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Summary 

Finding spike-based learning algorithms that can be implemented within the local constraints of 

neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium 

Propagation is a promising alternative to backpropagation as it only involves local computations, but 

hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a 

spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which 

learns by Equilibrium Propagation. Through simulations, we obtain a test recognition accuracy of 

97.6% on MNIST, similar to rate-based Equilibrium Propagation, and comparing favourably to 

alternative learning techniques for spiking neural networks. We show that EqSpike implemented in 

silicon neuromorphic technology could reduce the energy consumption of inference and training 

respectively by three orders and two orders of magnitude compared to GPUs. Finally, we also show 

that during learning, EqSpike weight updates exhibit a form of Spike Timing Dependent Plasticity, 

highlighting a possible connection with biology.  

 

Introduction 

Spike-based neuromorphic systems have, in recent years, demonstrated outstanding energy 

efficiency on inference tasks (Merolla et al., 2014). Implementing the training of deep neural 

networks in such systems remains, however, a considerable challenge, as backpropagation does not 

apply directly to spiking networks and requires spatially non-local computations that go against the 

principles of neuromorphic systems. A large number of neuromorphic systems use the unsupervised 

and biologically-inspired Spike Timing Dependent Plasticity (STDP) learning rule because its weight 

updates, based on the relative timing of pre- and post-synaptic spikes, are spatially local and can be 

achieved with compact circuits in several technologies (Bi and Poo, 2001; Masquelier and Thorpe, 

2007; Bichler et al., 2012; Linares-Barranco et al., 2011; Jo et al., 2010; Pedretti et al., 2017; Serb et 

al., 2016; Prezioso et al., 2018; Thakur et al., 2018; Feldmann et al., 2019). Unfortunately, STDP 

weight updates generally do not minimize a global objective function for the network, and the 

accuracy of STDP-trained neural networks remains below state-of-the-art algorithms based on the 

error backpropagation (Falez et al., 2019). Important research efforts therefore investigate how the 

error backpropagation algorithm can be mathematically modified to make it spatially local and 

appropriate for spiking neural networks (Neftci et al., 2017; Sacramento et al., 2018; Richards et al., 

2019; Neftci, Mostafa and Zenke, 2019; Kaiser, Mostafa and Neftci, 2020; Bellec et al., 2020; Payeur 
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et al., 2020). The derived learning rules are composed of three factors. The first two take into 

account, as usual, the behaviour of pre and post neurons, and the third allows for the introduction of 

an additional error factor. This third factor leads to implementations on neuromorphic chips that are 

less compact, and possibly less energy efficient, than two-factor learning rules such as STDP (Payvand 

et al., 2020).  

In this work, we propose a different approach to training spiking neural networks with high accuracy 

while using a local, two-factors learning rule compatible with neuromorphic implementations and 

scalable to complex tasks. Instead of starting from a non-local algorithm such as backpropagation 

and modifying it to make it local, we start from a rate-based algorithm called Equilibrium Propagation 

(Scellier and Bengio, 2017) that is intrinsically local in space, and features key advantages for 

neuromorphic implementations (Kendall et al., 2020; Zoppo, Marrone and Corinto, 2020). 

Equilibrium Propagation theoretically applies to any physical system whose dynamics derive from an 

energy function. By minimizing the energy of such a system on data patterns, it can be made to relax 

towards states of minimal error prediction with respect to targets (Scellier and Bengio, 2017). The 

weight updates of Equilibrium Propagation match those of Back-Propagation-Through-Time (BPTT) in 

recurrent neural networks with static inputs (Ernoult et al., 2019), and it reaches high accuracy on 

image benchmarks such as CIFAR-10 (Laborieux et al., 2020). Equilibrium Propagation uses the same 

set of weights for the forward and backward pass, a feature that is not biologically plausible, but is 

interesting for neuromorphic computing as it decreases the number of synaptic devices to update, 

thus reducing the overall power consumption. Contrarily to backpropagation, Equilibrium 

Propagation uses the same computations in the forward and backward phases, which is another 

highly desirable feature for neuromorphic systems as it greatly simplifies the circuits. Equilibrium 

propagation is, however, originally a rate-based algorithm. 

