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This work deals with a number of questions related to the discrete and continuous adjoint fields associated with the compressible Euler equations and classical aerodynamic functions. The consistency of the discrete adjoint equations with the corresponding continuous adjoint partial differential equations is one of them. It is has been established or at least discussed only for some numerical schemes and a contribution of this article is to give the adjoint consistency conditions for the 2-D Jameson-Schmidt-Turkel scheme in cell-centred finite-volume formulation. The consistency issue is also studied here from a new heuristic point of view by discretizing the continuous adjoint equation for the discrete flow and adjoint fields. Both points of view prove to provide useful information. Besides, it has been often noted that discrete or continuous inviscid lift and drag adjoint exhibit numerical divergence close to the wall and stagnation streamline for a wide range of subsonic and transonic flow conditions. This is analyzed here using the physical source term perturbation method introduced in reference [1]. With this point of view, the fourth physical source term of [1] appears to be the only one responsible for this behavior. It is also demonstrated that the numerical divergence of the adjoint variables corresponds to the response of the flow to the convected increment of stagnation pressure and diminution of entropy created at the source and the resulting change in lift and drag.

Introduction

Discrete and continuous adjoint methods are well established methods to efficiently calculate derivatives of aerodynamic functions with respect to numerous design parameters. Adjoint-based derivatives and adjoint-fields are commonly used for local shape optimization [START_REF] Frank | A comparison of optimisation based approaches for a model computational aerodynamics design problem[END_REF][START_REF] Pironneau | On optimum design in fluid mechanics[END_REF][START_REF] Jameson | Aerodynamic design via control theory[END_REF][START_REF] Jameson | Optimum aerodynamic design using the Navier-Stokes equations[END_REF][START_REF] Castro | Adjoint approach to viscous aerodynamic design on unstructured grids[END_REF], goal-oriented mesh adaptation [START_REF] Becker | An optimal control approach to a posteriori error estimation in finite element methods[END_REF][START_REF] Venditti | Grid adaptation for functional outputs: Application to two-dimensional inviscid flows[END_REF][START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF][START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF][START_REF] Fidkowski | An entropy approach to mesh refinement[END_REF][START_REF] Fidkowski | Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[END_REF][START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -with application to Euler flows[END_REF][START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF], flow control [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles[END_REF][START_REF] Sartor | Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile[END_REF], meta-modelling [START_REF] Morris | Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction[END_REF], receptivity-sensitivity-stability analyses [START_REF] Luchini | Adjoint equations in stability analysis[END_REF], and data assimilation [START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[END_REF]. These methods are often used for the linear analysis of non-linear conservation laws where the adjoint is defined as the dual to the linearized equations around a given solution to the direct non-linear problem. The continuous adjoint method refers to the discretization of the adjoint equations associated with the formal direct problem, while the discrete adjoint method refers to the adjoint equations to the discrete direct problem. The advantages and disavantages of the two approaches have been listed in several articles [START_REF] Giles | An introduction to the adjoint approach to design[END_REF][START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF].

Concerning the discrete adjoint method, strong efforts have been devoted to implement (either by hand or using automatic differentiation) the exact linearization of intricate schemes for intricate models [START_REF] Anderson | Airfoil design optimization on unstructured grids for turbulent flows[END_REF][START_REF] Nielsen | Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[END_REF] and to enhance the robustness of the linear solver [START_REF] Nemec | Newton-Krylov algorithm for aerodynamic design using the navier-stokes equations[END_REF][START_REF] Xu | Stabilisation of discrete steady adjoint solvers[END_REF]. However fundamental questions related to the discrete adjoint fields are still open even for two-dimensional (2-D) compressible Euler flows. Although numerical simulations including viscous laminar and turbulent effects are currently common practices in CFD, it is desirable to gain a further understanding in the discrete adjoint method addressing unresolved questions in the framework of 2-D Euler equations.

First, are the discrete adjoint fields consistent with the continuous equation at the limit of fine meshes? This subject goes back to a discussion by Giles et al. in [START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF] where the authors discussed the discrete adjoint counterpart of a strong boundary condition at a wall and derived a normal projection of the momentum adjoint variable that did not correspond to the normal momentum component of the continuous adjoint solution at the boundary. Although, of course, the exact discrete adjoint provides the exact output functional gradient for a fixed mesh and scheme, this oddness raised a series of questions: which schemes are adjoint-consistent? What are the consequences of the lack of dual consistency? How close are continuous adjoints and possibly inconsistent discrete adjoints? These points have been addressed using numerical comparisons by Nadarajah and Jameson who also discussed the influence of the adjoint gradient accuracy on the final optimized shapes for airfoil design problems [START_REF] Nadarajah | A comparison of the continuous and discrete adjoint approach to automatic aerodynamic shape optimization[END_REF][START_REF] Nadarajah | Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization[END_REF]. Neither the discrepancy in the gradients, nor the difference in the final shapes they observed on intermediate and coarse meshes were very significant. Nevertheless it is sound to gain a more general understanding in this area. The adjoint consistency issue in CFD has also been studied theoretically in some articles where the authors have to first precisely describe the numerical method they consider, including the possibly specific discretization close to the boundary, and also the way the function of interest is discretized. Lu and Darmofal [START_REF] Lu | Adaptative precision methodology for flow optimisation via discretization and iteration error control[END_REF] considered a discontinuous Galerkin (DG) scheme and then demonstrated how to formulate the primal boundary condition and the output functional to obtain dual consistency. The difference between the consistent and non consistent formulations is noticed in both the appearance of spurious oscillations in the adjoint contours close to the function support and the convergence rate of the output of interest w.r.t. the characteristic mesh size. Hartmann [START_REF] Hartmann | Adjoint consistency analysis of discontinuous Galerkin discretizations[END_REF] also discussed dual consistency for DG schemes, including interior penalty DG and also dealt with Navier-Stokes equations and test-cases. The adjoint consistency of a high-order correction procedure via reconstruction formulation for hyperbolic conservation laws was investigated in [START_REF] Shi | Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method[END_REF]. As concerning finite-differences and finite-volume (FV), the questions of adjoint consistency was discussed by Duivesteijn et al. and Lozano for quasi-one-dimensional Euler flows [START_REF] Duivesteijn | On the adjoint solution of the quasi-1D Euler equations: the effect of boundary conditions and the numerical flux function[END_REF][START_REF] Lozano | A note on the dual consistency of the discrete adjoint quasi-one dimensional Euler equations with cell-centred and cell-vertex central discretization[END_REF] and also for an unsteady conservation law by Liu and Sandu [START_REF] Liu | On the properties of the discrete adjoints of numerical methods for the advection equation[END_REF]. In this later article, the authors considered first-order and second-order upwind schemes and derived the circumstances in which the discrete adjoint is punctually not consistent (change of convection direction, inadequate discretization of boundary condition in particular). Hicken and Zingg have demonstrated the influence of adjoint consistency for a class of summation-by-parts difference schemes, illustrating the benefit of consistency in terms of regularity of adjoint contours close to boundaries, functional grid-convergence, and dual-weighted corrected functional mesh convergence [START_REF] Hicken | Dual consistency and functional accuracy: a finite-difference perspective[END_REF]. Recently, Stück carried out a corresponding effort for cell-vertex FV discretization (using median dual grids), deriving the condition on the output of interest and scheme residual for dual consistency [START_REF] Stück | An adjoint view on flux consistency and strong wall boundary conditions to the Navier-Stokes equations[END_REF][START_REF] Stück | Dual-consistency study for Green-Gauss gradient schemes in an unstructured Navier-Stokes method[END_REF]. In this article, the conditions for dual consistency of the classical Jameson-Schmidt-Turkel (JST) scheme in 2-D cell-centered FV are derived. Besides, the dual consistency is also studied here from a heuristic point of view, discretizing the continuous adjoint equation for the discrete adjoint fields which adds valuable information to the theoretical study where the flow or the gradient of the adjoint is discontinuous and where numerical divergence of the adjoint is observed

In the case of hyperbolic equations, the validity of the adjoint linearization around discontinuities in the direct solution has to be carefully handled because it results in linear equations with discontinuous coefficients. The analysis must include the linearization of the jump relations at the discontinuity [START_REF] Majda | The stability of multidimensional shock fronts[END_REF] which leads to a so-called interior boundary condition for the adjoint variables [START_REF] Ulbrich | A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms[END_REF]. The adjoint relations to the Rankine-Hugoniot (RH) relations have been derived in [START_REF] Giles | Analytic adjoint solutions for the quasi-one-dimensional euler equations[END_REF] for the quasi-one-dimensional and in [START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] for the 2-D compressible Euler equations and proved continuity of the adjoint variables across the shock. In contrast, their derivatives may be discontinuous [START_REF] Giles | Analytic adjoint solutions for the quasi-one-dimensional euler equations[END_REF][START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF]. Lozano [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] also briefly discussed the consistency of the continuous adjoint fields but on rather coarse meshes. The conclusions of his work leave the question open whether these relations are actually satisfied at the limit of fine discrete adjoint fields.

Finally, it has been well-documented [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF][START_REF] Lozano | Watch your adjoints! lack of mesh convergence in inviscid adjoint solutions[END_REF]] that, at certain flow conditions, the inviscid lift and drag adjoint fields may exhibit increasing values as the mesh is refined close to the stagnation streamline, the wall and, for (at least locally) supersonic flows, the Mach lines impacting a shock foot. In the case of the stagnation line, Giles and Pierce derived a 1/ √ d law for lift and drag adjoint [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] (d being the distance to the line), but they used the potential flow theory and this 1/ √ d behavior is not always well-observed for compressible flows [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF]. In an effort to analyze the zones of singular behavior, Todarello et al. [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] used the characterization of the discrete adjoint and looked how the flow is perturbed by a residual perturbation located in one of the these specific areas. This method is used again here but with perturbations of the residual corresponding to physical source terms [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] which allows fluid mechanics analysis. In this framework, it appears that the numerical divergence of the adjoint variables close to the stagnation streamline and the wall is due to the influence of the fourth of the source term proposed in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF], the corresponding convected increment of stagnation pressure and diminution of entropy (created at the location of the source) and the resulting change in lift and drag. Finally, some other aspects of 2-D inviscid lift and drag adjoint field are studied in details. In particular, in the case of a supersonic flow with a detached shock wave, the mathematical expression of the adjoint field upwind the shock wave is derived.

The paper is organized as follows. Sections 2 and 3 are devoted to reminders about continuous and discrete adjoint solutions for compressible Euler flows. The adjoint consistency of the cell-centered JST scheme with structured 2-D meshes [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta timestepping schemes[END_REF] is theoretically discussed in § 4. The theoretical results about adjoint consistency and adjoint-gradient discontinuity at shock waves are then assessed in § 5 using lift-and drag-adjoint fields for inviscid flows around the NACA0012 airfoil in supersonic ( § 5.2), transonic ( § 5.3) and subsonic ( § 5.4) regimes. The dual consistency property is then also practically discussed discretizing the continuous adjoint equation for fine grid discrete adjoint fields. This appears to highlight several zones of numerical divergence of the adjoint fields and this divergence is analysed in the vicinity of the wall and the stagnation streamline. Finally, concluding remarks about this work are given in § 6.

Continuous adjoint equations for 2-D Euler flows

Regions of smooth flow

The continuous adjoint equations for gas dynamics were first derived by Jameson [START_REF] Jameson | Aerodynamic design via control theory[END_REF] in the case of 2-D compressible Euler flows around a profile. He considered a body fitted structured grid that was mapped to a conformal rectangle and used the Euler equations in the resulting (ξ , η)-coordinates. A parametrization of the mapping then allowed to vary the airfoil shape in the physical space (without altering the domain of variation of the transformed coordinates) and to define a gradient calculation problem for functional outputs.

As, in this formulation, the system of transformed coordinates is attached to a structured mesh, the aforementioned equations could not be used for unstructured CFD for which a formulation in physical coordinates was necessary. The corresponding system of equations was first derived by Anderson and Venkatakrishnan in [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF] and then by Hiernaux and Essers [START_REF] Hiernaux | An optimal control theory based algorithm to solve 2D aerodynamic shape optimisation problems for inviscid and viscous flows[END_REF][START_REF] Hiernaux | Aerodynamic optimization using Navier-Stokes equations and optimal control theory[END_REF]. Below we recall shortly the theory from [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF].

