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Abstract

Despite the success of deep functional maps in non-rigid
3D shape matching, there exists no learning framework that
models both self-symmetry and shape matching simultane-
ously. This is despite the fact that errors due to symmetry
mismatch are a major challenge in non-rigid shape match-
ing. In this paper, we propose a novel framework that simul-
taneously learns both self symmetry as well as a pairwise
map between a pair of shapes. Our key idea is to couple a
self symmetry map and a pairwise map through a regular-
ization term that provides a joint constraint on both of them,
thereby, leading to more accurate maps. We validate our
method on several benchmarks where it outperforms many
competitive baselines on both tasks.

1. Introduction
Shape correspondence is a fundamental problem in com-

puter vision, computer graphics and related fields [44],
since it facilitates many applications such as texture or de-
formation transfer and statistical shape analysis [1] to name
a few. Although shape correspondence has been studied
from many viewpoints, we focus here on a functional map-
based approaches [28] as this framework is quite general,
scalable and thus, has been extended to various other ap-
plications such as pose estimation [26], matrix completion
[42] and graph matching [46].

While recent learning based deep functional map ap-
proaches have made impressive gains in non rigid isomet-
ric full shape matching [13, 20, 37, 41], symmetry detec-
tion [25, 34] has received little attention in the learning
paradigm. This is despite the fact that the two problems
are inherently linked and symmetry disambiguation remains
a challenge in shape matching pipeline. While there have
been some attempts to learn shape matching in a noisy
setup [20, 21], we are not aware of any learning setup that
investigates the effect of noise for symmetry detection.

In this work, we study the use of a canonical embed-
ding based framework that is a promising direction towards

obtaining a unified shape matching framework for both par-
tial as well as full shape matching. Instead of using prede-
fined basis functions in the functional map framework, we
learn a canonical embedding that simultaneously learns to
model self-symmetry as well as a pairwise map. Learning
canonical embedding for non-rigid shape matching is still
a relatively open problem in terms of exploring what prior
assumptions should be made on such embedding. Marin
et al. [21] make the first attempt by assuming such em-
beddings to be linearly invariant between a pair of shapes.
However, as we show later, learning such an embedding
without exploiting natural priors on 3D shapes, such as their
symmetry structure, leads to overfitting as no regularization
or constraint is enforced on the linear transformation be-
tween a pair of shape embeddings [21].

In this paper, we advocate an orthogonal approach where
we rely on canonical embedding for shape matching but
simultaneously impose prior structure on a self-symmetry
map to induce information transfer between the two spaces.
This is advantageous for two reasons: first, it significantly
simplifies the embedding learning pipeline and makes it
learnable end-to-end. This is because the linearly invariant
assumption can be made on a self-symmetry map and not on
the pairwise map between shapes as done in [21], thereby,
reducing the two stage sequential optimization scheme of
[21] to single shot. Secondly, modelling a self symme-
try map enables us to explicitly enforce the pointwise map
between two shapes to take into account the intrinsic self-
symmetry during training.

Our second contribution is a novel commutative regu-
larization that couples the self-symmetry map with a pair-
wise map and thus, enables knowledge transfer between the
two maps during training. This significantly improves gen-
eralization and robustness to sampling resolution as well
as the size of embedding. Our method obtains competi-
tive results on multiple shape matching benchmarks such
as FAUST remesh and partial SHREC’16 when compared
to recent learning-based methods while being very robust
to noisy set up. We also evaluate our method on symmetry
detection on various benchmarks where it shows resilience
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to noise where other methods based on the Laplacian Bel-
trami operator fail.

To summarize, our contributions are as follows:

• We propose to learn shape matching in the canoni-
cal space with appropriate regularization that consis-
tently outperforms the linearly invariant embedding
approach.

• To the best of our knowledge, we propose a first
method that simultaneously learns symmetry detection
and shape matching for non-rigid point clouds.

• We propose a novel regularization that constrains the
symmetry map and pairwise map which is of indepen-
dent interest for future work in this direction.

