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ABSTRACT

Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys.
However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use
a fairly limited amount of available space-based data. In this work, we propose a methodology based on deep generative models
to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address
the technical challenges associated with learning this morphology model from noisy and point spread function (PSF)-convolved
images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting
for the PSF and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for
sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model
on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second-
and higher order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies
using these deep generative models compared to conventional parametric models. To help make these generative models practical
tools for the community, we introduce GALSIM-HUB, a community-driven repository of generative models, and a framework for
incorporating generative models within the carnsIm image simulation software.

Key words: methods: statistical —techniques: image processing.

1 INTRODUCTION

Image simulations are fundamental tools for the analysis of modern
wide-field optical surveys. For example, they play a crucial role
in estimating and calibrating systematic biases in weak lensing
analyses (e.g. Fenech Conti et al. 2017; Mandelbaum et al. 2018;
Samuroff et al. 2018). In preparation for upcoming missions, major
collaborations, including the Rubin Observatory Legacy Survey
of Space and Time (LSST) Dark Energy Science Collaboration'
(DESC; LSST Dark Energy Science Collaboration 2012), the Euclid
Consortium? (Laureijs et al. 2011), and the Roman Space Telescopé®
(Spergel et al. 2015), are currently in the process of generating large
scale image simulations of their respective surveys (e.g. Sdnchez
et al. 2020; Troxel et al. 2021).

Despite the importance of these large simulation campaigns, the
most common approach to simulating galaxy light profiles is to rely
on simple analytic profiles such as Sérsic profiles (e.g. Kannawadi
et al. 2019; Kacprzak et al. 2020). Besides their simplicity, the main
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motivation for this choice is the existence of prescriptions for the
distribution of the parameters of these profiles. These distributions
can be directly drawn from observations by fitting these profiles to
existing surveys such as COSMOS (Griffith et al. 2012; Mandelbaum
et al. 2012), or provided by empirical (Korytov et al. 2019) or semi-
analytic models (SAMs; Somerville & Davé 2015). These simple
models therefore may be used as the basis for fairly realistic image
simulations, with galaxies at least matching the correct size and
ellipticity distributions as a function of magnitude and redshift.
However, as the precision of modern surveys increases, so does the
risk of introducing model biases from these simple assumptions on
galaxy light profiles. The impact of model bias for weak lensing shape
measurement was for instance explicitly investigated in Mandelbaum
etal. (2015), and the impact of galaxy morphologies was measurable,
if subdominant, in the calibration of the HSC Y1 shape catalogue
(Mandelbaum et al. 2018). Beyond their direct effect on shape
measurement, assumptions about galaxy light profiles impact various
stages of the upstream data reduction pipeline, and in particular
the deblending step. It is, for instance, expected that a majority of
galaxies observed by LSST will be blended with their neighbors,
given that blending impacts ~60 per cent of galaxies in the similar
wide survey of the Hyper Suprime Cam (HSC; Bosch et al. 2018).
As current deblenders, like SCARTLET (Melchior et al. 2018), rely on
simple assumptions of monotonicity and symmetry of galaxy light
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profiles, having access to simulations with non-trivial galaxy light
profiles will be essential to properly assess systematic deblender-
induced biases in number counts, galaxy photometry, and other
properties.

Several works have explored galaxy models going beyond simple
parametric light profiles. One of the simplest extensions is the
inclusion of a so-called random knots component (Zhang, Luo &
Foucaud 2015; Sheldon & Huff 2017), constituted of point sources
randomly distributed along the galaxy light profile, which can model
knots of star formation. However, building a realistic prescription for
the parameters of this knots component (number of point sources,
flux, spatial distribution) is not trivial. In newer large-scale image
simulations produced by the LSST DESC (Abolfathi et al. 2021), a
model for this component was obtained by fitting a three-component
(bulge + disc + knots) light profile to HST COSMOS image, and then
used in image simulations. Similarly, a prescription for how to place
these knots based on fitting nearby galaxies was proposed in Plazas
et al. (2019). Massey et al. (2004) built a generative model for deep
galaxy images based on a shapelet representation, generating new
galaxies by perturbing the shapelet decomposition of galaxies fitted
in a training set. Finally, image simulations can be based on existing
deep imaging, either directly (e.g. Mandelbaum et al. 2012, 2018),
or after denoising (Maturi 2017) to simulate deeper observations.

With the recent advent of Deep Learning, several works have
investigated the use of deep generative models to learn galaxy
morphologies. In pioneering work, Regier, McAuliffe & Prabhat
(2015) proposed the use of Variational Auto-Encoders (VAEs;
Kingma & Welling 2013) as tools to model galaxy images. The
use of VAEs and the first use of Generative Adversarial Networks
(GAN; Goodfellow et al. 2014) for astronomical images was further
explored in Ravanbakhsh et al. (2017), along with conditional image
generation. More recently, Fussell & Moews (2019) demonstrated an
application of a StackGan model (Zhang et al. 2017) to generate high-
resolution images from the Galaxy Zoo 2 SDSS sample (Willett et al.
2013). Similarly, the generation of large galaxy fields using GANs
was demonstrated in Smith & Geach (2019). Beyond generic image
simulations, GANs and VAEs have also been proposed to address
complex tasks dependent on galaxy morphologies when processing
astronomical images, such as deblending (Reiman & Gohre 2019;
Arcelin et al. 2020) or deconvolution (Schawinski et al. 2017). Very
recently, Lanusse, Melchior & Moolekamp (2019) proposed to use
likelihood-based generative models (e.g. PixelCNN+ + ; Salimans
et al. 2017) as priors for solving astronomical inverse problems such
as deblending within a physically motivated Bayesian framework.

All these precursor works have demonstrated the great potential of
Deep Learning techniques, but none of them have gone beyond the
stage of simple proof of principle. The goal of this paper is to provide
the tools needed to build generative models from astronomical data in
practice, i.e. accounting for the instrumental response and observing
conditions, as well as providing the software framework to make
these tools easily usable by the community as part of the broadly
used cans1m* image simulation software (Rowe et al. 2015).

