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In crack detection, pixel-accurate predictions are necessary to measure the width -an important indicator of the severity of a crack. However, manual annotation of images to train supervised models is a hard and time-consuming task. Because of this, manual annotations tend to be inaccurate, particularly at pixel-accurate level. The learning bias introduced by this inaccuracy hinders pixel-accurate crack detection. In this paper we propose a novel tool aimed for synthetic image generation with accurate crack labels -Syncrack. This parametrizable tool also provides a method to introduce controlled noise to annotations, emulating human inaccuracy. By using this, first we do a robustness study of the impact of training with inaccurate labels. This study quantifies the detrimental effect of inaccurate annotations in the final prediction scores. Afterwards, we propose to use Syncrack to avoid this detrimental effect in a real-life context. For this, we show the advantages of using Syncrack generated images with accurate annotations for crack detection on real road images. Since supervised scores are biased by the inaccuracy of annotations, we propose a set of unsupervised metrics to evaluate the segmentation quality in terms of crack width.

INTRODUCTION

For structural monitoring, crack inspection plays an important role. For many constructions, such as roads [START_REF] Coquelle | Automatic assessment of a road surface condition[END_REF] or concrete structures [START_REF] Yang | Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network[END_REF], the cracks' width is one of the indicators of the damage severity and future durability. Measuring the width requires a pixel-accurate crack detection [START_REF] Escalona | Fully Convolutional Networks for Automatic Pavement Crack Segmentation[END_REF][START_REF] Gao | Generative Adversarial Networks for Road Crack Image Segmentation[END_REF][START_REF] Sun | Roadway Crack Segmentation Based on an Encoderdecoder Deep Network with Multi-scale Convolutional Blocks[END_REF][START_REF] Yang | Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection[END_REF], which is still a challenging task [START_REF] Bhat | A Survey On Road Crack Detection Techniques[END_REF].

Many methods for crack detection rely on manual labels. However, image annotation is a tedious and highly time-consuming task. Moreover, it is prone to human error for many reasons: low resolution images, bad lighting conditions, fuzzy transitions between cracks and background, intrusive objects, non-constant crack width, inappropriate labeling tools, etc. Because of this, manual annotations tend to be inaccurate. More precisely, it is usual that manual annotations are wider than the actual cracks.

Because of this inaccuracy in the annotations, existing works usually allow a tolerance margin to evaluate the detected cracks: "a pixel predicted as crack is considered as true positive as long as it is no more than X pixels away from an actual crack pixel" [START_REF] Escalona | Fully Convolutional Networks for Automatic Pavement Crack Segmentation[END_REF][START_REF] Amhaz | Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection[END_REF][START_REF] Zou | CrackTree: Automatic crack detection from pavement images[END_REF][START_REF] Shi | Automatic Road Crack Detection Using Random Structured Forests[END_REF][START_REF] Ai | Automatic Pixel-Level Pavement Crack Detection Using Information of Multi-Scale Neighborhoods[END_REF]. Using these tolerance margins, state-of-the-art methods achieve overwhelming F-scores, as high as 95%.

However, tolerance margins are lax and tolerant to errors on the pixel level, and they have shown to create huge score gaps: from Precision=47.1% and F-score=56.7% (0-pixels tolerance) to Precision=90.7% and F-score=87.0% (2-pixels) [START_REF] Ai | Automatic Pixel-Level Pavement Crack Detection Using Information of Multi-Scale Neighborhoods[END_REF]. Thus, tolerance allows predicted cracks to be wider than reality, artificially preserving high precision scores. While this is sufficient for counting and locating cracks, it is not for measuring their width.

Rather than allowing tolerant evaluations, we propose to deal with the inaccuracies of manual annotations. Towards this goal, our contributions can be summarized as: 1. The Syncrack generator. We developed this open-source tool to generate parametrizable synthetic images of cracked pavement/concrete-like textures. It provides both accurate annotations to alleviate the crack labeling task and parametrizable noisy annotations to study the robustness of crack detection methods.

2. A robustness study of the impact of inaccurate labels. We studied the detrimental impact of training under different background and label noise conditions, with accurate annotations for evaluation. We measure the impact on prediction using supervised and unsupervised scores. To the best of our knowledge, we are the first to perform this type of study for crack detection.