Here, we design a spiking, hardware-friendly version of Equilibrium Propagation, called EqSpike, 

compatible with current neuromorphic technologies achieving online learning (Schemmel et al., 

2010; Furber et al., 2014; Qiao et al., 2015; Davies et al., 2018; Frenkel et al., 2019; Ishii et al., 2019; 

Park, Lee and Jeon, 2020). EqSpike is local in space and time: contrarily to backpropagation, neither 

error gradients nor activations need to be stored in external memories, and synapses can be directly 

updated through neural events. We simulate a fully connected network based on this architecture on 

the MNIST handwritten digits database. We obtain a test recognition accuracy of 97.6%, which 

compares favourably with spiking neural networks learning with backpropagation-derived methods, 

and on par with rate-based Equilibrium Propagation. We show that EqSpike can be implemented in 

silicon neuromorphic technology, and thus reduce the energy consumption of inference by up to 

three orders of magnitude and training by up to two orders of magnitude compared to graphics 

processing units (GPUs). Finally, we also show that during learning the weight updates of EqSpike 

exhibit a form of STDP, yielding insights to its link to biology.  

EqSpike: a hardware-friendly spiking version of Equilibrium propagation 

Equilibrium Propagation is an algorithm for training convergent recurrent neural networks. Input 

neurons are clamped to a static input and all the other neurons, bi-directionally connected through 

synapses, evolve dynamically in time to reduce the energy of the network (Scellier and Bengio, 2017). 

The algorithm functions in two phases: a free phase and a nudging phase. In the free phase, 

performing inference, the network is let to reach equilibrium (Fig. 1a). Once this is done, inputs are 

kept clamped, and output neurons are nudged towards the desired output (Fig. 1b). During this 

nudging phase, the prediction error at the output layer is converted into a “force” acting upon output 

neurons and propagating to the rest of the system through time until a second equilibrium is 

reached. For training, synaptic values are updated by probing the neuron states after (Scellier and 



Bengio, 2017) or during (Ernoult et al., 2020) the nudging phase through a learning rule that has been 

shown theoretically and numerically to match the updates of Back-Propagation Through Time, the 

state-of-the-art algorithm for such recurrent neural networks (Ernoult et al., 2019). It has been 

shown recently that Equilibrium Propagation also reaches accuracy within 1% of BPTT with 

convolutional architectures on the CIFAR-10 dataset (Laborieux et al., 2020).  

The original version of Equilibrium Propagation uses a rate-based formulation where dynamical 

neurons evolve smoothly in time. For a network of leaky integrate and fire neurons described by an 

Hopfield-like energy function ���� =  1 2⁄ ∑ ��
�

� −  1 2⁄ ∑ ������������� − ∑ �������� , where � are 

the membrane potentials of neurons and � their activation function, the Equilibrium Propagation 

learning rule is: ∆���  ~ ������� − �������, where the product ���� is measured at equilibrium, at the 

end of the nudge phase and the free phase (Scellier and Bengio, 2017). This rule can be extended to 

the case when weights are continuously updated during the nudging phase (Ernoult et al., 2020):  

 
����

��
~ ����� + �����,  (Eq.1) 

where ���  is the synaptic weight connecting neurons i and j, and ��, ��  are the rates of the two 

neurons. The network dynamics thus directly compute the error derivative, encoded in the rate 

derivative of the post neuron ��  and multiplied by the activation function of the pre neuron. The 

reformulation of this rate-based learning rule to a spiking neural network is therefore the following: 

each time neuron i spikes, the weight should be updated by a quantity proportional to the derivative 

of the rate of neuron j, ���  (first term in Eq. 1), and reciprocally.  

We propose here a simple strategy, compatible with current electronic hardware, to implement this 

learning rule. It is illustrated in Fig. 1c in the form of a circuit, including spike detection elements at 

the output of each neuron, as well as dedicated blocks that extract the rate derivative from the spike 

trains of each neuron in real-time, in order to update synapses accordingly. 