To this end, we demonstrate how latent variable models such as
GANs and VAEs can be embedded as part of a broader Bayesian
hierarchical model, providing a physical model for the point spread
function (PSF) and noise properties of individual observations. This
view of the problem allows us in principle to learn a denoised
and PSF-deconvolved model for galaxy morphology, from data
acquired under various observing conditions, and even different

“https://github.com/GalSim-developers/GalSim.
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instruments. A variety of deep generative models can be used under
this framework. As a specific example we propose here a model
based on a VAE, complemented by a latent-space normalizing flow
(Rezende & Mohamed 2015; Dinh, Sohl-Dickstein & Bengio 2016)
to achieve high sample quality. We call this hybrid model a Flow-
VAE. We further make our proposed generative model conditional on
physical galaxy properties (e.g. magnitude, size, etc.), which allows
us to sample specific galaxy populations. This is a crucial element
to be able to connect image generation to mock galaxy catalogs
for generating survey images from a simulated extragalactic object
catalogue. We train our proposed generative model on a sample
of galaxies from the HST/ACS COSMOS survey, and evaluate the
realism of the generated images under different morphology statistics
that include, but go beyond, the second moments, including size,
ellipticity, Gini, M20, and MID statistics (Freeman et al. 2013).
Overall, we find excellent agreement between the generated images
and real COSMOS images under these statistics and demonstrate that
these mock galaxies are quantitatively more complex than simple
parametric profiles.

Finally, we introduce GALSIM-HUB,’ a library and repository of
trained generative models, interfaced directly into cans1m, with the
hope that the availability of such tools will foster the development
of generative models of even higher quality, as well as a broader
access to these methods by the community. All the tools used
to train the generative models presented in this work rely on the
GALAXY2GALAXY® framework.

After stating the problem of learning from heterogeneous data
in Section 2, we introduce our proposed generative model, dubbed
Flow-VAE, in Section 3. We train this model and thoroughly evaluate
its performance in Section 4. A summary of our results and future
prospects for this work are discussed in Section 5.

2 LEARNING FROM CORRUPTED DATA

While most of the Deep Learning literature on generative models
is concerned with natural images (photographic pictures of daily
life scenes), learning generative models for galaxy light profiles
from astronomical images requires specific technical challenges
to be addressed. These include properly dealing with the noise in
the observations as well as accounting for the PSE. The question
we will focus on in this section is how to learn a noise-free and
PSF-deconvolved distribution of galaxy morphologies, from data
acquired under varying observing conditions, or even from different
instruments. This can be done by complexifying the causal structure
of GANs and VAEs,” or in other words, integrating these deep
generative models as part of a larger Hierarchical Bayesian Model,
allowing us to cleanly combine these Deep Learning elements within
a physically motivated model of the data. In the end, our goal is to
produce results like those shown on Fig. 1 where the deep generative
model only learns galaxy morphologies, while PSF and noise can be
added explicitly for a specific instrument or survey. A very similar
idea, but for forward-modelling multiband photometry instead of
images, was proposed in Leistedt et al. (2019). A machine learning
component modelling spectral energy distribution (SED) templates
was embedded in a larger physical and causal hierarchical model of
galaxy photometry, in order to jointly constrain SED templates and
photometric redshifts.

Shttps://github.com/McWilliamsCenter/galsim_hub.
Ohttps://github.com/ml4astro/galaxy2galaxy.
7Credit to this expression and underlying idea goes to David W. Hogg.
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Figure 1. Samples from real COSMOS galaxies (top panel), and random draws from the generative model (middle) with matching PSF and noise, and
conditioned on the size, magnitude, and redshift of the corresponding COSMOS galaxy. The bottom row shows the same generated light-profiles but without
observational noise. Because of this conditioning, generated galaxies (middle) are consistent in appearance with the corresponding COSMOS galaxy.

2.1 Latent variable models as components in larger physically
motivated Bayesian networks

In this work, we consider deep latent variable models (LVMs),
describing a target distribution p(x) in terms of a latent variable
z drawn from a prior distribution p(z) and mapped into data space
by a parametric function gg, usually referred to as the generator and
taking the form in practice of a deep neural network. While they
differ on other points, both VAEs and GANs fall under this class of
models. These LVMs can be thought of as flexible parametric models
to represent otherwise unknown distributions. As such they can be
readily integrated in wider Bayesian networks to fill in parts of the
graphical model for which we do not have an explicit formulation.

Let us consider the specific problem of modelling observed galaxy
images, with pixel values x. Making explicit use of our knowledge
of the PSF and noise properties of the image, we can model these
pixel intensities as being related to the actual galaxy light profile /
through

x; =TII; x I; + n;, (n

where IT represents the PSF (accounting for telescope optics,
atmospheric perturbation, and the pixel response of the sensor) and n
describes observational noise. In this model, the PSF can typically be
estimated from the images of stars in the data itself by the pipeline, or
retrieved from a physical optical model of the instrument. Similarly,
while the specific noise realization n is unknown, its statistical
properties can also be estimated separately from photon-counting
expectations or empirical statistics in the imaging. In this work, we
will assume a Gaussian noise model, with pixel covariance matrix
¥;. Note that this covariance can be non-diagonal as the result of the
warping of images during data processing. With those two compo-
nents under control, only the galaxy light profile I remains without
a tractable physical model; this is where we can introduce an LVM.

Let us assume that any galaxy light profile Ican be realized by
LVM mapping a latent variable z into an image through a generator
function I; = gy(z;). We can now describe the pixel values of an
image as

x; =I1; % go(z;) + n;. 2)

Note that while x;, z;, [1;, nr; are specific to each observation, the
parameters 0 of the LVM are not. A graphical representation of this
model is provided in Fig. 2.

Figure 2. Probabilistic graphical model for observed galaxy images. For each
galaxy i, the pixel values x; are obtained by transforming an input random
variable z; through a parametric generator function gg(z;) before applying
the instrumental PSF I1; and adding Gaussian noise with covariance X;.

Learning a model for galaxy morphology now amounts to finding
a set of parameters 6, for the generator gy, which ensures that
the empirical distribution of the data p(x) is consistent with the
distribution py(x) described by this Bayesian Hierarchical Model:

N
Po(x|TT;, 5p) = H/m(xim,», i, 20)p(zi)dz;. 3)
i=1

Solving the optimization problem involved in finding the parameters
0, is typically a difficult task due to the marginalization over latent
variables z involved in this expression. Both VAEs and GANs provide
tractable solutions, although they differ in methodology: GANs are
likelihood-free methods, i.e. they bypass the need to evaluate the
marginalized likelihood py(x) and instead only require the ability
to sample from it. On the other hand, VAEs rely on the existence a
tractable variational lower bound to the marginalized likelihood.

2.2 Modelling the data likelihood

In this work, we assume the observational noise to be Gaussian-
distributed, with pixel covariance ¥ and 0 mean. This is a common
model for sky subtracted images where the noise coming from the
dark current and the Poisson fluctuations of the sky background and
galaxy can reliably be modelled as Gaussian-distributed

MNRAS 504, 5543-5555 (2021)
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In many situations of interests, X is assumed to be diagonal in pixel

space and potentially spatially varying. In this case, the likelihood of
the data can conveniently be expressed in pixel space as

logpg(xilni, ¥, zi) =
1
—5 i = T % o(z)' T (ki — i X go(z) + est. @

Alternatively, if the noise is known to be correlated but stationary,
another tractable assumption is to assume the noise covariance to be
diagonal in Fourier space:

log po(x;|T1;, X;, z;) =
1
_E-F(xi —T0; x go(z:)) ;7' F (x; — TI; x go(z;)) + est, (5)

where F is the forward Fourier transform. The covariance matrix
%, in this expression is diagonal for stationary correlated Gaussian
noise, and only amounts to a reweighing of Fourier coefficients. It can
be derived from the Fourier transform of the noise autocorrelation
function (see section 7.3.1 of Rowe et al. 2015).

