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Abstract. Multi-function radars require efficient resource management
strategies to fulfill their missions. In particular, task scheduling is cru-
cial to mitigate difficult situations such as when all tasks cannot be
accomplished. However, current approaches may prove insufficient in the
face of emerging threats. In this article, we present a new formulation
for the scheduling problem. Our model allows building schedules in a
flexible way, which facilitates the discovery of high-value solutions using
heuristics or tree search. We show that our algorithms provide noticeable
performance improvement over similar methods proposed previously.

Keywords: Artificial Intelligence · Multi-function Radar · Combinato-
rial Optimization · Scheduling.

1 Introduction

Multi-function radars (MFR) are a class of radars that are able to concurrently
perform a range of functions that would otherwise have to be carried out by
several distinct radars. MFRs have been made possible by the development of
phased-array antennas, which enhance the radar’s flexibility by enabling greater
control over waveforming and beamforming. An MFR’s functions usually include
search, tracking, and various combat-assistance roles such as missile guidance.
Given that a radar runs under constraints of time, power, and processing, a
key challenge of MFR design is radar resource management, which consists in
allocating these resources between functions [7]. Resources must be allocated
according to the radar’s mission, which determines the priority level of each
function.

Among these resources, time budget is the most critical, as the time spent
performing a given task closely reflects its importance. Each function consists
of one or more tasks, for example tracking a specific target; each task is carried
out by performing a number of dwells characterized by requirements in desired
execution time, duration, and power. Based on the current situation, the radar
continuously generates dwell requests corresponding to its different functions.



2 M. Vincent et al.

The resulting list of requests is regularly transmitted to a scheduler, whose role is
to decide which dwells should be executed and at what time. Efficient scheduling
is crucial in overload situations, which happen when temporal constraints prevent
from executing all dwells, forcing the scheduler to drop some of them according
to their level of priority.

This scheduling problem is usually tackled with heuristics, yet such methods
become increasingly suboptimal as the complexity of the situations radars face
grows. These situations involve new threats, like drone swarms, which are likely
to create overload, and hyper-maneuvering, high-velocity, and furtive targets,
which might require more resources to track efficiently. Proposed alternatives
make use of a range of methods, including expert systems, metaheuristics, and
neural networks [5, 7, 10, 11].

In this work, we treat task scheduling as a sequential decision problem. In
recent years, in the wake of significant progress in the field of combinatorial
games, such as for Go [9], this kind of approach has been extended successfully
to “single-player” combinatorial settings [6]. We build upon the work of Gaafar et
al. [4], who first proposed to apply this type of technique to radar task scheduling.

First, we present our main contribution, a formulation of the radar task
scheduling problem as a Markov decision process that allows building schedules
in a flexible way. Then, we exemplify the usefulness of our model with a heuristic
and a variant of Monte Carlo Tree Search (MCTS) adapted to this formulation.
Finally, we evaluate our algorithms and demonstrate the improvement in per-
formance brought by our approach.

2 Framework

We formalize the problem of radar task scheduling similarly to Gaafar et al. [4].
As we mentioned above, our model of an MFR scheduler processes one fixed set
of tasks1 at a time. An updated set of tasks is received at regular intervals. In the
meantime, no tasks may be added to the set that is being processed. Each task
in a set I = {1, ..., n} is characterized by its temporal constraints and its priority
level. The temporal constraints of a task i are defined by its length Li, its start
time T is and drop time T idr (respectively the earliest and latest date at which it
can start executing), and its due time T idu, which is the desired execution time. In
this work, for any given instance, these constraints are all held constant over the
course of the scheduling process: we do not consider preemptive tasks (e.g. for
dwell interleaving) or variable duration time. Our goal is to determine for each
task i in I whether to schedule it (xi = 1, else 0), and if so at what execution
time ti, or to drop it (yi = 1, else 0). Scheduled tasks must be entirely contained
in a temporal frame [0, Tmax]. In order to arbitrate between tasks in case of
conflicts, each task is ascribed a drop cost Cidr and a delay cost Cide which reflect
its priority level. The drop cost is incurred only when the corresponding task is