3. An improved crack width detection. By training solely with Syncrack-generated images, we produced predictions competitive with those obtained by training with real-life images. Moreover, these predictions exhibit an improved crack width with respect to the ones obtained using real images.

The rest of the paper is organized as follows. In section 2, we provide a literature review of crack detection under the context of inaccurate manual annotations. In section 3, we describe our proposed tool: Syncrack. The experimental setup used to validate our results with Syncrack is described in section 4. In section 5, we use Syncrack to quantify the detrimental effect of inaccurate annotations in the prediction scores. There, we analyze the ability of unsupervised scores to assess the quality of crack detection. In section 6, we show the promising scores of models trained on Syncrack when evaluated on real data. Finally, section 7 concludes the paper.

RELATED LITERATURE

Automatic crack detection has been a topic of interest for many years in the field of construction. Beginning by traditional image processing, strategies like Minimal Path Selection [START_REF] Amhaz | Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection[END_REF] and Crack-Tree [START_REF] Zou | CrackTree: Automatic crack detection from pavement images[END_REF] are fundamental works in the area. However, such methods were overperformed and displaced by machine learning approaches. In this domain, we can cite representative examples such as CrackIt [START_REF] Oliveira | CrackIT -An image processing toolbox for crack detection and characterization[END_REF] and CrackForest [START_REF] Shi | Automatic Road Crack Detection Using Random Structured Forests[END_REF].

Nonetheless, crack detection has been dominated in recent years by deep learning. At first, predictions were done at binary patch classification level [START_REF] Zhang | Road crack detection using deep convolutional neural network[END_REF][START_REF] Kim | Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique[END_REF]. However, with the increasing interest of pixel-accurate crack detection, the proposed methods progressively moved from convolutional to fully convolutional neural networks. Particularly, auto-encoders [START_REF] Escalona | Fully Convolutional Networks for Automatic Pavement Crack Segmentation[END_REF][START_REF] Liu | Computer vision-based concrete crack detection using Unet fully convolutional networks[END_REF][START_REF] Sun | Roadway Crack Segmentation Based on an Encoderdecoder Deep Network with Multi-scale Convolutional Blocks[END_REF]) allowed pixel-level prediction using deep learning.

The success of generative models motivated more complex networks. For example, there has been a recent interest for using generative adversarial networks [START_REF] Gao | Generative Adversarial Networks for Road Crack Image Segmentation[END_REF]Zhang et al., 2020a). While these complex models achieve impressive results in paper, they rely on tolerance margins for evaluation. Moreover, as the complexity of the models increase, the risk of overfitting to noisy annotations does to.

Inaccurate annotations are a particular case of noisy labels. Learning in presence of noise is a highly studied topic, proposing different approaches such as noise-robust algorithm design, noise filtering, and noise-tolerant methods [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF][START_REF] Zhou | A brief introduction to weakly supervised learning[END_REF]. However, these approaches are not properly suited for severe class imbalance, which is precisely the case of crack detection. In fact, the problem of inaccurate annotations for crack detection is barely discussed in the literature beyond the use of tolerance margins for evaluation.

However, a common practice to avoid overfitting in deep learning is data augmentation. This is particularly useful when available labeled data is scarce. Motivated by the difficulty to obtain annotated images for crack detection, offline data augmentation has been used too [START_REF] Mazzini | A Novel Approach to Data Augmentation for Pavement Distress Segmentation[END_REF][START_REF] Kanaeva | Road pavement crack detection using deep learning with synthetic data[END_REF]. However, these approaches rely on inaccurate annotations, carrying the bias introduced by manual annotation.

Unlike those approaches, our proposed tool -Syncrack-provides a way to create datasets with accurate labels. This avoids the necessity of using tolerance margins for evaluation of crack detection methods. It also allows quantifying the effect of training with inaccurate annotations on prediction scores. Furthermore, since Syncrack is parametrizable, it allows tuning to approach (visually) a real-life distribution of interest. In this way, it is possible to perform transfer learning from the Syncrack domain to the real one.

SYNCRACK GENERATOR

Our tool consists of 4 main modules for 1) Creating a background image, 2) Creating crack shapes, 3) Adding cracks to the background, and 4) Creating noisy annotations from pixel-accurate crack masks. These modules are described in the next subsections.

