Euclid preparation. XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models - Archive ouverte HAL Access content directly
Journal Articles Astronomy and Astrophysics - A&A Year : 2022

Euclid preparation. XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models

H. Bretonnière (1) , M. Huertas-Company (2, 1) , A. Boucaud (1) , F. Lanusse (3, 4) , E. Jullo , E. Merlin , D. Tuccillo , M. Castellano , J. Brinchmann , C. J. Conselice , H. Dole (5) , R. Cabanac (6) , H. M. Courtois (7) , F. J. Castander , P. A. Duc (8) , P. Fosalba , D. Guinet (7) , S. Kruk , U. Kuchner , S. Serrano , E. Soubrie , A. Tramacere , L. Wang , A. Amara , N. Auricchio , R. Bender , C. Bodendorf , D. Bonino , E. Branchini , S. Brau-Nogue , M. Brescia , V. Capobianco , C. Carbone , J. Carretero , S. Cavuoti , A. Cimatti , R. Cledassou (9, 10) , G. Congedo , L. Conversi (11) , Y. Copin (7) , L. Corcione , A. Costille (12) , M. Cropper , A. da Silva , H. Degaudenzi , M. Douspis (5) , F. Dubath , C. A. J. Duncan , X. Dupac (13) , S. Dusini , S. Farrens (14, 15, 16, 17) , S. Ferriol (7) , M. Frailis , E. Franceschi , M. Fumana , B. Garilli , W. Gillard (18) , B. Gillis , C. Giocoli , A. Grazian , F. Grupp , S. V. H. Haugan , W. Holmes , F. Hormuth , P. Hudelot , K. Jahnke , S. Kermiche (18) , A. Kiessling , M. Kilbinger (19) , T. Kitching , R. Kohley , M. Kümmel , M. Kunz (20) , H. Kurki-Suonio , S. Ligori , P. B. Lilje , I. Lloro , E. Maiorano , O. Mansutti , O. Marggraf , K. Markovic , F. Marulli , R. Massey , S. Maurogordato (21) , M. Melchior , M. Meneghetti , G. Meylan , M. Moresco , B. Morin , L. Moscardini , E. Munari , R. Nakajima , S. M. Niemi , C. Padilla , S. Paltani , F. Pasian , K. Pedersen , V. Pettorino (19) , S. Pires , M. Poncet (10) , L. Popa , L. Pozzetti , F. Raison , R. Rebolo , J. Rhodes , M. Roncarelli , E. Rossetti , R. Saglia , P. Schneider , A. Secroun (18) , G. Seidel , C. Sirignano , G. Sirri , L. Stanco , J.-L. Starck (14, 15, 16) , P. Tallada-Crespí , A. N. Taylor , I. Tereno , R. Toledo-Moreo , F. Torradeflot , E. A. Valentijn , L. Valenziano (22) , Y. Wang , N. Welikala , J. Weller , G. Zamorani , J. Zoubian (18) , M. Baldi , S. Bardelli , S. Camera , R. Farinelli , E. Medinaceli , S. Mei (1) , G. Polenta (23) , E. Romelli , M. Tenti , T. Vassallo , A. Zacchei , E. Zucca , C. Baccigalupi (24) , A. Balaguera-Antolínez , A. Biviano , S. Borgani , E. Bozzo , C. Burigana (25) , A. Cappi , C. S. Carvalho , S. Casas , G. Castignani , C. Colodro-Conde , J. Coupon , S. de La Torre , M. Fabricius , M. Farina (26) , P. G. Ferreira , P. Flose-Reimberg , S. Fotopoulou , S. Galeotta , K. Ganga (1) , J. Garcia-Bellido , E. Gaztanaga (27, 28) , G. Gozaliasl , I. M. Hook , B. Joachimi , V. Kansal , A. Kashlinsky , E. Keihanen , C. C. Kirkpatrick , V. Lindholm , G. Mainetti (29) , D. Maino , R. Maoli , M. Martinelli , N. Martinet (12) , H. J. Mccracken , R. B. Metcalf , G. Morgante , N. Morisset , J. Nightingale , A. Nucita , L. Patrizii , D. Potter , A. Renzi , G. Riccio , A. G. Sánchez , D. Sapone , M. Schirmer , M. Schultheis , V. Scottez , E. Sefusatti , R. Teyssier , I. Tutusaus , J. Valiviita , M. Viel , L. Whittaker , J. H. Knapen
1 APC (UMR_7164) - AstroParticule et Cosmologie
2 GEPI - Galaxies, Etoiles, Physique, Instrumentation
3 LCS - COSMOSTAT - Laboratoire de Cosmologie et Statistiques
4 AIM (UMR_7158 / UMR_E_9005 / UM_112) - Astrophysique Interprétation Modélisation
5 IAS - Institut d'astrophysique spatiale
6 IRAP - Institut de recherche en astrophysique et planétologie