We use leaky-integrate-and-fire (LIF) spiking neurons which output spike frequency as a function of 

input current approximates the hard sigmoid prescribed in the original formulation of Equilibrium 

Propagation (Scellier and Bengio, 2017). Their maximum frequency is  !"# = 1/%&'�&"(�, 

where %&'�&"(� is the refractory time of the LIF neuron (see Supplementary Information for details 

and all parameter values).  

The novelty compared to standard SNNs is the scheme that we propose for extracting the rate 

acceleration ��  for each neuron, illustrated in Fig. 1e. A leaky-integrator with a leak factor )*+ (without 

reset nor spikes), takes as input the spike train emitted by the neuron to which it is connected and 

outputs a slowly varying signal proportional to the rate of the neuron spike train: ,*+~�/)*+ (Navarro 

et al., 2020). To take the derivative, we delay this signal by a duration -, and subtract the actual value 

with the delayed value:  

,�'."/ =  ,*+�0� − ,*+�0 − -� ≅ - 2345

2�
 ∝ -/)*+ �� . We then apply a low-pass filter for smoothing the 

variations. The filter is simulated using an average over 8��.�  simulation steps: 9�0�:::::: =
;

<=�>?
∑ 9��0 − @ A0�

<=�>?B;
�CD , where A0 is the simulation time step.  

The output of the filter, that approximates  
E

F45
��̅, is then multiplied by the coefficient H&. The 

corresponding weight updates are ∆I�� =  H&
E

F45
��̅�, which corresponds to an effective learning rate 

J& =  H&
E

F45
= 1.5 10-3.  



This approach is hardware-compatible as LIF neurons, leaky integrators, delays and low pass filters 

are circuit elements that can be efficiently implemented in CMOS technology (Mead and Ismail, 

1989), and bidirectional synapses could be implemented with CMOS compatible emergent nano-

devices such as memristors (Ishii et al., 2019; Marković et al., 2020; Wan et al., 2020). The 

corresponding pseudo-code is given in Algorithm 1 (see Supplementary Information for details).  

 

Algorithm 1: EqSpike learning procedure for one image 

Inputs: input image, Model �K��LM�N, KP���'�, KQM��, Loss function, length Free phase %�&'', length 

Nudging phase %�M�R', Parameters )*+S , )*+ , ��P, T, H&, -, 8��.�, ��� 

 

for 0 < %�&'':       ∎ free phase 

    for each neuron W: 

       Update membrane potential ���)*+S , X�� 

       if ��  >  ��P: 

           Emit a spike (0�) 

       Update ���0� , )*+�  

 

for 0 ∈ [%�&'' , %�&'' + %�M�R']:    ∎ nudging phase 

    for each output neuron ]:  

Compute error gradient ∇_Q 

     Nudge neuron:  �Q  ← �Q − T ⋅ ∇_Q  

    for each neuron k: 

       Update �b�)*+S , Xb� 

       if �b  >  ��P: 

           Emit a spike (0b� 

      Update �b�0b, )*+�         

      Compute smoothed:  ��̅b  ���b�0b�, �b�0b − -�� , … , 8��.�� 

  

    for each synapse I��:     ∎ Update synapses 

       if neuron j emits a spike: 

           I��  ← I�� + H& ⋅ E
F45

 �� ̅�  

       if neuron i emits a spike: 

           I��  ← I�� + H& ⋅ E
F45

 ���̅  

Return: Trained weights for input image: ���  and go to next image/next epoch. 

 

 

Full network simulations: recognition rate on handwritten digits database 

We now evaluate the performance of EqSpike on the MNIST handwritten digits classification task, 

using a fully connected network with one hidden layer (see Supplementary Information for details). 

The obtained train (orange) and test (blue) accuracies are shown Fig. 2 as a function of the number of 

training epochs, with the deviation over six runs in shadow color. Table 1 compares the results to 

BPTT and the version of Equilibrium Propagation closest to our implementation, called Continual Eq-

Prop (Ernoult et al., 2020), trained with a batch size of one. 



