a simple alternative compared to traditional setups where
multiple reservoirs are attached to the system. Over the past
decade, a body of exact results has already been obtained in
different implementations including space- or time-dependent
resetting rate [16], resetting to a random position [17], gen-
eralizations to higher dimensions [18], and extended systems
in the Kardar-Parisi-Zhang universality class [19]. The use of
stochastic resetting as a nonequilibrium drive to many-body
systems was pioneered very recently in Ref. [20] where, con-
trary to our case, the Ising model was reset to an ordered
ferromagnetic state, yielding much different dynamics and
ensuing nonequilibrium steady states.

A. Instability of the ferromagnetic fixed point

1. Equilibrium

The absence of stochastic reheating, when r = 0, corre-
sponds to thermal equilibrium. The Ising model undergoes
Glauber dynamics governed by the detailed balance at the
temperature T of the bath. This is often referred to as the
kinetic Ising model. The corresponding field-theoretic de-
scription is given by the well-known O(n = 1)-symmetric
ϕ4 theory [21], where the real field ϕ(x) is a coarse-grained
measure of the magnetization, say, on cells of linear size l
[22]. The scale l plays the role of the ultraviolet cutoff of the
field theory. Cooling down the bath temperature across the
critical temperature Tc, the phase transition from the param-
agnetic phase to the ferromagnetic phase is described by the
spontaneous symmetry breaking of the Z2 symmetry when the
shape of the Landau potential changes from a parabola to a
double-well Mexican hat.

2. Nonequilibrium steady state

The case of interest, when the reheating rate r > 0, corre-
sponds to nonequilibrium dynamics. After a transient regime
which depends on the initial state preparation, the many-body
dynamics is expected to reach a NESS described by a static
probability distribution PNESS[ϕ].

Importantly, we can readily argue that a finite reheating rate
r > 0 is a singular nonequilibrium perturbation in the sense
that it changes drastically the physics of the ordered phase
that is found at equilibrium (r = 0). Indeed, the stochastic
reheating protocol effectively restores the Z2 symmetry that
is spontaneously broken in equilibrium at low temperatures.
This simple observation has important consequences.

(i) At fixed r > 0, the average local magnetization vanishes
identically in the steady state, irrespective of the bath tem-
perature: 〈ϕ(x)〉 = 0 where the average is taken with respect
to PNESS. However, the vanishing of the order parameter at
all temperatures must not hide the presence of two distinct
nonequilibrium phases.

(a) One is a paramagnetic phase at high tempera-
tures T > Tc, where the system is always and everywhere
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paramagnetic. There the stochastic reheating protocol is
expected to be mostly inconsequential since those long-
wavelength modes with relaxation timescales longer than the
reheating timescale set by 1/r mostly exist at infinite temper-
ature, while the modes with timescales shorter than 1/r have
the time to thermalize to the temperature T .

(b) The other is an ordering phase at low temperatures
T < Tc, where after each reheating event the system under-
goes the much-studied coarsening dynamics of a ferromagnet
after a quench from infinite temperature and across the phase
transition [23–25]: Ferromagnetic domains of opposite mag-
netization compete and grow as ξ (t ) ∼ √

t . The stochastic
reheating halts this growth, yielding a typical correlation
length ξmax ∼ 1/

√
r.

These phases are not distinguishable by the vanishing
global order parameter, but they can be captured, e.g., by the
fluctuations of local order parameter.

(ii) At bath temperatures T < Tc, there is a discontinuous
phase transition when turning on r between the equilibrium
ferromagnet [with 〈ϕ(x)〉 �= 0] and the nonequilibrium steady
state [with 〈ϕ(x)〉 = 0].

(iii) At finite r and at scales larger than the correlation
length l � ξmax, the corresponding nonequilibrium Landau-
Ginzburg functional can only have a single global minimum
at ϕ = 0.

From an RG viewpoint, this means that stochastic reheat-
ing is a relevant perturbation that destabilizes the equilibrium
low-temperature (Gaussian or Wilson-Fisher) fixed point, ir-
respective of the dimension.

B. Correspondence with quench dynamics

In the presence of stochastic reheating with rate r, the
dynamics of the field from time t to t + dt is governed by
the following Poisson process: With probability 1 − rdt , the
field ϕ(x, t + dt ) is set by the usual stochastic dynamics in the
absence of reheating, and with probability rdt , the field is set
to ϕ(x, t + dt ) = 0 for all x. The associated Fokker-Planck
equation governing the evolution of the probability distribu-
tion of the magnetization field P([ϕ]; t ) reads [15]

∂t P([ϕ]; t ) = −L0[ϕ] · P([ϕ]; t ) − rP([ϕ]; t ) + rδ[ϕ], (2)

where L0[ϕ] is the (linear) Fokker-Planck operator generat-
ing the time evolution of the probability distribution in the
absence of reheating (i.e., r = 0), to be discussed below in
Eq. (6).