2. Related Work
Functional Maps Computing point-to-point maps be-
tween two 3D discrete surfaces is a very well-studied prob-
lem. We refer to a recent survey [38] for an in-depth dis-
cussion. Our method is closely related to the functional
map pipeline, introduced in [28] and then significantly ex-
tended in follow-up works (see, e.g., [29]). The key idea
of this framework is to encode correspondences as small
matrices, by using a reduced functional basis, thus greatly
simplifying many resulting optimization problems. The
functional map pipeline has been further improved in ac-
curacy, efficiency and robustness by many recent works in-
cluding [3, 11, 14, 17, 27, 35, 36]. There also exist other
works [2, 24, 47] that treat shape correspondence as a dense
labeling problem but they typically require a lot of data as
the label space is very large.

Learning from raw 3D shape Although early ap-
proaches in functional maps literature used hand-crafted
features [29], more recent methods directly aim to learn
either the optimal transformations of hand crafted descrip-
tors [20, 37] or even features directly from 3D geometry it-
self [6, 41]. Initial efforts in this direction used classical
optimisation techniques [4]. In contrast, Deep Functional
Maps [19] proposed a deep learning architecture called FM-
Net to optimize a non-linear transformation of SHOT de-
scriptors [45], that was further extended to unsupervised
setting [8, 13, 37]. To alleviate the sensitivity to SHOT
descriptor, recent works including [6, 12, 41] learn shape
matching directly from the raw 3D data without relying
on pre-defined descriptors, thus leading to improvements in
both robustness and accuracy. However, all these works are
aimed at full (complete) shape correspondence and do not
handle partial shape matching effectively.

Learning Basis from Data Most of the functional map
frameworks can not handle partiality in data as they rely on

Laplacian eigenfunctions that are shown to be unstable un-
der partial data. [20, 36, 48] deal with partiality but they are
based on hand-crafted features and require an expensive op-
timization scheme and are instance specific. While [41] pro-
poses to learn a suitable alignment of pre-computed Lapla-
cian Eigen basis functions, the approach still relies on the
Laplacian basis and can therefore be unstable. [21] pro-
posed a two stage architecture to learn a linear transforma-
tion invariant shape embedding to bypass the difficulties as-
sociated with LBO. However, as we demonstrate later in
experiments, the two stage architecture is suboptimal due to
the lack of adequate regularization.

Self Supervised Learning Self supervised learning has
been exploited for learning representations and embedding
in various domains where a proxy task is used to learn
the representation. e.g. [40] uses an autoencoder to com-
plete the partial shapes and uses the resulting representation
of shape completion for the shape classification task. [10]
learns to predict image rotations and uses the resulting rep-
resentation for image classification. Our formulation is in
the same spirit as we learn to inject the symmetry informa-
tion in a 3D shape and use the resulting representation for
3D shape matching. However, we choose symmetry learn-
ing as a proxy task for embedding learning for a principled
reason as described in detail in the methodology section.

Symmetry for Non Rigid Shape Matching Matching
shapes with intrinsic symmetries involves dealing with sym-
metric ambiguity problem which has been very well studied
and explored in axiomatic methods [18, 23, 25, 30, 33, 34].
More recently, [9, 43] proposes an end to end method to
learn extrinsic 3D symmetries from a RGB-D image. How-
ever, none of the existing learning based non-rigid shape
matching method models or learn symmetry explicitly as a
regularizer for shape matching.