The test accuracy of EqSpike matches closely the accuracy of stochastic gradient descent through 

BPTT on the same network architecture, given the error margin. With a hidden layer of 300 neurons, 

EqSpikes reaches a test accuracy of 97.59%. Fully-connected spiking neural networks trained on 

MNIST without conversion from a non-spiking neural network typically achieve recognition rates in 

the 96-98% range (Neftci et al., 2017; O’Connor and Welling, 2016; Lee, Delbruck and Pfeiffer, 2016; 

Mostafa, 2018; Tavanaei and Maida, 2019). EqSpike, with its local, two-factors online learning rule 

therefore reaches accuracies on MNIST comparable to those of the latest models investigated for 

training spiking neural networks on hardware platforms. We have chosen the MNIST dataset as a 

benchmark because it is a standard dataset for the neuromorphic community interested in training 

spiking neural networks online, due to the long simulation times. As EqSpike achieves results on 

MNIST equivalent to the baseline given by Equilibrium Propagation it has the potential, like 

Equilibrium Propagation, to adapt to convolutional architectures and perform with good accuracy on 

more complex image benchmarks (Laborieux et al., 2020), with the additional advantage of being 

compatible with current neuromorphic technologies.  

 

Inference speed and energy 

As EqSpike is derived from a rate-based algorithm, it is interesting for neuromorphic applications to 

quantify the number of spikes needed to achieve inference, and the time needed to reach high 

accuracy. Operation with fewer spikes is more desirable, as it reduces both execution time and 

energy consumption. 

Fig. 3 shows the inference results as a function of the execution time multiplied by the maximum 

frequency of neurons (0 ×  !"#). The orange line is the mean accuracy result over the whole test 

dataset, obtained by computing the spike rate of output neurons (as done for Fig. 2 and Table 1), 

through averaging in a time window %"e'&"R' of 100 simulation time steps (%"e'&"R' = 50/ !"#� and 

considering that the neuron with highest frequency encodes the output. This method computes the 

rate accurately at the expense of having to wait the time %"e'&"R' and letting output neurons spike 

multiple times. Spiking neural networks also offer the possibility to accelerate the computation and 

reduce the energy consumption by determining the output class from the first output neuron to 

spike. The blue line in Fig.3 is the accuracy as a function of time, averaged over all images in the test 

dataset, obtained by considering that the first output neuron to spike encodes the output.  

The red, vertical dotted line in Fig. 3 indicates the average time of the first spike at the output over all 

presented images, corresponding to t  ≅ 3.5/ !"#. At t  ≅ 10/ !"#, the accuracy of single-spike 

inference (blue curve) reaches 95.11% ± 0.78%, within 1.4% of the precise rate computation (orange 

curve). This result shows that even though the algorithm is originally rate-based, a single spike at the 

output suffices in most cases to determine the correct class with good precision, a feature which is 

highly attractive for energy-efficient inference on neuromorphic chips. It means that inference can be 

achieved in 100 µs for electronic neurons with a firing rate of 100 kHz, available in neuromorphic 

chips working in accelerated time compared to biology (Schemmel et al., 2010), and 1 µs for 

electronic neurons with a firing rate of 10 MHz that can be produced, for example, with emerging 

nanotechnologies (Li et al., 2015). The corresponding throughputs are respectively 10k and 1M 

images/s, on par with current spiking neural network implementations (Pfeiffer and Pfeil, 2018; Park, 

Lee and Jeon, 2020). As the network operations are fully parallel, these orders of magnitudes will be 

conserved for wider networks. Simulations of rate-based Equilibrium Propagation on deeper 

networks indicate that the convergence time increases by a factor of about eight for a network with 

four hidden layers compared to a network of one hidden layer as here (Laborieux et al., 2020). It 



should be noted that in the current implementation we present static inputs to the network, which 

means that input neurons need to integrate these signals before they emit the first spikes that will 

then propagate to the next layers. The speed of inference could be increased in the future by 

presenting inputs directly encoded in spikes, for example sourced from neuromorphic vision sensors 

(Pfeiffer and Pfeil, 2018). 

An estimation of the energy consumption of a spiking neural network on a neuromorphic silicon chip 

can be performed by counting the number of synaptic operations involved. Synaptic operations 

(SynOps) are defined as the total number of spikes transiting through synapses of the network. 