In implicit models such as GANS, evaluating the likelihood is not
required; all that is needed is the ability to sample from it. This can
be achieved by adding Gaussian noise to the PSF-convolved images
created by the generator, before sending them to the discriminator.
Note that this step is particularly crucial for GAN generation of noisy
images, as there is not enough entropy in the input latent space of the
GAN to generate an independent noise realization of the size of an
image, needed to match the noise in the data. We find that in practice,
without adding noise samples, the generator tries to learn some noise
patterns that are actually replicated from image to image.

3 LEARNING THE GENERATIVE MODEL BY
VARIATIONAL INFERENCE

In this section, we briefly introduce the various Deep Learning
notions underlying the generative models proposed in this work.

3.1 Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes (AEVB), also known as the
VAE, is a framework introduced in Kingma & Welling (2013) to
enable tractable maximum likelihood inference of the parameters
of a directed graphical model with continuous latent variables. In
such models, one assumes that the observations x are generated
following a random process involving unobserved latent variables z
according to some parametric distribution py(x, z2) = ps(x|2) p(2),
where @ are parameters of this distribution that we aim to adjust so
that the marginal distribution py(x) matches closely the empirical
distribution of the data. In the context of the model presented in the
previous section, these parameters @ will correspond to the weights
and biases of the neural network gy introduced to model galaxy light
profiles.

In this model, we have the freedom to choose any parametric
distribution py(x|z) to describe the mapping between latent and data
space; we only ask for it to be sufficiently flexible to effectively
represent the data, and to be easy to sample from. A natural choice
is to assume a given parametric likelihood function for the data, and
use deep neural networks to learn the mapping from latent space to
these distribution parameters. As an example, assuming a Gaussian
likelihood for the data, the expression of py(x|z) becomes

Po(x12) = N (119(2), Zo(2)), (6)

MNRAS 504, 5543-5555 (2021)

where 1y and X4 can be deep neural networks depending on a set
of parameters €. Training such a model now involves adjusting these
parameters as to maximize the marginal likelihood of the model:

§ = argmax py(x) = arg max / Po(x|2)p(z)dz. @)
0 0

What makes this problem difficult however is that evaluating this
marginal likelihood, or its derivatives with respect to the parameters
0, is typically intractable analytically and too costly using Monte
Carlo techniques.

The idea behind AEVB is to introduce an inference model ¢, (z|x)
to estimate for each example x the true posterior density pg(z|x) in
the latent space. This model, also known as the recognition model,
is performing approximate posterior inference, typically by using
a deep neural network to predict the parameters of a parametric
distribution (e.g. g, = N (1y(x), a(pz(x))). This model is essentially
replacing a costly MCMC by a single call to a deep neural network
to approximate py(z|x), which is known as amortized variational
inference. The usefulness of this inference model becomes clear
when deriving the Kullback-Leibler divergence between this ap-
proximation and the true posteriors:

Dxwlg,(z]x)|| pe(z]x)] = E4, [log g, (z]x) — log ps(z|x)]
= L, [log g,(zlx) — log p(2)] + log ps(x)
=k, [log py(x|z)]
= DxLlgy(z]x) p(2)] + log po(x)
—Ey, [log py(x|z)].

Reordering the terms of this expression leads to

log py(x) = kg, [log py(x|z)] — Dkilge(z|x)[|p(2)]
+ Dxwlgy(z]%)[| po(z|x)] . ®)

>0

Taking into account the fact that the KL divergence is always positive,
this leads to the following lower bound on the marginal log likelihood
of x, known as the evidence lower bound (ELBO):

log po(x) = E.g,vllog po(x]2)] — Dkilgy(z12)] p(2)]. €))

Contrary to the original marginal likelihood, the ELBO is now
completely tractable, as neither py(x) or py(z|x) appear in the rhs.
The final key element of AEVB is a stochastic gradient descent
algorithm (using the so-called reparametrization trick) to efficiently
optimize this lower bound in practice (Kingma & Welling 2013).

This combination of a recognition and generative model, illus-
trated by Fig. 3, is reminiscent of traditional auto-encoders, which
follow the same idea of compressing the information down to a latent
space and reconstructing the input signal from this low dimensional
representation. The difference comes from the second term in the
ELBO in equation (9), which prevents the latent space representation
of particular examples from collapsing to a delta function, and instead
promotes the representation learned by the model to stay close to the
specified prior p(z).

Despite the satisfying mathematical motivation for the VAE, it is
known that this model usually leads to overly smooth images. The
reasons for this problem are an active field of research in machine
learning, but are likely due to the difficulty of performing accurate
amortized inference of the posterior while training the generator
(Kingma et al. 2016; Cremer, Li & Duvenaud 2018; He et al. 2019).
In this work, instead of trying to address the suboptimalities of
the variational inference, we follow a different direction, originally
proposed in Engel, Hoffman & Roberts (2017), which is to relax the
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Figure 3. Schematic representation of a VAE. The inference network ¢, (z|x,
y) is tasked with predicting the posterior distribution of a given image x and
additional information y in latent space z. Access to this posterior distribution
allows for efficient training of the generative model pg(x|z), which models
the pixel-level image, given the latent variable z.

KL divergence term in equation (9), and introducing a second model
for modelling the latent space aggregate posterior.

3.2 VAE with free bits

Empirically, it is known that training a VAE will tend to find a solution
that conforms to the prior p(z) at the expense of reconstruction and
sample quality, leading to overregularized solutions. A number of
different approaches have been proposed to force the model towards
better optimization minima (Sgnderby et al. 2016), in particular the
idea of starting the optimization without the KL divergence term in
the ELBO and slowly increasing its strength during training. Rather
than relying on an annealing scheme, Kingma et al. (2016) proposed
to allow for some amount of information to be communicated through
the bottleneck of the auto-encoder without being penalized by the
KL divergence:

L) = Eongy(inllog po(x]2)] — max (1, Dklg,(z¥)llp(z)]) . (10)

The A parameter controls how many free bits of information can
be used by the model before incurring an actual penalty. Allowing
for more free bits leads to better reconstruction quality as more
information about the input image is being transferred to the
generator, but allowing for too many free bits essentially removes the
regularization of the latent space and we recover a conventional auto-
encoder, from which we cannot directly sample as the aggregated
posterior no longer has any incentive to follow the prior.