Joint Learning of similar tasks Computer vision litera-
ture is full of problems that are inherently linked [7, 16, 39]
and thus, should be learned simultaneously. In 3D shape
analysis, Neuromorph [7] simultaneously learns shape cor-
respondence and interpolation. Our work also falls in a
similar direction as we aim to learn shape matching and
symmetry detection simultaneously. Our work is most sim-
ilar in spirit to [39] that couples image segmentation and
detection via linear constraints and thus, induces informa-
tion transfer/sharing between the segmentation map and de-
tection map via these constraints. In our formulation, we
enable this information transfer during training via a com-
mutative loss that couples the self-symmetry and pairwise
map.
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Rest of the paper is structured as follows: In the next sec-
tion, we briefly cover the necessary background on the func-
tional map. Afterwards, we propose our method to learn
canonical embedding for joint shape matching and symme-
try detection and introduce our novel regularization term
that constrains self-symmetry and pairwise map. Lastly,
we validate our framework on three benchmark datasets by
comparing it to various state-of-the-art methods and provid-
ing ablation studies.

3. Background
Before describing our method, we provide a brief

overview of the basic pipeline to compute a functional map
[28].

Functional Map Computation The typical functional
map pipeline [28] assumes that we are given a source and
a target shape, X,Y, containing, respectively, nx and ny
vertices, a small set of k basis functions, e.g. of the respec-
tive Laplace-Beltrami operators (LBO). We are also given
a set of descriptors on each shape, to be preserved by the
unknown map, whose coefficients in the basis functions are
stored as columns of matrices ΦX,ΦY. The optimal func-
tional map Copt is computed by solving the following opti-
mization problem:

Copt = arg min
C

Edesc
(
C
)

+ αEreg
(
C
)
, (1)

where Edesc
(
C
)

=
∥∥CΦX − ΦY

∥∥2
aims at the descriptor

preservation whereas the second term acts as a regularizer
on the map by enforcing its overall structural properties,
such as bijectivity of the map. The optimization problem
in equation 1 can be solved with any convex solver. Once
the optimal functional map Copt is computed, one can use
nearest neighbor search in the spectral embedding to con-
vert it to a point to point correspondence.

Note that when the basis functions are neural network-
based, instead of optimizing over C, we are optimizing the
functional in equation 1 over C, ΦX and ΦY. In this case,
joint optimization over C, ΦX and ΦY is challenging as C
is computed via an iterative solver itself.

4. Joint Shape Matching and Symmetry Detec-
tion

In the previous section, we outlined a basic mechanism
to compute a functional map given a set of basis functions.
Due to the instability of Laplace-Beltrami operator, LBO,
on partial 3D shapes [15] and noise [21], our main goal is
to avoid using its eigenfunctions and instead aim to learn an
embedding that can replace the spectral embedding given by
the LBO. This section details how to learn such an embed-
ding whilst working in the symmetric space.

Input Shape Representation In contrast to several re-
cent works [13, 41] that assume to be given a mesh repre-
sentation of 3D shapes in terms of LBO operator, we do
not impose any such constraint and directly work the with
point cloud representation without LBO. Our work is most
closely related to a recent work [21] that proposes to replace
the Laplace-Beltrami basis by learning embeddings that are
related by a linear transformation across pairs of shapes. In-
tuitively, this formulation aims to embed a shape from the
3D space, in which complex non-rigid deformations could
occur, to another higher-dimensional space, in which trans-
formations across shapes are linear. However, using a su-
pervised loss to learn this embedding without enforcing any
structural properties on the underlying linear transform pro-
vides little guarantee that the learned transform will gener-
alize from the train to test setting.

Notations We denote a map between a pair of shapes X
and Y by TXY : X → Y such that TXY(xi) = yj ,
∀i ∈ {1, . . . , nX} and some j ∈ {1, . . . , nY}. This map
can be represented by a matrix ΠXY ∈ RnX×nY such that
ΠXY(i, j) = 1 if TXY(xi) = yj and 0 otherwise. We use
the same notation T for self symmetry map TXXf

as well.
We use PX to denote the 3D coordinates of X.

Our network takes a shape X as input. We then perform
a reflection (flip) of each shape along one axis resulting in
a shape denoted as Xf . The original and flipped shapes are
then forwarded to a Siamese architecture, based on a Point-
Net [32] feature extractor, that embeds these two shapes into
some fixed k dimensional space. The intuition behind this
operation is to help the network learn representation that
can disambiguate left from right in shape matching.