1. Renewal formula

The task of computing the stationary measure PNESS[ϕ] ≡
limt→∞ P([ϕ]; t ) of the stochastic reheating problem in
Eq. (2) can be much simplified by realizing that it is of the
form

PNESS[ϕ] = r
∫ ∞

0
dt e−rt P0([ϕ]; t ), (3)

where P0([ϕ]; t ) is the time-dependent probability distribution
after a quench from infinite temperature and in the absence of
reheating. Indeed, inserting Eq. (3) into Eq. (2), one can check

that P0([ϕ]; t ) is the solution of the Fokker-Planck equation

∂t P0([ϕ]; t ) = −L0[ϕ] · P0([ϕ]; t ), (4)

with the initial condition P0([ϕ], t = 0) = δ[ϕ]. This purely
dissipative dynamics will be briefly described below.

Equation (3) is referred to as the renewal formula [15,26]
and it has important implications. It connects the statics of a
fully nonequilibrium problem to the relaxation dynamics of
the field in contact with an equilibrium bath. As we will see
in Sec. III, this relation is instrumental to performing an RG
analysis in the NESS using the knowledge of what is known
about the relaxation dynamics of magnetization. In particular,
it tells us that field fluctuations can be neglected in the NESS
whenever it is legitimate to neglect them in the relaxation
dynamics; we therefore expect the upper critical dimension
of the stochastic reheating problem to be duc = 4. From a
numerical perspective, the renewal formula also implies that
PNESS[ϕ] can be simply reconstructed from the data of a
quench up to finite times on the order of a few 1/r. It is worth
noticing that although the integrand in Eq. (3) may be analytic
in the field, the integral itself can be nonanalytic.

2. Model A relaxation

The dynamics of magnetization after a quench from infinite
temperature is described by the initial condition ϕ(x, t = 0) =
0 and by the so-called model A dynamics [1,3] given by the
stochastic equation

η∂tϕ(x, t ) = −δFeq[ϕ]

δϕ(x, t )
+ ξ (x, t ), (5)

where η > 0 is a dimensionless friction parameter and
ξ is a Gaussian white noise with 〈ξ (x, t )〉 = 0 and
〈ξ (x, t )ξ (x′, t ′)〉 = 2η δ(x − x′)δ(t − t ′). Equivalently, the
model A dynamics can be characterized by its associated
Fokker-Planck equation (4) with the Fokker-Planck operator

L0[ϕ]• = −1

η

∫
dd x

δ

δϕ(x)

[
δFeq[ϕ]

δϕ(x)
• + δ

δϕ(x)
•
]
. (6)

Here Feq[ϕ] is the equilibrium Landau-Ginzburg free-energy
functional ensuring that the stationary measure of the stochas-
tic process is the equilibrium measure: limt→∞ P0([ϕ]; t ) =
Peq[ϕ] ∼ exp(−Feq[ϕ]). Following the set of principles of the
Landau-Ginzburg theory, the expression for Feq[ϕ] is local (it
involves a local free-energy density function of ϕ and ∇ϕ),
O(n = 1) symmetric, stable (it involves a confining potential),
and analytic in ϕ and ∇ϕ. This yields the usual ϕ4 theory, also
called the Ginzburg-Landau-Wilson model, reading

Feq[ϕ] =
∫

dd x

[
1

2
μϕ2 + 1

4
λϕ4 + · · · + 1

2
(∇ϕ)2 + · · ·

]
.

(7)

The various static parameters μ, λ, etc., and the dynamic
parameter η depend on the coarse-graining scale l . The mass
μ corresponds to the distance to criticality, i.e., μ ∼ T − Tc,
which diverges in the infrared away from criticality: μ(T ≷
Tc)

IR−→ ±∞.
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FIG. 1. Schematic of the renormalization of the nonequilibrium steady-state Landau potential VNESS(ϕ) of the Ising magnet undergoing
stochastic reheating with rate r and in d � 4. Red is used for quantities in the infrared regime. At bath temperatures T > Tc, the infrared fixed
point is simply the equilibrium fixed point of Eq. (14). For T � Tc, a cusp develops at ϕ = 0, yielding a new nonequilibrium fixed point. The
corresponding nonanalytic fixed-point potentials are computed explicitly in Eqs. (17) and (19). The equilibrium scenario (r = 0) is recalled
with dotted lines.

