
HAL Id: hal-03451655
https://hal.science/hal-03451655v1

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Convolutional neural networks with radio-frequency
spintronic nano-devices

Nathan Leroux, Arnaud de Riz, Dédalo Sanz-Hernández, Danijela Marković,
Alice Mizrahi, Julie Grollier

To cite this version:
Nathan Leroux, Arnaud de Riz, Dédalo Sanz-Hernández, Danijela Marković, Alice Mizrahi, et al..
Convolutional neural networks with radio-frequency spintronic nano-devices. Neuromorphic Comput-
ing and Engineering, 2022, 2 (3), pp.034002. �10.1088/2634-4386/ac77b2�. �hal-03451655�

https://hal.science/hal-03451655v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Neuromorphic Computing and Engineering

PAPER • OPEN ACCESS

Convolutional neural networks with radio-
frequency spintronic nano-devices
To cite this article: Nathan Leroux et al 2022 Neuromorph. Comput. Eng. 2 034002

 

View the article online for updates and enhancements.

You may also like
Special issue on applied neurodynamics:
from neural dynamics to neural
engineering
Hillel J Chiel and Peter J Thomas

-

A Novel Method to Fabricate Hierarchical
Copper Oxide Photoelectrode and Its
Application for Photoelectrochemical
Water Splitting
Seyed Morteza Hosseini H., Roozbeh
Siavash Moakhar, Foad Soleimani et al.

-

(Invited) In-Vacuo Studies of Transition
Metal Dichalcogenide Synthesis and
Layered Material Integration
Keren M Freedy, Peter M Litwin and
Stephen John McDonnell

-

This content was downloaded from IP address 217.149.162.68 on 04/08/2022 at 12:17

https://doi.org/10.1088/2634-4386/ac77b2
/article/10.1088/1741-2552/8/6/060201
/article/10.1088/1741-2552/8/6/060201
/article/10.1088/1741-2552/8/6/060201
/article/10.1149/MA2020-01512816mtgabs
/article/10.1149/MA2020-01512816mtgabs
/article/10.1149/MA2020-01512816mtgabs
/article/10.1149/MA2020-01512816mtgabs
/article/10.1149/MA2017-01/29/1360
/article/10.1149/MA2017-01/29/1360
/article/10.1149/MA2017-01/29/1360


Neuromorph. Comput. Eng. 2 (2022) 034002 https://doi.org/10.1088/2634-4386/ac77b2

OPEN ACCESS

RECEIVED

9 November 2021

REVISED

13 April 2022

ACCEPTED FOR PUBLICATION

10 June 2022

PUBLISHED

1 July 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Convolutional neural networks with radio-frequency spintronic
nano-devices

Nathan Leroux∗ , Arnaud De Riz, Dédalo Sanz-Hernández , Danijela Marković ,
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Abstract
Convolutional neural networks (LeCun and Bengio 1998 The Handbook of Brain Theory and Neural
Networks 255–58; LeCun, Bengio and Hinton 2015 Nature 521 436–44) are state-of-the-art and
ubiquitous in modern signal processing and machine vision. Nowadays, hardware solutions based
on emerging nanodevices are designed to reduce the power consumption of these networks. This is
done either by using devices that implement convolutional filters and sequentially multiply
consecutive subsets of the input, or by using different sets of devices to perform the different
multiplications in parallel to avoid storing intermediate computational steps in memory.
Spintronics devices are promising for information processing because of the various neural and
synaptic functionalities they offer. However, due to their low OFF/ON ratio, performing all the
multiplications required for convolutions in a single step with a crossbar array of spintronic
memories would cause sneak-path currents. Here we present an architecture where synaptic
communications are based on a resonance effect. These synaptic communications thus have a
frequency selectivity that prevents crosstalk caused by sneak-path currents. We first demonstrate
how a chain of spintronic resonators can function as synapses and make convolutions by
sequentially rectifying radio-frequency signals encoding consecutive sets of inputs. We show that a
parallel implementation is possible with multiple chains of spintronic resonators. We propose two
different spatial arrangements for these chains. For each of them, we explain how to tune many
artificial synapses simultaneously, exploiting the synaptic weight sharing specific to convolutions.
We show how information can be transmitted between convolutional layers by using spintronic
oscillators as artificial microwave neurons. Finally, we simulate a network of these radio-frequency
resonators and spintronic oscillators to solve the MNIST handwritten digits dataset, and obtain
results comparable to software convolutional neural networks. Since it can run convolutional
neural networks fully in parallel in a single step with nano devices, the architecture proposed in this
paper is promising for embedded applications requiring machine vision, such as autonomous
driving.