Frenkel et al show that a SynOp on a neuromorphic chip requires as little as 10 pJ (Frenkel et al., 

2019). The total number of synaptic operations needed for inference depends on the targeted 

recognition precision and, therefore, on the duration of inference (Fig. 3). For EqSpike, the 

recognition rate saturates at t ≅ 10/ !"#. The corresponding measured number of SynOps is about 

150,000 in average. This is much less than expected if all neurons spiked. This is also a bit less but 

comparable to the number of SynOps needed at inference for Event-Driven Random 

BackPropagation (Neftci et al., 2017). Considering 10 pJ/SynOps, each EqSpike inference could 

potentially consume 1.5 µJ. This means that testing the 10,000 images of the whole MNIST dataset 

could be achieved with a neuromorphic chip while consuming only 15 mJ, in other words, three 

orders of magnitude less than with a GPU (Joseph and Nagarajan, no date).  

In our current EqSpike implementation, the input layer is the one leading to most spikes and SynOps: 

with only 16% of illuminated pixels in average in MNIST, the input layer emits 87.5% of all spikes and 

98.6% of SynOps occur between the input layer and the hidden layer. In this work, we did not focus 

on reducing the number of spikes with encoding, but a better encoding of the input may reduce 

considerably the energy consumption. Kheradpisheh et al have shown that with a temporal 

encoding, the total number of spikes in the network before the first output spike can be reduced to 

200 with a hidden layer four times larger than our network (Kheradpisheh and Masquelier, 2020). In 

our case, 678 spikes in total are emitted in average before the first output spike. An adaptation of 

EqSpike to temporal encoding is not straightforward, but this number could potentially be decreased 

in the future by reducing the encoding frequency of the input. 

 

Training speed and energy 

Training with EqSpike requires performing the free phase and then the nudging phase, during which 

synaptic weights are updated. A way to speed-up the training, and reduce the total number of 

SynOps, is to perform the nudging phase only on poorly classified examples, and skip the updates 

when the accuracy is satisfactory. We apply this strategy inspired from (Park, Lee and Jeon, 2020) 

using the criteria that the nudging phase is performed only when the difference between the target 

rate and the actual rate ��bh − �b� at the ouput is above 1%. Fig. 4a shows the number of presented 

examples per epoch as a function of epoch number. In the last 20 epochs only approximately 15% of 

the training dataset still require a nudging phase.   

For MNIST, we thus perform the free phase on all the dataset (3×106 images for the 50 epochs), and 

the nudging phase on 489,000 images. Given the durations of each phase, we can estimate the 

training time to Ttraining  ≅ 2.74×108/ !"#. For electronic neurons with a firing rate of 100 kHz 

(Schemmel et al., 2010), this leads to Ttraining  ≅ 45 min, and for electronic neurons with a firing rate of 

10 MHz (Li et al., 2015) to Ttraining  ≅ 30s. As our networks feature a fully parallel nature, these training 



times would be the same for much wider networks, and increased by a factor of about eight only 

with four hidden layers (Laborieux et al., 2020). 

As EqSpike is derived from a rate-based approach, it is interesting to compare the actual spiking rates 

of neurons in the network during training to their maximum frequency  !"#. For neuromorphic 

applications, low overall rates are indeed desirable. Fig 4b shows the average number of spikes 

emitted by each neuron for an image presentation in the training dataset, as a function of the epoch. 

We found that for the training conditions of Fig. 2, there are in average 36 spikes/neuron/image. This 

means that neurons in the network spike in average with a frequency of the order of 20% of  !"#, 

well below   !"#, which is promising for neuromorphic implementations. Again this number could be 

reduced in the future by optimizing the encoding of input at the first layer. 

Fig. 4c shows the numbers of synaptic operations needed for training as a function of recognition 

rate. The total number of synaptic operations after 50 epochs is of 4.23×1012, which is of the same 

order of magnitude as Event-Driven Random Back-Propagation (Neftci et al., 2017) for similar 

accuracy, and below training MNIST with BP based on (14). With 10pJ per SynOps  (Frenkel et al., 

2019) the training phase of EqSpike on a neuromorphic chip could consume as little as 42 J, again, 

two orders of magnitude less than with a GPU (Joseph and Nagarajan, no date).  

