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Abstract

Propagating possibilistic and probabilistic vari-
ables through a mapping yields a fuzzy random
variable. We propose a method to attach proba-
bility intervals to events pertaining to the output
variable. We show that this method is consistent
with classical approaches to fuzzy random vari-
ables and that the obtained probability interval
is the mean value of the fuzzy probability defined
by viewing a fuzzy random variable as higher or-
der possibilistic uncertainty.
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1 Introduction

More often than not, uncertainty pervading pa-
rameters and inputs to a mathematical model is
not of a single nature. Namely, randomness, as
objective variability, and incomplete information
may coexist, especially due to the presence of sev-
eral, heterogeneous sources of knowledge, as for
instance statistical data and expert opinions. In
the last thirty years, a number of uncertainty the-
ories have emerged that explicitly recognized in-
completeness as a feature distinct from random-
ness. All such theories are coherent with each
other, in the sense that they all represent upper
and lower probability bounds, thus proposing a
common framework for randomness and incom-
plete information. In this paper we are especially
interested in the joint uncertainty propagation
through mathematical models involving quanti-
ties respectively modeled by probability and pos-
sibility distributions. We will consider three dif-

ferent types of uncertain quantities: random vari-
ables observed with total precision, deterministic
parameters whose value is imprecisely known, and
imprecisely observed random variables.

Observe that the second type of uncertain quan-
tities can be modeled in a natural way by possi-
bility distributions, while the first type can be
represented by a classical probability measure.
The joint uncertainty propagation of the two first
types of uncertain quantities yields a fuzzy ran-
dom variable for the output. The aim of this pa-
per is to explain how to describe the probability of
events pertaining to such a fuzzy random variable.
We discuss several approaches: one that generates
a probability interval using random sets, a more
classical view based on random fuzzy sets and an
approach based on the idea of higher order uncer-
tainty, yielding fuzzy probabilities. We show that
these various approaches are consistent with one
another. Lastly, the case when the three kinds of
uncertain quantities are involved is discussed.

2 Preliminaries and notation

A fuzzy set is interpreted as a possibility distri-
bution π from a finite set S to the unit interval
associated to some unknown quantity x. Then
π(s) is interpreted as the possibility that x = s.

A random set on S is defined by a mass assig-
ment m which is a probability distribution on the
power set of S. We assume that m assigns a pos-
itive mass to a family of subsets of S called the
set F of focal subsets. Generally m(∅) = 0 and∑

E⊆S m(E) = 1. A random set induces set func-
tions called plausibility and belief measures, re-



spectively denoted by Pl and Bel, and defined by
Shafer [14] as follows.

Pl(A) =
∑

E∩A�=∅
m(E); Bel(A) =

∑
E⊆A

m(E). (1)

These functions are dual to each other in the sense
that Pl(A) = 1 − Bel(Ac), where Ac denotes the
complement of A in S. The possibility distribu-
tion induced by a mass assignment m is defined as
πm(s) =

∑
E:s∈E m(E). It is the one-point cov-

erage function of the random set. Generally m
cannot be recovered from πm. However if the set
of focal sets F is nested, then the information con-
veyed by m and πm is the same. In this case the
plausibility measure is called a possibility mea-
sure and is denoted Π, while the belief function is
called a necessity measure and is denoted N . It
can be checked that

Π(A) = max
s∈A

πm(s); N(A) = min
s/∈A

1 − πm(s) (2)

Dempster ([8]) introduced belief and plausibil-
ity functions as lower and upper probabilities by
using a set-valued mapping Γ from a probabil-
ity space (Ω,A, P ) to S (yielding a random set),
where A is an algebra of measurable subsets of Ω.
For simplicity assume ∀ω ∈ Ω, Γ(ω) �= ∅.
A selection from Γ is a function f from Ω to S such
that ∀ω ∈ Ω, f(ω) ∈ Γ(ω). The set of measurable
selections from Γ is denoted S(Γ), and we write
f ∈ S(Γ) for short. Each selection f yields a
probability measure Pf on S such that Pf (A) =
P (f−1(A)). Now define the following upper and
lower probabilities:

P ∗(A) = sup
f∈S(Γ)

Pf (A); P∗(A) = inf
f∈S(Γ)

Pf (A).