The quantity of interest is assumed to be the projection of the force applied by the fluid onto the solid, projected in the direction d = (cos α, sin α) T for the lift, or d = (sin α, cos α) T for drag with α the angle of attack:

J = Γ w p(n • d)ds, (1) 
where Γ w is the boundary of the solid body, n = (n x , n y ) T is the unit normal vector pointing outward, and p is the static pressure. The 2-D steady compressible Euler equations in conservative form read

∂ F x (W ) ∂ x + ∂ F y (W ) ∂ y = 0 in Ω, (2) 
W being the vector of conservative variables and F x and F y the physical fluxes:

W =     ρ ρu x ρu y ρE     , F x (W ) =     ρu x ρu 2 x + p ρu x u y ρu x H     , F y (W ) =     ρu y ρu x u y ρu 2 y + p ρu y H     ,
with H = E + p/ρ the total specific enthalpy and U = (u x , u y ) T the velocity vector. We assume an ideal gas law for the static pressure p = (γ -1)ρe = (γ -1)(ρE -1 2 ρ U 2 ) with γ the ratio of specific heats. Let δW by a perturbation in the steady state flow that is caused be an infinitesimal perturbation of the airfoil shape or flow conditions. As W and W + δW are solutions to the steady Euler equations for the initial and perturbed problems, we get by difference

∂ (AδW ) ∂ x + ∂ (BδW ) ∂ y = 0 in Ω,
with A and B the Jacobians of the fluxes F x and F y , respectively. The perturbation in J can be augmented by the dot product of the above equation with an arbitrary co-state field ψ:

δ J = Γ w δ p(n • d)ds + Γ w p(δ (n) • d)ds + Γ w p(n • d)δ (ds) + Ω ψ T ∂ (AδW ) ∂ x + ∂ (BδW ) ∂ y dv,
where at first order δ p = ∇p • δ x + p (W) • δ W represents pressure variations due to both geometry variations δ x = (δ x, δ y) T and solution variations δ W due to this change in the geometry.

Assuming smooth direct and adjoint solutions, the last term can be transformed by integration by parts into

- Ω ∂ ψ T ∂ x A + ∂ ψ T ∂ y B δW dv + Γ w ∪Γ ∞ ψ T (n x A + n y B)δW ds,
with Γ ∞ the far field boundary, so we have

δ J = Γ w δ p(n • d) + Γ w p(δ (n) • d) ds + p(n • d)δ (ds) - Ω ∂ ψ T ∂ x A + ∂ ψ T ∂ x B δW dv + Γ w ∪Γ ∞ ψ T (n x A + n y B)δW ds (3) 
The adjoint method removes the dependency in the flow perturbation δW for the evaluation of the variation of J. This directly yields the adjoint equation in the fluid domain:

-A T ∂ ψ ∂ x -B T ∂ ψ ∂ y = 0, in Ω. (4) 
Note that manipulating (4) one may deduce

U • ∇ψ 1 -HU • ∇ψ 4 = 0. (5) 
Besides, using the variation of the boundary condition δ (U • n) = 0 and expanding ψ T (n x A + n y B)δW at the wall yields the wall boundary condition [START_REF] Anderson | Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[END_REF] n

• d + ψ 2 n x + ψ 3 n y = 0. (6) 
In the far field, no variation of the boundary needs to be considered. The Jacobian in direction n can be rewritten by using a locally one-dimensional characteristic decomposition to yield

Γ ∞ ψ T (n x A + n y B)δW ds = Γ ∞ (ψ T P -1 DPδW )ds. (7) 
It is assumed that PδW δ (PW ). The variation in these characteristic variables is zero for the components corresponding to negative eigenvalues of the Jacobian, n x A + n y B, in the classical 1D approximate linearization at the boundary (information coming from outside of the domain and fixed characteristic value). The far field adjoint BC simply imposes that the other components of ψ T P -1 are zero so that δW T (n x A T + n y B T )ψ vanishes for all δW .

Jump relations for the adjoint derivatives

We derive here some useful relations for the jump of the adjoint variables derivatives across the shock. As reported in the introduction, the derivation of the adjoint Rankine-Hugoniot relations for the quasi-one-dimensional [START_REF] Giles | Analytic adjoint solutions for the quasi-one-dimensional euler equations[END_REF] and 2-D [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF][START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF] compressible Euler equations show that the adjoint variables are continuous across the shock, while the adjoint derivatives in the direction normal to the shock may be discontinuous. These jump relations for the derivatives have been manipulated in [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] to provide information on the behavior of adjoint variables at shocks. We reproduce here this latter analysis but in a somewhat more general way and numerical experiments on very fine meshes in Figs. 7 and 12 will support our conclusions.

Let consider an isolated discontinuity Σ where the direct solution satisfies the RH jump relations

[[n x F x (W ) + n y F y (W )]] = 0, (8) 
where [[•]] denotes the jump across Σ in the unit direction n = (n x , n y ) T normal to Σ. Introducing t = (-n y , n x ) T , the adjoint equation ( 4) may be rewritten as

-A T n ∂ ψ ∂ n -A T t ∂ ψ ∂t = 0 in Ω, (9) 
with

A n = n x A + n y B =     0 n x n y 0 (γ -1)e c n x -uv n v n -(γ -2)un x un y -(γ -1)vn x (γ -1)n x (γ -1)e c n y -vv n vn x -(γ -1)un y v n -(γ -2)vn y (γ -1)n y (γ -1)e c -H)v n Hn x -(γ -1)uv n Hn y -(γ -1)vv n γv n     , A t = -n y A + n x B =     0 -n y n x 0 -(γ -1)e c n y -uv t v t + (γ -2)un y un x + (γ -1)vn y -(γ -1)n y (γ -1)e c n x -vv t -vn y -(γ -1)un x v t -(γ -2)vn x (γ -1)n x (γ -1)e c -H)v t -Hn y -(γ -1)uv t Hn x -(γ -1)vv t γv t     , where v n = n • U, v t = t • U, ∂ n ψ = n x ∂ x ψ + n y ∂ y ψ, and ∂ t ψ = -n y ∂ x ψ + n x ∂ y ψ.
Assuming that A n is non-singular, the adjoint is continuous across Σ [START_REF] Giles | Analytic adjoint solutions for the quasi-one-dimensional euler equations[END_REF][START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF][START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF]:

[[ψ]] = 0, so [[∂ t ψ]] = 0. Likewise we have [[ρv n ]] = 0, [[v t ]] = 0, and [[H]] = 0.
Let (9a-d) denote the four equations in [START_REF] Dwight | Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation[END_REF]. Then, the operation (9a

)+ u x 2 (9b)+ u y 2 (9c) gives v n 2 ∂ n ψ 1 -H∂ n ψ 4 + v t 2 ∂ t ψ 1 -H∂ t ψ 4 = 0,
and applying the jump operator we obtain

[[v n ∂ n ψ 1 ]] -H[[v n ∂ n ψ 4 ]] = 0. (10) 
Note that for functions of the static pressure and the geometry and uniform far field, one gets from (5) that ∇ψ 1 = H∇ψ 4 which is actually observed later on in the numerical experiments with lift and drag adjoint (see also equation ( 18) below). Likewise, (9d) gives

(γ -1)[[n x ∂ n ψ 2 + n y ∂ n ψ 3 ]] + γ[[v n ∂ n ψ 4 ]] = 0, (11) 
and the operations [[n x (9c)-n y (9b)]] and [[n x (9b)+n y (9c)]] result in

[[v n -n y ∂ n ψ 2 + n x ∂ n ψ 3 + v t ∂ n ψ 4 ]] + [[v n ]] n x ∂ t ψ 2 + n y ∂ t ψ 3 = 0, (12a) 
[[∂ n ψ 1 ]] + [[(u + v n n x )∂ n ψ 2 + (v + v n n y )∂ n ψ 3 + (H + v 2 n )∂ n ψ 4 ]] + [[v n ]]v t ∂ t ψ 4 = 0. (12b)
Finally, the adjoint equation to the RH relations [START_REF] Venditti | Grid adaptation for functional outputs: Application to two-dimensional inviscid flows[END_REF] reads [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF][START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF] which may be simplified into

[[-n y F x (W ) + n x F y (W )]] • ∂ t ψ = 0 [40,
v t [[ρ]](∂ t ψ 1 + H∂ t ψ 4 ) + ([[p]] + v 2 t [[ρ]])(-n y ∂ t ψ 2 + n x ∂ t ψ 3 ) = 0. ( 13 
)
3. Discrete adjoint equations

Discrete gradient calculation

The finite volume scheme of interest defines the steady-state discrete flow vector W (of size n W ) as the solution of a set of n W non-linear equations involving W and the vector of mesh coordinates X: R(W, X) = 0.

Let us assume that the mesh is a smooth function of the vector of design parameters β (of size n β ), then the implicit function theorem allows to define W as a function of X and so of β [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF]. Discrete gradient calculation consists of computing the derivatives of the n f functions

J k (β ) = J k (W (β ), X(β )), 1 ≤ k ≤ n f ,
with respect to the n β design parameters. In external aerodynamic applications, n β is usually much larger than n f and the most efficient way to proceed is to use the discrete adjoint method which requires to solve n f linear systems

∂ R ∂W T Λ k = - ∂ J k ∂W T , 1 ≤ k ≤ n f , (14) 
and then to calculate

dJ k dβ = ∂ J k ∂ X dX dβ + Λ T k ∂ R ∂ X dX dβ .
The dominant cost is the inversion of the n f linear systems of size n W whereas all other classical methods solve n β linear (or non-linear for finite-differences) systems of size n W . The cost of solving n systems with the same matrix and different right-hand sides can be mitigated using specific methods like block-GMRES [START_REF] Gutknecht | Block krylov space methods for linear systems with multiple right-hand sides: An introduction[END_REF][START_REF] Pinel | Block Krylov methods to solve adjoint problems in aerodynamic design optimization[END_REF] or specific CPU optimizations but in the common case where n f n β the adjoint method is more efficient than any direct approach.

Numerical characterization of the discrete adjoint

The adjoint vector Λ associated with one function J is usually identified with the sensitivity of J to a perturbation of the residual R followed by re-convergence (see [START_REF] Fidkowski | Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[END_REF] and references therein). Following [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Fidkowski | Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[END_REF], we consider here a perturbation δ R added to the right-hand-side of the discrete flow equations and denote by W + δW the converged solution corresponding to the perturbed equation:

R(W + δW, X) = δ R, or at first order ∂ R ∂W δW = δ R. Since J(W + δW, X) J(W, X) + ∂ J ∂W δW the first-order change in the function of interest J due to δW is δ J = ∂ J ∂W ∂ R ∂W -1 δ R,
or involving the adjoint vector Λ defined in [START_REF] Belme | An a priori anisotropic goal-oriented error estimate for viscous compressible flow and application to mesh adaptation[END_REF]: δ J = -Λ T δ R. If only the a-th component of R at cell m has been altered by a small quantity δ R a m , then the previous equation yields Λ a m = -δ J/δ R a m , which defines the a-th component of Λ at cell m as the limit ratio of the change in J divided by the infinitesimal change in the residual R at the corresponding cell and component which caused the change in flow solution and function value.

Physical characterization for 2-D Euler flows

We recall here the physical interpretation of the adjoint solution by Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF]. More precisely, the discussion in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] is based on the continuous adjoint equation and its discrete counterpart is presented here. Four physical source terms δ R are defined at each individual cell: 1) local mass source at fixed stagnation pressure and total enthalpy; 2) local normal force; 3) local change in total enthalpy at fixed static and total pressure; 4) local change in total pressure at fixed total enthalpy and static pressure:

δ R 1 m = ε     1 u x u y H     , δ R 2 m = ε     0 -ρu y ρu x 0     , δ R 3 m = ε     -1 2H 0 0 1 2     , δ R 4 m = ε         1 p 0 γ-1 γ + 1 γM 2 u x p 0 γ-1 γ + 2 γM 2 u y p 0 γ-1 γ + 2 γM 2 H p 0 γ-1 γ + 1 γM 2         , ( 15 
)
with 0 < ε 1 and where H denote the total enthalpy and M is the Mach number. At first order, the corresponding function variations δ J 1 m , δ J 2 m , δ J 3 m , δ J 4 m due to the source terms in cell m, [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles[END_REF], read

(δ J 1 m , δ J 2 m , δ J 3 m , δ J 4 m ) = -(Λ 1 m , Λ 2 m , Λ 3 m , Λ 4 m ) ×     δ R 1 1,m δ R 2 1,m δ R 3 1,m δ R 4 1,m δ R 1 2,m δ R 2 2,m δ R 3 2,m δ R 4 2,m δ R 1 3,m δ R 2 3,m δ R 3 3,m δ R 4 3,m δ R 1 4,m δ R 2 4,m δ R 3 4,m δ R 4 4,m     , (16) 
where δ J d m corresponds to the change in J due to d-th change of R in cell m. Converging again the perturbed solution W + δW d leads to the change δ J d m in the function of interest. As the four changes in R are linearly independent, Giles and Pierce define the adjoint vector at cell m as the solution to (16) so, using the perturbation terms in [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles[END_REF], we obtain

(Λ 1 m , Λ 2 m , Λ 3 m , Λ 4 m ) = -(δ J 1 m , δ J 2 m , δ J 3 m , δ J 4 m ) × 1 ε       1 + (γ-1) 2 M 2 -(1+(γ-1)M 2 )u x U 2 - (1+(γ-1)M 2 )u y U 2 1+ (γ-1) 2 M 2 H 0 - u y ρ U 2 u x ρ U 2 0 -H 0 0 1 -γ p 0 M 2 2 γ p 0 u x c 2 γ p 0 u y c 2 -γ p 0 M 2 2H       . ( 17 
)
The residual perturbation δ R has been physically defined thus giving a physical meaning to the local discrete adjoint vector. The adjoint vector is intrinsic to the system of equations for which a similar demonstration can be done, and we can expect similar solutions from different discretizations on the same mesh.