The approach proposed in Engel et al. (2017) is to significantly
down-weight the KL divergence term in the ELBO, so as to
emphasize reconstruction quality first and foremost, at the cost of
less regularization in the latent space. Images sampled from this
model with Gaussian prior appear significantly distorted and usually
meaningless. As a solution to that problem, the authors propose
to learn a separate model that models a so-called realism constraint,
essentially learning to sample from the aggregate posterior of the data
as opposed to the prior. This approach leads to both sharp images and
high-quality samples, on par with different methods such as GANs
can generate. An additional benefit of this approach is that the VAE
can be trained once, while the actual posterior sampling model can
always be refined later and even made conditional, without needing
to retrain the entire auto-encoder (which is, in general, more costly).

We follow a similar approach in this work, reducing the latent
space regularization of the VAE by using the ELBO with free bits
loss function defined in equation (10). In the next section, we will

Generative galaxy model 5547

introduce a second latent space model to learn how to sample realistic
images.

3.3 Flow-VAE: learning the VAE posterior distribution

The quality of VAE samples depends strongly on how successful
the model is at matching the aggregate posterior distribution of the
data to the prior. If this posterior departs from the prior, sampling
from the prior will not lead to good-quality samples matching the
data distribution of the training set. Such failures in matching the
posterior to prior may naturally arise in VAEs when the latent space
regularization is weaker than the data fidelity term. Another common
situation is when training a Conditional VAE, where the model is
incentivized to decorrelate the latent variables from the conditional
variables (e.g. Ravanbakhsh et al. 2017). This is never perfect, and
again the data posterior never completely matches the Gaussian prior
and usually exhibits some residual correlations with the conditional
variables.

To alleviate these issues, a solution is to train an additional latent
space model to learn the aggregate posterior of the data for a given
trained VAE. This model can also be made conditional so that it
can allow to sample conditionally the latent variables. This two-
step process has the advantage of decoupling the training of the
VAE on actual images, which can be costly, from the training of the
latent-space sampling model, which is much typically much faster.
This means for instance that once a VAE is trained, it is possible
to inexpensively build a number of conditional models, simply by
training different conditional sampling models.

While Engel et al. (2017) proposed to use a GAN to model the
latent space, we adopt instead a normalizing flow, a type of Neural
Density Estimation method with exact log likelihood, which achieves
state-of-the-art results in density estimation while being significantly
more stable than GANs. Furthermore, normalizing flows are not
susceptible to mode collapse (e.g. Che et al. 2016; Salimans et al.
2016), a common failure mode of GANs that translates into a lack
of variety in generated samples. Normalizing flows model a target
distribution in terms of a parametric bijective mapping gy from a prior
distribution p(z) to the target distribution p(x). Under this model,
the probability of a sample x from the data set can be computed by
applying a change of variable formula:

z

0
po(x) = p(2) ag9 (x) withz = g;'(x). (11

With this explicit expression for the likelihood of a data sample under
the model, fitting the normalizing flow can be done by minimizing
the negative log likelihood of the data:

0gs

0z
Under the assumption that Dgy.(p|| pg) = O is actually attainable (i.e.
that py, and hence gy, is flexible enough), it will be achieved at the
minimum of this loss function.

The main practical challenge in building normalizing flows is in
designing a mapping gy that needs to be both bijective, and with a
tractable Jacobian determinant. One such possible efficient design is
the masked auto-regressive flow (MAF) introduced in Papamakarios,
Pavlakou & Murray (2017). An MAF layer is defined by the following

mapping:
89(x) = 0p(x) © x + (%), (13)

L = —log py(x) = —log p(z) — log | = | (2). (12)

where © is the Hadamard product (element-wise multiplication), and
oy and pp are auto-regressive functions, i.e. the ith dimension of the
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Figure 4. Tllustration of latent variable z distribution as a function of galaxy
magnitude for auto-encoded galaxies (top right-hand panel) and samples from
the latent normalizing flow (bottom left-hand panel). As can be seen from the
upper corner plot, the 2D histograms of the latent variables for auto-encoded
galaxies can significantly depart from the assumed isotropic Gaussian prior
(dashed grey lines) used during training of the VAE. We can also see strong
correlations between latent variables z and properties such as magnitude. Both
of these effects, i.e. departures from Gaussianity and magnitude-dependence,
are successfully modelled by the latent normalizing flow in the bottom corner
plots.

output [pg(xy, ..., xy)]; only depends on the previous dimensions
(x1, ..., x;—1). These auto-regressive functions are implemented
in practice using a masked dense neural network, as proposed in
Germain et al. (2015). Given the auto-regressive nature of this
mapping, its Jacobian takes on a simple lower triangular structure,
which makes computing its determinant simple:

0go(x)
0x

N
log ' = logoy(x). (14)
i=0

While a single layer of an MAF cannot model very complex
mappings, more expressive models can be obtained by chaining
several flow layers:

gxX)=fiofyo...offx). (15)

In this work, we further extend the baseline MAF model to build
a conditional density estimator py(x|y). This can be achieved by
providing the conditional variable as an input of the shift and scaling
functions o4 and py so that z; = f(y, xo, ..., xi—1). The resulting
conditional density estimator can be used to learn the latent aggregate
posterior of the VAE, conditioned on particular parameters of interest,
for instance galaxy size or brightness.

The upper right-hand corner of Fig. 4 illustrates the first two
dimensions of the empirical aggregate posterior distribution of a
VAE with a 16-d latent space (detailed in Section 4.2). The colour
indicates the i-band magnitude of the galaxy corresponding to each
encoded point. As can be seen from this example, not only is the
posterior distribution significantly non-Gaussian, it also exhibits
a clear and non-trivial dependence on the galaxy magnitude. The
bottom left-hand part of Fig. 4 illustrates samples from a conditional
normalizing flow that not only reproduces correctly the overall
posterior distribution, but also captures the correct dependence on
magnitude.

MNRAS 504, 5543-5555 (2021)

4 GENERATIVE MODEL TRAINED ON
COSMOS

In this section, we present our reference model for the GALSIM
COSMOS sample using the Flow-VAE approach introduced above.