C. Nonequilibrium steady-state Landau-Ginzburg functional

In the following sections we argue that the nonequilib-
rium steady-state Landau-Ginzburg functional FNESS[ϕ] ≡
− log PNESS[ϕ] is of the form

FNESS[ϕ] =
∫

dd x

[
c1|ϕ| + a2ϕ

2 + c3|ϕ|3 + a4ϕ
4 + · · ·

+ 1

2
(∇ϕ)2 + · · ·

]
. (8)

This form follows the usual Landau-Ginzburg set of princi-
ples recalled above in Sec. II B except for the principle of
analyticity of the potential that has been abandoned. Indeed,
the terms in |ϕ|, |ϕ|3, etc., are nonanalytic at ϕ = 0. They are
of intrinsic nonequilibrium nature and their coefficient c1, c3,
etc., must vanish at thermal equilibrium (when r = 0) in order
to recover the equilibrium Landau-Ginzburg-Wilson theory.
The possible presence, below the upper critical dimension, of
nonconventional nonanalytic terms in the gradient expansion,
will be discussed in Sec. IV.

Anticipating the results that follow, we sketch the renor-
malization of the Landau potential in Fig. 1. While above the
critical temperature the infrared fixed point is the equilibrium
(paramagnetic) fixed point, the nonanalytic terms are relevant
below the critical temperature. We will compute explicitly

the corresponding nonanalytic fixed-point potential above the
upper critical dimension.

III. ABOVE THE UPPER CRITICAL DIMENSION

In this section we construct the nonequilibrium field theory
of the Ising model undergoing stochastic reheating dynamics
in dimensions above the equilibrium upper critical dimension
duc = 4. In those dimensions, the spatial fluctuations of the
equilibrium problem around its mean-field solution can be ne-
glected. Thus, making use of the renewal formula (3), solving
our nonequilibrium many-body problem reduces to solving
a single-particle problem: a diffusive particle undergoing the
Langevin dynamics

η∂tϕ(t ) = −∂ϕVeq(ϕ) + ξ (t ), (9)

with the initial condition ϕ(0) = 0 and where η > 0 is a
friction parameter, ξ is a Gaussian white noise with correla-
tor 〈ξ (t )ξ (t ′)〉 = 2ηδ(t − t ′), and Veq(ϕ) = μ

2 ϕ2 + λ
4 ϕ4 + · · ·

is the equilibrium potential of a coarse-graining cell. Here
we redefined the coefficients η, μ, λ, etc., that were in-
troduced in Eqs. (5) and (7) to include the volume of the
coarse-graining cell. Furthermore, at duc = 4 and above, all
the infrared equilibrium fixed points of the renormalization
group are Gaussian, that is,

Veq(	)
IR−→ V∗

eq(	) =

⎧⎪⎨
⎪⎩

+ 1
2	2 for T > Tc (paramagnet)

0 for T = Tc (critical)

− 1
2	2 + 0+	4 for T < Tc (ferromagnet),

(10)

where we introduced the rescaled fields 	 ≡ √
ηϕ for the

critical case T = Tc and 	 ≡ √|μ|ϕ for the noncritical cases
T �= Tc. In the latter cases, it will be also useful to introduce

the reduced reheating rate R ≡ rη/|μ| which flows to 0 in
the infrared limit. Owing to the linearity of the resulting
Langevin equation, the infrared limit of the nonequilibrium
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steady state P∗
NESS(	) can be computed exactly. Equivalently,

P∗
NESS(	) can be directly computed by solving the stationary

Fokker-Planck equation in the presence of stochastic reheat-
ing, namely,

0 = ∂	[∂	V∗
eq(	)P∗

NESS(	) + ∂	P∗
NESS(	)]

− RP∗
NESS(	) + Rδ(	). (11)

We refer the reader to Ref. [27] for details of such com-
putations. As it was already predicted in Sec. II A 2 using
general arguments, the form of the resulting effective Landau
potential V∗

NESS(	) will markedly depend on whether the bath
temperature T is above or below Tc.

It is noteworthy that, even before reaching the IR fixed
point, the equilibrium potential Veq may still be truncated to
the quadratic V∗

eq in Eq. (10) when the reheating rate is large
enough, i.e., when the diffusive particle does not have time to
experience the effect of the nonlinear terms before being reset
to ϕ = 0. We may roughly estimate the minimum reheating
rate above which one may neglect the ϕ4 term in the potential
as Rmin ∼ 1/log(μ2/λ).