Let ΦX and ΦXf
denote the matrices, whose rows can

be interpreted as embeddings of the points of X and Xf . In
the functional map framework, there exists a functional map
CXXf

that aligns the corresponding embeddings. Given a
self symmetry ground truth pointwise map TXXf

, we can
estimate CXXf

by solving the following optimization prob-
lem:

CXXf
= arg min

C
‖ΦXC

T −TXXf
ΦXf
‖2 (2)

The optimal symmetry map CXXf
is given by: CXXf

=
(Φ+

XTXXf
ΦXf

)T , that is differentiable using the closed-
form expression of derivatives of matrix inverses, as also
mentioned in Section 3. Similarly, we can compute CYYf

for shape Y. Note that one can also estimate a functional
map, e.g. CXXf

, even without using a point to point map, as
shown in Roufosse et al. [37] if there are sufficient structural
constraints to enforce on CXXf

.

4.1. Loss functions

Given a set of pairs of shapes X,Y for which ground
truth correspondences Tgt

XY are known, our network com-
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putes an embedding ΦX,ΦY for each shape as well as a self
symmetry functional map CXXf

and CYYf
respectively as

described above. We then optimize the sum of three loss
functions, one each defined for linearly invariant self sym-
metry embedding, nearest neighbour based loss for pairwise
(shape pair) embedding and a commutativity loss for explic-
itly enforcing the coupling between a self symmetry map
and a pointwise map during training.

Cosine Similarity Our loss functions are based on a soft-
correspondence matrix, also used in [19] and [21]. To define
it for self symmetry map, we transform each shape embed-
ding Φ̂X = ΦXC

T
XXf

by applying the optimal symmetry
map. We then compare the rows of Φ̂X to those of ΦXf

to
obtain the soft correspondence matrix SXXf

that approxi-
mates the self-symmetry map in a differentiable way as fol-
lows:

(SXXf
)ij =

e
Φ̂i

X
T Φj

Xf
/τ∑

j e
Φ̂j

X
T Φj

Xf
/τ

(3)

where Φ̂iX
TΦjXf

measures the similarity between any
two pointwise embedding and is defined as their inner prod-
uct where the scalar τ is set to .3.

Nearest Neighbour Loss Our Nearest Neighbour loss
links the embeddings of the two shapes and is designed to
preserve the given ground truth mapping. Specifically, we
first compute the soft correspondence matrix SXY between
a pair of shapes, by comparing the rows of ΦX to those of
ΦY in a differentiable way as done in equation 3. We then
evaluate the computed soft map, again, by evaluating how
well it transfers the coordinate functions, compared to the
given ground truth mapping.

L(ΦX,ΦY)NN. =
∑
‖SXYPY −Tgt

XYPY‖22. (4)

Note that unlike the linearly invariant loss, this loss is
based on comparing ΦX and ΦY directly, without comput-
ing any linear transformations. This significantly simplifies
the learning process and in particular, reduces the computa-
tion of the correspondence at test time to a simple nearest-
neighbor search. Despite this, as we show below, due to
our strong regularization, our approach achieves superior
results compared to the method of [21], based on comput-
ing an optimal linear transformation at test time.

Symmetry Commutativity Loss Our next loss aims to
link the symmetry map computed for each shape and the
correspondence across the two shapes. We achieve this by
using the algebraic properties of the functional representa-
tion, and especially using the fact that map composition can
simply be expressed as matrix multiplication.

Specifically, given a self-symmetry pointwise map on
shapes X and shape Y, we aim to promote the consistency
between the computed correspondence and the symmetries
on each shape. We do this by imposing the following com-
mutativity loss during training:

L(ΦX,ΦY)comm. = ‖SXfXSXY − SXYSYYf
‖2 (5)

Intuitively, this loss considers the difference between
mapping from X to Y and applying the symmetry map on
Y, as opposed to applying the symmetry on X and then
mapping from X to Y. Note that this is similar to the
commonly used Laplacian commutativity in the functional
maps literature. However, rather than promoting isometries,
our loss enforces that the computed map respects the self-
symmetry structure of each shape, which holds regardless
of the deformation class, and is not limited to isometries.