4.1 The caLSIM COSMOS sample

Our training set is based on the COSMOS HST Advanced Camera for
Surveys (ACS) field (Koekemoer et al. 2007; Scoville et al. 2007a,b),
a 1.64-deg? contiguous survey acquired with the ACS Wide Field
Channel, through the F874W filter (‘Broad I'). Based on this survey,
adata set of deblended galaxy postage stamps (Leauthaud et al. 2007;
Mandelbaum et al. 2012) was compiled as part of the GREAT3
challenge (Mandelbaum et al. 2014), and forms the basis for our
training set. The processing steps and selection criteria required to
build this sample are introduced in Mandelbaum et al. (2012), and
we direct the interested reader to the Real Galaxy Data set appendix
of Mandelbaum et al. (2014) for a comprehensive description of this
sample. We use the deep F8/4W < 25.2 version of the data set,
provided with the carsim simulation software (Rowe et al. 2015)
through the COSMOSCatalog class, which provides in addition for
each postage stamps the HST PSF (based on a Tiny Tim model, as
described in Mandelbaum et al. 2012), the noise power spectrum, and
a set of galaxy properties (e.g. size, magnitude, photometric redshift).
As discussed further in the next section, among these additional
parameters, we will in particular make use of the Source Extractor
F814W magnitude mag_auto, the (PSF-deconvolved) half-light
radius hlr, and photometric redshift zphot fields. Applying the
default quality cut of exclusion_ level = ‘marginal’ with
the COSMOSCatalog leaves us with a sample of 81500 galaxy
postage stamps, which we divide into training and testing sets
containing 80 000 and 1500 galaxies, respectively.

For training, we draw these galaxies at the original
0.03 arcsec pixel ™! resolution of the coadded images, on postage
stamps of size 128 x 128, convolved with their corresponding
COSMOS PSF and using noise padding. For each galaxy, we also
store an image of the associated PSF and noise power spectrum. An
illustration of these postage stamps is provided on the top row of
Fig. 1.

4.2 Generative model

4.2.1 VAE Architecture and Training

For the VAE, we adopt a deep ResNet architecture, based on
seven stages of downsampling, with each stage composed on two
residual blocs. The depth after a first channel-wise dense embedding
layer is set to 16, and is multiplied by two at each downsampling
step until reaching a maximum depth of 512. After these purely
convolutional layers, we compress the latent representation down
to a vector of 16 dimensions using a single dense layer, outputting
the mean and standard deviation for a mean-field Gaussian posterior
model g,(z|x). Likewise, the 16-d latent representation is decoded
back to the input dimension of the convolutional generator using a
single dense layer. The rest of the generative model is mirroring the
architecture of the encoder. At the final layer of the generator, we
apply a softplus® activation function to ensure the positivity of the
light profile generated by the model.

8softplus activation: flx) = In (1 + exp (x)).
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Table 1. Hyperparameters used to train the VAE model.

Parameter Value

Architecture choices

Number of ResNet blocks 7 (for each encoder/decoder)
Input depth 16
Maximum depth 512
Bottleneck size 16
Optimizer and training

Optimizer Adafactor
Number of iterations 125000
Base learning rate 0.001
Learning schedule Square root decay
Batch size 64
Free-bits 4

Total Variation factor 0.01

As explained in Section 2, the output of the VAE is then convolved
with the known PSF of the input image, and the likelihood that
enters the ELBO in equation (9) is computed using the known noise
covariance. The results presented here are obtained using a diagonal
approximation to the covariance (i.e. using equation 4) as it is simpler
than a non-diagonal covariance and yields very comparable results.
In order to very slightly regularize the pre-convolved light profile
generated by the VAE and prevent non-physical very high frequency
we include in the loss function, in addition to the ELBO, a small total
variation® (TV) term that penalizes these potential high-frequency
artefacts that are not otherwise constrained by the data. We add
this TV term to the loss with a factor of 0.01, which makes it very
subdominant to the rest of the loss function. As noted in Section 5, an
alternative approach to the full deconvolution proposed here would
be to perform a partial deconvolution, i.e. training the network to
output images corresponding to a fixed, arbitrary, effective PSE.

With this particular forward model, the generator network is tasked
with generating a PSF-independent galaxy image, which means,
in turn, that the encoder network needs to infer the latent space
posterior distribution of the PSF-deconvolved galaxy image. In order
to perform this task, the inference network needs information about
the PSF in the input image, so as to lift degeneracies between galaxy
and PSF shapes when inferring this latent space posterior distribution.
We provide this PSF information to the encoder through a secondary
PSF input: a PSF image is ingested by a first convolution layer, the
output of which is concatenated as additional feature maps to the
input galaxy image entering the encoder branch of our VAE model.
Note that the effect of taking the PSF into account in this fashion is
not major for these fairly stable HST PSFs, but would be an essential
part of the model for ground-based observations with more significant
PSF variations.

Training of the model is performed using Adafactor (Shazeer &
Stern 2018), a variant of the popular ADAM optimizer (Kingma &
Ba 2015) with an adaptive learning rate, with parameters described
in Table 1. Note that to make training of this deep encoder/decoder
model more efficient, we use the following two strategies:

(i) Similarly to a UNet (Ronneberger, Fischer & Brox 2015), we
allow for transverse connections between corresponding stages of the
encoder/decoder during training. Concretely, a random subsample
of the feature maps at a given level of the generator are simply
duplicated from the encoder to the decoder, thus short-circuiting part
of the model. This allows the last layers of the generator to start

9TV: ¢, norm of the gradients of the image, 7V(x) = V.

Generative galaxy model 5549

Input galaxy VAE fit

Parametric fit  VAE Residual Parametric Residual
L2
e

Figure 5. Reconstruction of input images (first column) by the VAE (second
column) and by parametric fit (third column). Residuals for both VAE and
parametric models are shown on the fourth and fifth columns, respectively.
From the top to bottom are illustrated representative objects of increasing
size; smaller compact objects (top panel) are accurately reconstructed by the
model, while larger galaxies exhibit some modelling residuals (bottom panel).
Note that the VAE models are always more complex than their parametric
counterparts.

training, even though the deeper layers are not correctly trained yet.
This fraction of random duplication of the encoder feature maps to
the decoder is slowly decreased during training, until these transverse
connections are fully removed.

(i1) To help the dense bottleneck layers to learn a mapping close
to the identity, we add an ¢, penalty between inputs and outputs of
the bottleneck. The strength of this penalty is again slowly decreased
during training.

4.2.2 Latent normalizing flow training

Once the auto-encoder is trained, we reuse the encoder with fixed
weights to generate samples from the aggregate posterior of the
training set images. These samples of the latent space variable z are,
in turn, used to train the latent space normalizing flow described in
Section 3.3. This model relies on eight layers of MAF stages, each of
these stages is using two masked dense layers of size 256. Between
MATF stages, we alternate between performing a random shuffling of
all dimensions and reversing the order of the tensor dimensions, so as
to facilitate the mixing between dimensions. Each of the MAF stages
is using both shift and scale operations. To help improve the stability
of the model during training, we further apply clipping to the output
scaling coefficients o y(x) generated by each MAF layers. To improve
conditional modelling, the additional features y are standardized by
removing their means and scaling their standard deviation to 1.