A. High-temperature phase

For bath temperatures above the critical temperature T >

Tc and at scales for which the equilibrium system would be
in the vicinity of its paramagnetic fixed point, we find the
nonequilibrium steady-state potential

VNESS(	) = 1

2
	2 − log

[
H

(
−R,

|	|√
2

)]
+ const (12)

= const + c1|	| + a2	
2 + c3|	|3 + · · · , (13)

with 	 ≡ √
μϕ and where H (n, x) is the Hermite polynomial

of degree n. The coefficients c1 ≡ √
2


( 1+R
2 )


(R/2) � 0, 1
2 � a2 ≡

1−R
2 + c2

1
2 > 1

4 , and c3 ≡ c1
3 (c2

1 + 1
2 − R) � 0. The terms in

|	|, |	|3, etc., are nonanalytic at 	 = 0. They are intrinsically
nonequilibrium in nature and one can check that their coeffi-
cients c1, c3, etc., vanish in the equilibrium limit (i.e., in the
limit r → 0). The expression in Eq. (13) justifies the form of
the nonequilibrium steady-state Landau-Ginzburg functional
FNESS[ϕ] that was anticipated in Sec. II C.

Finally, we can identify the IR fixed point of the nonequi-
librium steady state by sending μ → ∞ in Eq. (12). Using
the property H (0, x) = 1, this simply returns the equilibrium
potential

VNESS(	)
IR−→ V∗

eq(	) = 1
2	2, (14)

showing that the nonanalytic terms in the potential are IR
irrelevant above the critical temperature. We can therefore
conclude that the paramagnetic equilibrium fixed point is ro-
bust against stochastic reheating.

B. Low-temperature phase

Let us now consider bath temperatures below the criti-
cal temperature T < Tc. At scales for which the equilibrium

system would be in the vicinity of its ferromagnetic fixed
point, we find

VNESS(	) = − log

[
H

(
−1 − R,

|	|√
2

)]
+ const (15)

= const + c1|	| + a2	
2 + c3|	|3 + · · · , (16)

with 	 ≡ √−μϕ and the coefficients c1 ≡ √
2


(1+ R
2 )


( 1+R
2 )

� 0,

a2 ≡ c2
1

2 − 1+R
2 < 0, and c3 ≡ c1

3 (c2
1 − 1

2 − R) > 0. Similarly
to the high-temperature case, the effective Landau potential
displays nonanalytic features of intrinsic nonequilibrium na-
ture around 	 = 0, justifying the form of FNESS[ϕ] proposed
in Eq. (8).

The IR fixed point of the nonequilibrium steady state can
be accessed by sending μ → −∞ in Eq. (15). This yields the
nonequilibrium fixed-point potential

VNESS(	)
IR−→ V∗

NESS(	) = − log

[
H

(
−1,

|	|√
2

)]
+ const

(17)

= const +
√

2

π
|	| −

(
1

2
− 1

π

)
	2 + 4/π − 1

3
√

2π
|	|3 + · · · .

(18)

This nonanalytic infrared fixed-point potential is one of the
main results of this paper. It is plotted in Fig. 2. It demon-
strates that, contrary to the high-temperature phase discussed
above, nonanalyticities originally present in the microscopic
Landau potential VNESS(	) survive in the infrared. In par-
ticular, the term in |	| dominates V∗

NESS(	) around the
global minimum 	 = 0, yielding a distinctive cusp. Notably,
V∗

NESS(	) does not depend on the reheating rate any longer.

C. Critical-temperature state

When the bath temperature is exactly at T = Tc, follow-
ing the single-particle computation in Ref. [15], we find the
infrared nonequilibrium fixed-point potential

V∗
NESS(	) = √

r |	| + const, (19)

with 	 ≡ √
ηϕ. Contrary to the high-temperature and low-

temperature cases above, this infrared fixed-point potential
still explicitly depends on the reheating rate r. This was
expected since the reheating protocol introduces a finite corre-
lation length ξmax ∼ 1/

√
r which breaks the scale invariance

found at equilibrium. The equilibrium fixed-point potential is
recovered in the limit r → 0.

D. Supporting Monte Carlo results

The theory developed so-far relies on a few assumptions.
The main assumption is the validity of the mean-field ap-
proximation above the upper critical dimension. The latter is
conjectured to be identical to the equilibrium upper critical
dimension, i.e., duc = 4.