Linearly Invariant Loss Our final loss is optional as
we only utilize it to maximize the performance for shape
matching and demonstrate the benefits of shape matching
in canonical space. This loss was introduced in [21] but
we enforce it on the self-symmetry map in an unsupervised
way. The linearly invariant assumption on self-symmetry
map makes the inference of symmetry map harder at test
time. We therefore only use it for ablation study in subsec-
tion 5.2. The loss described here considers the embedding
of each shape independently and aims to promote the struc-
tural property of this embedding: i.e., that the symmetry
map should be linear in the embedding space. We define our
loss that uses the soft-map to transfer the Euclidean coordi-
nates and compares the result to transferring the coordinates
using the ground truth map.

L(ΦX,ΦXf
,ΦY,ΦYf

)lin. =
∑
‖SXXf

PXf
−Tgt

XXf
PXf
‖22

+
∑
‖SYYf

PYf
−Tgt

YYf
PYf
‖22

(6)

Note that this does not aim for Euclidean coordinates to cor-
respond. Instead, this loss measures how well the predicted
map transfers a particular set of functions, compared to the
ground truth map.

Overall training Loss We combine the two embedding
losses defined in equation 6 and equation 4 with that of com-
mutativity loss defined in equation 5 and define the training
loss as follows:

Ltot. = LNN. + λ ∗ Llin. + γ ∗ Lcomm. (7)

The scalars γ allows us to weigh the symmetry informa-
tion differently in a supervised setting where we assume to
be given a self-symmetry map and in an unsupervised set-
ting where we work without a symmetry map. Naturally,
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we set them higher for the supervised case where enforcing
symmetry structure makes more sense than unsupervised
case where symmetry is induced by a pairwise matching
NN loss and transferred by commutativity loss. We set γ
and λ to 1 for supervised setting and .2 for unsupervised
setting.

Test Phase At test time, once the network is trained, we
simply compute the embedding ΦX and ΦY and do a near-
est neighbour search between them to find correspondence
between the two shapes. Similarly, to estimate a self-
symmetry map, we compute the embedding ΦX and ΦXf

and do a nearest neighbour search between them.

Implementation Details We implemented our method in
Pytorch [31]. All experiments are run on a Nvidia RTX
2080 graphics processing card and require 16 GB of GPU
memory. We learn a k = 20 dimensional embedding (basis)
for each point cloud. Following [21,41], our feature extrac-
tor is also based on the architecture of PointNet. We use
a batch size of 8 and learning rate of 1e − 4 and optimize
our objective with Adam optimizer in Pytorch [31]. During
training, we randomly sample 3000 points from the point
cloud and obtain an embedding of 20 dimensions. Our re-
sults are not sensitive to small changes in these two parame-
ters. We experimented with an embedding size of 20, 40, 60
and obtained an average geodesic error in the range 33−36
on FAUST-R. Similarly, in addition to the 3000 point cloud
resolution during training, we also tried a point cloud res-
olution in the range 2k − 4k and found almost negligible
drop in performance. This can be explained by Pointnet re-
silience to change in point cloud density.