1 In the rest of this article, we will use the standard terminology for scheduling, where
“task” refers to the basic elements of a schedule—in our case, radar dwells. It should
not be confused with the radar tasks mentioned earlier.
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dropped while the delay cost determines how much the difference between the
actual and ideal execution times is penalized; this difference is an absolute value,
unlike in [4] where due times were not distinct from start times. How to assign
relevant values to these costs in an operational context is left to future work. We
write instances of the problem as P = {(Li, T is , T idr, T idu, Cidr, Cide) ∀i ∈ I ;Tmax},
and its (partial) solutions, or schedules, as s = {(xi, yi, ti) ∀i ∈ I}. The objective
is to minimize the sum of costs (or total cost) CP (s). We summarize the problem
below, where ⊕ represents an exclusive or:

min CP (s) =
∑
i∈I

xi
∣∣ti − T idu∣∣Cide + yiCidr

s.t.


T is ≤ ti ≤ T idr ∀i ∈ I
ti + Li ≤ Tmax ∀i ∈ I
ti + Li ≤ tj ⊕ tj + Lj ≤ ti if xi = xj = 1, ∀(i < j) ∈ I2
ti ∈ R+ ∀i ∈ I
xi, yi ∈ {0, 1} with xi = 1− yi, ∀i ∈ I

(1)

This problem can be solved to optimality with mixed-integer programming
(MIP). Unfortunately, since problem (1) is in NP1, the computation time for
MIP grows exponentially with the number of tasks, making it prohibitive for
radar applications. In order to give further insight into the structure of the
problem, we offer its detailed formulation for MIP:

min CP (s) =
∑
i∈I

lideC
i
de + (1− xi)Cidr

s.t.



T is ≤ ti ≤ T idr
ti + Li ≤ Tmax
lide ≥ ti − T idu
lide ≥ T idu − ti

 ∀i ∈ I
ti + Li ≤ tj +M(nij + oij)
tj + Lj ≤ ti +M(nij + 1− oij)

}
∀(i < j) ∈ I2

nij = 2− xi − xj ∀(i < j) ∈ I2
xi ∈ {0, 1}, ti, lide ∈ R+ ∀i ∈ I
oij ∈ {0, 1}, nij ∈ R+ ∀(i < j) ∈ I2

(2)

where M is an arbitrarily large number such that M � Tmax. Of interest in
formulation (2) is the presence of binary variables oij in addition to xi. The
values of oij determine the order in which the scheduled tasks are placed. This
highlights the fact that problem (1) can be subdivided in three successive sub-
problems:

1. inclusion: determine which tasks to schedule;
2. ordering : determine the order in which these tasks should be scheduled;
3. time setting : determine the execution times of these ordered scheduled tasks.

1 This can be proven via a polynomial reduction with the knapsack problem by setting
T i
s = Ci

de = 0 and T i
dr = Tmax for all i in I.
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Note that problem (1) can also be solved with heuristics like earliest start time
first (EST) or earliest deadline first (EDF). These heuristics (and variations
thereof) are common in radar resource management because they are fast and
easy to implement. However they will often produce poor solutions, for two
reasons: first, because they operate on the premise that the schedule must be
built by adding tasks in chronological order; second, because they do not account
for task priority.