 

Spike Timing Dependent Plasticity 

We have shown that EqSpike transforms Equilibrium Propagation into an efficient algorithm for 

neuromorphic chips. We now highlight that it also brings Equilibrium Propagation closer to biological 

plausibility. Bengio et al have pointed out a connection between the Equilibrium Propagation 

learning rule of Eq. 1 and STDP (Bengio et al., 2017). The STDP learning rule, illustrated in Fig. 5a, 

reinforces causality between the spikes of pre- and post-synaptic neurons in networks with 

unidirectional synapses. If the post-synaptic neuron spikes after the pre-, causality is observed, and 

the weight is increased. In the opposite scenario, the weight is decreased.  

Let us consider a situation where the pre-synaptic neuron i spikes and the post-synaptic neuron j 

accelerates, as illustrated in Fig. 5b. According to the Eq-Prop learning rule, in a network with 

unidirectional synapses, 
����

��
∝  ��� �� =  ��LQN�  �L&'  , a positive weight update should be applied. 

Due to the acceleration of the post-neuron, there are less post-neuron spikes before the pre-neuron 

spike than after. Therefore, tpost - tpre is positive in average, yielding a positive weight update through 

STDP. 

We have investigated if STDP-like weight updates did emerge during learning in our simulations. For 

this purpose, we monitored weight variations in synapses that connect input neurons and the hidden 

layer neurons. These synapses are unidirectional as input neurons are clamped to the input (see Fig. 

1): their frequency does not vary.  We used 100 images during the first epoch for the MNIST dataset. 

The curve in Fig. 5c shows the average weight updates in the first layer as a function of the time 

difference between post-synaptic neuron spikes and the average time of pre-synaptic neuron spikes 

in a window of 200 time steps before the post-synaptic neuron spike. The obtained curve, centred on 

zero, indeed exhibits an STDP-like shape. It has been obtained by filtering out very low frequencies 

below 0.05. Quiet neurons in the free phase indeed induce large weight updates at the beginning of 

the nudging phase, due to the sudden acceleration from zero to non-zero frequency, inducing an 

additional noise in the curve. It should be noted that biological STDP curves being frequency-

dependent, they are also often obtained by focusing on a given range of frequencies (Kirkwood, 

Rioult and Bear, 1996). Fig. 5c shows that the STDP amplitude and time-window vary with the 



strength of nudging T. In Equilibrium Propagation, weight changes are driven by neuron 

accelerations. As nudging applies a force that accelerates neurons, for larger T, larger weight 

changes are obtained, leading to a larger amplitude of the STDP-like curve. As higher accelerations 

are reached during the nudging phase, noticeable weight modifications occur for larger differences 

between tpost and tpre, corresponding to a wider time window for the STDP-like curve. These results 

confirm the possible connection between STDP and Equilibrium Propagation pointed out in (Bengio 

et al., 2017), despite the fact that individual spike timings are lost through averaging. They show that 

STDP-like behaviour can be obtained during learning in unidirectional synapses without a direct 

implementation of the original, causality-based rule. They also ask the question whether multilayer 

networks could be trained with the local STDP learning rule by using the nudging procedure of 

Equilibrium Propagation, possibly in the extended version called “Vector-field Equilibrium 

Propagation” in which synapses are unidirectional (Scellier et al., 2018). 

Discussion 

Other versions of Equilibrium Propagation have been specifically designed to train spiking neural 

networks. O’Connor et al have designed a spiking network which, by construction, stochastically 

approximates the dynamics of its rate-based counter-part until reaching the same steady state with a 

minimal spikes communication budget between neurons (O’Connor, Gavves and Welling, 2019). 

Their technique, successfully tested against MNIST, comes at the cost of combining predictive coding, 

sigma-delta modulation and adaptive step sizes at the neuron level. In comparison, our technique 

simply requires LIF neurons, a spike-count and a low-pass filter to implement the learning rule. 