To support all the steps undertaken so far, we numeri-
cally solve for the many-body nonequilibrium steady state,
constructing the field theory from a numerical standpoint,
void of any assumption. All the numerical computations that
we present below use well-established methods and require
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FIG. 2. Infrared nonequilibrium fixed-point potential V∗
NESS. (a) Below Tc (solid line), the nonanalytic potential is given in Eq. (17). Above

Tc (dotted lines), the paramagnetic equilibrium fixed point is recovered [see Eq. (14)]. (b) At Tc, the nonanalytic potential depends on the
reheating rate r.

moderate computing power to be conclusive. This leaves room
for future interesting in-depth analysis of the RG flow via high
performance computing.

1. Details of the numerics

We consider the Ising model

H = −
∑
〈i j〉

SiS j, (20)

where the N = Ld classical spins Si = ±1 are located on a
d-dimensional cubic lattice of linear length L with periodic
boundary conditions and interact ferromagnetically between
nearest neighbors. The values of L we use are indicated in
the captions of the different figures. Here, to directly com-
pare with the theory developed in Sec. III, we work in four
dimensions d = 4. In Sec. IV we will also present numerical
results below the upper critical dimension, in d = 2. Due
to the lack of a well-developed finite-size scaling theory for
nonequilibrium steady states, we cannot afford to correct for
finite-size effects. We therefore stay slightly away from the
critical temperature Tc(d = 4) ≈ 6.68 by working with T =
0.99Tc and 1.1Tc.

The dynamics due to the local thermal baths is gen-
erated by the usual Monte Carlo Metropolis algorithm:
A local spin flip Si → −Si is accepted with probability
min(1, exp(−2Sihi/T )), where hi is the local instantaneous
Weiss field. The reheating dynamics is taken into account
via the renewal formula (3). This amounts to following the
dynamics of the local magnetization

φ(x, t ) = 1

ld

∑
i∈vl (x)

Si(t ), (21)

where the microscopic spin degrees of freedom are averaged
on cubic coarse-graining cells vl (x) of linear size l around x,
after a quench from an infinite-temperature disordered initial
state, Si(t = 0) = ±1 with probability 1

2 . Here the time t is
counted in units of Monte Carlo steps defined as a sequence
of N attempted spin flips. Rather than working with the mag-
netization which is bounded φ ∈ [−1, 1], we perform a field

redefinition and introduce the field

ϕ ≡ arctanh(φ) ∈ R. (22)

The nonequilibrium Landau potential VNESS(ϕ) is computed
from the Monte Carlo data by first measuring the time-
dependent probability distribution of the local magnetization
after the quench P0(ϕ; t ). In practice, we improve the statistics
by averaging P0(ϕ; t ) over many realizations of the quench dy-
namics. Then the renewal formula (3) is used to compute the
nonequilibrium steady-state distribution PNESS(ϕ) and finally
VNESS(ϕ) ≡ − log PNESS(ϕ).

Note that, in order to reconstruct the full Landau-Ginzburg
functional FNESS[ϕ], one should in principle extract the
joint probability distribution of the field and its gradients
P0(ϕ,∇ϕ; t ). Here operating above the upper critical dimen-
sion, we discard the information on the gradients and we
concentrate on comparing VNESS(ϕ) with the theory developed
in Sec. III. We will return to the possibility of nonconventional
gradient terms present in the Landau-Ginzburg functional be-
low the upper critical dimension in the discussion of Sec. IV.

2. Agreement with theory

In Fig. 3 we plot the nonequilibrium steady-state potential
VNESS(ϕ) for different values of the coarse-graining length l .
We present separately the high-temperature phase when the
bath temperature is above the critical temperature (T > Tc)
from the low-temperature phase (T < Tc). For each value of l ,
the corresponding equilibrium potential Veq(ϕ) is also plotted
for comparison (dotted lines).

In the high-temperature phase [see Fig. 3(a)], the effect
of reheating on the potential is found to be minimal. The
equilibrium parabola is replaced by a potential with very
similar features: a single global minimum at ϕ = 0 and no
other local minimum. This is all the more true when increasing
the coarse-graining length l , i.e., deeper in the infrared. This
numerically validates the claim made around Eq. (14) that
above Tc, the infrared fixed point is the equilibrium fixed
point.