To ensure diversity among images, each module uses random values for its internal parameters. Some of these values are obtained based on user-provided parameters, allowing user customization of the output. To ensure reproducibility, the random value selection is done with a fixed seed.

The user parameters relevant for our experiments are described in this paper. For further information about all the user parameters, as well as the random value selection for internal parameters, we invite the reader to visit our repository (provided at the end of this article).

Background Generation

Our method (illustrated in Fig. 1) consists of 5 main steps:

1. Creating a 2D Perlin Noise. By using the noise module [START_REF] Duncan | noise[END_REF], we create a noise map based on Perlin noise [START_REF] Perlin | An image synthesizer[END_REF]. The 'scale' parameter for the Perlin noise follows a normal law defined by the background average smoothness and standard deviation provided as user parameters to run the program.

2. Converting to color image. Public crack datasets contain RGB images; even though the material generally looks gray, the hue is not strictly zero.

To emulate the appearance of real materials, two random, low saturated, colors are chosen to represent the darkest and the lightest regions in the Perlin noise. We merge these colors together with a weighted average using the Perlin noise as weight.

3. Adding crack-like noise. Crack-like artifacts are added to the image to make crack detection a challenge. To do this, we chose random pixels as centers to draw arcs of random size ellipses. Then, we introduce these lines to the image similarly to how cracks are introduced (see subsection 3.3).

The amount of noise is inversely correlated to the background average smoothness parameter in 1.

4. Adding additional noise. Real images are prone to invasive elements. We add salt and pepper noise with different radii to simulate dirt on the surface and acquisition artifacts. The amount of this noise is inversely correlated to the background average smoothness parameter too.

5. Combining different textures. Stationary textures are not frequent in real-life constructions (specially in roads). We create non-stationary background by joining together two or more textures, each one generated with steps 1-4. We combine the textures with a linear gradient fill to create smooth transitions.

Crack Shape Generation

Our crack shapes are based on a modification of the 1D Perlin noise. First, we calculate a set of vertices using the Perlin noise generator from the noise module. The domain of these vertices is determined by a randomly chosen crack length -i.e. 0 ≤ x ≤ crackLength, ∀(x, y) ∈ vertices.

However, these vertices have two problems: 1) their height scale (y-axis) is blind to the image size and the crack length, and 2) they use a straight axis as origin, so the cracks would always tend to straight lines. To solve this, we normalize the y-coordinates of the vertices to the range [0, 1] and map them to the range [0, crackHeight] with a randomly chosen height. To obtain curve cracks, we displace the ycoordinates of the vertices using an elliptic function.

These vertices are connected with straight lines to create a crack skeleton. To provide the crack with width, we dilate the skeleton by a disk. The diameter is chosen randomly from a normal distribution centered at 2 with standard deviation 0.5 (default user parameters). Since real cracks do not have constant widths, a sliding-window approach is used to introduce dilations and erosions in random crack regions. To avoid drastic changes, the structuring element is a 2-pixel long vertical line. Aditionally, a dilation is never followed by an erosion or vice-versa. An example of a final crack shape is shown in Fig. 2. 

Crack Introduction

Once a crack shape is obtained, we generate a weight map (same size as the background image) by creating an empty white image (weight=1.0) and putting a randomly rotated version of the crack shape in a random position within the new image (weight=0.0).

An average contrast value is randomly chosen from a normal distribution with center and standard deviation provided as user parameters. Then, within the weight map, we set each crack-labeled pixel to a new independent value. Per pixel, this value is obtained from a new Gaussian distribution using the chosen average contrast value as mean.

Since different crack regions tend to have different lightning conditions in real life, we change the contrast of certain zones within the crack using a sliding window. Finally, by using disk mean filters, we create a transition region between the actual crack and near-to-crack background. An example of the resulting weight map is shown in Fig. 3. We use this weight map to introduce the crack into the background by weighting each color channel with the map. Fig. 4 shows an example of cracks inserted in different backgrounds with different contrasts.

Label Noise Generator

To simulate inaccurate labeling, we introduce noise in the annotations. We divide the annotation image into tiles. Then, we alter randomly chosen tiles by performing an erosion or a dilation by a disk with a random diameter. With default user parameters, the tile size is 0.05 * imageHeight × 0.05 * imageWidth. The diameter of the the disk follows a normal law centered around 3 for dilation and 2 for erosion. In both cases, the standard deviation is 0.5.