Training is performed with the ADAM optimizer over 50 000
iterations with a base learning rate of 0.001, following a root square
decay with number of iterations.

The trained model is available on GalSim-Hub under the
model name ‘hub:Lanusse2020°. We direct the interested reader to
Section A for an example of how to use this model with carLsIm.

4.3 Auto-encoding verification

Before testing the quality of the full generative model, we first assess
the representation power of the VAE model on galaxies from the
testing set. Fig. 5 is illustrating how galaxies of different sizes
are auto-encoded by the VAE model, compared to a conventional
parametric fit to these light profiles (described in the next section).
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As can be seen, smaller galaxies are very well modelled by the
auto-encoder, but for larger galaxies, the model exhibits smoother
light profiles, illustrating one of the limitations of such an auto-
encoder model. The free bits of information used during training
of the VAE are intended to mitigate that effect, but are only
partially successful. We note furthermore that these large galaxies
are underrepresented in the training sample, meaning that the model
is comparatively less incentivized to correctly model these bright and
large galaxies compared to smaller and fainter objects. Accounting
and compensating for this training set imbalance could be an avenue
to alleviate this effect, but at the price of changing the galaxy
distribution being modelled by the VAE.

In all cases, we see on the two rightmost columns of Fig. 5 that
VAE residuals are significantly smaller than the residuals of the
best parametric fit, indicating a better modelling. It is also worth
highlighting that in the VAE case, these fitted light profiles are
parameterized by only 16 numbers obtained in a single pass of
amortized inference, and yet yield more accurate results than the
iterative parametric fitting.

4.4 Sample generation validation

In this section, we quantitatively assess the quality of the light profiles
generated by our models in terms of several summary statistics,
including second-order moments and morphological image statistics
specifically designed to identify non-smooth and non-monotonic
light profiles (Freeman et al. 2013).

To perform these comparisons, we generate three different sam-
ples:

(i) COSMOS sample: real HST COSMOS galaxies, drawn from
the GALSIM real galaxy sample.

(ii) Parametric sample:parametric galaxies drawn from the
GALSIM best parametric model of real COSMOS galaxies, either
single Sérsic or a Bulge + Disc model depending on the best-fitting
model.

(iii) Mock sample: artificial galaxies drawn from the generative
model, conditioned on the magnitude, size, and redshift of real
COSMOS galaxies.

Each tuple of galaxies from these three sets is drawn with the same
PSF and matching noise properties as to allow direct comparison.

4.4.1 Second-order moments

We first evaluate the quality of the model in terms of second-order
moments of the light profile, defined as

_ f dle(x)W(x)x,-xj

Qj = [ExIWx) (16)

where [ is the light profile, W is a weighting function, and x;,
x; are centroid-subtracted pixel coordinates. This centroid is in
practice adaptively estimated from the image itself. We rely on
the carsim HSM module, which implements adaptive moment
estimation (Bernstein & Jarvis 2002; Hirata & Seljak 2003) of the
PSF-convolved, elliptical Gaussian-weighted second moments.

Based on these measured moments @, we use the determinant
radius o = det Q'/* to characterize the size of galaxies, and we also
consider their ellipticity g defined as

Q11— 020—2i012

. 17
011+ 022 +2(011022 — 07 )2 an

g=g1+igx=
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Figure 6. Comparison of second-order moments between COSMOS galax-
ies, parametric fits, and VAE samples. The vertical lines in panel (a) indicate
the means of the respective distributions. The error bars in panel (b) indicate
the 1o error on the mean ellipticity.

Note that this definition is distinct from the alternative distortion
definition of a galaxy ellipticity.

Fig. 6 compares the marginal distribution of determinant radius o
and ellipticity |g| for the three different samples. We find fairly good
agreement between the reference COSMOS distribution and galaxies
generated from the generative model, with a 4 per cent difference in
mean ellipticity and 1 percent difference in mean size. Note that
one would expect the parametric models to reproduce these statistics
almost perfectly, as they are fits to the actual galaxy images.

In addition to comparing the overall distribution of size and
ellipticity, we can test the quality of the conditional sampling
with Fig. 7 showing for each pair of real and mock galaxy the
difference in determinant radius and flux as obtained from the GALSIM
HSM adaptive moments method, as a function of the corresponding
conditional variable. The red line in these plots shows the median of
the corresponding residual distribution in bins of size and magnitude.
On these simple statistics, we find that the conditioning is largely
unbiased, but note an overall ~ 27 per cent scatter in size, and ~0.3 in
magnitude. For these two properties however, while the conditioning
is not extremely precise, a desired size and flux can always be
imposed after sampling from the generative model, using GALSIM
light profile manipulation utilities. We attribute this residual scatter
to limitations of the latent flow model, small errors in conditional
density estimation at the level of the latent distribution can translate
into more significant errors in image space.

4.4.2 Morphological statistics

To further quantitatively compare our generated galaxy sample to
the reference training set, we turn to higher order morphological
statistics. In this work we primarily make use of the multimode
(M), intensity (I), and Deviation (D) statistics introduced in Freeman
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Figure 7. Comparison of measured determinant radius and magnitude between pairs of COSMOS galaxies and VAE samples, as a function of half-light radius
and magnitude of the real galaxy, which are also used to condition the corresponding VAE samples. The solid red line represents the median of the difference in
size and flux, in bins of the corresponding conditional quantities. The error bars indicate the 1o uncertainty on that median value.

et al. (2013), which are specifically designed to identify disturbed
morphologies. We direct the interested reader to Freeman et al. (2013)
for a thorough description of these statistics and a comparison to
standard CAS statistics (Conselice 2003), and we briefly introduce
them as follows:

(1) M(ultimode) statistic: detects multimodality in a galaxy light
profile as a ratio of area between the largest and second largest
contiguous group of pixels above a threshold itself optimized as to
maximize this statistic. M tends to 1 if the light profile exhibits a
double nucleus, and to 0 if the image is unimodal.

(ii) I(ntensity) statistic: similar to the M statistic but computes
a ratio of integrated flux between the two most intense contiguous
groups of pixels in the image. I tends to 1 for two equally intense
nuclei, and to O if the flux of the brightest nucleus dominates.

(ii1) D(eviation) statistic: measures the distance between the local
intensity maximum identified as part of the I statistic to the cen-
troid of the light profile computed by a simple first-order moment
computation. This distance is scaled by the size of the segmentation
map of the object and is therefore below 1, tending towards O for
symmetrical galaxies.

In addition to these statistics, we also evaluate the Gini coef-
ficient and M20 statistic (Lotz, Primack & Madau 2004). These,
respectively, measure the relative distribution of pixel fluxes, and the
second-order moment of the brightest 20 per cent pixels.