In stark contrast, the effect of reheating is found to be
much more disruptive in the low-temperature phase (T < Tc)
[see Fig. 3(b)]. There the equilibrium Mexican-hat potential
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FIG. 3. The d = 4 Monte Carlo solution of the nonequilibrium steady-state potential VNESS(ϕ) for increasing coarse-graining lengths
l = 2, 4, 8 (L = 8 and r = 0.005). (a) Above Tc (T = 1.1Tc), VNESS (solid lines) does not differ from the equilibrium potential Veq (dotted
lines). (b) Below Tc (T = 0.99Tc), VNESS deviates markedly from the equilibrium Mexican hat. A cusp develops at the new minimum ϕ = 0,
which becomes the global minimum in the infrared.

with two degenerate global minima is replaced by a potential
VNESS(ϕ) with up to three minima: two degenerate minima
at ϕ �= 0, remnant features of the Mexican hat, and a new
minimum at ϕ = 0 which becomes the global minimum in
the infrared. Moreover, contrary to Veq(ϕ), we verify that
VNESS(ϕ) cannot be satisfactorily fitted with an (analytic) even
polynomial of the form const + a2ϕ

2 + a4ϕ
4 + a6ϕ

6 + a8ϕ
8.

Instead, numerical fits to the nonanalytic form VNESS(ϕ) =
const + c1|ϕ| + a2ϕ

2 + c3|ϕ|3 + a4ϕ
4 give excellent results.

Details of the fitting procedure are given in Appendix A. This
numerically validates the claims made around Eq. (17) that be-
low Tc the Landau potential is nonanalytic and flows towards a
nontrivial nonequilibrium fixed point. As an example, we give
the result of such a fitting procedure on the potential VNESS(ϕ)
plotted in Fig. 3(b): We find c1(l = 8)/c1(l = 4) ≈ 1.9 > 1,
illustrating that the nonanalytic operator |ϕ| is infrared rele-
vant below Tc.

FIG. 4. Validity of the mean-field approximation in d = 4.
Shown is a comparison of nonequilibrium steady-state potentials
VNESS(ϕ) computed from single-particle Langevin dynamics in
Eq. (9) and η = 1920 (solid black lines) with those obtained from
full-fledged Monte Carlo numerics (dashed lines) and for various
reheating rates r = 0, 0.005, 0.05. The r = 0 data correspond to the
equilibrium potential Veq(ϕ). It was fitted with an (analytic) even
potential and used as an input to the mean-field computation. The
other parameters are L = 8, l = 4, and T = 0.99Tc.

3. Validating the mean-field approximation

We also numerically check the mean-field approxima-
tion that was used when simplifying the model A dynamics
in Eq. (5) with the single-particle Langevin dynamics in
Eq. (9). For that purpose, we compare the results of the full-
fledged Monte Carlo numerics presented above with those
obtained from solving the Langevin dynamics. In practice,
the equilibrium potential Veq(ϕ) is numerically extracted from
equilibrium Monte Carlo dynamics and fitted with an (ana-
lytic) even polynomial. We illustrate the quality of such fits
in Fig. 4. Then the Fokker-Planck equation corresponding to
Eq. (9), namely,

η∂t P0(ϕ; t ) = ∂ϕ[∂ϕVeq(ϕ)P0(ϕ; t ) + ∂ϕP0(ϕ; t )], (23)

with the initial condition P(ϕ; t = 0) = δ(ϕ), is solved nu-
merically. The friction parameter η can be determined by
requiring that the observable 〈|ϕ(t )|〉 computed within this
framework matches the one computed from full-fledged
Monte Carlo numerics (see details in Appendix B). Finally,
the nonequilibrium steady-state potential in the presence of
a finite reheating rate VNESS is computed with the use of the
renewal formula (3).

In Fig. 4 we compare the resulting mean-field potentials
to the ones obtained with full-fledged Monte Carlo numerics.
The agreement is very good, thus validating the use of the
mean-field approximation above the upper critical dimension
and therefore the reduction of the nonequilibrium many-body
problem to the nonequilibrium dynamics of a single particle
in an ad hoc environment.

If it were necessary, this also constitutes an a posteriori
check that the model A dynamics in Eq. (5), involving the
equilibrium free energy Feq[ϕ] given in Eq. (7), is a faithful
representation of the relaxation dynamics of the Ising model
after a quench from infinite temperature.3

3The match between model A and Monte Carlo dynamics is only
expected to hold at length scales larger than the microscopic lattice
spacing and timescales larger than a Monte Carlo step.
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FIG. 5. The d = 2 Monte Carlo solution of the nonequilibrium steady-state potential VNESS(ϕ) for increasing coarse-graining lengths
l = 8, 16, 32 (L = 32 and r = 0.005). (a) Above Tc (T = 1.1Tc), VNESS (solid lines) does not differ much from the equilibrium potential Veq

(dotted lines). (b) Below Tc (T = 0.99Tc), VNESS deviates markedly from the equilibrium Mexican hat. A cusp develops at the new minimum
ϕ = 0, which becomes the global minimum in the infrared.