The user parameter 'noise percentage' (np from now on) is the probability, np ∈ (0, 1], for a tile to be altered. Since the tiles are obtained by dividing the whole image, and the probability is unconditional, an altered tile may contain no cracks.

With np < 1, we expect inaccuracy similar to a manual one: some crack segments wider (a dilation was applied), some segments thinner (a small erosion), missing crack segments (big erosion), and some accurate segments. See Fig. 5 for examples.

EXPERIMENTAL SETUP

Evaluation Scores

We use two kind of evaluations: supervised and unsupervised. The supervised scores compare the obtained predictions and the available ground truth annotations. We used Precision (Pr) and Recall (Re), as commonly done in the crack detection literature. The harmonic mean of both yields a single metric -the Fscore. We used its equivalent, the Dice score, easily allowing to add a smoothing factor to avoid division by zero in images with no cracks (see last term of Eq. 4 below).

However, as discussed in this paper, when annotations are inaccurate, supervised scores are biased. To validate our results on real images, we propose a set of metrics used previously for the evaluation of unsupervised segmentation tasks [START_REF] Zhang | Image segmentation evaluation: A survey of unsupervised methods[END_REF].

The first one is the crack region entropy H crack , based on the region entropy [START_REF] Pal | Image thresholding: Some new techniques[END_REF]. Given the set R c of pixels within a crack-predicted region, define a set V c of all the possible pixel intensities within R c . Define L c (m) as the amount of pixels with intensity m ∈ V c within R c . Then

H crack (R c ) = -∑ m∈V c L c (m) |R c | log( L c (m) |R c | ) (1)
This is a way to measure the intra-crack uniformity.

Introducing background pixels into R c will increase H crack (R c ). A good crack prediction should reduce the crack region entropy. We also use a second-order crack region entropy H 2 crack . The second order-entropy relies on cooccurrence matrices rather than pixel intensities. This allows inspecting the intra-crack region for textures. Given p the probability from the co-occurrence matrix calculated in R c :

H 2 crack (R c ) = -∑ i∈V c ∑ j∈V c p i j log(p i j ) (2) 
Similarly to the first order entropy, including background pixels in R c will increase the entropy. A good segmentation reduces this score. We assume that cracks and background are two different distributions. We use the Kolmogorov-Smirnov test [START_REF] Smirnov | On the estimation of the discrepancy between empirical curves of distribution for two independent samples[END_REF] to measure the distance between the distributions of pixels predicted as crack and as background, respectively. If both distributions differ, the Kolmogorov-Smirnov score (K-S) increases. Therefore, we want to maximize this score. 2). The second row shows: Green) Crack pixels; Blue) Crack pixels mislabeled as background; Red) Background pixels mislabeled as crack.

All our metrics are calculated per image, and the results shown in the rest of the paper are the averages over all the analyzed images.

Synthetic Datasets

In this paper, we use 3 datasets (200 images each) obtained with the Syncrack generator using different user parameter values. Particularly, we modified 2 parameters: the background average smoothness (referred to as bas) and the crack average contrast (referred to as cac). The background smoothness intervenes both in the Perlin noise generation and the amount of added noise (see subsection 3.1). The crack contrast modifies the relative contrast between the background and the added crack (see subsection 3.1). By modifying these two parameters, we create Syncrack datasets with 3 difficulty levels as described in Table 1. 

Difficulty level

Easy Medium Hard Background smoothness (bas) 6.0 3.0 1.5 Crack contrast (cac) 0.5 0.7 0.7

The easy difficulty has a smooth background and well-contrasted cracks. The medium difficulty (default values) has rough textures with low-contrast cracks. The hard example has the same contrast as the medium one, but the background is rougher. The 3 datasets share the same cracks (see Fig. 4 for example).

To study the effect of different label noise levels in annotations used for training, we create noisy versions of the 3 above mentioned datasets. Particularly, we introduce 5 label noise levels from 0 (no noise) to 4 (the maximum amount of noise) by varying the values of the np parameter (see subsection 3.4).