5. Results
This section is divided into three subsections. First sub-

section 5.1 shows the experimental comparison of our ap-
proach with state-of-the art methods for shape matching and
tests our method on a wide spectrum of datasets: the re-
meshed versions [35] of FAUST dataset [1] and SHREC’16
Partial Correspondence dataset [5]. These experiments
validate the promising direction of our embedding based
method as it obtains competitive performance on these two
benchmarks and especially outperforms LBO based meth-
ods on benchmarks with noise. The next subsection5.2 ab-
lates the overall performance and experimentally validates
our first claim that shape matching with canonical embed-
ding with appropriate regularization outperforms the lin-
early invariant embeddings proposed in Marin et. al [21].
We demonstrate this with both symmetry supervision as
well as without symmetry supervision. Lastly, section5.3
shows the effectiveness of our method on the symmetry de-
tection task in the presence of noise. We evaluate all re-

sults by reporting the per-point-average geodesic distance
between the ground truth map and the computed map. All
results are multiplied by 100 for the sake of readability. We
conclude with an illustration showing a failure case of our
method. Due to space constraints, we provide more qualita-
tive results in supplement.

5.1. Shape Matching

We present our results on a full shape matching bench-
mark dataset FAUST remesh [1, 35], denoted in future sub-
sections as FAUST-R. We also use its two other versions
used previously: the Faust aligned dataset used in [41], de-
noted as FAUST-A and noisy Faust version [21] denoted
as FAUST-N. All these dataset contains 100 shapes of 10
different subjects in different poses where each point cloud
contains roughly 5000 points. Following prior work, we use
the last 20 shapes as a test set and report the performance
on this test set. We compare our results with various LBO
based methods [6, 8, 41] in Table 1 as well as embedding
based methods [12, 21] as they are applicable, in principle,
to both partial and complete shape matching.

Baselines We compare with the following two broad ap-
proaches that are shown to outperform existing competitors:

LBO based Methods. Such baselines [6, 8, 41] assume
to be given as input a mesh representation of a shape as
they rely on LBO. While [6,41] directly learn features from
raw 3D data similar to our method, they project them into
LBO basis. [8] refines pre-computed shot descriptors [45]
to learn shape matching. We provide results after refining
the point to point map with ZoomOut [22] where applicable
for all the methods. Note that in presence of outliers and
noise, such a refinement makes the resulting point to point
map worse and thus, for FAUST-N, we do not apply it. [8]
already has a refinement built in their architecture.

Embedding based Methods. 3D-Coded [12] and Marin
et al. [21] are considered state-of-the-art in learning cor-
respondence directly from point cloud representation with-
out relying on LBO. Note that the baseline [21] is some-
what different from others since it requires and thus, learns
both basis functions and probe functions (feature descrip-
tors). For fair comparison, we also refine the resulting out-
put of [21] with Zoomout where possible.

Ours. For all results in this paper, we denote our method
with symmetry supervision as Ours-sym-Sup and without
symmetry supervision as Ours-sym-Unsup. Here symme-
try supervision means the access to the ground truth self-
symmetry map that is publicly available for Faust-R point
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Table 1. Avg. Geodesic Error for Shape Matching on FAUST

Method \ Dataset FAUST-R FAUST-N
GeomFM [6]+Zo 19 320
DeepShell [8] 17 240
Sharma-Ovsjanikov [41]+Zo 50 280
3D-Coded [12] 25 68
Marin et al. [21] 70 90
Marin et al. [21] +Zo 50 -
Ours-sym-Sup. 33 58
Ours-sym-Sup.+Zo 18 -
Ours-sym-Unsup. 48 69
Ours-sym-Unsup.+Zo 18 -

clouds. While our method already achieves good perfor-
mance without symmetry ground truth during training, we
include Ours-sym-Sup to show the additional gain brought
in by additional symmetry supervision during training.

Results and Discussion. As evident in Table 1, we ob-
tain competitive performance on FAUST-R especially when
compared to LBO based approaches. LBO eigen functions
already form a good basis for shapes and thus, prior work
based on it obtains impressive performance. However, per-
formance of this line of work degrades significantly under
noise, as shown in the Table 1 and also in [21]. Thus,
our method is significantly more resilient to noise than
LBO based methods. Compared to embedding based ap-
proaches, we obtain slightly better accuracy. In particu-
lar, our symmetry-unsupervised version, Ours-sym-Unsup,
obtains slightly better performance than our main baseline
[21]. We also provide a qualitative example to show com-
parison with [21] in Figure1. Note that the right foot is
mismatched in Marin et al. whereas we transfer it compar-
atively well without left-right ambiguity. We note that 3D-
Coded is also resilient to noise in point clouds and achieves
competitive performance in both scenarios.