By contrast, we aim to develop approximate algorithms for radar task schedul-
ing that can approach optimal solutions while keeping reasonable computa-
tion times. Our first step is to model problem (1) as a Markov decision pro-
cess (MDP). MDPs are the most common formalization of sequential deci-
sion problems. An MDP is defined by: a finite state space S, a finite action
space A, a distribution over initial states µ : S → [0, 1], a transition function
T : S × A × S → [0, 1], which gives the conditional probability T (s′ | s, a) of
transition to the next state s′ given the previous state s and selected action a,
and a reward function R : S ×A×S → R that gives the reward associated with
a transition. We can associate a strategy π : S × A → [0, 1] to an MDP, i.e. a
probability distribution over which action to take in a given state. The objec-
tive is usually to maximize the value function, which is the expectation of the

sum of rewards: V π(s0) = Eat∼π,st∼T
[∑T

t=0 γ
tR(st, at, st+1)

]
where γ ∈ [0, 1]

is the discount factor and T the final step of an episode. Once we have defined a
suitable MDP, we will need an algorithm that outputs a strategy for this MDP,
which we call the decision algorithm.

Following Gaafar et al. [4], we define a state as a partial schedule, where a
number of tasks have been scheduled at certain execution times and a number of
others dropped while respecting the constraints of (1). The only initial state s0
for a given instance of the problem is the associated empty schedule, where no
tasks are scheduled or dropped. We also define an action as the choice of one task
to schedule in the set of available tasks A = {i ∈ I | xi = yi = 0}. Terminal states
are states where no actions are available, that is, complete schedules, where all
tasks are scheduled or dropped. We can define the reward as the cost difference
between the two states involved in a transition, i.e. R(s, a, s′) = CP (s)−CP (s′).
With γ = 1, the value function becomes V π(s0) = Eπ [CP (s0)− CP (sT )], which
corresponds to our initial objective of finding a schedule s that minimizes CP (s).
In practice, in our algorithms, we reason directly on costs.

The choice of the transition function is the most crucial aspect of this for-
malization. Transitions must deterministically decide what execution times to
set and which tasks to drop when a new task is added to a partial schedule.

The simplest option, used in [4], is to add tasks chronologically: any newly
added task i is assigned an execution time greater than that of all previously
scheduled tasks, and tasks that cannot be placed after i are dropped. However,
this restricts the range of viable strategies, since the decision algorithm has to
solve both the inclusion and the ordering sub-problems at the same time, while
the transition function only deals with the time setting sub-problem.
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Instead, we propose a transition model that allows building schedules in a
more flexible way. Our idea is to model the transition function such that it solves
both the ordering and the time setting sub-problems at each step. That is, given
a set S of scheduled tasks, the transition determines the order of tasks and their
execution times by minimizing the total delay cost:

min
∑
i∈S

lideC
i
de

s.t.



T is ≤ ti ≤ T idr
ti + Li ≤ Tmax
lide ≥ ti − T idu
lide ≥ T idu − ti

 ∀i ∈ S
ti + Li ≤ tj +Moij

tj + Lj ≤ ti +M(1− oij)

}
∀(i < j) ∈ S2

ti, lide ∈ R+ ∀i ∈ S
oij ∈ {0, 1} ∀(i < j) ∈ S2

(3)

Given a partial schedule s = {(xi, yi, ti) ∀i ∈ I}, in order to schedule a new task
j ∈ I, we solve sub-problem (3) for S = {i ∈ I | xi = 1} ∪ {j}. If there is no
solution to the sub-problem, j has to be dropped. After a task is scheduled, all
remaining tasks in A can be tested for dropping using this procedure.

Sub-problem (3) can also be treated with a MIP solver; however this requires
finding the order and execution times of all tasks in S at every transition. This
is inefficient, because with this transition model, when we move from a partial
schedule s to a new one s′ by adding a task i, the execution times in s are
already optimal with regard to the tasks scheduled in s. This means that if
for example i can be placed at its desired execution time without interfering
with already scheduled tasks, then there is no need to recompute the execution
times of these tasks. To exploit this and a number of other optimizations, we
implement a custom solver for sub-problem (3) which we do not detail here
due to space limitations: the key idea is to recursively generate and evaluate
permutations of the scheduled tasks while limiting the number of generated
permutations by exploiting temporal constraints. Note that this way, we can
check the availability of a task faster, by interrupting the recursion as soon as
we find a feasible permutation.