7 IP2I Lyon - Institut de Physique des 2 Infinis de Lyon
8 ObAS - Observatoire astronomique de Strasbourg
9 IN2P3 - Institut National de Physique Nucléaire et de Physique des Particules du CNRS
10 CNES - Centre National d'Études Spatiales [Toulouse]
11 Herschel Science Center [Madrid]
12 LAM - Laboratoire d'Astrophysique de Marseille
13 CESR - Centre d'étude spatiale des rayonnements
14 Université Paris-Saclay
15 UPCité - Université Paris Cité
16 CEA - CEA- Saclay
17 DRF (CEA) - Direction de Recherche Fondamentale (CEA)
18 CPPM - Centre de Physique des Particules de Marseille
19 AIM (UMR7158 / UMR_E_9005 / UM_112) - Astrophysique Interprétation Modélisation
20 UP11 - Université Paris-Sud - Paris 11
21 LAGRANGE - Joseph Louis LAGRANGE
22 ARENA - Antarctic Research a European Network for Astrophysics
23 Università degli Studi di Roma Tor Vergata [Roma] = University of Rome Tor Vergata
24 SISSA / ISAS - Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies
25 IASF-Bo - Istituto di Astrofisica Spaziale e Fisica cosmica - Bologna
26 CNRS - Centre National de la Recherche Scientifique
27 IEEC-CSIC - Institut d'Estudis Espacials de Catalunya
28 ICE-CSIC - Institut de Ciencies de l'Espai [Barcelona]
29 CC-IN2P3 - Centre de Calcul de l'IN2P3
H. Bretonnière
  • Function : Correspondent author
A. Boucaud
E. Jullo
E. Merlin
D. Tuccillo
  • Function : Author
M. Castellano
J. Brinchmann
C. J. Conselice
  • Function : Author
F. J. Castander
P. Fosalba
S. Kruk
  • Function : Author
U. Kuchner
  • Function : Author
S. Serrano
  • Function : Author
E. Soubrie
  • Function : Author
A. Tramacere
  • Function : Author
L. Wang
  • Function : Author
A. Amara
  • Function : Author
N. Auricchio
  • Function : Author
R. Bender
C. Bodendorf
  • Function : Author
D. Bonino
  • Function : Author
E. Branchini
S. Brau-Nogue
  • Function : Author
M. Brescia
  • Function : Author
V. Capobianco
  • Function : Author
C. Carbone
  • Function : Author
J. Carretero
  • Function : Author
S. Cavuoti
  • Function : Author
A. Cimatti
G. Congedo
Y. Copin
L. Corcione
  • Function : Author
M. Cropper
  • Function : Author
A. da Silva
  • Function : Author
H. Degaudenzi
  • Function : Author
F. Dubath
  • Function : Author
C. A. J. Duncan
  • Function : Author
S. Dusini
  • Function : Author
M. Frailis
  • Function : Author
E. Franceschi
  • Function : Author
M. Fumana
  • Function : Author
B. Garilli
W. Gillard
B. Gillis
  • Function : Author
C. Giocoli
A. Grazian
  • Function : Author
F. Grupp
  • Function : Author
S. V. H. Haugan
  • Function : Author
W. Holmes
  • Function : Author
F. Hormuth
  • Function : Author
P. Hudelot
  • Function : Author
K. Jahnke
A. Kiessling
  • Function : Author
M. Kilbinger
T. Kitching
  • Function : Author
R. Kohley
  • Function : Author
M. Kümmel
  • Function : Author
H. Kurki-Suonio
  • Function : Author
S. Ligori
  • Function : Author
P. B. Lilje
  • Function : Author
I. Lloro
  • Function : Author
E. Maiorano
  • Function : Author
O. Mansutti
  • Function : Author
O. Marggraf
  • Function : Author
K. Markovic
  • Function : Author
F. Marulli
R. Massey
  • Function : Author
S. Maurogordato
M. Melchior
  • Function : Author
M. Meneghetti
G. Meylan
  • Function : Author
M. Moresco
B. Morin
  • Function : Author
L. Moscardini
  • Function : Author
E. Munari
  • Function : Author
R. Nakajima
  • Function : Author
S. M. Niemi
  • Function : Author
C. Padilla
S. Paltani
F. Pasian
  • Function : Author
K. Pedersen
  • Function : Author
S. Pires
  • Function : Author
L. Popa
  • Function : Author
L. Pozzetti