Let the upper and lower inverse images of sub-
sets A ⊆ S be measurable subsets A∗ and A∗
of Ω defined by A∗ = {ω, Γ(ω) ∩ A �= ∅}, A∗ =
{ω, Γ(ω) ⊆ A}. Define the mass assignment mΓ

on S by mΓ(E) = P ({ω, Γ(ω) = E}). Then belief
and plausibility functions are retrieved as follows:

PlΓ(A) = P (A∗); BelΓ(A) = P (A∗). (3)

A fuzzy random variable [13] is a generalization of
the Dempster setting to when the set-valued map-
ping Γ is changed into a fuzzy set valued mapping

Φ. It is supposed that ∀ω ∈ Ω, Φ(ω) is a normal-
ized fuzzy set of S. To each fuzzy subset F of S
with membership function πF is attached a prob-
ability mass mΦ(F ) = P ({ω, Φ(ω) = F}).

3 Probability-possibility propagation

In this section we study how to combine precise
random information about a (monodimensional)
variable with incomplete, possibilistic information
about a (monodimensional) fixed parameter.

3.1 The propagation model

Let us now consider a random variable X, that
takes values x1, . . . , xm with respective probabil-
ities p1, . . . , pm. Let us assume that we know
these values and probabilities. Let us consider,
on the other hand, a fixed (constant) parame-
ter, y0, imprecisely known: let us suppose that
our information about it is given by “confidence
levels”. Thus, we will assume that there is a
family of nested sets, A1 ⊇ . . . ⊇ Aq, contain-
ing y0, with their respective confidence levels,
1 − α1 ≥ . . . ≥ 1 − αq. The available informa-
tion about y0 takes the form of lower probability
bounds:

P (Aj) ≥ 1 − αj , j = 1, . . . , q.

These inequalities reflect information given by an
expert: “the parameter belongs to the set Aj

with a confidence degree 1 − αj”. Notice that
we have “pure probabilistic” information about
X, which may reflect a phenomenon of variabil-
ity and “possibilistic” information about y0 be-
cause of the nested structure of confidence sets:
Following [9] (finite universes) and [3, 4] (gen-
eral setting), the set of probability measures {P |
P (Aj) ≥ 1 − αj , ∀ j = 1, . . . , q} coincides with
the set of probability measures P(Π) dominated
by the possibility measure Π with distribution π:

π(y) =
{

1 if y ∈ Aq

αj if y ∈ Aj−1 \ Aj ,∀j < q

Therefore, in the first case (variable X) there is
randomness and total precision. In the second
case, there exists imprecision, but no randomness
(y0 is a constant). Let us now consider the ran-
dom variable T that, for each possible value of X,
xi, takes value f(xi, y0), where f : IR2 → IR is a



known mapping. Now we need to represent the
available information about the probability mea-
sure induced by function f . We easily observe
that, when X takes value xi (i ∈ {1, . . . ,m}), T
is in the set Tij = f(xi, Aj) = {f(xi, y) | y ∈ Aj}
with a confidence degree 1 − αj . Recalling again
the results from [4] and [9], we observe that, for
each i ∈ {1, . . . , m}, the set of probability mea-
sures {P | P (Tij) ≥ 1 − αj , ∀ j = 1, . . . , q} coin-
cides with the set of probability measures domi-
nated by the possibility measure with distribution
πi given by:

πi(t) =
{ 1 if t ∈ Tiq

αj if t ∈ Ti(j−1) \ Tij ,∀j < q

induced by the mass assignment mi: mi(Ti1) =
ν1 = α1, mi(Tij) = νj = αj − αj−1, j = 2, . . . , q.
This possibility distribution is related to π by the
extension principle of fuzzy set theory:

πi(t) = sup
y|f(xi,y)=t

π(y), ∀ t ∈ IR. (4)

Thus, according to the probability distribution of
X and our information about y0, the probability
measure of T is imprecisely determined by means
of the basic assignment m that assigns probabil-
ity mass νij = pi νj to each focal Tij . This view
comes down to considering a random fuzzy set as
a standard random set, using a two-stepped pro-
cedure: first select a fuzzy set with membership
function πi with probability pi and then select the
α-cut Aj of πi with probability νj .