Fig. 8 illustrates the distribution of MID statistics for samples of
parametric, mock, and real images. While we do not see a strong
deviation in term of the M statistic, the distributions of I and D
statistics are significantly different for parametric galaxies, while
mock and real galaxies appear to be very similar. More specifically,
for the I statistic, we note that parametric fits exhibit an underdensity
around [ >~ 0.1 compared to real COSMOS galaxies. We observed that
in this range of I values, multimodal real galaxies are found whereas
these do not exist in the monotonic parametric models. As a result,
this region is depleted for parametric models. We find that the fits
to multimodal COSMOS galaxies from this region are preferentially
scattered towards I =1 for large structured galaxies, as the modes

0.4 1.0 — COsSMOos
5 —— mock
0.3 0.8 4 parametric
0.6
0.2 3
0.4 2
0.1
/ 0.2 / 1
0.0 - 00 - —
-75 =50 =25 0.0 -3 -2 -1 0

0 -
0.00 0.25 0.50 0.75 1.00
log10(M) D

log10(1)
Figure 8. Comparison of marginal MID statistics evaluated on parametric
galaxies (left-hand panel), real COSMOS galaxies (middle panel), samples
from the generative model (right-hand panel).

identified on noisy monotonic profile tend to be from the same
neighbourhood and have very similar fluxes. On the other hand, for
bright and concentrated galaxies, the parametric fits are scattered to
lower I values; in this case, the central peak is also clearly identified in
the parametric fit, and a second peak, only due to noise, is necessarily
artificial and at far lower fluxes. This explains why we observe this bi-
modal shape of the log (I) distribution of parametric galaxies. For the
D statistic, we similarly see a significantly higher concentration near
D = 0 for parametric profiles compared to real COSMOS galaxies.
This is consistent with the definition of this statistic as parametric
profiles are symmetric, hence low D statistic. These results for
parametric profiles are therefore completely consistent with one’s
expectations for Sérsic or Bulge + Disc models with an additional
noise field.

By comparison, our mock galaxy images are more consistent with
real galaxies, and the fact that they do not exhibit the same failure
modes as parametric profiles indicates that the light profiles generated
by the deep generative models are indeed less symmetrical and more
multimodal than simple profiles. This difference can also be seen in
the 2D I-D histograms of Fig. 9(b).

Fig. 9(a) provides a similar comparison, but in the Gini-M20
plane, typically used to identify galaxy mergers or galaxies with
disturbed morphologies (Lotz et al. 2004). In this plane, galaxies
with simpler, less perturbed morphologies are typically found on the
right-hand side of the distribution, towards lower M20. In Fig. 9(a),
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Figure 9. Comparison of morphology statistics Gini-M20 (panel a) and I-D
(panel b) evaluated on parametric galaxies (left-hand panel), real COSMOS
galaxies (middle panel), and samples from the generative model (right-hand
panel). The colourmap is linear. On the Gini-M20 plane, more disturbed
morphologies are typically found on the left-hand side of the plot, while
smoother morphologies are found to the right-hand side.

we notice a clear depletion of parametric galaxies at higher M20 and
low Gini index (lower left-hand corner) compared to real galaxies.
These galaxies seem to have migrated to the right-hand side of the
plot, which corresponds to smoother morphologies. We are therefore
clearly seeing through this plot that parametric profiles are smoother,
less disturbed, than real COSMOS galaxies. In contrast, no such
trend can be identified when comparing COSMOS galaxies to mock
galaxies from the Flow-VAE, confirming that under the common
Gini-M20 statistic, galaxies sampled from the generative model are
also significantly more realistic than simple parametric profiles.

5 DISCUSSION

We have presented a framework for building and fitting generative
models of galaxy morphology, combining Deep Learning and phys-
ical modelling elements, allowing us to explicitly account for the
PSF and noise. With this hybrid approach, the intrinsic morphology
of galaxies can effectively be decoupled from the observational PSF
and noise, which is essential for the use of these generative models
in practice. We have further demonstrated a new type of conditional
generative model, allowing us to condition galaxy morphology
on physical galaxy properties. On a sample of galaxies from the
HST/ACS COSMOS survey with a limiting magnitude of 25.2 in
F814W, we have demonstrated that this Deep Learning approach to
modelling galaxy light profiles not only reproduces distributions of
second-order moments of the light profiles (i.e. size and ellipticity),
but more importantly, is more accurate than conventional parametric
light profiles (Sérsic or Bulge + Disc) when considering a set
of morphological summary statistics particularly sensitive to non-
monotonicity. We further note that while any deficiencies in mod-
elling second-order moments can be trivially addressed by dilation or
shearing, these higher order statistics could otherwise not be easily
imposed.

In this section, we now discuss future prospects for applications
of these tools as well as further potential improvements and devel-
opments.
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A first important point highlighted by this work is that when
encapsulated within a physical forward model of the instrument,
these latent variable generative models can be trained to learn
denoised and PSF-deconvolved light profiles. This means that in
future work, it will be possible to combine data from ground- and
space-based instruments to jointly constrain the same deep and
high-resolution morphology models. This is to be compared to the
current requirement of having access to dedicated deep space-based
observations, which remains limited in quantity and raises concerns
such as cosmic variance (Kannawadi, Mandelbaum & Lackner 2015).
Using HSC deep fields, for instance, fitting the morphology model to
individual exposures would allow us to profit from the overall depth
of the survey as well as from the good seeing exposures bringing
more constraints on small scales.

Although we have not emphasized this aspect of our approach in
the previous section, the light profiles learned by our models being
unconvolved from the PSF, they may contain details beyond the
original band-limit of the survey. Thanks to the small amount of total
variation regularization added to the training loss in Section 4.2,
we find in practice that the model does not introduce obviously
unphysical high frequencies or artefacts. Therefore, it may be
possible to use these galaxy models with a PSF slightly smaller
than a typical COSMOS PSF used for training, which can be thought
of as some sort of extrapolation to higher band-limits. We caution
the user against such a use however, as any details smaller than the
original COSMOS resolution are not constrained from data and are
purely the results of implicit priors and inductive biases. Testing
the impacts of this explicitly, for example, by learning a generative
model from a version of the COSMOS images degraded in resolution
and comparing to the original-resolution images, could be one way
to understand the degree to which any extrapolation is possible. This
test is left for future work.

As an alternative to learning fully deconvolved light profiles, we
also explored partial deconvolution, where galaxies are modelled at
a standardized effective PSF only slightly smaller than the training
PSFs. In our experiments, although it made the training slightly
more stable, it did not significantly affect the performance of the
trained model. We did not pursue this option further, but future
work using different architectures, especially GANs, may find partial
deconvolution advantageous.