Finally, Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] have noted for continuous adjoint that the third perturbation does not alter the pressure field for inviscid flows and hence leaves the drag and lift unchanged. From the expression of this perturbation, it is then straightforward to prove that the lift and drag continuous adjoint fields satisfy all over the fluid domain the following equation:

ψ 1 = Hψ 4 . (18) 
This property may be compared to [START_REF] Jameson | Optimum aerodynamic design using the Navier-Stokes equations[END_REF] and is seen to be well satisfied in the numerical adjoint fields (see § 5.3.1). The fourth perturbation δ R 4 also preserves the static pressure at the location of the source term but the authors of [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] proved that, contrary to δ R 3 , for arbitrary flow conditions, it does not preserve the static pressure field nor the streamtube structure of the base flows (in particular, the mass flux varies downstream the source term in the corresponding streamtube of the original flow).

Adjoint consistency of the cell-centered JST scheme

The dual consistency of the JST scheme is discussed here for 2-D FV cell-centred simulations on structured meshes. We use the classical method of equivalent differential equation which consists of introducing Taylor series expansions for all state variables and adjoint values in order to analyze the truncation error of the scheme [52, ch. 9]. Let us stress that this approach remains valid in the case of discontinuous solutions [START_REF] Goodman | The validity of the modified equation for nonlinear shock waves[END_REF].

Lozano studied the adjoint consistency of the discrete adjoint of the JST scheme for both cell-centered and cellvertex discretizations [START_REF] Lozano | A note on the dual consistency of the discrete adjoint quasi-one dimensional Euler equations with cell-centred and cell-vertex central discretization[END_REF] of the quasi-one-dimensional compressible Euler equations. Boundary conditions using artificial dissipation (AD) were applied which lead to inconsistent discrete adjoint scheme at the boundaries. Such boundary conditions are not suitable for simulations of internal flows that require conservation and, in this work, no artificial dissipation is added to the boundary fluxes. However, several classical AD formulas may still be used for the second to last faces close to a physical boundary [START_REF] Swanson | Artificial dissipation and central difference schemes for the euler and navier-stokes equations[END_REF][START_REF] Swanson | On central-difference and upwinf schemes[END_REF]. In the following we will first consider the default discretization of our code (see equation ( 25) below) and then consider in §4.4 two alternative formulas (equations ( 26) and ( 27)) with different properties with respect to dual consistency. Finally, this analysis is completed in § 5.2 to 5.4 by numerical and visual examination of the residuals of the continuous adjoint equation calculated for the discrete lift and drag adjoint fields.

The reference continuous equations will be the adjoint of Euler equations in transformed coordinates. Jameson presented these equations in 2-D and 3-D [START_REF] Jameson | Aerodynamic design via control theory[END_REF]. Later on, Giles and Pierce derived the corresponding direct differentiation equation in 2-D [START_REF] Giles | An introduction to the adjoint approach to design[END_REF]. In this framework, the physical space (typically about an airfoil) is seen as the image of the unit domain [0, 1] × [0, 1] with coordinates (ξ , η). The transformed 2-D Euler equations in the (ξ , η)-coordinates are well-known and, for functions of the form (1), the adjoint equations read

- ∂ Λ T ∂ ξ ∂ y ∂ η A(W ) - ∂ x ∂ η B(W ) - ∂ Λ T ∂ η -A(W ) ∂ y ∂ ξ + B(W ) ∂ x ∂ ξ = 0, (19) 
where A(w) and B(w) are the Jacobians of Euler flux in the physical x and y directions. Let us assume that the wall corresponds to the ξ = 0 boundary and that the function of interest is the force applied by the fluid on the solid in direction d = (d x , d y ), then the corresponding boundary condition reads:

-Λ T A(W ) ∂ y ∂ η -B(W ) ∂ x ∂ η -( ∂ y ∂ η d x - ∂ x ∂ η d y ) ∂ p ∂W = 0 at ξ = 0.
It can be simplified by benefiting from the specific form of the Jacobian at a wall yielding

Λ 2 ∂ y ∂ η -Λ 3 ∂ x ∂ η + ( ∂ y ∂ η d x - ∂ x ∂ η d y ) = 0. ( 20 
)
The adjoint consistency of the FV scheme of interest is discussed hereafter referring to the formal equations ( 19) and [START_REF] Giles | An introduction to the adjoint approach to design[END_REF]. Using a structured mesh, the JST scheme in the i-direction reads (the j subscripts have been dropped for the sake of readability):

F JST i+1/2 = 1 2 (F(W i ) + F(W i+1 )) • S i+1/2 -k 2 ν i+1/2 κ i+1/2 (W i+1 -W i ) + k 4 i+1/2 κ i+1/2 (W i+2 -3W i+1 + 3W i -W i-1 ) (21) 
ν i = |p i+1 -2p i + p i-1 | (p i+1 + 2p i + p i-1 ) ν i+1/2 = max(ν i , ν i+1 ) (22) 
k 4 i+1/2 = max(0, k 4 -ν i+1/2 k 2 ) κ i+1/2 = |U i+1/2 .S i+1/2 | + c i+1/2 S i+1/2 , (23) 
where F = (F x , F y ). The fluid velocity U and the speed of sound c at the interface i + 1/2 are evaluated from one of the classical conserved variable means. Dual consistency close to the boundary depends on the specific flux formulas at the boundary and second to last interfaces:

F JST 1/2 = F(W b ) • S 1/2 (24) 
F JST a 3/2 = 1 2 (F(W 1 ) + F(W 2 )) • S 3/2 -k 2 ν 3/2 κ 3/2 (W 2 -W 1 ) + k 4 3/2 κ 3/2 (W 3 -3W 2 + 2W 1 ) (25) 
where p 0 = 2p bp 1 is used in the evaluation of ν 1 , and W b is a boundary state satisfying all Dirichlet-like boundary conditions. For the sake of comparison, two alternative formulas [START_REF] Swanson | Artificial dissipation and central difference schemes for the euler and navier-stokes equations[END_REF][START_REF] Swanson | On central-difference and upwinf schemes[END_REF] will be considered:

F JST b 3/2 = 1 2 (F(W 1 ) + F(W 2 )) • S 3/2 -k 2 ν 3/2 κ 3/2 (W 2 -W 1 ) + k 4 3/2 κ 3/2 (W 3 -2W 2 +W 1 ), (26) 
F JST c 3/2 = 1 2 (F(W 1 ) + F(W 2 )) • S 3/2 -k 2 ν 3/2 κ 3/2 (W 2 -W 1 ) + k 4 3/2 κ 3/2 (W 3 -3W 2 + 3W 1 -W g ), (27) 
where W g is a mirror state of W 1 w.r.t. the boundary. Note that at specific faces where either U • S = 0, or k 4νk 2 = 0, or ν i = ν i+1 , the flux is not differentiable. This issue is discussed in [START_REF] Nguyen-Dinh | Qualification des simulations numériques par adaptation anisotropique de maillages[END_REF] for a simulation about a symmetric airfoil, with a symmetric mesh and zero angle of attack leading to two complete lines of faces where |U • S| is extremely close to machine-level-zero. The small irregularities of adjoint quantities that appear close to these lines are cured by regularization but no such problem is observed for more complex cases and, most generally, this question is discarded [START_REF] Dwight | Effect of approximations of the discrete adjoint on gradient-based optimization[END_REF] considering that the occurrence of such equalities is marginal in practice.

Under the classical assumption that ∆ξ and ∆η vary smoothly and have the same order of magnitude, the consistency of the discrete adjoint of equations ( 21) to [START_REF] Nemec | Newton-Krylov algorithm for aerodynamic design using the navier-stokes equations[END_REF] completed by ( 25), ( 26) or ( 27), is studied. The main result of this section is the following. Lemma 1. For a wall integral, the discrete discrete adjoint of the finite-volume JST scheme is:

• consistent with the continuous adjoint equations [START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[END_REF] in interior cells;

• consistent with the continuous adjoint equations [START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[END_REF] in a penultimate cell w.r.t. a boundary using F JST b 3/2 whereas it is inconsistent using F JST a 3/2 or F JST c 3/2 ;

• consistent with the wall boundary condition [START_REF] Giles | An introduction to the adjoint approach to design[END_REF] in a cell adjacent to a wall.

The first and third results are independent of the choice of the F JST 3/2 formula.

Unfortunately, the choice of F JST b 3/2 induces significant robustness issues in the simulations on very fine meshes and we finally discuss in §4.5 how to slightly alter the exact Jacobian obtained with F JST a 3/2 and F JST c 3/2 to get adjoint consistency.

Consistency of discrete adjoint inside the domain

The discrete adjoint equation at a current cell (i, j) reads

(Λ T (i-2, j) -Λ T (i-1, j) ) ∂ F i-3/2, j ∂W (i, j) + (Λ T (i-1, j) -Λ T (i, j) ) ∂ F i-1/2, j ∂W (i, j) (28) 
+(Λ T (i, j) -Λ T (i+1, j) ) ∂ F i+1/2, j ∂W (i, j) + (Λ T (i+1, j) -Λ T (i+2, j) ) ∂ F i+3/2, j ∂W (i, j) (29) 
+(Λ T (i, j-2) -Λ T (i, j-1) ) ∂ F i, j-3/2 ∂W (i, j) + (Λ T (i, j-1) -Λ T (i, j) ) ∂ F i, j-1/2 ∂W (i, j) (30) 
+(Λ T (i, j) -Λ T (i, j+1) ) ∂ F i, j+1/2 ∂W (i, j) + (Λ T (i, j+1) -Λ T (i, j+2) ) ∂ F i, j+3/2 ∂W (i, j) = 0. ( 31 
)
Only fluxes in the i-direction appear in ( 28)-( 29), while only fluxes in the j-direction appear in ( 30)-( 31) and we will analyze them separately. This is done below in the i-direction (again dropping the j subscripts). The contribution of the centered flux in ( 28)-( 29) is

1 2 (Λ T i-1 -Λ T i ) ∂ F ∂W i S i-1/2 + (Λ T i -Λ T i+1 ) ∂ F ∂W i S i+1/2 . (32) 
The i and j subscripts and ξ and η coordinates are linked by the simple affine transformations

ξ (i) = i -1 i max -1 = (i -1)∆ξ , η( j) = j -1 j max -1 = ( j -1)∆η,
and the expression of the surface vectors is easily derived from those of the coordinates

S i+1/2, j = y(ξ (i + 1/2), η( j + 1/2)) -y(ξ (i + 1/2), η( j -1/2)) -x(ξ (i + 1/2), η( j + 1/2)) + x(ξ (i + 1/2), η( j -1/2)) .
The two terms in (32) are hence consistent with

- 1 2 ∂ Λ T ∂ ξ ∂ y ∂ η A - ∂ x ∂ η B ∆ξ ∆η
respectively at points (i -1/2, j) and (i + 1/2, j), with ∆ξ ∆η the volume of a cell, and the sum of both contributions is a consistent approximation of

- ∂ Λ T ∂ ξ ∂ y ∂ η A - ∂ x ∂ ξ B ∆ξ ∆η at point (i, j).
Moreover it is second-order accurate as it uses symmetric means and differences w.r.t. (ξ (i), η( j)).