1. Introduction

Convolutional neural networks have widely contributed to the success of artificial intelligence since LeNet-5
[3] outperformed other deep neural networks [2] for handwritten digits recognition. Due to their invariance
to translations and local distortions, convolutional neural networks not only excel in image recognition, but
also in signal processing [1], and they are at the core of artificial intelligence applications like generative adver-
sarial networks [4]. For this reason, it is crucial that novel technologies, whose goal is to decrease the energy
consumption of artificial intelligence, implement convolution neural networks efficiently [5–7]. Hardware
developed to accelerate the multiply-and-accumulate operations of neural networks, such as crossbar arrays
of memristors, initially focused on realizing fully-connected layers wiring all the input neurons to all the out-
put neurons with independent synaptic weights [8, 9], an operation that they can achieve in a single step.
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Figure 1. (a) Example of a 2D convolution with an input image of size 5 × 5 and a filter of size 3 × 3. Each element of the output
feature map is the sum of the element-wise matrix multiplication (multiply-and-accumulate operation) between a subset of the
input image and the weights of the kernel. The colors of the input image pixels indicate to which RF input signal they correspond
in (b). (b) Schematic of the corresponding sequential convolution with RF signals and a chain of spintronic resonators. At each
step the microwave powers of the input signals correspond to a mapping of a subset of the input image. The RF signals are injected
to resonators through field-lines, represented by yellow stripes. Spintronic resonators are represented with colors corresponding
to their matching weights, themselves represented in (a). At each step, the output voltage is a multiply-and-accumulate operation
between the input microwave powers and the weights encoded into the resonance frequencies of the resonators.

Convolution layers, however, have a different operating principle. To perform a convolution on input data,
multiply-and-accumulate operations with fixed synaptic weights (filters) are applied to consecutive subsets of
the input. This process is often performed sequentially, as the filter is sled over neighboring inputs, as illustrated
in figure 1(a). In addition, the convolution operation has to process several input channels, and different fil-
ters need to be applied in order to compute different output features. The whole process has therefore a strong
sequential character that requires storing intermediate computation steps in memory, which, for convolutions,
has a prohibitive cost in terms of energy consumption, speed, and area. Finding ways to eliminate this sequen-
tial nature and implement convolutional neural networks in a fully-parallel manner, so that they can process
their inputs in a single step, is therefore of great interest.

A wide span of research investigates hardware neuromorphic implementations of convolutional layers using
CMOS [10–12], memristor crossbar arrays [13–17] as well as optics and photonics [18–20]. A particular effort
aims at unfolding each convolutional layer into a sparse matrix of synaptic weights and mapping it to a crossbar
array of memories to process convolutions fully in parallel [10, 13, 14, 17]. Due to the sparsity of convolutional
layers, these implementations can suffer from leakage currents from unused cells. A solution to mitigate these
leakage currents is to use three-dimensional memristor circuits, in which the number of lithographic layers
increases with the convolutional layer size [21]. We present here a 2D implementation of parallel convolutions
that could lead to a simpler fabrication process. Spintronics, whose memory, multifunctionality and dynamics
are attractive for information processing is another technology actively studied for neuromorphic comput-
ing. Spintronic devices present advantages for the integration since they are compatible with CMOS and the
same technology can be used to implement both artificial neurons and synapses [22, 23]. Research shows that
arrays of spintronic memories are promising for associative memories [24], spiking neural networks [25] and
convolutional neural networks with time-domain computing [26]. However, implementing in parallel all the
multiply-and-accumulate operations of a convolution requires extremely large crossbar arrays. Such a cross-
bar array of spintronic memories for parallel convolutions would particularly suffer from sneak-path currents
[27] due to the small OFF/ON ratio of spintronic memories [28]. In addition, such crossbar would consume a
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lot of energy because of the low resistance of spintronic memories, as discussed in [29]. A different approach
is therefore required.

A way to overcome the sneak-path in spintronic devices arrays is to use spintronic devices that commu-
nicate through radio-frequencies such that the path of the information is not solely determined by electrical
connectivity, but also constrained by selectivity in the frequency domain [30–32]. Frequency selectivity can
be achieved by encoding the input information into radio-frequency signals of different frequencies, and
using spintronic nano-resonators as artificial synapses that rectify frequency specific signals [33, 34]. Here
we describe how we can perform several multiply-and-accumulate operations in parallel without the sneak-
path currents arising in crossbar arrays of spintronic memories thanks to the topology of our architecture and
the frequency selectivity of spintronic resonators. It has already been demonstrated that chains of spintronic
resonators can natively implement multiply-and-accumulate operations on radio-frequency (RF) signals
[30, 31]. This is promising to directly classify RF signals sensed from the environment with an antenna, as
well as to establish communication between layers of neurons through RF signals rather than through wiring
only. Furthermore, the RF multiply-and-accumulate operation has been demonstrated experimentally in a
small system [34], and a simulated fully-connected perceptron has achieved classification as well as a software
perceptron on an image benchmark of handwritten digits [33].