Another highlight of this work is the ability to condition galaxy
morphology on other physical properties of the object. In an image
simulation context, this makes it possible to tie morphology to
physical parameters available in mock galaxy catalogs (e.g. stellar
mass, colour, magnitude, redshift). This will be crucial for producing
complex and realistic survey images accounting jointly for galaxy
clustering, photometry, and morphology.

Beyond image simulations, generative models can be regarded as
a general solution for building fully data-driven signal priors that can
be used in a range of astronomical imaging inverse problems such
as denoising, deconvolution, or deblending. This idea has been for
instance explored in the context of deblending in Arcelin et al. (2020)
using a VAE to learn a model of isolated galaxies light profiles, or in
Lanusse et al. (2019) using an auto-regressive pixelCNN+ + (Oord,
Kalchbrenner & Kavukcuoglu 2016) model trained on isolated
galaxy images as a prior for deblending by solving a maximum a
posteriori optimization problem. The usefulness of latent variable
models for solving general inverse problems was further explored
in Bohm, Lanusse & Seljak (2019), which illustrates how a Flow-
VAE such as the one introduced in this work can be used to recover
full posteriors on problems such as deconvolution, denoising, and
inpainting.

220z aunf /| uo 1sanb Aq GG9£9Z9/E¥SS/v/¥0S/PI0IME/SEIULY/ WO dNO"dlWapede//:sdny WOy papeojumoq



One open question that has been only partially addressed so far is
how to validate the quality of the morphology models. As illustrated
in this work, parametric light profiles match by design real galaxies
in terms of zeroth, first, and second moments (Fig. 6), while metrics
based on higher order statistics (e.g. Figs 9 and 8) are able to detect
significant departures in morphology. While our particular choice of
higher order statistics has proven powerful enough to demonstrate
a qualitative gain in morphology over simple parametric profiles,
we have however no guarantee that this set of statistics is sufficient
to fully characterize galaxy morphology. Instead of relying on the
carefully crafted metrics that are conventionally used to study galaxy
morphologies, recent work has focused on using generative models
for anomaly detection. In the first application of these methodologies
to astrophysics (Zanisi et al. 2021) have for instance demonstrated
that a method based on the Log Likelihood Ratio approach of Ren
et al. (2019) is capable of identifying morphology discrepancies
between IllustrisTNG (Nelson et al. 2019) and SDSS (Abazajian
et al. 2009; Meert, Vikram & Bernardi 2015) galaxies.

More fundamentally, even if we had access to a set of sufficient
statistics to detect deviations between real and generated galaxies, it
would remain unclear how close the model would need to match the
real morphologies in terms of these statistics in order to satisfy the
requirements of a particular scientific application. As an example, let
us consider the specific case of calibrating weak lensing shear mea-
surements with image simulations. It is known that the distribution
of galaxies ellipticities needs to be modelled with great accuracy
(Viola, Kitching & Joachimi 2014), and precise requirements can
be set in terms of ellipticities. These are however necessary but not
sufficient conditions; shear couples second-order moments (from
which the ellipticity is derived) to higher order moments of the light
profiles (Massey et al. 2007; Bernstein 2010; Zhang & Komatsu
2011), which makes calibration sensitive to morphological details
and substructure. Although we have various higher order statistics
at our disposal, defining a set of requirements to ensure accurate
calibration is a difficult task and such requirements have never been
rigorously quantified in practice.

Finally, here we have proposed a very specific generative model
architecture. In our experiments we found this approach of a hybrid
VAE and normalizing flow model to be robust and flexible while
providing good-quality samples. However, we do not expect this
model to remain a state-of-the-art solution, and in contrast, we
welcome and encourage additional efforts from the community to
develop better models. In that spirit, we have put significant efforts
into building GALAXY2GALAXY (G2G for short), a framework for
training, evaluating, and exporting generative models on standard
data sets such as the COSMOS sample used in this work. In
addition, we have developed the GALSIM-HUB extension to the
eaLs1M software, which allows us to integrate models trained with
G2G directly as GALSIM GSObjects that can then be manipulated in
the GALSIM framework like any other analytic light profile. More
details on GALSIM-HUB can be found in Section A.

In the spirit of reproducible and reusable research, the code
developed for this paper has been packaged in the form of two
PYTHON libraries :

(1) GALAXY2GALAXY: framework for training and exporting gen-
erative models:
https://github.com/ml4astro/galaxy2galaxy.

(i) GALSIM-HUB: framework for integrating deep generative mod-
els as part of GALSIM image simulation software:
https://github.com/mcwilliamscenter/galsim_hub.
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The scripts used to train the models presented in this work as well
as producing all the figures can be found at this link:
https://github.com/mcwilliamscenter/deep_galaxy models.
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APPENDIX A: GALSIM-HUB: ONLINE
REPOSITORY FOR TRAINED MODELS

As a way to easily interface deep generative models with existing
simulation pipelines based on the caLsiM software, we introduce
GALSIM-HUB, an online repository of pre-trained that which can
directly used within carsIM™ as any other light profiles.

Concretely, GALSIM-HUB is based on the TENSORFLOW HUB'
library that allows for TENSORFLOW models to be saved, loaded,
and executed similarly to a conventional PYTHON function within a
PYTHON library. In addition to a plain TENSORFLOW HUB module,
GALSIM-HUB also specifies some key metadata such as the pixel
resolution of the generated image, or input fields required by the
module for conditional sampling. At sampling time, the library will
generate an un-convolved image by drawing from the generative
model, and turn that image into a GalSim InterpolatedImage
object that can then be used as any other type of light profile.

To make it easy for researchers to exchange trained deep generative
models of galaxy morphology, GALSIM-HUB also provides an
online repository for community-maintained models directly from

10https://www.tensorflow.org/hub.
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the project GitHub repository: https://github.com/mcwilliamscente
r/galsim_hub.

Fig. Al illustrates a minimal working example of generating a list
of galaxies conditioned on size and magnitude from a pre-trained
model available from the online repository.
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import galsim
import galsim_hub
from astropy.table import Table

# Load generative model from the online repository
model = galsim_hub.GenerativeGalaxyModel(
'hub:Lanusse2020')

# Defines the input conditions
cat = Table([[5., 10. ,20.],
[24., 24., 24.],
[0.5, 0.5, 0.5]11,
names=['flux_radius', 'mag_auto', 'zphot'])

# Sample light profiles for these parameters
ims = model.sample(cat)

# Define a PSF
psf = galsim.Gaussian(sigma=0.06)

# Convolve by PSF
ims = [galsim.Convolve(im, psf) for im in ims]

Figure Al. Example of sampling galaxies from the generative model
conditioned on size and magnitude with GALSIM-HUB. The library will
automatically download from the online repository models referenced with
‘hub:xxxx” so that no manual user intervention is necessary to run a script.
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