Besides, we can observe that the plausibility mea-
sure coincides with the arithmetic mean of the
possibility measures Πi (weighted by the proba-
bilities of the different values of X), i.e., ∀A:

Pl(A) =
q∑

i=1

∑
j|A∩Tij �=∅

pi νj =
q∑

i=1

piΠi(A). (5)

Similarly the belief function coincides with the
arithmetic mean of the necessity measures N i

(similarly weighted).

Taking into account the properties of possibility
measures as upper envelopes of sets of probability
measures (see [9], for finite universes and [3, 4], for
the general case), we get the equality:

Pl(A) = sup

{
m∑

i=1

pi Pi(A) | Pi ∈ P(Πi),∀i

}
(6)

and similarly with the degree of belief using inf
instead of sup. These equations suggest another
probabilistic interpretation of these plausibility
and belief functions: let us consider an arbitrary
event A. According to our information about y0,
if we observe the value xi for the random vari-
able X, then the probability P (T ∈ A|X = xi) =
Pi(A) that T takes a value in A is less than or
equal to Πi(A), and at least equal to N i(A). On
the other hand, the probability that X takes each
value xi is pi. Thus, according to the Theorem
of Total Probability, all we know about the prob-
ability PT (A) = P (T ∈ A) is that it can be ex-
pressed as

∑m
i=1 pi Pi(A), where Pi is a probabil-

ity measure dominated by Πi, for each i. Hence,
according to equation (6), we can interpret the
value Pl(A) as the tightest upper bound for the
“true” probability of A, according to the available
information. The same holds for the dual belief
function, Bel, as the tightest lower bound.

4 Related approaches

In the literature different notions of fuzzy random
variables exist. Older approaches consider a fuzzy
random variable “classically”, that is as a random
variable with a special range. These approaches
differ by the involved measurability assumption;
see [12] for a more general approach subsuming
them. One may also view a fuzzy random vari-
able as expressing higher-order uncertainty. Here
we show the relations between the plausibility and
belief measures here defined and each of those in-
terpretations.

4.1 Relationship with the “classical”
model

A fuzzy random variable is a random variable
whose values are fuzzy subsets. This “classical”
vision of a fuzzy random variable as a measurable
function agrees with the interpretation given by
Puri and Ralescu ([13]). In that paper, the au-
thors consider that the outcomes of some random
experiments are not numerical ones, but they can
be vague linguistic terms. In this context, the in-
formation provided by the fuzzy random variable
can be summarized by means of the probability
measure it induces in the final space. When the



fuzzy random variable takes a finite number of
different “values”, its induced probability is de-
termined by the mass function. Therefore, it is
enough to specify the different images of the fuzzy
random variable and the probability of occurrence
of each one of them. Thus, different probability
values will be assigned to different linguistic la-
bels (the probability that the result is “high” is
0.5, etc.). In our particular problem, the fuzzy
random variable is constructed specifically as fol-
lows.

Let (Ω,A, P ) be a probability space, and X :
Ω → IR be a random variable, the observation
of a certain characteristic of each element of Ω.
Assume that X, takes a finite number of differ-
ent values, x1, . . . , xm with respective probabil-
ities p1, . . . , pm. On the other hand, the avail-
able (imprecise) information about a fixed pa-
rameter, y0 is given by the possibility distribution
π : IR → [0, 1], viewed as a constant fuzzy map-
ping, Ỹ from Ω to the set of measurable fuzzy
subsets of IR, that assigns to every element of
Ω, the same fuzzy set, π. This scheme indicates
that the parameter y0 does not depend on each
particular individual, ω ∈ Ω. Let us now con-
sider a map f : IR2 → IR and the random vari-
able given as T = f ◦ (X, y0). T takes values
t1 = f(x1, y0), . . . , tm = f(xm, y0) with respective
probabilities p1, . . . , pm. The available informa-
tion about each ti is given by the fuzzy set πi de-
fined as πi(t) = sup{y∈IR|f(xi,y)=t} π(y), ∀ t ∈ IR.
These m fuzzy sets and their respective probabil-
ities uniquely determine the probability distribu-
tion induced by T̃ , considered as a classical mea-
surable function. The plausibility function de-
fined in the previous section can be expressed as:
Pl(A) =

∑m
i=1 pi supt∈A πi(t), ∀A, in agreement

with (5).