Mesnard et al proposed a version of Equilibrium Propagation to train spiking networks that also 

makes use of low-pass filters to estimate firing rates. However, they only demonstrate their 

approach on a non-linear toy problem, and the implemented learning rule is not local in time 

(Mesnard, Gerstner and Brea, 2016). In contrast, we demonstrate the effectiveness of our fully 

event-based implementation on MNIST. 

More generally, several spike-based approaches to backpropagation have been proposed. One 

method consists in smoothing the spikes as a function of time so that gradients can be back-

propagated through time (Huh and Sejnowski, 2018; Bellec et al., 2020). Another technique consists 

in gating the spikes propagating the error signals by surrogate derivatives, as done in SpikeGrad 

(Thiele, Bichler and Dupret, 2019). Finally, Event-driven Random Backpropagation uses firing rates in 

the backward pass, as we do in this paper, and achieves similar performance on MNIST (Neftci et al., 

2017). In comparison with these approaches however, our implementation of Equilibrium 

Propagation does not require to know the activation function equation in order to compute its 

derivatives. One other interesting approach is S4NN, which employs latency coding, where each 

neuron can spike at most once, and the output is encoded as the first neuron to spike (Kheradpisheh 

and Masquelier, 2020). In contrast with rate-based coding, latency coding has the potential to save 

important energy in neuromorphic implementations. However, there is no clear indication of 

whether S4NN could scale to harder visual tasks, while rate-based Equilibrium Propagation was 

shown to train deep ConvNets on CIFAR-10 (Laborieux et al., 2020). One intrinsic limitation of 

EqSpike, however, may stem from the necessity for the system to reach a steady state before the 

gradient computation phase. This prevents, for now, the classification of time-varying inputs. Payeur 

et al recently proposed a spike-based approach where top-down error signals are encoded as spike 

bursts and are multiplexed with bottom-up feedforward signals so that the backward pass and the 

forward pass can occur simultaneously with minimal disruption (Payeur et al., 2020). While they 

show that the rate-based counterpart of their algorithm works on CIFAR-10 and ImageNet, it comes 

at the cost of employing dendritic network topologies and specialized synapses. Indeed, as noted in 



the introduction, most backpropagation-derived local learning rules involve a third factor for 

supervision (Payvand et al., 2020). In this regard, we believe that our EqSpike implementation of 

Equilibrium Propagation, with only two factors, achieves an optimal trade-off between circuitry 

complexity and performance. 

Finally, Zoppo et al (Zoppo, Marrone and Corinto, 2020) and Kendall et al (Kendall et al., 2020) have 

proposed using Equilibrium Propagation for training neuromorphic hardware. However, their 

implementations remain either rate-based or current-based, and are therefore not directly 

compatible with spiking neuromorphic chips. EqSpike, on the other hand, could be trained directly on 

reconfigurable neuromorphic systems with online learning such as SpiNNaker (Furber et al., 2014) 

and Loihi (Davies et al., 2018).  

 

Limitations of the study 

A limitation of EqSpike is that, with a wrong choice of γjk or τ combined with low nudging times, fast 

or brief rate changes cannot be detected, and the corresponding weight modification cannot be 

applied. This does not seem to be a problem with our experimentations as demonstrated above but 

could lead to a lower accuracy on more complex problems. 

The circuits to compute the rate derivative could be further miniaturized by extracting ��  directly 

from the membrane potential if neuron models with smoothly varying membrane potential are used 

(Gerstner et al., 2014).  