An analysis of the generated noise is presented in Table 2. The crack-to-background and background-to-crack mislabeling percentages are calculated with respect to the total number of crack pixels. For example, with 100 crack pixels in the dataset: if 10 crack pixels were labeled as background, Crack→Background mislabeling (%) = 10; if 5 background pixels were labeled as crack, Back-ground→Crack mislabeling (%) = 5. Mislabeling (%) is the sum of both percentages. To understand better the behavior of these percentages, we show the DSC, precision and recall with respect to the clean annotations too. Fig. 5 illustrates the different label noise levels for Fig. 4.

Real Road Images

To validate the performance of models trained with Syncrack on real-life data, we use the CrackForest Dataset (CFD). This public dataset contains 118 images collected from urban roads containing perturbations such as shadows, oil spots, and water stains in Beijing, China [START_REF] Shi | Automatic Road Crack Detection Using Random Structured Forests[END_REF]. Similarly to the default size of the Syncrack generator, the original image size is 480×320. The cracks in this dataset have a width around 3 pixels, again similarly to the default Syncrack generator. This dataset provides two annotations: borders and segmentation. As suggested by [START_REF] Sun | Roadway Crack Segmentation Based on an Encoderdecoder Deep Network with Multi-scale Convolutional Blocks[END_REF], we removed some images with clear severe annotation errors; we kept 108 images.

Baseline Model

U-net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], a symmetrical autoencoder, has seen success in pavement distress segmentation. Similarly, VGG has been an attractive feature extractor to detect cracks [START_REF] Escalona | Fully Convolutional Networks for Automatic Pavement Crack Segmentation[END_REF][START_REF] Zhang | A research on an improved Unet-based concrete crack detection algorithm[END_REF]. Based on this, we built a U-netlike network using the pre-trained VGG19 (Simonyan and Zisserman, 2015) as a basis. This network, referred to as U-VGG19, is used as a baseline model for our experiments (see Fig. 6).

Training Setup

We implemented the proposed architecture using Tensorflow 2.1.0. For training, input images are cropped to 256×256 patches and fed as 4-patch batches. We used the Adam optimizer with a 10 -4 learning rate and default parameters. The initial weights from the encoder are the weights from VGG19 pre-trained on ImageNet; from this starting point, the whole U-VGG19 is trained together. Each dataset is randomly split into 50% training and 50% validation.

Our preliminary models trained on synthetic images failed to detect cracks within color outlier pictures. For example, bluish-looking pavement in contrast with the normal grayish colors. Since learning models are sensitive to color information, we wish to neglect the effect of color saturation due to the acquisition process. To do this, all images are converted to grayscale and converted back to 3 channels by concatenation.

To avoid overfitting to the distributions used by the Syncrack generator, we trained using data augmentation. Our data augmentation consisted of randomly transforming an image (and its corresponding annotation) immediately before feeding it to the neural network for training. To do this, a random value for each of the 6 following operations is chosen: adding noise, changing illumination, flipping, zooming, rotating and shearing. Every image undergoes the 6 operations in the given order.

To refine the results at late epochs, we reduce the learning rate on validation loss plateau (by 2, with 5 epochs tolerance). To avoid overfitting, we add an early stop if the validation loss does not decrease during 20 consecutive epochs. We report the scores calculated on the validation split using the network weights with the minimum validation loss.

The loss is a combination of the binary crossentropy loss (BCE) and a DSC-based loss (DICE):

Loss = BCE + α * DICE (3)
Here, α is a hyperparameter [START_REF] Sun | Roadway Crack Segmentation Based on an Encoderdecoder Deep Network with Multi-scale Convolutional Blocks[END_REF] set empirically to 3 to give more importance to DICE, calculated as follows:

DICE = 1 - 2(GT • Pred) + 1 GT + Pred + 1 (4)
Here, GT is the set of pixels annotated as crack and Pred is the set of pixels predicted as crack. The more similar GT and Pred are, the lower is DICE.

EFFECT OF DIFFERENT NOISE CONDITIONS

To validate the unsupervised segmentation scores proposed in this paper, we analyze their behavior under controlled conditions. To do this, we use the noisy annotations obtained with the Syncrack generator.

In this section, we first analyze the ability of unsupervised scores to assess the quality of crack detection using inaccurate annotations as reference. Afterwards, we use these inaccurate annotations to train the baseline model (U-VGG19). Finally, we analyze the relation between the unsupervised scores and the prediction quality of trained models (one model per noise and difficulty level).