Carrying out the corresponding expansions for the linearized fluxes in the j-direction, the second term of equation ( 19) times ∆ξ ∆η is recovered. The first part of the discrete adjoint equation, obtained by isolating the differentiation of the centered flux, is hence a consistent discretization of equation ( 19) up to a multiplicative ∆ξ ∆η factor. After this first step, the discussion of the interior cells adjoint consistency of the JST scheme comes back to the examination of all the other terms in ( 28)-( 31) and the question whether other second-order terms in ∆ξ and ∆η appear (inconsistency) or only higher-order terms appear (consistency). The terms in ( 28)-( 29) that involve the derivatives of the sensor, read

k 2 (Λ T i-2 -Λ T i-1 ) ∂ ν i-3/2 ∂W (i, j) κ i-3/2 -(W i-2 -W i-1 ) -1 [k 4 i-3/2 >0] (W i -3W i-1 + 3W i-2 -W i-3 ) +(Λ T i-1 -Λ T i ) ∂ ν i-1/2 ∂W (i, j) κ i-1/2 -(W i-1 -W i ) -1 [k 4 i-1/2 >0] (W i+1 -3W i + 3W i-1 -W i-2 ) +(Λ T i -Λ T i+1 ) ∂ ν i+1/2 ∂W (i, j) κ i+1/2 -(W i -W i+1 ) -1 [k 4 i+1/2 >0] (W i+2 -3W i+1 + 3W i -W i-1 ) +(Λ T i+1 -Λ T i+2 ) ∂ ν i+3/2 ∂W (i, j) κ i+3/2 -(W i+1 -W i+2 ) -1 [k 4 i+3/2 >0] (W i+3 -3W i+2 + 3W i+1 -W i ) , (33) 
where

1 [k 4 i+1/2 >0] stands for 1 if k 4 i+1/2
is strictly positive and 0 if not. As the spectral radius κ is O(∆η), all the terms in [START_REF] Lozano | A note on the dual consistency of the discrete adjoint quasi-one dimensional Euler equations with cell-centred and cell-vertex central discretization[END_REF] are at least O(∆ξ 2 ∆η). The terms of ( 28)-( 29) that involve the derivatives of the spectral radius are

(Λ T i-1 -Λ T i ) ∂ κ i-1/2 ∂W (i, j) -k 2 ν i-1/2 (W i-1 -W i ) + k 4 i-1/2 (W i+1 -3W i + 3W i-1 -W i-2 ) (Λ T i -Λ T i+1 ) ∂ κ i+1/2 ∂W (i, j) -k 2 ν i+1/2 (W i -W i+1 ) + k 4 i+1/2 (W i+1 -3W i + 3W i -W i-1 ) . ( 34 
)
As κ and its derivatives w.r.t. W are O(∆η) and as ν is O(∆ξ 2 ) these terms are O(∆ξ 4 ∆η). The terms arising when differentiating the first-difference and the third-difference are

(Λ T i-2 -Λ T i-1 )(κ i-3/2 k 4 i-3/2 ) + (Λ T i-1 -Λ T i )(-k 2 ν i-1/2 κ i-1/2 -3k 4 i-1/2 κ i-1/2 ) + (Λ T i -Λ T i+1 )(k 2 ν i+1/2 κ i+1/2 + 3k 4 i+1/2 κ i+1/2 ) + (Λ T i+1 -Λ T i+2 )(-κ i+3/2 k 4 i+3/2 ),
and may be rewritten as

(Λ T i-2 -Λ T i-1 )κ i-3/2 k 4 i-3/2 -3(Λ T i-1 -Λ T i )κ i-1/2 k 4 i-1/2 + 3(Λ T i -Λ T i+1 )κ i+1/2 k 4 i+1/2 -(Λ T i+1 -Λ T i+2 )κ i+3/2 k 4 i+3/2 - k 2 ((Λ T i-1 -Λ T i )ν i-1/2 κ i-1/2 -(Λ T i -Λ T i+1 )ν i+1/2 κ i+1/2 ).
The last two terms that stem from first-difference dissipation fluxes, are both O(∆ξ 3 ∆η) as the sensor in ξ (Imesh) direction is O(∆ξ 2 ). The possibly problematic terms are the four first terms stemming from the third-difference dissipation fluxes. These are individually O(∆ξ ∆η) terms and the question is whether their linear combination is a higher-order term. If the algebraic expression of k 4 as function of the state variables is the same for all four values, then a third-order difference is identified and linear combination of these four terms is O(∆ξ 4 ∆η). If some of the ν l+1/2 are equal to the left value ν l and some to the right value ν l+1 but none of the k4 is zero, the terms stemming from the differentiation of third-order differences may be rewritten as

(Λ T i-2 -Λ T i-1 )κ i-3/2 k 4 -3(Λ T i-1 -Λ T i )κ i-1/2 k 4 + 3(Λ T i -Λ T i+1 )κ i+1/2 k 4 -(Λ T i+1 -Λ T i+2 )κ i+3/2 k 4 -(Λ T i-2 -Λ T i-1 )κ i-3/2 k 2 ν i-3/2 + 3(Λ T i-1 -Λ T i )κ i-1/2 k 2 ν i-1/2 -3(Λ T i -Λ T i+1 )κ i+1/2 k 2 ν i+1/2 + (Λ T i+1 -Λ T i+2 )κ i+3/2 k 2 ν i+3/2 .
In this case, the sum of the terms involving k 4 is O(∆ξ 4 ∆η) and the terms in k 2 may be individually identified as O(∆ξ 3 ∆η) terms. For inconsistency to be observed, it is hence necessary that: (a) due to the max function in equation [START_REF] Anderson | Airfoil design optimization on unstructured grids for turbulent flows[END_REF], the actual formulas of the involved k 4 are not the same up to a shift of subscripts; (b) some of the k 4 are zero. (Note that these conditions are expected to appear at a marginal number of cells in particular as ν is very close to zero except in the vicinity of shock waves. Also note that these conditions are not even sufficient for dual inconsistency -if

k 4 i-3/2 = k 4 i+3/2 = 0 and k 4 i+1/2 0, k 4 i+3/2
0 or crisscross, dual consistency is observed). Such conditions for inconsistency thus correspond to local non-differentiability of the JST scheme. This may be compared with the results of reference [START_REF] Liu | On the properties of the discrete adjoints of numerical methods for the advection equation[END_REF] and the local lack of dual consistency of the studied schemes where upwinding changes.

Consistency of the discrete adjoint at a penultimate cell w.r.t. a boundary

In a penultimate cell of indices (2, j), the previous equations are slightly altered as numerical fluxes F 1/2, j and F 3/2, j have specific definitions involving a boundary state, W b 1/2, j . Actually W b 1/2, j depends on the adjacent conservative variables W 1, j and the S 1/2, j surface vector only; W b satisfies all Dirichlet like relations to be imposed at the boundary. The numerical flux at the i=1/2 boundary interface is given by [START_REF] Nemec | Newton-Krylov algorithm for aerodynamic design using the navier-stokes equations[END_REF]. The numerical flux at the i=3/2 boundary interface is assumed in this subsection to be defined by [START_REF] Xu | Stabilisation of discrete steady adjoint solvers[END_REF]. This formula is satisfactory from a robustness point of view but it induces an inconsistent scheme in the last two cells adjacent to a boundary. This issue will be fixed by using formulas ( 26) and ( 27) in §4.4 1 .

We now consider the discrete adjoint equation in the penultimate cell (2, j) (see Fig. 1). Note first that the contributions of the centered flux are standard for both mesh directions since F JST 1/2, j does not depend on W 2, j . The terms of lines ( 30)-( 31) are the same as in a current cell and do not need to be investigated again. Those of lines ( 28)-( 29) read

(Λ T 1 -Λ T 2 ) ∂ F 3/2 ∂W 2 + (Λ T 2 -Λ T 3 ) ∂ F 5/2 ∂W 2 + (Λ T 3 -Λ T 4 ) ∂ F 7/2 ∂W 2 = 0 (35) 
(dropping j indices) as F 1/2 does not depend on W 2 . The current face contributions stemming from the differentiation of the sensor and the spectral radius have been bounded individually in the previous subsection. We hence only need to look at the specific contributions of the 3/2 face that depends on the boundary condition through ν 1 in ν 3/2 . Differentiating the sensor yields

k 2 (Λ T 1 -Λ T 2 ) ∂ ν 3/2 ∂W 2 κ 3/2 -(W 2 -W 1 ) -1 [k 4 3/2 >0] (W 3 -3W 2 + 2W 1 )
that is O(∆ξ 2 ∆η). When differentiating the spectral radius, the only specific term depending on the boundary condition, is also the one stemming from F JST 3/2 ,

(Λ T 1 -Λ T 2 ) ∂ κ 3/2 ∂W 2 -k 2 ν 3/2 (W 2 -W 1 ) + k 4 3/2 (W 3 -3W 2 + 2W 1 ) .
The first part of this expression is O(∆ξ 3 ∆η) (a more precise assertion depends whether

ν 3/2 = ν 1 that is O(∆ξ ) or ν 3/2 = ν 2 that is O(∆ξ 2 )).
The second part of this expression is O(∆ξ 2 ∆η). None of them hence prevents dual consistency. Finally, the terms arising from the differentiation of the differences terms in [START_REF] Hicken | Dual consistency and functional accuracy: a finite-difference perspective[END_REF] read

(Λ T 1 -Λ T 2 )(-k 2 ν 3/2 κ 3/2 -3k 4 3/2 κ 3/2 ) + (Λ T 2 -Λ T 3 )(k 2 ν 5/2 κ 5/2 + 3k 4 5/2 κ 5/2 ) + (Λ T 3 -Λ T 4 )(-κ 7/2 k 4 7/2 ).
They may be rewritten as

-3(Λ T 1 -Λ T 2 )k 4 3/2 κ 3/2 + 3(Λ T 2 -Λ T 3 )k 4 5/2 κ 5/2 -(Λ T 3 -Λ T 4 )κ 7/2 k 4 7/2 (36) 
-(Λ T 1 -Λ T 2 )k 2 ν 3/2 κ 3/2 + (Λ T 2 -Λ T 3 )k 2 ν 5/2 κ 5/2 .
The two terms of the last line are at least O(∆ξ 2 ∆η) (a more precise assertion depends whether ν 3/2 is equal to ν 1 or ν 2 ). The sum of the terms of the first line is only O(∆ξ ∆η) and introduces an inconsistency. (Compared to the current-point equation, due to the specific F 1/2, j formula, a (Λ T 0 -Λ T 1 )k 4 1/2 κ 1/2 is missing to have a third-order difference to appear.)

Whether

F JST b
3/2 or F JST c 3/2 leads to a dual-consistent scheme is discussed in § 4.4. How the exact linearization of F JST a 3/2 (and also F JST c 3/2 ) can be slightly modified to obtain dual consistency is discussed in § 4.5. 

Consistency of discrete adjoint at a wall boundary cell

The discrete counterpart of the output functional (1) reads

J = ∑ j p(W b (1/2, j) )S (1/2, j) .d, (37) 
where (1/2, j) are the wall indices. We stress that the static pressure p is evaluated for the boundary state W b that also appears in the boundary flux [START_REF] Nemec | Newton-Krylov algorithm for aerodynamic design using the navier-stokes equations[END_REF]. The discrete adjoint equation in a cell adjacent to a wall-boundary (see cell (1, j) in Fig. 1) then reads

∑ k Λ T k ∂ R k ∂W (1, j) = - ∂ J ∂W b (1/2, j) ∂W b (1/2, j) ∂W (1, j) . (38) 
Due to the stencil of the JST scheme in ( 21), ( 25) and ( 24), the k subscript varies in {(1, j -2), (1, j -1), (1, j), (1, j + 1), (1, j + 2), (2, j), (3, j)} as illustrated in Fig. 1. The expanded expression of [START_REF] Majda | The stability of multidimensional shock fronts[END_REF] reads

(Λ T (1, j-2) -Λ T (1, j-1) ) ∂ F 1, j-3/2 ∂W (1, j) + (Λ T (1, j-1) -Λ T (1, j) ) ∂ F 1, j-1/2 ∂W (1, j) (39) 
+(Λ T (1, j) -Λ T (1, j+1) ) ∂ F 1, j+1/2 ∂W (1, j) + (Λ T (1, j+1) -Λ T (1, j+2) ) ∂ F 1, j+3/2 ∂W (1, j) (40) 
+(Λ T (2, j) -Λ T (3, j) ) ∂ F 5/2, j ∂W (1, j) + (Λ T (1, j) -Λ T (2, j) ) ∂ F 3/2, j ∂W (1, j) (41) 
-Λ T (1, j) ∂ F 1/2, j ∂W ( j,1) = - ∂ J ∂W b (i,1/2) ∂W b (i,1/2) ∂W (1, j) . (42) 
As noted by Nadarajah et al. [START_REF] Nadarajah | A comparison of the continuous and discrete adjoint approach to automatic aerodynamic shape optimization[END_REF], this equation mixes O(∆η) terms (in (42) only) and higher order terms (in all three first lines), and as the mesh is refined the continuous adjoint wall boundary condition is recovered from the first-order terms. Keeping only the O(∆η) terms, the previous equations yield

-Λ T (i,1)     0 Sx (1/2, j) Sy (1/2, j) 0     ∂ p b (1/2, j) ∂W b (1/2, j) ∂W b (1/2, j) ∂W (1, j) - ∂ ((-S (1/2, j) • d)p b (1/2, j) ) ∂W b (1/2, j) ∂W b (1/2, j) ∂W (1, j) ,
which may be simplified into

Λ 2 (i,1) Sx (1/2, j) + Λ 3 (i,1) Sy (1/2, j) -S (1/2, j) • d. (43) 
Note that it involves metric terms at the wall and the adjoint at adjacent cells and also that it has been derived by equalizing lower-order (i.e., first-order) terms in space. How accurately equation ( 43) is satisfied is discussed in sections 5.2 to 5.4. 

and adjoint consistency

The discrete adjoint of the cell-centered JST scheme [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF] to ( 25) is thus adjoint-consistent except at penultimate cells w.r.t. a boundary. Possible changes in F 3/2 to get adjoint consistency are discussed here in relation with classical publications [START_REF] Swanson | Artificial dissipation and central difference schemes for the euler and navier-stokes equations[END_REF][START_REF] Swanson | On central-difference and upwinf schemes[END_REF] that presented specific formulas for JST AD close to the boundaries of a structured mesh for steady state flow simulations.