Our transition model allows adding tasks in any order by delegating part
of the optimization—ordering and time setting—to the environment. Crucially,
for any schedule s reached through this transition model, the execution times
are optimal given the tasks scheduled in s. (We can also limit the number of
generated permutations to lower the computation time, although we then lose the
optimality guarantee.) This opens new possibilities for the choice of the decision
algorithm, whose role is to solve the hardest part of the problem: inclusion.



6 M. Vincent et al.

3 Methods

The first decision algorithm we propose is a heuristic that we call highest cost-
length ratio first (HCLR), which is similar to some knapsack problem heuristics.
It consists in sorting tasks by their ratio between drop cost and length, then
scheduling them in decreasing order (if they are still available when their turn
comes). Equivalently, at each step, we choose the following action:

a = argmaxa∈A
Cidr
Li

This heuristic empirically performs better than scheduling the task with the
highest drop cost first, because it accounts for situations where for example
two shorter, lower-priority tasks have a higher total drop cost than one longer,
higher-priority task which they are incompatible with. A similar criterion has
been proposed for radar resource management in Qu et al. [8]; however, the
authors used the ratio in a task selection phase that preceded the scheduling
itself, which is based on EST. Using our transition model, we can instead directly
select and schedule each task in turn.

Our next decision algorithm is a version of Monte Carlo Tree Search (MCTS)
adapted to task scheduling, which is based in large part on the version of Gaa-
far et al. [4]. MCTS uses a search tree where nodes represent MDP states and
branches correspond to actions taken in the parent node [1]. The tree is con-
structed by successive rollouts: starting from the root node, which corresponds
to the initial state, we select an action, apply the transition function to get the
next node (which is created if needed), and repeat. Once a terminal state is
reached, we can compute its total cost C, then backpropagate C up the path
we just followed to update the best cost reached from each state-action pair:
C(s, a) ← min{C(s, a), C}. This value is then used in the computation of the
upper-confidence bound U(s, a) which determines which actions are chosen in

the selection phase: a = argmaxa′ U(s, a′) with U(s, a) = P (s,a)
C(s,a)τ (1+N(s,a)) where

τ is a temperature, N(s, a) is the number of rollouts where action a was taken
in state s, and P (s, a) is a prior probability function over actions. This selection
rule is designed to balance exploration of the search tree and exploitation around
the best solutions found so far. The prior, especially, plays a prominent role in
steering exploration; a simple way to parameterize it is to sort the m available
tasks according to a criterion, then assign them a respective prior probability of
p(1−p)m for m ranging from 0 (for the first task) to m−1. For our experiments,
we set τ = 2 and p = 0.6, similarly to [4], but we diverge by using HCLR as our
sorting criterion instead of EST.

One issue is that when using our transition model, since tasks can be sched-
uled in any order, it is possible to reach the same terminal state via multiple
different rollouts. In order to prevent this, we structure our search tree similarly
to a branch-and-bound (B&B) tree [2]: when a new action is taken in node s,
leading to a new node s′, all actions explored in s in previous rollouts are made
unavailable in s′ and its descendants. This makes sure there is only one path
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to each terminal state in the search tree. However, it also means that we may
reach terminal nodes that are not complete schedules, when some tasks can still
be scheduled, but have all been made unavailable by the previous rule. To limit
the number of such situations, at each visit of a node s, we check if there exists
a terminal node s′ descended from s such that all tasks that are unexplored in s
are scheduled in s′; if so, these tasks are made unavailable in s. Additionally, to
avoid performing the same rollout twice, if a node has no more available actions,
the action that led to it is also made unavailable in the parent node, as in [4].
We call this algorithm B&B-MCTS.