IV. BELOW THE UPPER CRITICAL DIMENSION AND
OPEN QUESTIONS

In dimensions below the upper critical dimension duc =
4, the spatial fluctuations of the field cannot be neglected,
signaling the breakdown of the validity of the mean-field ap-
proximation. At equilibrium, the O(n = 1)-symmetric phase
is still Gaussian but the broken-symmetry phase is now char-
acterized by the so-called Wilson-Fisher fixed point where λ is
finite. For finite reheating rates, the general comments made
in Sec. II A 2 still apply: We expect a destabilization of the
Wilson-Fisher fixed point, but the involvement of nonanalytic
operators down to the infrared limit is yet to be confirmed.

A. Monte Carlo numerics in d = 2

With the lack of proper analytic methodology to per-
form such an RG computation, we may seek answers from
Monte Carlo numerics in d = 2. The details of the numer-
ics are the same as for the d = 4 case presented above. We
also stay slightly away from the critical temperature Tc(d =
2) = 2/log(1 + √

2) ≈ 2.27 by working with T = 0.99Tc and
1.1Tc. Altogether, the results are qualitatively similar to those
that were obtained in d = 4. In Fig. 5 the nonequilibrium
steady-state potential VNESS(ϕ) is plotted for different values
of the coarse-graining length l .

Above Tc [see Fig. 5(a)] the potential is similar to the
equilibrium potential, with a single minimum at ϕ = 0 and
an overall quadratic shape. Contrary to the d = 4 case in
Fig. 3(a), we may still note that the potential is slightly steeper
in the presence of stochastic reheating. Additional investiga-
tions are needed to determine whether this difference subsists
deeper in the infrared.

Below Tc [see Fig. 5(b)] the potential develops a new min-
imum at ϕ = 0 with the same characteristic cusp as the one
previously attributed to the nonanalytic operator |ϕ| in d = 4.
As predicted in Sec. II A 2 and similarly to the d = 4 case,
this minimum becomes the global minimum in the infrared.
This strongly supports the scenario of the equilibrium Wilson-
Fisher fixed point being destabilized by nonanalytic operators
that are infrared relevant.

B. Nonanalytic gradient terms

In addition to the nonanalytic terms in the Landau po-
tential, it is fair to wonder whether the nonequilibrium
steady-state field theory can also feature nonanalytic gradient
terms of the type, e.g., |∇ϕ|, or |ϕ|(∇ϕ)2. They would also be
of intrinsic nonequilibrium nature and would depend on the
reheating rate. Under RG, they could be generated by those
nonanalyticities already present in the potential.

Above the upper critical dimension, in the regime of va-
lidity of the mean-field approximation, gradient terms are
expected to be inconsequential and the reheating protocol
is not expected to alter this picture. To check this, we nu-
merically compute the probability distribution of gradients
on the nonequilibrium steady state PNESS(∇ϕ). We choose a
relatively small coarse-graining length l to operate before the
infrared fixed point is reached. In Fig. 6(a) we plot the gradient
potential KNESS(∇ϕ) ≡ − log PNESS(∇ϕ) for various values
of the reheating rate r (including the equilibrium case r = 0),
below Tc. The KNESS(∇ϕ) clearly appears to be independent
of r, supporting the scenario that the nonequilibrium reheating
dynamics does not affect the gradient terms of the equilibrium
Landau-Ginzburg-Wilson theory. This justifies the form of the
effective Landau-Ginzburg functional that was proposed in
Eq. (8), with an analytic gradient expansion starting with a
(∇ϕ)2 term.

Preliminary results suggest that the scenario may be differ-
ent below the upper critical dimension. In d = 2, KNESS(∇ϕ)
is found to depend on the reheating rate r and is quite different
from the equilibrium case. We illustrate this point in Fig. 6(b).
Whether this will survive in the infrared and whether this does
involve nonanalyticities in the gradient terms are left for future
investigations.