A satisfactory modification of F JST 3/2 for dual consistency, would substitute

F JST b 3/2 = 1 2 (F(W 1 ) + F(W 2 )) • S 3/2 -k 2 ν 3/2 κ 3/2 (W 2 -W 1 ) + k 4 3/2 κ 3/2 (W 3 -2W 2 +W 1 )
to F JST a 3/2 . To check this, first note that (W 3 -2W 2 + W 1 ) in ( 26) is a second-order difference whereas (W 3 -3W 2 + 2W 1 ) in ( 25) is a first-order term. Consequently, the terms of (∂ F 3/2 /∂W 1 ) and (∂ F 3/2 /∂W 2 ) stemming from the differentiation of the spectral radius or the sensor may not be of lower order than their counterpart in the calculations of §4.1 to §4.3. When differentiating the (W 3 -2W 2 +W 1 ) factor, the contribution in (∂ F 3/2 /∂W 3 ) is unchanged; the contribution in (∂ F 3/2 /∂W 2 ) precisely cures the issue that appears in line [START_REF] Stück | An adjoint view on flux consistency and strong wall boundary conditions to the Navier-Stokes equations[END_REF]; the contribution in (∂ F 3/2 /∂W 1 ) is a O(∆ξ ∆η) term in line [START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF] dominated by the O(∆η) terms of line [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF].

Moreover, this (W 3 -2W 2 + W 1 ) factor is one of the adapted discretizations of the third-order difference that is recommended close to boundaries in [54, B1 formula] and [START_REF] Swanson | On central-difference and upwinf schemes[END_REF]. Compared to the corresponding factor in [START_REF] Xu | Stabilisation of discrete steady adjoint solvers[END_REF], it doesn't introduce inconsistent terms in the discretization of the Euler equations in the last two rows of cells close to a physical boundary.

The numerical flux [START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF] has been implemented and proved to be more accurate than [START_REF] Xu | Stabilisation of discrete steady adjoint solvers[END_REF]. For example, for our 2-D subsonic test case ( §5.4), using F JST b 3/2 , the spurious drag values calculated on a hierarchy of embedded meshes are 30.1, 8.7, 3.2 and 1.8 drag counts on the 128 2 , 256 2 , 512 2 and 1024 2 -cell meshes, to be compared to 37.9, 11.3, 4.0 and 2.1 drag counts using F JST a 3/2 . Besides, other accuracy indicators like total enthalpy losses also support the superiority of F JST b 3/2 over F JST a 3/2 . This discretization, unfortunately, significantly reduces the robustness of the JST scheme on very fine meshes and, when selecting it, we could not get converged flows for our transonic ( §5.3) and subsonic ( §5.4) 2-D test cases and our finest meshes (with 2048 2 and 4096 2 cells). As there is no artificial dissipation in F 1/2 , the k 4 3/2 κ 3/2 (W 3 -2W 2 +W 1 ) term of this F 3/2 flux introduces an anti-dissipative term in the equivalent equation of the cells adjacent to the boundary. Most probably, this is the reason of this loss of robustness.

Once again, formulas involving AD at boundaries are not taken into consideration here in order to keep the same discretizations for internal and external flows. On the contrary, regarding the second to last faces, formulas recommended by Swanson and Turkel in [START_REF] Swanson | On central-difference and upwinf schemes[END_REF] are recalled and studied with respect to the inconsistency issue that appeared in §4.2. W g being a mirror state of W 1 w.r.t. the boundary, the final formula they recommend reads

F JST c 3/2 = 1 2 (F(W 1 ) + F(W 2 )) • S 3/2 -k 2 ν 3/2 κ 3/2 (W 2 -W 1 ) + k 4 3/2 κ 3/2 (W 3 -3W 2 + 3W 1 -W g ).
It is simply a standard discretization leading to a standard fourth-order dissipative term in the penultimate cells w.r.t. to the boundary [55, Eq. (2.17)]. This formula is one of those available in our code [START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF] with

W g = 2W b -W 1 .
Let us note first that (W 3 -3W 2 + 3W 1 -W g ) is a third-order term in space as for formula F JST b 3/2 . The same arguments as above are relevant and the adjoint (in)consistency discussion in cell (2, j) is again reduced to the examination of the terms stemming from the differentiation of the (W 3 -3W 2 + 3W 1 -W g ) factor in (∂ F 3/2 /∂W 3 ), (∂ F 3/2 /∂W 2 ), (∂ F 3/2 /∂W 1 ) compared to those of the default discretization. As in the discussion just above, (∂ F 3/2 /∂W 3 ) is unchanged and (∂ F 3/2 /∂W 1 ) brings O(∆ξ ∆η) terms in line [START_REF] Baeza | 2d Euler shape design on non-regular flows using adjoint Rankine-Hugoniot relations[END_REF] that are dominated by the O(∆η) terms of line [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF].

Finally (∂ F 3/2 /∂W 2 ) contribution in (36) is a -3(Λ T 1 -Λ T 2 )k 4 3/2 κ 3/2 term
just as in the default F JST a 3/2 discretization and inconsistency is also noticed for the penultimate cells w.r.t. a boundary.

Modified linearization of F JST a

3/2 and F JST c 3/2 for adjoint consistency Adjoint consistency may be recovered with a minor and local approximation in the Jacobian of the scheme. Following the analysis of § 4.2, the needed change in the differentiation of the F JST a 3/2, j flux is the replacement of

-3(Λ T 1 -Λ T 2 )k 4 3/2 κ 3/2 by -2(Λ T 1 -Λ T 2 )k 4 3/2 κ 3/2 in (∂ F 3/2, j /∂W 2 ),
when differentiating the third-order difference. The same modification in the linearization of F JST c 3/2, j is required to ensure dual consistency as shown in § 4.4.

Whereas it was simpler to start the dual consistency analysis for F JST a 3/2 and then adapt it for F JST b

3/2 and F JST c 3/2 , only

F JST c
3/2 is considered from now on. The robustness of the numerical simulations and the final level of the steady state residuals on very fine meshes are almost as satisfactory as with F JST a 3/2 . Besides, F JST c 3/2 does not introduce any inconsistency or reduction of the order of accuracy for the cells adjacent to the boundaries and their first neighbors. Concerning the adjoint fields, the modified linearization is used when discussing adjoint consistency; the exact linearization and possibly also the modified one are used in the other sections.

These linearizations are compared by using the energy component of the lift adjoint in Fig. 2. The dual inconsistency is illustrated by spurious oscillations in the iso-lines in the vicinity of the two problematic cells. The amplitude of these oscillations is damped away from the wall and is reduced when using finer meshes. As expected, the oscillations vanish when the consistent adjoint linearization is used. 

Numerical experiments

We present here the discrete direct and adjoint solutions to inviscid flows around the NACA0012 airfoil in different regimes. Steady-state solutions are computed with the elsA code [START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF] on a series of six structured meshes ranging from 129×129 to 4097 × 4097 nodes used and described in [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. The far field boundary is set at about 150 chords. The computations have been converged with a second-order accurate FV method using the JST scheme ( 21)-( 24) and ( 27) with k 2 = 0.5 and k 4 = 0.032, except for the subsonic flow for which we used k 2 = 0 and k 4 = 0.032. The derivatives of the lift and the drag w.r.t. the flow field variables in the discrete adjoint equation ( 14) were calculated by using the post-processing tool from [START_REF] Destarac | Far-field / near-field drag balance and applications of drag extraction in cfd[END_REF] before the adjoint equations were solved by the adjoint module of elsA [62? ] for the two functions and the complete set of meshes.

Main results

Summary 1. The dual consistency of the linearization of the JST scheme ( 21) to ( 24) and ( 27), involving the minor correction of dF JST c 3/2 introduced in § 4.2, is confirmed by discretizing the continuous adjoint equations for consistent and inconsistent discrete adjoint fields on a hierarchy of grids and computing the corresponding residuals. The residuals highlight two types of zones were their norm keeps large values as the mesh is refined: (i) zones of discontinuity of the adjoint field; (ii) zones of numerical divergence of the adjoint field. In both types of location, a Taylor expansion cannot be applied and dual consistency is not discussed. Among the zones where numerical divergence is observed and mathematical divergence is suspected (see below) we focus on the vicinity of the wall and the stagnation streamline: in the framework of the physical source terms approach [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF], it appears that the fourth source term δ R 4 in ( 15) is the one responsible for the numerical divergence at the wall. The way it disturbs the flow is described. The numerical divergence of the adjoint components in the vicinity of the wall and stagnation streamline appears to be numerically more complex than the algebraic law derived in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] under simplifying assumptions.

Completing the dual consistency discussions, complementary analysis is provided in the case of the supersonic flow providing insight on the structure of the theoretical continuous adjoint field. Finally, the jump relations on the adjoint derivatives derived in § 2.2 are numerically checked on the finest grid.

Let us stress, first, that an adjoint discontinuity is typically observed at the trailing edge of a supersonic flow. The zones where numerical divergence of lift and drag inviscid adjoints is observed, close to the airfoil, are also recalled in the case of a lifting airfoil (avoiding marginal cases like symmetric airfoil and flow): -for a subsonic flow, Λ CD p does not exhibit numerical divergence whereas Λ CL p does at the stagnation streamline and at the wall; -for a transonic flow for which a shock wave foot is located upstream the trailing edge, Λ CD p and Λ CL p exhibit numerical divergence at the stagnation streamline and at the wall; -for a transonic flow for which all shock wave feet are located at the trailing edge, Λ CD p and Λ CL p do not exhibit numerical divergence; -for a supersonic flow with a detached shock wave and shocks based on the trailing edge, Λ CD p and Λ CL p do not exhibit numerical divergence.

Supersonic regime

We first consider a supersonic flow around the NACA0012 airfoil with a free-stream Mach number M ∞ = 1.5 and an angle of attack α = 1 o .

The direct solution is displayed in Fig. 3. The flow is supersonic and constant up to a detached shock wave. Downstream the shock wave, the flow is subsonic in a small bubble close to the airfoil leading edge and supersonic elsewhere. It accelerates along the airfoil up to a fishtail shock wave from the trailing edge. Downstream this second shock wave, the flow is still supersonic with a Mach number close to the upwind far field Mach number.

Lift and drag adjoint solutions

Figure A.21 presents the contours of the four components of the adjoint field. The gradient of the discrete adjoint is then evaluated at cell centers using a Green formula and the residual in cell (i, j) of the continuous adjoint equation,

res i j = -A T i j ∂ Λ ∂ x i j -B T i j ∂ Λ ∂ y i j , (44) 
is evaluated for both functions. In the above equation, A i j and B i j are the Jacobians evaluated with cell-center values.

For the sake of validation, both terms of the residual and their sum are plotted separately for the lift, on the 2049×2049 mesh in Fig. 5 (left) and then added in Fig. 4 (top left). The cancellation of almost opposite terms is obvious. The percentage of cells with |res| below a threshold is increasing as the mesh is refined. Nevertheless significant (and increasing) |res| values are observed in Fig. 4 on the finest mesh at the trailing edge and along the Mach lines passing through the trailing edge. In the vicinity of the trailing edge, the exact adjoint is zero downstream the backward characteristics emanating from the trailing edge because no perturbation downstream those lines can affect the pressure on the airfoil profile and, thus, the lift and drag. Upstream those lines, perturbations do affect lift and drag, and thus the adjoints take non-zero values. The corresponding simple discontinuity is more and more accurately captured by any consistent discrete adjoint but the discrete res i j , that is independant of the numerical scheme R, exhibits high values along the characteristics passing through the trailing edge.