4.2 Relationship with the imprecise
higher order uncertainty setting

In [5], a fuzzy r.v. T̃ : Ω → P̃(IR) represents
imprecise information about the random variable
T0 : Ω → IR: for each α > 0, the probability of the
event “T0(ω) ∈ [T̃ (ω)]α, ∀ω ∈ Ω” is greater than
or equal to 1 − α. Under this interpretation we
can say that, for each confidence level 1 − α, the
probability distribution associated to T0 belongs

to the set PT̃α
= {PT | T ∈ S(T̃α)}, where S(T̃α)

is the set of selections from the random set T̃α.

Thus, given an arbitrary event A on the final
space, the probability PT0(A) belongs to the set

PT̃α
(A) = {PT (A) | T ∈ S(T̃α)}

with confidence level 1 − α. This family of
nested confidence sets determines the fuzzy num-
ber P̃T̃ (A), defined as

P̃T̃ (A)(p) = sup{α ∈ [0, 1] | p ∈ PT̃α
(A)}, ∀ p,

that represents our imprecise information about
the quantity PT0(A) = P (T0 ∈ A). Thus, the
value P̃T̃ (A)(p) represents the degree of possibil-
ity that the “true” degree of probability PT0(A) is
p. The possibility measure P̃T̃ is a “second order
possibility measure”. We use this term because it
is a possibility distribution defined over a set of
probability measures ([2, 15]).

There exists a strong relationship between the
plausibility measure defined in section 3 and the
fuzzy set P̃T̃ (A) defined in [5]. Define the “mean
value” of a fuzzy number π, as the interval:

M(π) = {E(P ) | P ≤ Π},
where E(P ) represents the expected value associ-
ated to the probability measure P [10]. Then, we
can state the following new result:

Theorem. Given an arbitrary event A, the in-
terval [Bel(A), Pl(A)] coincides with the “mean
value” of the fuzzy set P̃T̃ (A).

The intuitive meaning of this last result is as fol-
lows. As explained before, in the second order
imprecise model we represent our imprecise infor-
mation by a pair of order 2 plausibility-necessity
measures. For each α, we assign the lower proba-
bility (degree of necessity) 1−α to a set of proba-
bility measures induced by a random set obtained
via α-cuts. This necessity function is equivalent
to a set of second order probability measures.
Pick a particular second order probability mea-
sure, IP, belonging to this set, and an arbitrary
event A. In this setting, we can define a ran-
dom variable that takes each (probability) value
Q(A) with (higher-order) probability IP ({Q})1.
If IP were the “correct” second order probabil-

1For the sake of clarity, we are assuming that the second
order probability measure, IP , is “discrete”.



ity measure that models the second order exper-
iment, then we could state that the “true” prob-
ability of A should coincide with the expectation
of this random variable. In the last theorem we
have shown that Bel(A) and Pl(A) respectively
coincide with the lower and upper bounds of the
set comprising the possible values of the expecta-
tions associated to each second order probability
measure dominated by the pair of (second order)
possibility-necessity measures. As a consequence
of this, Bel(A) and Pl(A) represent, in the aver-
age, the most precise bounds for the “true” proba-
bility of A, under the available information. This
result is related to one by Couso et al. [7], who
prove that the mean interval of the (fuzzy) expec-
tation of a fuzzy random variable is the expec-
tation of the random set obtained by computing
the mean intervals of the fuzzy realizations of this
random variable.

5 Propagating general heterogeneous
information

In this section, we try to combine and propagate
the three kinds of information: pure random vari-
ables, imprecisely known fixed quantities, and im-
precise random variables. �X : Ω → IRk is a ran-
dom vector that is observed with total precision;
�Y = (y01, . . . , y0l), is a constant vector and we
have partial information about it, represented by
a fuzzy set, π, a constant map Ỹ from Ω to the
set of measurable fuzzy subsets of IR, that assigns
the fuzzy set π to each element ω ∈ Ω. Finally,
�Z : Ω → IRn is a random vector observed with
imprecision. In order to represent this vague ob-
servation, we consider a multi-valued mapping,
Γ : Ω → P(IRn) inducing a random set. In our
model we suppose that there exists a unidimen-
sional random variable, T : Ω → IR, that can
be expressed in the form T = f( �X, �Y , �Z), where
the mathematical model described by the function
f : IRk+l+n → IR is totally well-known. We will
try to represent the information about the proba-
bility distribution of T based on the information
available, about �X, �Y and �Z, respectively.