C. The RG approach

Ultimately, the discussion of the nonanalytic nonequilib-
rium field theory below the upper critical dimension requires
the construction of a computational framework to perform
RG calculations. One route, specific to the reheating dynam-
ics, is to use the renewal formula (3). A time-dependent RG
computation could in principle be performed at the level of
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FIG. 6. Monte Carlo solution of the nonequilibrium steady-state gradient potential KNESS(∇ϕ) ≡ − log PNESS(∇ϕ) for various reheating
rates r given in the legend. (a) In d = 4, KNESS does not appear to differ from equilibrium (r = 0) (with L = 8, l = 2, and T = 0.99Tc). (b) In
d = 2, KNESS undoubtedly depends on r and could feature nonanalyticities (with L = 64, l = 16, and T = 0.99Tc).

the relaxation dynamics after a quench and the results trans-
lated to the case of reheating dynamics. A more ambitious
route would be to start directly from a nonanalytic Landau-
Ginzburg functional such as the one in Eq. (8) and identify
practical ways to perform the perturbative integration of high-
energy modes in the presence of terms such as |ϕ|.
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APPENDIX A: FITTING THE POTENTIAL
BY A NONANALYTIC FUNCTION

All the nonequilibrium steady-state potentials VNESS, at
finite reheating rate r > 0, computed by means of Monte
Carlo numerics and presented in this paper can be successfully
fitted with a nonanalytic function of the form const + c1|ϕ| +
a2ϕ

2 + c3|ϕ|3 + a4ϕ
4 + · · · . In Fig. 7 we provide an example

of a fit of the potential VNESS(ϕ) presented in Fig. 3(b) at
T = 0.99Tc, r = 0.005, and L = l = 32 and reproduced in
Fig. 7 with a solid line. After setting the overall additive
constant such that VNESS(0) = 0, it is fitted with a nonanalytic
function of the form

c1|ϕ| + a2ϕ
2 + c3|ϕ|3 + a4ϕ

4, (A1)

where c1, a2, c3, and a4 are four fitting parameters determined
by a nonlinear least-squares Levenberg-Marquardt algorithm.
The resulting fit, represented by triangles, is excellent. For
comparison, the crosses show the result of a fit to the analytic

function

a2ϕ
2 + a4ϕ

4 + a6ϕ
6 + a8ϕ

8, (A2)

where a2, a4, a6, and a8 are also four fitting parameters. This
fit fails to reproduce the data especially close to the cusp at
ϕ = 0.

APPENDIX B: DETERMINING THE COEFFICIENT η OF
MODEL A DYNAMICS

The dynamic friction parameter η that enters the model
A dynamics in Eq. (5), or its mean-field version in the
Langevin dynamics of Eq. (9), is a scale-dependent parameter.
We determine its value by requiring the relaxation dynam-
ics of a simple observable, namely (the absolute value of)
the coarse-grained magnetization after a quench from infi-
nite temperature, to be the same when computed from the
full-fledged Monte Carlo dynamics in d = 4 and when com-
puted from the mean-field Langevin approach. In practice, this
means finding the value of η such that

〈|φMF(t )|〉ξ =
∫ ∞

−∞
dϕ|tanh ϕ|P0(ϕ; t ), (B1)

FIG. 7. Potential VNESS(ϕ) obtained from Monte Carlo numerics
in d = 4 for T = 0.99Tc, r = 0.005, and L = l = 32 [see the solid
red curve in Fig. 3(b)], fitted with both a nonanalytic form (triangles)
and an analytic form (crosses).
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FIG. 8. Agreement of the time-dependent observable 〈|ϕ|〉 com-
puted both from full-fledged Monte Carlo numerics in d = 4 after
a quench from infinite temperature (L = 8, l = 4, and T = 0.99Tc)
and from the mean-field Langevin approach with the initial condition
ϕ(t = 0) = 0 and the equilibrium potential Veq(ϕ) fitted in Fig. 4.
The dynamic coefficient η entering the Langevin equation (9) has
been set to η ≈ 1920 for the two curves to match.

where 〈· · · 〉ξ indicates the average with respect to the
Langevin noise, matches

〈|φMC(x, t )|〉x,MC =
〈∣∣∣∣∣ 1

ld

∑
i∈vl (x)

Si(t )

∣∣∣∣∣
〉

x,MC

, (B2)

where 〈· · · 〉x,MC indicates the average with respect to the
position and the Monte Carlo realizations and we recall the
field redefinition ϕ ≡ arctanh(φ).

We give an example of such a fit in Fig. 8. The excellent
agreement between the two methods is another indication that
the model A dynamics in Eq. (5), involving the equilibrium
free energy Feq[ϕ] given in Eq. (7), is a faithful representation
of the relaxation dynamics of the Ising model after a quench
from infinite temperature.
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