In Table 3, we summarize the unsupervised scores calculated on the three difficulty versions of Syncrack using the automatically generated annotations (with different label noise levels). With 0 noise in the annotations, when the difficulty level increases, both entropies increase too and the K-S decreases (see Fig. 7). This is natural, since it becomes harder to tell the difference between crack and background by looking at the images.

More importantly, we observe a relation between mislabeling and the unsupervised scores: as the annotations become more inaccurate, the region entropies increase and the K-S decreases. With this conclusion, we extend our study using unsupervised scores to evaluate predictions obtained with U-VGG19 (the proposed baseline model for crack detection).

In this experiment, we trained U-VGG19 with the different difficulty and label noise levels proposed for Syncrack in this paper. In this way, we can observe 1) the effect of training with noisy labels when evaluating with accurate annotations and 2) the relation between supervised and unsupervised scores when having accurate labels for evaluation.

The results of this experiment are shown in Table 4. By analyzing the 0 noise column, we observe the impact of the difficulty level in the prediction scores.

While the model on easy difficulty obtains supervised scores above 96%, they decrease drastically as the difficulty increases. Just as before, the unsupervised scores get worse as we increase the difficulty level. However, it is important to compare the unsupervised scores of the predictions with respect to the annotations. When 0 label noise is present, in the easy difficulty, both the annotation and the prediction supervised scores are very close; this is true as well for the unsupervised scores. Nonetheless, for the other difficulties, the unsupervised scores are slightly better even though the supervised scores are lower.

This kind of behavior can be explained by two fac-tors. 1) The severe class unbalance; if a few pixel change in the crack region is numerically measurable it may be not in the background region (which is by far more populated). 2) As a consequence of the previous, the unsupervised scores are blind to false negatives. Missing cracks won't affect these scores. This bias emphasizes the predictions when only pixels with high likelihood of being crack pixels are segmented, even at the cost of missing cracks or having isolated false positives. Thus, these unsupervised scores must be understood under this context and should be paired with supporting supervised scores to be able to draw conclusions.

With this in mind, we still observe that both the supervised and unsupervised scores get worse as we increase the label noise (see Fig. 8). This suggests that the unsupervised scores can be used as indicators of segmentation quality regardless of the annotation quality. It is interesting to notice that the DSC seems to indicate noise robustness in the trained models: as we increase the label noise level, the DSC of the prediction (Table 4) tends to be higher than the DSC of the annotations (Table 2).

However, this apparent robustness is a trade-off between precision and recall. As the noise increases, the recall tends to increase too; nonetheless, the precision decreases more. From this, we can hypothesize that using noisy annotations may actually help to de-tect harder cracks at the cost of having a considerable amount of false positives. The presence of these false positives is congruent with the behavior of the unsupervised scores: both entropies increase while the K-S decreases.

When we analyzed the predictions qualitatively, the conclusion was that the main source of false positives was having crack predictions wider than the accurate clean annotation (see Fig. 9). Taking this into account, when it comes to the predicted cracks' width, we observe a relation between precision and the proposed unsupervised metrics. With these preliminary results, we moved to real road images for evaluation of our synthetic generator.