First observe that �X is a random vector and,
therefore, is a particular case of multidimensional
random set (a singleton in IRk). Thus, in our

model, we can assume it as part of vector �Z.

To simplify again the notation, temporarily sup-
pose that the variable Z and the parameter y0

are unidimensional. Let m and m′ be the mass
assignments of probability associated to y0 and
Z, respectively. We shall argue that the suitable
combination of such assignments in this case is
the “product rule”.

Given a particular element of Ω, ω ∈ Ω, all
that we know about the value Z(ω) it is that it
belongs to the set Γ(ω). The imprecise knowl-
edge about y0 is modelled by a constant fuzzy
function, with value π. Thus, with a confidence
level 1 − α, the parameter y0 belongs to α–cut
πα = {x ∈ IR | π(x) ≥ α}. If we combine both
sources of information, given an arbitrary ele-
ment ω of the initial space and any α ∈ [0, 1],
we can say that the pair (Z(ω), y0) belongs to
the set Γ(ω) × πα with confidence 1 − α. Since
we are working on a finite referential, we will sup-
pose that the multi-valued mapping Γ has r differ-
ent set-valued images, C1, . . . , Cr with respective
masses m1, . . . ,mr. On the other hand, the fuzzy
set π has q different α–cuts, πα1 ⊇ . . . ⊇ παq .

For each i ∈ {1, . . . , r}, the family of probabil-
ity measures {P | P (Ci × παj ) ≥ αj , ∀ j =
1, . . . , q} coincides with the family of probability
measures dominated by the possibility measure
induced by the consonant mass assignment mi:
mi(Ci × πα1) = ν1 = α1, mi(Ci × παj ) = νj =
αj − αj−1, j = 2, . . . , q. Thus, according to the
information about Z and y0, the probability mea-
sure of (Z, y0) is imprecisely determined by means
of the basic assignment m that assigns the prob-
ability mass νij = mi νj to each focal Ci ×παj . In
other words, it is obtained as the “product” of the
mass assignment associated to the random set Γ
and the mass assignment associated to the possi-
bility measure Π. It is clear that this approach is
just a variant of, slightly more general than, the
model proposed in Section 3.

6 Conclusion and open problems

The main result of this short note is that the joint
propagation of possibility and probability through
a mathematical model yields a fuzzy random vari-
able consistent with classical views thereof, as



well as more recent second order uncertainty in-
terpretations. The higher order model in sec-
tion 4.2 is richer and does not aggregate impreci-
sion with randomness, since it assigns a fuzzy-
interval-valued probability to each event. The
model in section 3 yields a belief function (or
a random set) which averages the fuzzy random
variable and delivers for each event the (interval)
mean value of its fuzzy-interval-valued probabil-
ity. The proposed approach assumes indepen-
dence between the statistical information about
the random quantity and the imprecise informa-
tion about the deterministic attribute, as wit-
nessed by equation (5). Independence is between
observation processes, not the observed quanti-
ties. We restricted to a finite seting for the sake
of simplicity and because it is the one to be used
in practical implementations. Extensions to the
infinite setting are of course of interest. Future
works should address in more details the multidi-
mensional case, which require notions of indepen-
dence in the presence of variability and impreci-
sion to be further formalized, following the path
opened in [6, 11]. More details can be found in
the long version of this paper.
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[12] V. Krätschmer (2001) A unified approach to
fuzzy random variables, Fuzzy Sets and Sys-
tems 123 1-9.

[13] M.L. Puri, D. Ralescu. Fuzzy Random Vari-
ables, J. Math. Anal. Appl., 114, 409-422,
1986.

[14] G. Shafer. A mathematical theory of evi-
dence. Princeton University Press, 1976.

[15] P. Walley. Statistical inference based on a
second-order possibility distribution, Int. J.
of General Systems, 26, 337-383, 1997.