The dual consistency improvement is also checked quantitatively calculating the mean norm of the res components inside a fixed region close to the profile (interior of the ((x -0.5)/0.55) 2 + (z/0.1) 2 = 1 ellipse and 0.1c upwind the two discontinuous lines issued from the trailing edge or their contribution appears to be overwhelming). These means are then summed using ponderations by the far field velocity to account for the dimension of the components and the resulting all-components residual, denoted RES, appears to be decreased by a few percent by the modification of the F JST c 3/2 differential for adjoint consistency. More precisely the decrease of RES goes form 1.5% (coarsest mesh) to 3.3% (finest mesh) for the lift whereas it goes from 1.4% (coarsest mesh) to 3.8% (finest mesh) for the drag. Concerning far field boundary conditions, the normal Mach number appears to be supersonic at the intersection of the characteristic geometrical strips (see Fig. 5) and the far field boundary. No continuous adjoint boundary conditions is hence to be applied there and no check of discrete versus continuous adjoint is required. Equation ( 43) is the discrete counterpart of the continuous boundary condition at the wall in (6) and its two terms are plotted in the right part of Fig. 4. They appear to be superimposed, so [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF] is actually well satisfied.

Adjoint fields upstream of the shock

The flow is supersonic and constant upstream the detached shock wave. The Jacobians A and B in the continuous adjoint equation ( 4) are hence constant matrices in this part of the fluid domain and specific analysis of the continuous adjoint solution is possible in this region. These calculations, partly presented in [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF], are here further developed and assessed. In a supersonic regime, the direct and adjoint equations both exhibit specific directions of propagation corresponding to simple waves solutions to (4):

ψ(x, y) = φ (x sin(ζ ) -y cos(ζ ))λ 0 ,
where ζ is the angle made by the direction of propagation with the x-axis, λ 0 is a vector representing the convected information and φ is a scalar function. Injecting this expression into (4) yields

φ (x sin(ζ ) -y cos(ζ )) × (sin(ζ )A T -cos(ζ )B T )λ 0 = 0.
This equation admits a non-trivial solution λ 0 if and only if det sin(ζ )A Tcos(ζ )B T = 0 and simple algebraic 43) for lift and drag (2049×2049 mesh) arguments [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] allow to prove that

ζ = α or α + π ζ = α -µ or ζ = α -µ + π ζ = α + µ or ζ = α + µ + π,
where α denotes the angle of attack (so u x = U cos(α) and u y = U sin(α)) and µ = arcsin(1/M ∞ ) is the Mach angle. Hence, the information propagates along the three privileged directions

ζ = α, ζ = α -µ et ζ = α + µ.
Evidently, the domains of influence and dependency are inverse one to another for the state and adjoint variables.

The λ 0 eigenvectors of interest are those of sin(ζ )A Tcos(ζ )B T . These are also the left eigenvectors that appear in the more classical diagonalization of the inviscid flux Jacobian. Following [START_REF] Hirsch | Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics[END_REF], the (left) eigenvectors associated with

ζ = α ± µ (null eigenvalues u x sin(ζ ) -u y cos(ζ ) ∓ c) read λ α-µ 0 =       c ρ -u x n x -u y n y c + (γ-1) 2 M 2 1 ρ n x -(γ -1) u x c 1 ρ n y -(γ -1) u y c γ-1 ρc       , λ α+µ 0 =       c ρ u x n x +u y n y c + (γ-1) 2 M 2 -1 ρ n x + (γ -1) u x c -1 ρ n y + (γ -1) u y c γ-1 ρc      
, for a general direction (n x , n y ) T , which may be replaced by (sin(ζ ),cos(ζ )) T to recover the solution as a function of the simple wave angles. Checking that the simple waves solution satisfy relation [START_REF] Luchini | Adjoint equations in stability analysis[END_REF] uses the nullity of the eigenvalue (u x n x + u y n y + c = 0 for the first vector and u x n x + u y n yc = 0 for the second eigenvector).

The dimension of the eigenspace associated with ζ = α is two but the classically exhibited left eigenvectors [START_REF] Hirsch | Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics[END_REF] do not satisfy the Giles and Pierce relation for pressure-based outputs [START_REF] Luchini | Adjoint equations in stability analysis[END_REF]. The vectors of this 2-D space that satisfy this relation is the 1D space generated by

λ α 0 =       -1 -(γ-1) 2 M 2 (γ-1)u x c 2 + 2n y n y u x -n x u y (γ-1)u y c 2 -2n x n y u x -n x u y -γ-1 c 2 .      
. 

Residual perturbation analysis

When the residual perturbation is located in a supersonic zone, its influence on the flow close to the source appears to be restricted to the downstream part of the streamline and of the two characteristic curves passing by the location of the source. Moreover, assuming a constant flow W , by the same arguments as in previous section, its perturbation δW can be expressed as

δW (x, y) = Φ α (x sin(α) -y cos(α))r α + ∑ ν=±µ Φ α+ν (x sin(α + ν) -y cos(α + ν))r α+ν , ( 46 
)
where ψ ζ , with ζ ∈ {α, α ± µ}, stands for a small scalar perturbation and each r ζ vector is a right eigenvector of the Jacobian sin(ζ )Acos(ζ )B. The consistency of the actual numerical δW with this analytical model can be simply assessed, upwind the detached shock, for δ R 1 and δ R 2 in (15), since they activate the Mach-lines part of the solution,

Φ α-µ (x sin(α -µ) -y cos(α -µ))r α-µ + Φ α+µ (x sin(α + µ) -y cos(α + µ))r α+µ ,
with one-dimensional vector spaces span{r α-µ } and span{r α-µ }: it was successfully verified that the ratio of the components of the discrete δW 1 and δW2 is the one of the corresponding right eigenvector (results not shown here). On the contrary, if a δ R 1 , δ R 2 or δ R 4 source term is located in the subsonic bubble or if one of the three curves enters the subsonic bubble, then the support of the flow perturbation includes this complete subsonic area in agreement with the elliptic nature of the equations [63, chap. 11]. A δ R 3 perturbation, conversely, affects the region along the streamline downstream the location of the source, even if located in a subsonic zone.

More details are now given for the case where the source term is located in the supersonic zone. Let consider the decomposition (46) of the perturbation. If the entropy or the total enthalpy (that are convected in steady state Euler flows) are perturbed (δ R 3 or δ R 4 ), close to the source, the perturbation is located along the trajectory downstream the source and possibly along shock waves for δ R 4 . If these quantities are not altered by the perturbation (δ R 1 or δ R 2 ), the response of the steady state flow to the perturbation, close to the source, is located along the two characteristic lines downstream the source and the usual relative-variations along trajectories of thermodynamic and kinetic variables are valid between nominal and locally perturbed flow. More precisely 2 :

• δ R 1 induces no change in the stagnation quantities and entropy. The Mach number decreases along the two characteristic lines starting from the location of the perturbation. The static pressure, temperature and density increase and velocity components are also perturbed along these two lines with a reduction of the velocity magnitude;

• δ R 2 induces no change in the stagnation quantities and entropy. Along the upper characteristic curve starting from the perturbation point, the static pressure, density, temperature increase, whereas the Mach number, velocity magnitude, and x-component of velocity decrease. Opposite variations are observed along the lower characteristic curve. The y-component of the velocity increases along both characteristic curves;

• δ R 3 induces no variation of stagnation pressure, static pressure and Mach number. An increase of total enthalpy (stagnation temperature), temperature, both components of velocity and entropy is observed along the trajectory starting from the location of the perturbation. The density is reduced;

• δ R 4 induces no local variation of the static pressure except along shock waves and no variation of the total enthalpy. The Mach number, density, stagnation pressure, stagnation density, and both velocity components increase along the trajectory starting from the location of the perturbation. Entropy and temperature decrease along the trajectory. As mentioned end of § 3.3 this notion of perturbation downstream the source and along a streamtube of the initial flow is only a description at first approximation as the streamtubes structure of a non-constant flow is perturbed by the δ R 4 source.

These zones of influence and dependency of the lift and the drag explain in particular the aspect of the discrete adjoint fields close to the trailing edge, that are bounded by the two characteristics curves passing through the trailing edge as seen in Fig. 6. They are also illustrated in Fig. 3(right) presenting the δW 1 perturbation on the pressure field plotted together with the characteristic curves passing by the location of the source.

Adjoint fields across the shock

The adjoint variables are continuous across shocks, whereas their derivatives may be discontinuous [START_REF] Giles | Analytic adjoint solutions for the quasi-one-dimensional euler equations[END_REF][START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF]. In Fig. 6, a clear discontinuity of the adjoint-drag or the adjoint-lift gradient is observed for the adjoint component associated with z-coordinate momentum equation.

Figure 7 validates the jump relations on the adjoint derivatives [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] to (12b) derived in § 2.2 at the discrete level for both lift and drag adjoints. We display here the evolution of the arguments between the jump operator [[•]] in the jump relations along a line perpendicular to the shock (the line is indicated in red in Fig. 3) which should be continuous across the shock. The normal and tangential derivatives in [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] to (12b) are here given in a frame attached to the shock and evaluated from the discrete adjoint field Λ. The shock location is about s = 0.11 and we observe that the jump relations are well satisfied, while the gradients normal to the shock of the adjoint variables, ∂ n Λ, display large discontinuities at the shock position.

Transonic regime

We now consider a transonic flow around the NACA0012 airfoil with conditions M ∞ = 0.85 and α = 2 o . A strong shock wave develops on the suction side and a weaker shock on the pressure side (see Fig. 8 left). 
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Figure 7: (M ∞ = 1.5, α = 1 o , 4097 × 4097 mesh) Evolutions of drag (continuous lines) and lift (dash-dotted lines) adjoint quantities along a straight line across and normal to the upstream shock between points (-0.151, 0.266) and (0.077, 0.184) as a function of the local coordinate s (the line is indicated in red in the Mach number contours of Fig. 3). An equation number refers to the arguments between brackets [[•]] in the corresponding equation, that should be continuous across the shock, e.g., v n (∂ n Λ 1 -H∂ n Λ 4 ) has been plotted for [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF]. 18) is well satisfied by the discrete adjoint fields. Both fields exhibit strong values and gradients close to the wall, the stagnation streamline, the two characteristics impinging the upper side and lower shock foot and two other characteristic curves that form a circumflex with the previous two. These features have been observed previously [START_REF] Venditti | Grid adaptation for functional outputs: Application to two-dimensional inviscid flows[END_REF][START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF][START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF].

Lift and drag adjoint solutions

The physical point of view of Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] recalled in § 3.3 is used again and the δCL d p terms corresponding to the four source terms in [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles[END_REF] are plotted in Fig. A.15. In the sense of equations ( 16)-( 17) the strong values and gradients of δ R 1 and δ R 2 along the characteristic curves that form the two circumflex correspond to those of Λ CLp . Accordingly, the high values and gradients of δ R 4 located close to the wall or to the stagnation streamline correspond to those of Λ CLp . The asset of this approach is obvious when studying the singular behavior of the adjoint fields: the δ J 1≤d≤4 responses to the physical source terms exhibit only part of the singular zones of the classical adjoint fields and the high values/gradients of one δ J d are transferred to all or to several of the usual adjoint components according to equation [START_REF] Morris | Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction[END_REF].