EqSpike could also be sped up by building on dedicated hardware in analog or digital CMOS 

(Schemmel et al., 2010; Qiao et al., 2015; Thakur et al., 2018; Frenkel et al., 2019; Park, Lee and Jeon, 

2020). Emerging nanotechnologies such as memristive synapses  and nanoscale spiking oscillators are 

compelling candidates to scale up neuromorphic hardware due to their small size, their speed and 

their low energy consumption (Marković et al., 2020; Milo et al., 2020; Sebastian et al., 2020; Wang 

et al., 2020; Xi et al., 2020). These technologies are typically prone to imperfections such as the 

device-to-device variability, cycle-to-cycle variability or the non-linearity in the conductance-to-

voltage response, which are known to considerably jeopardize learning in memristive neural 

networks (Ishii et al., 2019; Zhang et al., 2020). Our paper implicitly assumes that the underlying 

memory technology at use would be linear, deterministic and identical across different synapses. The 

learning rate J& in EqSpike is indeed about 10 times smaller than typically used in standard gradient 

descent. This is due to the fact that the batch size is one, and also that a low J& is needed to avoid too 

large modifications accumulated over all the nudging phase. For low precision device as synapse, a 

first possible solution is to update the synaptic devices less frequently (not at each spike), but with a 

higher value. Another strategy is to adapt to EqSpike the training schemes used for binary neural 

networks (Hubara et al., 2016; Rastegari et al., 2016; Hirtzlin et al., 2019). Further study should be 

done to propose a fully end-to-end circuit to implement EqSpike and investigate its resilience to the 

memristive device imperfections mentioned. 

 

Conclusion 

In this work we present a new algorithm for spiking neural networks, EqSpike, compatible with 

neuromorphic systems, and achieving good performance on MNIST. We show that EqSpike 

implements the learning rule of Equilibrium Propagation locally and autonomously. The gradients are 

computed by the dynamics of the system and the weights are modified by a spike and the addition of 



only one block to the neuron. This can lead to spiking neuromorphic systems that do not need an 

external circuit to compute the error gradients given by backpropagation and learn autonomously, 

simply by presenting inputs and nudging the outputs according to errors. Our method obtained 

results on MNIST close to backpropagation through time and Equilibrium Propagation, two state-of-

the-art algorithms. Moreover, because EqSpike is based on Equilibrium Propagation, the 

performance on more complex task, like CIFAR-10, could be similar. The number of synaptic 

operations to obtain these results in MNIST show we can obtain theoretically two orders of 

magnitude less energy consumption than a GPU for training and the same magnitude of time with 

high frequency neurons. The inference, after training the network, can be accelerated by waiting for 

the first output spike rather than compute the highest rate, with only a small loss of accuracy. 

Finally, we show that the weight updates of EqSpike share similarity with STDP during learning, 

raising the question of a possible biological plausibility of the algorithm. In average, the modification 

of weight is proportional to the spike timing. This could permit to implement synapses in 

neuromorphic hardware by emergent nano-devices with a STDP-like behavior, to obtain a lower 

power consumption and higher surface density. 
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Figure 1 - EqSpike: spike-driven Equilibrium Propagation a) Schematic of the free phase in 

Equilibrium Propagation. b) Schematic of the nudging phase in Equilibrium Propagation. c) Illustration 

of the weight update implementation in EqSpike. d) Spiking rate of the neuron as a function of the 

amplitude of the input signal. e) Schematic of the rate acceleration computation. 

 

Figure 2 - Recognition accuracy during training (orange) and test (blue) as a function of the number 

of epochs for MNIST, averaged over six runs.  

 

Figure 3 - Inference time: recognition accuracy on MNIST on the test dataset as a function of time 

multiplied by the maximum neuron frequency fmax. Orange line: recognition accuracy computed from 

the output neuron showing the highest rate. Blue line: recognition accuracy computed from the 

output neuron spiking first. Red, vertical dotted line: average time of first output spike. 

 

Figure 4 - Training performance. a) Number of presented images in the nudging phase per epoch 

versus epoch number. b) Number of spikes/neuron/image occurring during the two phases 

(nudge+free), as a function of the epoch. c) SynOps: number of spikes during both phases 

(nudge+free) as a function of the recognition accuracy. 

 

Figure 5 - STDP.  a) Illustration of the STDP learning rule; reproduction with data from (Bi and Poo, 

2001). b) Illustration of the link between Eq-Prop and STDP learning rules; illustration reproduced 

from (Bengio et al., 2017). c) STDP-like curve during EqSpike learning. 

 

Table 1 - Comparison between BPTT, C-EP and EqSpike, with the same initialization procedure. Batch 

size = 1. 
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