Figure 1. On the left, we show the source shape. In the middle,
we transfer a color function on a target shape using Marin et al.
whereas on the right, we show the transfer using our results.

Table 2. Avg. Geodesic Error on partial SHREC benchmarks

Method \ Dataset Holes Cuts
Litany et al. [20] 16 13
Sharma-Ovsjanikov [41] 14 16
Marin et al. [21] 12 15
Ours-sym-UnSup. 10 12

Partial Shape Matching. For a fair comparison
with [20, 41], we follow the same experimental setup and
test our method on the challenging SHREC’16 Partial
Correspondence dataset [5]. The dataset is composed of
200 partial shapes, each containing about few hundreds
to 9000 vertices, belonging to 8 different classes (humans
and animals), undergoing nearly-isometric deformations
in addition to having missing parts of various forms and
sizes. Each class comes with a “null” shape in a standard
pose which is used as the full template to which partial
shapes are to be matched. The dataset is split into two
sets, namely cuts (removal of a few large parts) and holes
(removal of many small parts). We use the same test set
following [41]. Overall, this test set contains 20 shapes
each for cuts and holes datasets chosen randomly from the
two sets respectively. In addition to [21], we compare with
the following two baselines:

Sharma & Ovsjanikov [41]. This baseline relies on
learning LBO alignment and thus, is dependent on class
and needs to be retrained for each of the 8 classes. We in-
clude their results even though our results are class agnostic
and thus, significantly more robust and efficient. We obtain
these results by running the code provided by the authors.

Litany et al. [20]. This baseline is not learning based
and relies on hand crafted features and an expensive op-
timization scheme on the Stiefel manifold for every pair
of shapes at test time. Thus, in terms of computation and
ground truth map requirement, it is most expensive.

Results and Discussion We present our findings on par-
tial shape matching in Table 2 where we obtain superior
performance on both benchmark datasets for partial shape
matching. We would like to stress that baseline such as [41]
are class specific and need to be trained each time whereas
our method is class agnostic and can obtain good results
with a fraction of computational time. Similarly, [21] trains
a similar network as ours two times. First, it learns an em-
bedding with a network similar to ours, followed by a sim-
ilar network training to compute the optimal linear trans-
formation between the two embeddings. Moreover, the test
phase also requires running the network twice. Therefore,
our method is at least twice faster than this baseline in com-
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Figure 2. Shape Matching on a Dog where two legs are missing

Figure 3. Shape Matching on a Cat where the right half is missing.

Table 3. Ablation Study for Shape Matching

Method \ Dataset FAUST-R
NN 61
NN +NNsym 108
NN+ comm.(sup) 33
NN+ comm.(unsup) 50
NN+ comm.(unsup) + Lin.(unsup) 48

putational complexity. We provide qualitative results of our
method in Figure 2 and 3.

5.2. Ablation Study

In Table 3, we ablate the overall performance and val-
idates our first claim of learning canonical embedding for
shape matching as opposed to the linearly invariant one.
NN : This baseline ablates the overall performance of our
method and quantifies the gain brought in by the nearest
neighbour loss alone during training. It shows the per-
formance if we learn an embedding by just projecting the
shapes into the canonical space.
NN+NNsym: This baseline shows the results obtained

for shape matching with the symmetry supervision simply
by optimizing the nearest neighbour loss in symmetry space
in addition to the nearest neighbour loss in pairwise setting.
This baseline is most important to quantify the coupling ef-
fect brought in by our commutative loss.

NN + comm.: This baseline combines the above baseline
with the commutativity loss with symmetry supervision and
quantifies the gain brought in by symmetry supervision in
shape matching. NN + comm.(unsup) +Lin. shows the gain
brought in by coupling with a symmetry map in an unsuper-
vised way and represents Ours-sym-Unsup.