The residuals of the continuous adjoint equation are evaluated by using the method introduced in § 5.2.1. As the mesh is refined, the zones with significant residuals have a decreasing area but remain visible. Increasing values are also observed close to the wall, the stagnation streamline and the characteristic line that impacts the upper side shock foot, that are known to be zones of large values and large gradients for the lift and drag adjoints [START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF][START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] as highlighted in the left part of Fig. 9. The far field adjoint boundary condition is satisfied by the discrete adjoint fields as the adjoint field is almost zero at the far field boundary. Right part of Fig. 9 illustrates the verification of continuous-like adjoint wall boundary condition. It is observed that [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF] is satisfied except at the shock feet and the trailing edge. At the shocks feet, the first differences in neighboring Λ along the wall in ( 39) and ( 40) may be too large for a simple lower-order spatial analysis. At the trailing edge, the divergence of the discrete adjoint momentum components and the discontinuity of Λ CDp 

Numerical assessment of exact discrete adjoint and modified consistent adjoint

The transonic test case is retained for the assessment of the exact discrete adjoint in our code [START_REF] Cambier | The elsA CFD software: input from research and feedback from industry[END_REF][START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. status and challenges[END_REF]. Also tested is the accuracy of the gradients when the Jacobian modification for consistency is applied. First, a series of ten symmetric bumps with 0.4c span is considered. The wall mesh is deformed normally according to exp -0.25(s bmaxs bmin ) 2 /((ss bmin )(s bmaxs)) . In the fluid domain, the mesh deformation follows the normal vector at the closest point of the wall and the displacement amplitude is smoothed from maximum value at the wall, to zero at the distance 0.4c. The ten bumps are applied with small positive and negative increments to the (513×513) mesh and steady state simulations are run to produce reference lift and drag derivatives. The lift and drag gradients are calculated besides using the exact discrete adjoint, the modified discrete adjoint for consistency and the discrete adjoint without linearization of the spectral radius and the sensor [START_REF] Dwight | Effect of approximations of the discrete adjoint on gradient-based optimization[END_REF]. All gradient values are gathered in table A.1. Considering lift gradients, the mean error for exact linearization is less than 0.1% (and calibration of the finite-difference step may improve this accuracy) whereas it is 11.5% for the modified dual consistent version. This 11.5% error is close to the 10.6% error obtained with the frozen sensor and frozen spectral radius approximation, and indicates that this gradient may be involved in actual adjoint based shape optimization although probably not with best efficiency. Similar conclusions may be drawn from the drag gradients. Besides, the agreement between the linear and the non-linear source term approaches is checked. Let us recall that the linear approach just calculates (δ J 1 m , δ J 2 m , δ J 3 m , δ J 4 m ) from the standard adjoint fields using equation ( 16) whereas the non-linear approach consists of adding one of the source terms δ R l -eq. ( 15) -to the scheme flux balance, for a specific cell m, running a steady state simulation and calculating δ J l m as the difference of the resulting J l with its nominal evalutation. Note that, as above with the calculation of the shape optimization gradients, any error in the scheme Jacobian ∂ R/∂W would become apparent with this second type of comparisons. The non linear approach is obviously expensive and can only be tested for a limited number of cells. It has been applied for the fourth source term δ R 4 , for two series of cells, upper-side close to the wall at x 0.5 and close to the stagnation streamline at x -0.6. The value of ε and the number of iterations have been chosen such that the first four significant numbers of the functions of interest do not change and the next four or five significant numbers are known upon reaching the steady-state, at the end of the perturbed calculation. The comparison between the linear (red curve) and non linear (green squares) values is presented in Fig. A.17. The agreement is very good and allows to use the mechanical perturbations induced by the source terms [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux derivées partielles[END_REF] to discuss properties of (δ J 1 m , δ J 2 m , δ J 3 m , δ J 4 m ) and then move to properties of the standard adjoint fields. This is done hereafter only for δ R 4 / δ J 4 .

Influence of a δ R 4 perturbation in the vicinity of the wall and the stagnation streamline

As mentioned in § 5.3.1, considering the physical source terms first -equation ( 17)δ R 4 is the only physical source "responsible" for high values of lift/drag-adjoint and gradient of adjoint close to the wall and the stagnation streamline. The mechanism by which δ R 4 modifies the flow field and the forces values is discussed here for the vicinity of the stagnation streamline and the wall (upper side) using the non-linear approach which accuracy has just been discussed.

In the first series of considered perturbed flows, the δ R 4 source terms are located on the upper side in the supersonic area, along a mesh line perpendicular to the wall and close to x = 0.5. In a supersonic zone, the perturbation of the flow caused by a δ R 4 source term along the corresponding streamline has been described in § 5.2.3: no local variation of the static pressure (except along shock waves -see below) and no variation of the total enthalpy are observed whereas the Mach number, the density, the stagnation pressure, stagnation density and the velocity are increased along the trajectory starting from the location of the perturbation. Hence, for the almost normal upperside shock, the classical equation for the ratio of downwind over upwind static pressure as a function of the upwind Mach number cannot be satisfied where the perturbed streamline hits the shock with an increased Mach number. In fact in the perturbed flow, the upper side shock is moved upstream and the shifted shock goes with a decreasing upwind static pressure and an increasing downwind static pressure. It is observed that the smaller the distance of the source and perturbed streamline to the wall, the larger the displacement of the upper side shock foot which explains the growth of δCLp 4 in the vicinity of the wall. Observing the static pressure changes at smaller scales, it is noted, as expected, that the perturbation of the static pressure in the subsonic area is not restricted to the continuation of the streamline but extends to the whole subsonic area close to the profile downstream the shocks. Regarding the static pressure close to the lower side, at these finer scales, an increase is observed upwind the shock and below the trailing edge whereas a decrease is observed downwind the shock; this goes with a backward displacement of the lower shock. Both changes of the static pressure at the wall correspond to an increase of the lift that is consistent with the local values of δCLp 4 . To complement this description, the fraction of the forces variation due to the two shocks displacement is calculated for all source points of the series (Fig. A.17 left). The pressure difference w.r.t. the nominal pressure is summed along 36 faces only among the 2048 of the wall mesh in the vicinity of the shock waves (x ∈ [0.535,0555] lower side and x ∈ [0.925,0945] upperside) and is then divided by the total change in the function estimate. For the lift, theses ratios are included in [0.806, 0.921] with a mean value of 0.880. For the drag, the corresponding interval is [0.925,1.038] and the mean value is 0.985. This confirms the main effect of the displacement of the two shocks.

If the δ R 4 source is located close to the wall but downwind the upper side shock, similar shock displacements and lower side fine scale perturbations of the pressure are observed. On the contrary, the flow perturbations created downwind the upper side shock are very different for sources located on the same streamline either sides of the shock.

Concerning the points located close to the stagnation streamline, the mechanism that produces the lift perturbation δCLp 4 due to the δ R 4 source also seems to be correlated with convection since the iso-δCLp 4 roughly follow the streamlines (see Fig. A.15 right). Of course, the increment of stagnation pressure and stagnation density, and the decrease of entropy are convected from the location of the source where they have been created (see Fig. 10). Surprisingly, although the source is now located in a subsonic zone, the main change in the velocity and Mach number fields also occur along the trajectory. These increments being propagated up to the upper side shock, the mechanism through which both shocks are moved is then the one described before. This description is complemented with the ratios of the function variations that result from the changes in the pressure in the vicinity of the shocks only (x ∈ [0.535,0555] lower side and x ∈ [0.925,0945] upperside) divided by the corresponding total variation. The considered points are those appearing in the right part of Fig. A.17 (x -0.6 y -0.04) at a distance lower than 0.025c to the stagnation streamline. For the lift, theses ratios are included in [0.793, 1.245] with a mean value of 0.882. For the drag the interval is [0.762,0.907] and the mean value is 0.840. Again, the dominant influence of shock displacement in the lift and drag variation is confirmed. Finally, we would like to investigate whether the influence of δ R 4 is evolving smoothly from the vicinity of the stagnation streamline to the vicinity of the wall. We have already mentioned the pros (the main process is the convection of the source perturbation) and cons (the streamline structure of the original flow is not strictly preserved) of a positive answer to this question. It is investigated numerically extracting δCLp 4 and δCDp 4 along a streamline close to the stagnation streamline and the upperside wall (see Fig. 8 

Asymptotic behavior of lift and drag adjoint at the stagnation streamline and the wall

In [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF], the authors consider a 2-D inviscid flow about an airfoil and an output J defined as the integral along the wall of the pressure times a local factor. With the additional approximation of potential flow, they derive the asymptotic behavior of δ J 4 m , the variation of J due to δ R 4 , when the source term is located in the vicinity of the stagnation streamline: under this potential flow assumption, they prove that δ J 4 ±d -1/2 where d is the distance of the source m to the stagnation streamline and the sign is changed when crossing the streamline. This relation is not always numerically well satisfied by numerical lift / drag adjoint fields of compressible Euler flows [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF]. For the transonic test-case of interest, δCLp 4 m and δCDp 4 m seem to result of similar convective perturbations of the flow for points m located close to the stagnation streamline and close to the wall upwind the shock. Using the structured and regular meshes from [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF], one may evaluate the ϕ exponent such that δ J 4 d ϕ in the vicinity of the wall. This exponent appears to depend on the x location (rather than on CD vs CL, lower side vs upper side). It is decreasing with increasing x, from 0. at the leading edge to about -0.1 at x = 0.8 and then more rapidly when moving closer to the trailing edge. (Curves not shown here because changing the mesh density, the F JST 3/2 formula or selecting its adjoint-consistent linearization instead of its exact linearization, significantly modifies these curves although not the decreasing trend from a null value.) Finally the values of δCLp 4 are extracted along the wall on the finest used meshes (Fig. A.20). They appear to grow as the cells adjacent to the wall get thiner coherently with the similar behavior observed for the lift or drag adjoint components in other publications ( [START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF] fig. 12, [START_REF] Peter | Contributions to discrete adjoint method in aerodynamics for shape optimization and goal-oriented mesh adaptation[END_REF] fig. 1.1). As the wall boundary condition that involes a linear boundary combination of Λ 2 and Λ 3 , is numerically well satisfied (equation ( 43) and fig. 9 right), this is surprising although not impossible: it should be noted that in the vicinity of a wall, with local normal vector (n x , n y ), it is worthwhile to calculate the linear combination of the second and third columns of equation ( 17) by (n x , n y ) to show that the term involving δCLp 4 in Λ 2 n x + Λ 3 n y is -γ p 0 /c 2 (u x n x + u y n y )δCLp 4 with (u x n x + u y n y ) → 0. We have checked also that this behavior close to the wall is not an artefact due to numerical dissipation by performing calculations with different k 4 . The influence of the cell-height at the wall always dominates the one of the artificial dissipation and, for a given mesh density, the largest values of δCLp 4 are obtained for the lowest k 4 .

Adjoint fields across the shock

Figure 11 highlights a clear discontinuity across the shock of the gradient of the drag or the lift adjoint component associated with the z-coordinate momentum. This is further analyzed in Fig. 12 where the arguments in the brackets in [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] to (12b) are plotted along the line displayed in Fig. 8 (left) that crosses the shock. Again, it is observed that the jump relations [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF] to (12b) are well satisfied while the adjoint derivatives in the direction normal to the shock, ∂ n Λ, are discontinuous across the shock.

Subsonic regime

Finally, we consider a smooth subsonic flow with free-stream conditions M ∞ = 0.4 and α = 5 o . The Mach number contours are presented in Fig. 8 where we observe the stagnation point located in the lower part of the leading edge as well as a strong acceleration of the flow on the upper side due to the profile incidence.

Lift and drag adjoint solutions

Figure A.23 presents the contours of all four components of the adjoint fields. The lift adjoint components exhibit strong values and gradients close to the wall and the stagnation streamline. The amplitudes of these values increase as the mesh is refined. Conversely, all components of the drag adjoint appear to be bounded and to converge as the mesh is refined. For this flow without shocks, these different behaviors may be attributed to the facts that the adjoint field quantifies the sensitivity of the quantity of interest w.r.t. the residuals, and that the limit inviscid drag is zero for a subsonic flow whereas the limit lift is not.

The residuals of the continuous adjoint equations have been evaluated as detailed in § 5.2.1. As the mesh is refined, the zones with significant residuals for the lift-adjoint have a decreasing support but exhibit increasing values close to the wall and to the stagnation streamline (see left part of Fig. 13). The far field adjoint boundary condition is satisfied by the discrete adjoint fields as the adjoint field is almost zero at the far field boundary. Right part of Fig. 13 shows that the adjoint wall boundary condition [START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF] is well satisfied for both lift and drag. The approximate linearization for consistency of F JST c 3/2 proposed in §4.5 is assessed quantitatively for CDp (CDp only 
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Figure 12: (M ∞ = 0.85, α = 2 o , 4097 × 4097 mesh) Evolutions of drag (continuous lines) and lift (dash-dotted lines) adjoint quantities along a straight line across and normal to the upper shock between points (0.865, 0.064) and (1.016, 0.038) as a function of the local coordinate s (the line is indicated in red in the Mach number contours of Fig. 8). An equation number refers to the arguments between brackets [[•]] in the corresponding equation, that should be continuous across the shock, e.g., v n (∂ n Λ 1 -H∂ n Λ 4 ) has been plotted for [START_REF] Loseille | Fully anisotropic mesh adaptation for 3D steady Euler equations[END_REF].

as the adjoint of CLp is numerically diverging) calculating the mean norm of the res components inside a fixed region close to the profile (interior of ((x -0.5)/0.55) 2 + (z/0.1) 2 = 1 ellipse excluding a 0.005c circle about the trailing edge or the contribution of the trailing edge vicinity appears to be dominant). These means are then summed in the aggregate residual denoted RES. As in the supersonic case, it appears to decrease be a few percent by the modification of the F JST c 3/2 differential for adjoint consistency. More precisely, RES is decreased by 2.6% (coarsest mesh) to 5.0% (finest mesh).