IMPROVING REAL-LIFE CRACK DETECTION WITH SYNCRACK

To have a baseline for real data, we trained U-VGG19 with our CFD training split. Method F-score U-net [START_REF] Gao | Generative Adversarial Networks for Road Crack Image Segmentation[END_REF] 60.48% Table 6 shows the prediction scores of the models trained on CFD and on the 3 difficulty versions of Syncrack. For these experiments, we trained on the training split of each respective dataset and calculated the scores on the CFD validation split. The models trained on Syncrack were trained using accurate annotations. A plot of the supervised scores is shown in Fig. 10. We can see that the models trained with Syncrack datasets exhibit a higher precision than the model trained on real images. However, we see a decrease of recall. Since the decrease in recall is higher than the precision increase, the DSC of the models trained with synthetic data are lower than the one of the model trained with CFD. Particularly, the model trained on the easy Syncrack has both the higher precision and the lower recall of all the datasets. As we increase the Syncrack difficulty, the precision decreases a bit but the recall sees a great increase. Specifically, the recall increases as we increase the Syncrack difficulty level. Since the easy Syncrack has only easy-to-detect cracks, a model trained with this dataset will struggle to detect cracks with low contrast or rough backgrounds. Thus, there is a high confidence in the pixels predicted as cracks but the model will miss hard-todetect cracks. As we increase the Syncrack difficulty level, the learned models will detect harder cracks (increasing recall) but will incur in more false positives (decreasing precision). The model trained with the hard Syncrack has a better trade-off between precision and recall, obtaining a DSC of 58.26% in contrast with the 69.32% obtained by training with CFD. This DSC difference is caused only by a decreased recall. Assuming that manual annotations tend to be wider than the actual cracks, a more precise segmentation will lead indeed to a lower recall. Fig. 11 shows the unsupervised scores from the models trained with the different datasets. We can observe that the models trained with Syncrack have better scores than the one trained on CFD. As we increase the Syncrack difficulty level, the entropies in the predicted crack regions increase and the K-S decreases. Even for the hard difficulty, these scores are better than for CFD. The hypothesis is that the decrease in recall is caused mainly by missing some pixels in the excessively wide annotations. A qualitative analysis of the predictions confirmed this: as illustrated in Fig. 12, the performance of the models trained with the medium and hard difficulty, respectively, get very promising results. Not only they do a good job by not missing cracks, but the predicted width looks more close to the actual crack that both the annotation and the prediction of CFD (see Fig. 13).

The model trained on medium Syncrack produces refined segmentations but prone to contain small discontinuities. The model trained on hard Syncrack tends to fill these gaps, but its predictions look more coarse. However, using Syncrack generated images showed their promising potential for supervised crack detection without requiring labeled real-life images. 

CONCLUSIONS

In this paper, we introduced the Syncrack generator -a tool aimed to create synthetic pavement/concrete images with accurate annotations for crack detection. By introducing mislabeling, this tool allows generating noisy versions of the labels to emulate the inaccuracy of manual annotations.

With both accurate and noisy labels, we studied the impact of inaccurate annotations on supervised segmentation scores as well as a set of proposed unsupervised scores. These metrics (region entropies and the Kolmogorov-Smirnov score) were used since supervised scores are biased by human error in real data. From these experiments, we found a relation between the proposed scores and the prediction precision. However, further work is needed towards metrics that are blind to human annotations for this task.

Using these unsupervised scores as a basis, we evaluated on real-life images the performance of models trained on Syncrack-generated datasets. Our results show competitive scores in terms of precision with respect to real-data training. Although there is an apparent decrease of recall, this behavior is due mainly to the excessive width of manual annotations. This is shown by the unsupervised scores as well as the qualitative analysis.

Thus, the models trained solely with our synthetically generated data are competitive with the model trained on real images; furthermore, they are more precise in terms of crack width.

The Syncrack generator is available at: https:// github.com/Sutadasuto/syncrack generator. The code used to obtain our results is available at: https:// github.com/Sutadasuto/syncrack crack detection
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 1 Figure 1: Illustration of the Syncrack's background generation steps.
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 2 Figure 2: A synthetic crack shape generated by Syncrack.
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 3 Figure 3: Example of a weight map used to introduce the crack shape in Fig. 2 into a background image.
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 4 Figure 4: Syncrack images generated with different user parameters. The crack mask is the same, but the background generation and crack-introduction parameter values differ to create different levels of difficulty for crack detection.

Figure 5 :

 5 Figure 5: Examples of different label noise levels for Fig. 4. From left to right, levels 0 to 4 (see Table2). The second row shows: Green) Crack pixels; Blue) Crack pixels mislabeled as background; Red) Background pixels mislabeled as crack.
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 6 Figure 6: U-VGG19's architecture.
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 7 Figure 7: Unsupervised evaluation of the Syncrack generated annotations.
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 8 Figure 8: Prediction scores obtained in the validation splits of the Syncrack's 3 difficulty levels evaluating with accurate annotations.

Figure 9 :

 9 Figure 9: Example of inaccurate prediction training with label noise level 4. The color code is the same as in Fig. 5.

a

  Training/Evaluation using a CFD+Aigle-RN dataset. b GT and Pred are thinned to 1-pixel edges for evaluation.competitive model with respect to the state of the art when training with real-life data. Thus we use the scores of this model as a baseline to compare with the results obtained by training with Syncrack variants.
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 10 Figure 10: Supervised scores obtained in the CFD validation set by using models trained on different datasets.
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 11 Figure 11: Unsupervised scores obtained in the CFD validation set by using models trained on different datasets.