  • Function : Author
F. Raison
  • Function : Author
R. Rebolo
  • Function : Author
J. Rhodes
M. Roncarelli
  • Function : Author
E. Rossetti
  • Function : Author
R. Saglia
P. Schneider
G. Seidel
  • Function : Author
C. Sirignano
  • Function : Author
G. Sirri
  • Function : Author
L. Stanco
  • Function : Author
P. Tallada-Crespí
  • Function : Author
A. N. Taylor
  • Function : Author
I. Tereno
  • Function : Author
R. Toledo-Moreo
  • Function : Author
F. Torradeflot
  • Function : Author
E. A. Valentijn
  • Function : Author
Y. Wang
  • Function : Author
N. Welikala
  • Function : Author
J. Weller
  • Function : Author
G. Zamorani
J. Zoubian
M. Baldi
S. Bardelli
S. Camera
R. Farinelli
  • Function : Author
E. Medinaceli
  • Function : Author
E. Romelli
  • Function : Author
M. Tenti
  • Function : Author
T. Vassallo
  • Function : Author
A. Zacchei
  • Function : Author
E. Zucca
A. Balaguera-Antolínez
A. Biviano
S. Borgani
  • Function : Author
E. Bozzo
A. Cappi
  • Function : Author
C. S. Carvalho
  • Function : Author
S. Casas
  • Function : Author
G. Castignani
  • Function : Author
C. Colodro-Conde
  • Function : Author
J. Coupon
  • Function : Author
S. de La Torre
  • Function : Author
M. Fabricius
  • Function : Author
P. G. Ferreira
  • Function : Author
P. Flose-Reimberg
S. Fotopoulou
  • Function : Author
S. Galeotta
  • Function : Author
J. Garcia-Bellido
  • Function : Author
G. Gozaliasl
  • Function : Author
I. M. Hook
  • Function : Author
B. Joachimi
  • Function : Author
V. Kansal
  • Function : Author
A. Kashlinsky
  • Function : Author
E. Keihanen
  • Function : Author
C. C. Kirkpatrick
  • Function : Author
V. Lindholm
  • Function : Author
D. Maino
  • Function : Author
R. Maoli
  • Function : Author
M. Martinelli
  • Function : Author
H. J. Mccracken
  • Function : Author
R. B. Metcalf
  • Function : Author
G. Morgante
  • Function : Author
N. Morisset
  • Function : Author
J. Nightingale
  • Function : Author
A. Nucita
L. Patrizii
  • Function : Author
D. Potter
  • Function : Author
A. Renzi
  • Function : Author
G. Riccio
  • Function : Author
A. G. Sánchez
  • Function : Author
D. Sapone
  • Function : Author
M. Schirmer
M. Schultheis
V. Scottez
  • Function : Author
E. Sefusatti
  • Function : Author
R. Teyssier
I. Tutusaus
  • Function : Author
J. Valiviita
  • Function : Author
M. Viel
  • Function : Author
L. Whittaker
  • Function : Author
J. H. Knapen
  • Function : Author

Abstract

We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of $0.4\,\rm{deg}^2$ as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of $22.5\,\rm{mag}\,\rm{arcsec}^{-2}$, and the Euclid Deep Survey (EDS) down to $24.9\,\rm{mag}\,\rm{arcsec}^{-2}$. This corresponds to approximately $250$ million galaxies at the end of the mission and a $50\,\%$ complete sample for stellar masses above $10^{10.6}\,\rm{M}_\odot$ (resp. $10^{9.6}\,\rm{M}_\odot$) at a redshift $z\sim0.5$ for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
Fichier principal
Vignette du fichier
aa41393-21.pdf (3.08 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-03533669 , version 1 (18-01-2022)

Identifiers

Cite

H. Bretonnière, M. Huertas-Company, A. Boucaud, F. Lanusse, E. Jullo, et al.. Euclid preparation. XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models: XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models. Astronomy and Astrophysics - A&A, 2022, 657, pp.A90. ⟨10.1051/0004-6361/202141393⟩. ⟨hal-03533669⟩
223 View
87 Download

Altmetric

Share

Gmail Facebook X LinkedIn More