The physical point of view of Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] is then considered to gain understanding in the behavior of the lift-adjoint. The δCLp 1 , δCLp 2 , δCLp 3 , and δCLp 4 responses have been calculated and plotted in Fig. A. [START_REF] Sartor | Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile[END_REF]. We observe that δ R 4 is the only source responsible for the singular behavior of the adjoint-lift close to the wall and stagnation streamline. As in transonic and supersonic flows, a δ R 4 source results in positive increments in the stagnation pressure and stagnation density and a negative increment in entropy. All three increments are convected downstream the location of the source following the classical laws for Euler flows with uniform total enthalpy. However, the response of the subsonic flow to the local perturbation of these three quantities, is very different from the one described in § 5.3.3 for the transonic flow: density, velocity, static pressure and all dependent variables exhibit a global perturbation (see Fig. 10). When the source is located close to the stagnation streamline, the perturbation is maximum close to the leading edge. If it is located just under (resp. above) the stagnation streamline, the main effect on the static pressure at the wall is a decrease all along the pressure (resp. suction) side consistently with the local sign of δCLp 4 (Fig. A.16 right and Fig. 14).

As in the transonic case, we examine if δCLp 4 d ϕ in the vicinity of the wall. Once again, a negative ϕ exponent decreasing from 0 to about -0.40 when increasing x is derived from this assumption (Not shown here because, as in the transonic test case, changing the mesh density, the F JST 3/2 formula or selecting its adjoint-consistent linearization instead of its exact linearization, significantly modifies this curve although not the decreasing trend from a null value.)

Conclusion

In this work, we address open questions in the field of discrete and continuous adjoint equations for the compressible inviscid flows. The results are illustrated through in-depth numerical experiments on lift-and drag-adjoint fields for lifting flows about the NACA0012 airfoil in supersonic, transonic and subsonic regimes. We first investigate the dual consistency of the JST scheme in cell-centered FV formulation for the discretization of the compressible 2-D Euler equations. Dual consistency of the scheme is proven at interior cells, while inconsistency may occur at the penultimate cell close to a physical boundary depending on the selected locally modified AD formulas. Two classical and robust AD discretizations at the borders have been proven to be dual-inconsistent and we propose a slight modification of the exact scheme differentiation w.r.t. the penultimate cell flow variables to recover consistency. The implementation of this modification has been carried out in our code and appears to locally improve the regularity of the adjoint field and to speed up their convergence at wall boundaries under grid refinement.

Second, a new heuristic method has been proposed to discuss the adjoint consistency of discrete adjoint fields. It consists of discretizing the continuous equation with the discrete flow and discrete-adjoint field and evaluating the convergence of the residual as the mesh is refined. Coherently with the demonstrated property of adjoint consistency, these residuals have been found to vanish except in areas where: (i) a discontinuous adjoint field is expected (e.g., in the vicinity of the trailing edge for supersonic flows); (ii) the discrete adjoint field exhibits increasing values and gradients where theoretical divergence is suspected (stagnation streamline, wall, specific characteristic lines in supersonic areas).

Third, we derive the general adjoint Rankine-Hugoniot relations across a shock and give relations linking the normal derivatives across the shock. These relations have been numerically validated for a supersonic and a transonic flow.

We then use these tools for the analysis of the lift and drag adjoint fields about the NACA0012 at three flow conditions and, in particular, the analysis of the zones where increasing values and gradients of the adjoint fields are observed when the mesh is refined [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF][START_REF] Lozano | On the properties of the solutions of the 2D adjoint Euler equations[END_REF][START_REF] Lozano | Singular and discontinuous solutions of the adjoint Euler equations[END_REF][START_REF] Peter | Analysis of discrete adjoint fields for 2d Euler flows[END_REF]. The source term approach of Giles and Pierce [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] is recalled and after assessing it for our code w.r.t linear results -Fig. A.17 -it is exploited to analyse the lift and drag adjoint behavior in the vicinity of the stagnation streamline and the wall for the transonic test case. The novelty is for the transonic regime in the detailed description of the flow perturbation resulting of the involved source term : a pertubation along streamline passing by the source results in the displacement of the shocks. The mechanism is similar with a source close to the stagnation streamline or close to the wall so that our numerical results suggest that the behavior of the adjoint fields in the vicinity of the stagnation streamline (where the authors of [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] predicted a numerical divergence under simplifying assumptions) and in the vicinity of the wall are identical. Also explained by this analysis (although not illustrated here) is the well-known difference of numerical behavior in lift or drag adjoint at high transonic Mach numbers (shock-wave feet at trailing edge, no possible shock-foot displacement, no adjoint numerical divergence) and lower transonic Mach numbers (more upwind shock wave feet locations, shock feet displacement under the influence of δ R 4 , adjoint numerical divergence). In subsonic regime, the fourth source term proposed in [START_REF] Giles | Adjoint equations in CFD: Duality, boundary conditions and solution behaviour[END_REF] results in a numerically diverging perturbation of the lift, also when approaching the wall or the stagnation streamline, but through a global change of the wall pressure. Future work will concern the extension of this analysis to laminar flows considering the usual FV cell-centered discretizations of the viscous flux. 15) and ( 16) with ε=1). δCL 3 p is zero. 15) and ( 16) with ε=1). Left: exact discrete adjoint. Right: consistent adjoint. The solid line curves correspond to the calculations presented elsewhere ("standard AD" coefficient k 4 = 0.032). The dashed line curves correspond to calculations with halved artificial dissipation ("minimum AD" coefficient k4=0.016). This small coefficient does not allow a proper flow convergence with the 4097×4097 mesh.

Figure 1 :

 1 Figure 1: Location of the state variable W and the corresponding boundary variable W b for the (1, j) cell. Stencil of the JST scheme for this cell.

Figure 2 :

 2 Figure 2: (M ∞ = 0.4, α = 5 o ) Energy component of the lift adjoint. Top 2049×2049 mesh, bottom 4097×4097 mesh -Left, inconsistent discrete adjoint, right consistent discrete adjoint.

Figure 3 :

 3 Figure 3: (M ∞ = 1.50, α = 1 o , 2049×2049 mesh) Left: contours of Mach number. Right: Change in pressure due to δ R 1 source term (ε=6.10 -6 ) at point (x = 0.4702, y = 0.1184).

Figure 4 :

 4 Figure 4: (M ∞ = 1.5, α = 1 o ) Left: Residual of the continuous equation (first component) evaluated with the lift discrete adjoint fields (bottom: 129×129 mesh, top: 2049×2049 mesh), right: geometric and adjoint terms of equation (43) for lift and drag (2049×2049 mesh)

Figure 5 (, ( 45 )

 545 Figure 5 (right) highlights the directions of propagation in the first component discrete adjoint field.The ratio of the adjoint components inside all three geometrical strips is found equal to the ratio of the corresponding components

Figure 5 :

 5 Figure 5: (M ∞ = 1.5, α = 1 o ) Top left: -A T (∂ Λ CLp /∂ x) discretized with discrete adjoint field (first component). Bottom left: -B T (∂ Λ CLp /∂ y) discretized with discrete adjoint field (idem) (2049 × 2049 mesh), right: Far field view of first component of CL p adjoint (4097 × 4097 mesh).

Figure 6 :

 6 Figure 6: (M ∞ = 1.5, α = 1 o , 4097 × 4097 mesh) Contours of the adjoint component associated with z-coordinate momentum equation. The position of the shock is indicated by a pink line.

Figure 8 :

 8 Figure 8: (4097×4097 mesh) Contours of Mach number. Left: M ∞ = 0.85, α = 2 o , right: M ∞ = 0.4, α = 5 o .

Figure A. 22

 22 presents the contours of all four components of the drag and lift adjoint fields. As indicated before, the choice of the scale for the contours of first and last adjoint components in Figs. A.21, A.22 and A.23 allows to visually check that (

  2 and Λ CLp 2 between upper side and lower side (see Fig. A.23) may explain the observed behavior.

Figure 9 :

 9 Figure 9: (M ∞ = 0.85, α = 2 o ) Left: residual of the continuous equation (first component) evaluated with the lift discrete adjoint fields (bottom: 129×129 mesh, top: 2049×2049 mesh). Right: geometric and adjoint terms of (43) for lift and drag (2049×2049 mesh).

  then Fig. A.18 -the gaps between the curve and the non-linear verification calculations come from the fact that not all the selected cells are exactly crossed at their center by the streamline). The δCLp 4 curve of Fig. A.18 is completed in Fig. A.[START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory[END_REF] with its counterparts on a finer and a coarser mesh and it is checked that the general shape of these curves is not affected by the mesh size. The levels of δCLp 4 seen in Fig.A.18 upwind the airfoil at x -0.1 are observed along the wall but a downwards oscillation just upwind the profile makes it difficult to give a sure conclusion.

Figure 10 :

 10 Figure 10: (2049×2049 mesh) Difference in stagnation pressure, entropy (divided by the adiabatic exponent), Mach number and static pressure w.r.t. nominal flow due to δ R 4 . Left: M ∞ = 0.4, α = 5 o , source at point (-0.612,-0.127). Right: M ∞ = 0.85, α = 2 o , source in (-0.623,-0.020).

Figure 11 :

 11 Figure 11: (M ∞ = 0.85, α = 2 o , 4097 × 4097 mesh) Contours of adjoint component associated with the z-coordinate momentum equation (sonic line in pink).

Figure 13 :

 13 Figure 13: (M ∞ = 0.4, α = 5 o ) Left: residual of the continuous equation (first component) evaluated with the lift discrete adjoint fields (bottom: 129×129 mesh, top: 2049×2049 mesh). Right: geometric and adjoint terms of equation (43) for lift and drag (2049×2049 mesh).
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 42 Influence of a δ R 4 perturbation in the vicinity of the wall and the stagnation streamline

Figure 14 :

 14 Figure 14: (M ∞ = 0.4, α = 5 o , 2049×2049 mesh) Pressure at the wall. Influence of δ R 4 source term located at points A, B, C, D, on the static pressure at the wall. Distance of points A,B, C, D to the leading edge 0.6. Respective distance to stagnation line is 0.0400, 0.0187 (trajectory to lower side), 0.0181, 0.397 (trajectory to upper side).

Figure A. 16

 16 Figure A.16: (M ∞ = 0.4, α = 5 o , 2049×2049 mesh) Contours of δCL 1 p , δCL 2 p , δCL 3 p , δCL 4 p (equations (15) and (16) with ε=1). δCL 3 p is zero.

Figure A. 17 :

 17 Figure A.17: (2049 × 2049 mesh) M ∞ = 0.85, α = 2 o . Linear (red curve) and non-linear (green squares) estimations of δCL 4 p . Left: upper side at the wall x 0.5. Right: in the vicinity of the stagnation streamline x -0.6 (dist being a signed distance to it). The blue curve is a tentative fit with Ksgn(dist)/ |dist| ([1]). The extraction lines are drawn in Fig. 8 left.

Figure A. 18 :

 18 Figure A.18: (2049 × 2049 mesh) M ∞ = 0.85, α = 2 o . Linear (red curve) and non-linear (green squares) estimations of δCL 4p along the streamline passing by (-0.6224,-0.0383). The mean distance of this streamline to the stagnation streamline is about 0.02c. Its distance to the upperside wall is about 0.015c. The shock foot abscissa is x 0.935 (upwards oscillation right of the last green square). The streamline is drawn in Fig.8left.

Figure A. 19 :

 19 Figure A.19: M ∞ = 0.85, α = 2 o . Exact discrete adjoint δCL 4p along the streamline passing by (-0.6224,-0.0383) for the finest meshes. The mesh denoted 2049-8in1 is a 2049 × 2049 mesh built by regular linear interpolation inside the standard 2049 × 2049 mesh. It is stretched at the wall, the aspect ratio of the cells adjacent to the wall being 1 to 8. (Not shown for the 4097×4097 mesh for which the trajectory is a bit different and higher values are obtained.)

As the factors multiplying k 4 3/2 κ 3/2 in (25)[START_REF] Giles | Adjoint code developments using the exact discrete approach[END_REF] and (27) are respectively first-, second-, and third-order terms, this is the simplest way to discuss dual consistency for these three F JST 3/2 formulas.

all variations are given for a positive ε in equation (15) and positive components of velocity for the nominal flow

Figure A.21: (M ∞ = 1.5, α = 1 o , 4097×4097 mesh) Left: lift adjoint, right: drag adjoint.

Figure A.22: (M ∞ = 0.85, α = 2 o , 4097×4097 mesh) Left: lift adjoint, right: drag adjoint.

Acknowledgments

The authors express their warm gratitude to J.C. Vassberg and A. Jameson for allowing the co-workers of D. Destarac to use their hierarchy of O-grids around the NACA0012 airfoil. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sector Biblography References

 15) and ( 16) with ε=1). δCL 3 p is zero.