Usually, in MCTS, when we reach a new state, we want to know which
actions are available. With B&B-MCTS, this allows making the most effective
use of pruning, according to the above rules. However, with our transition model,
it requires partially solving (3) for each a priori available task to check if it has
to be dropped. In larger instances, this involves significant computation, which
reduces the number of rollouts that can be carried out in a given time. For this
reason, we program B&B-MCTS so that it attempts to schedule tasks without
prior verification, and drops them only if the attempt fails.

4 Results

To enable comparisons, we run experiments on instances from the same distribu-
tion as in [4]: Li ∼ U(2, 15), T is ∼ U(0, Tmax−12), T idu = 0, T idr−T is ∼ U(2, 12),
Cidr ∼ U(100, 500), Cide ∼ U(1, 15), Tmax = 100. The difficulty of an instance
mostly depends on the density of tasks; by keeping Tmax fixed, the difficulty can
be controlled by setting the number of tasks.

We compare our two methods, HCLR and B&B-MCTS, with the EST heuris-
tic and with the version of MCTS proposed in [4] (which we term EST-MCTS).
The run time of both versions of MCTS is limited to 1 second. All these al-
gorithms are implemented in Python. We compute the optimal solution using
MIP on instances where this resolution can be performed in a reasonable amount
of time. The MIP solver we use is CBC [3]. These five algorithms are run on
the same instances, 1000 per number of tasks. We also compare our results to
those reported by [4] for a reinforcement learning-based extension of EST-MCTS
inspired by AlphaZero [9].

Our results show that our approach provides a significant performance im-
provement over EST-MCTS, and even surpasses the reinforcement learning algo-
rithm of [4], which used deep learning in conjunction with MCTS. Strikingly, the
performance gain of B&B-MCTS over HCLR proves minimal. Moreover, with
our implementation, HCLR’s run time averages 36 milliseconds on 50-task in-
stances, which would presumably make it more suitable for radar use cases than
MCTS-based methods.

Unlike in [4], our approach allows due times distinct from start times, thus
reflecting radar requirements more closely. We also run experiments on a similar
task distribution but with T idu ∼ U(1, 4) and T idr − T is ∼ U(1, 8); our results
match those of the first distribution very closely.
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Table 1. Detailed statistics on three different instance types.

Algorithm Avg. cost
Cost

std. dev.
Dropped
tasks (%)

Optimal
solutions (%)

Avg. runtime
(milliseconds)

Avg. number
of rollouts

Number of tasks = 25, identical start and due times

EST 4658.69 634.65 59.06 0.0 1.93 nan

EST-MCTS 3716.55 506.0 52.15 0.87 1002.88 727.06

HCLR 3390.6 551.68 48.2 21.35 13.12 nan

B&B-MCTS 3299.39 526.16 48.44 57.73 975.32 96.12

MIP-optimal 3268.43 523.85 48.65 100.0 1730.82 nan

Number of tasks = 50, identical start and due times

EST 12031.8 857.18 77.64 nan 2.32 nan

EST-MCTS 10897.03 758.17 73.23 nan 1004.79 587.63

HCLR 9130.98 799.9 63.62 nan 36.7 nan

B&B-MCTS 9080.49 780.86 63.79 nan 991.72 30.1

Number of tasks = 25, distinct start and due times

HCLR 3301.15 550.93 47.53 22.0 19.98 nan

B&B-MCTS 3219.61 524.51 47.61 56.5 994.69 70.96

MIP-optimal 3185.86 520.0 47.88 100.0 2219.44 nan
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Fig. 1. Cost plotted against instance size for identical start and due times.

5 Conclusion

Through a reformulation of the problem of radar task scheduling, we were able
to implement an efficient framework whose algorithmic applications can return
quasi-optimal solutions in a limited amount of time. We see potential improve-
ments for this framework, both by optimizing its run time to make it usable by
real-world radars, and by increasing its flexibility; for example, being able to re-
move a task from a partial schedule could allow exploring the solution space more
effectively. Furthermore, our B&B-MCTS algorithm could be extended with an
AlphaZero-style reinforcement learning procedure which would make it able to
adapt to various task distributions.
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