Discussion Our ablation study shows the individual im-
portance of the three loss functions. We note that the per-
formance gains brought in by commutative loss on self-
symmetry embeddings are significant. More specifically, as
evident in Table 3, using just the nearest neighbour loss on
a self-symmetry map and a pairwise map, denoted as NN
+ NNsym in Table 3, overfits badly as there is no explicit
information transfer or constraint between the two maps.

5.3. Symmetry Detection

This subsection evaluates our method on the task of sym-
metry detection in non-rigid shapes. We evaluate it on
FAUST aligned dataset (FAUST-A), SCAPE-A as well as
its noisy version. We use the usual train-test split where we
test on the last 20 shapes for FAUST-A and last 12 shapes
for SCAPE-A. We show the comparative results in Table 4
where we compare with multiple baselines. In particular,
Ren et al. [34] is considered state-of-the-art and heavily re-
lies on LBO to estimate self-symmetry maps. We show our
results with both symmetry supervision, denoted as Ours-
sym-Sup as well as without symmetry supervision denoted
as Ours-sym-Unsup in Table 4. Similar to Ren et al. [34],
we also refine our point to point map by applying zoomout
to initial maps. For the noise setting, we simply show re-
sults as such and do not apply zoomout refinement as it is
based on LBO which is unreliable in a noisy setup. We pro-
vide a qualitative example from SCAPE-A in Figure 4 and
from FAUST-A in Figure 5 to illustrate our results. Due to
space constraints, we provide the rest of the illustrations in
supplement.

Figure 4. On the left, we show the source shape and on the right,
we show our self-symmetry map color coded.

Discussion Table 4 shows that axiomatic approach of Ren
et al. [34] obtains slightly better performance than us on
both FAUST-A and SCAPE-A. However, in the presence of
noise, its performance suffers significantly. We also remark
that we are not aware of any other work that investigates the
performance of axiomatic approach for symmetry detection
in the presence of outliers. We also see a decrease in accu-
racy. However, our approach is still resilient to noise and
performs significantly better than Ren et al.
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Table 4. Avg. Geodesic Error for self-symmetry maps

Method \ Dataset Faust-A Scape-A Faust-N Scape-N

Nagar-Raman [25] 34 60 - -
Ren et al.+Zo [34] 19 54 166 193
Our-sym-Sup.+Zo 29 63 58 88
Our-sym-Unsup+Zo 50 75 66 95

Figure 5. On the left, we show the source shape and on the right,
we show our self-symmetry map color coded.

Limitation of Our Method We show a failure case from
SCAPE-A in Figure 6 where our method finds it challeng-
ing to disambiguate symmetry. As shown in Figure 6, it
maps the right foot of source shape to the left foot on target
shape. Marin et al. still performs worse than us as it fails to
disambiguate the lower leg of source shape from the lower
right leg of target shape. Human poses are quite diverse
and symmetry detection in such challenging poses remain a
challenge for extrinsic approaches like ours and Marin et al.

Figure 6. On the left, we show the source shape. In the middle,
we transfer a color function on a target shape using Marin et al.
whereas on the right, we show our result.

6. Conclusion
In shape correspondence literature, partial shape match-

ing and full shape matching are generally tackled by two
different sets of methods which obtain impressive results
in one of the two respective domains. Similarly, symmetry
detection and shape matching are also learned or modelled
separately. We presented a simple, general but promising

approach that provides a unifying framework and reduces
pairwise as well as self-symmetry map estimation to a near-
est neighbour search in a canonical embedding. Our ap-
proach is significantly more resilient to noise than methods
based on predefined basis/embedding functions. We believe
our key idea of coupling a self-symmetry and a pairwise
map via commutativity will encourage future work to ex-
plore similar constraints in unsupervised or weakly super-
vised learning of canonical embeddings. In future, we plan
to extend and explore our work on non-human datasets.
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