Figure 12 :

 12 Figure 12: Example of predictions on a CFD image. The first row shows the input image and the provided annotation. The next rows show the predictions of models trained on the different proposed datasets and its comparison with the manual annotation (with the color code used in Fig. 5).

Figure 13 :

 13 Figure 13: A close-up detailed view of the picture depicted in Fig. 12. The red line is the border of the manual annotation, the yellow line is the border of the prediction obtained by training on CFD, and the green line is the border of the prediction obtained by training on Syncrack hard.

Table 1 :

 1 Parameters used to create the 3 difficulty versions.

Table 2 :

 2 Label noise levels used for experiments.

	Label noise level 0	1	2	3	4
	np	0.00 0.25 0.50 0.75 1.00
	Crack →				
	Background	0.00 9.68 19.35 29.03 38.71
	mislabeling (%)				
	Background →				
	Crack	0.00 12.90 24.19 32.26 43.55
	mislabeling (%)				
	Mislabeling (%) 0.00 22.58 43.55 61.29 82.26
	DSC (%)	100 88.93 78.41 68.39 58.94
	Pr (%)	100 88.44 77.18 68.53 58.29
	Re (%)	100 89.92 80.61 69.41 60.66

Table 3 :

 3 Unsupervised evaluation of the Syncrack generated annotations.

	Difficulty Metric	0	Label noise level 1 2 3	4
		H crack 3.58 3.85 4.02 4.11 4.19
	Easy	H 2 crack 6.80 7.11 7.36 7.49 7.65
		K-S	0.98 0.89 0.81 0.77 0.73
		H crack 3.98 4.06 4.12 4.14 4.16
	Medium	H 2 crack 7.39 7.50 7.59 7.61 7.67
		K-S	0.68 0.63 0.58 0.54 0.49
		H crack 4.14 4.20 4.24 4.26 4.29
	Hard	H 2 crack 7.57 7.65 7.72 7.74 7.80
		K-S	0.54 0.50 0.46 0.43 0.39

Table 4 :

 4 Prediction scores obtained in the validation splits of the Syncrack's 3 difficulty levels.

	Difficulty Metric	0	Label noise level 1 2 3	4
		DSC 96.07 96.21 95.55 91.31 73.50
		Pr	96.14 95.69 92.30 84.74 58.39
	Easy	Re H crack 3.57 3.59 3.66 3.84 4.19 96.03 96.77 99.07 99.09 99.80
		H 2 crack 6.79 6.82 6.96 7.20 7.86
		K-S	0.98 0.98 0.97 0.92 0.76
		DSC 78.43 78.58 77.86 75.49 71.45
		Pr	81.17 78.58 71.30 68.44 60.75
	Medium	Re H crack 3.92 3.95 4.01 4.03 4.09 76.55 79.36 86.71 85.25 88.12
		H 2 crack 7.29 7.39 7.56 7.60 7.74
		K-S	0.73 0.71 0.66 0.64 0.59
		DSC 67.44 65.91 65.29 65.70 62.58
		Pr	66.30 63.85 59.54 61.55 53.70
	Hard	Re H crack 4.08 4.09 4.14 4.13 4.20 70.17 69.67 74.47 72.21 77.81
		H 2 crack 7.54 7.57 7.71 7.67 7.85
		K-S	0.60 0.58 0.54 0.55 0.49

Table 5

 5 

	compares our re-

Table 5 :

 5 F-scores on CFD without tolerance margins.

Table 6 :

 6 Scores obtained in the CFD validation set by using models trained on different datasets.

	Metric	CFD	Training dataset Syncrack Syncrack easy medium	Syncrack hard
	DSC (%) 69.32	36.37	54.26	58.26
	Pr (%)	67.71	77.42	70.96	71.98
	Re (%)	73.03	25.71	45.37	50.4
	H crack	4.35	3.79	4.07	4.12
	H 2 crack	8.22	6.73	7.49	7.67
	K-S	0.57	0.87	0.78	0.73
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