In the present paper, we adapt the concept of multiply-and-accumulate operation with spintronic nano-
resonators to convolutional layers which are large and sparse. We show that chains of spintronic nano-
resonators are suitable for the implementation of convolutional layers in deep neural networks based on RF
communications between layers of neurons and synapses. First, we show how chains of spintronic resonators
can implement convolutions on different sets of input RF signals presented sequentially as in figure 1(a), and
we show that this method integrates selectivity in the frequency domain. Then we show that it is possible
to achieve these convolutions in a single step, with different chains implementing different multiply-and-
accumulate operations, thus enabling ultrafast computation. We present how the resonators can be spatially
arranged as a matrix of weights of an unfolded convolution, and propose a spatial arrangement that does
not suffer from the sparsity specific to this type of matrices. We explain how this architecture can operate
convolutions to extract different features in parallel, and how to assemble the spintronic chains perform-
ing MAC operations on incoming RF signals with spintronic nano-oscillators that emulate neurons and
emit RF signals [11, 35–42] in order to build deep neural networks. We also show that it is possible to
train simultaneously all the spintronic resonators implementing the same filter coefficient by tuning them
all at once. Finally, we simulate a full convolutional neural network made of these RF spintronic nano-
devices and demonstrate an accuracy of 99.11% on the Mixed National Institute of Standards and Technology
(MNIST) handwritten digits dataset, the same accuracy obtained for a software network with an equivalent
architecture.

1.1. Radio-frequency multiplications for spintronic convolutions
In convolutional layers, the input image is convolved with multiple filters. The specificity of convolutions is
their efficiency to extract spatial features, and each filter aims at extracting a different pattern present in the
input image. To do so, each filter (which is often much smaller than the input image) slides over the input
image, and at each position applies a multiply-and-accumulate operation to the corresponding image subset
(see figure 1(a)). Then the outputs, also called feature maps, store the result of the corresponding multiply-
and-accumulate matrix operations (the sum of the elements of an element-wise matrix multiplication between
the filter and a subset of the input image). In this section, we show how to perform these different multiply-
and-accumulate operations sequentially using RF encoded inputs and a single chain of spintronic resonators
for each filter. A parallelized architecture is presented in the next section.

Figure 1(b) shows a chain of spintronic resonators performing multiply-and-accumulate operations of a
convolution. First, the intensity values of the input image pixels are mapped to RF powers corresponding to
the pixel values of the image. Then, at each step, the corresponding subset of the input image is injected into
the chain of resonators. For instance, during the first step an RF signal is injected into the first diode (f res

0 ) with
a power Prf

0 and a frequency f rf
0 corresponding to the first pixel. During the second step, the power in the same

diode is changed to Prf
1 , corresponding to the second pixel. Each RF signal is injected through an individual

field-line to one of the spintronic resonators of the chain [43]. Each resonator has a resonance frequency close
to the frequency of its input RF signal. The spintronic resonators are employed in a ‘spin-diode’ mode in
which they filter and rectify the RF signals that they receive (see methods for more details) [27, 28]. Here, the
rectification is caused by the mixing between the alternative current induced in the resonator by the current
injected in the field-line (through capacitive or inductive effects), and the resistance oscillation of the resonator
induced by magneto-resistive effects as the magnetization driven by the alternative field oscillates. Since the
resonators of the chain are connected electrically, if we used the same RF frequency for all the inputs signals,
each resonator could mix with signals induced by different field-lines and rectify them, hence causing crosstalk
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issues. On the contrary, here we choose a different frequency for each input signal to ensure that each resonator
only mixes with the RF signal transmitted by its field-line, and thus rectifies the proper input signal. The dc
voltages produced by the resonators are summed because they are electrically connected in series. The total
voltage of such a chain of resonators is a multiply-and-accumulate operation between the input microwave
powers and synaptic weights that are encoded in the resonance frequencies of the resonators [33, 34]. This
operation is described in detail in the methods section. In this implementation, the difference between the
input RF frequency and the resonance frequency of the resonators implements the weights of the convolutional
filter. Since in a convolution, each multiply-and-accumulate operation requires the same set of weights, these
resonance frequencies are left unchanged between the different steps. Then, at each step of the convolution,
the voltage of the chain encodes a different element of the output feature map.

This method is straightforward, but it has the defect of being sequential. Doing these operations one after
the other is costly in memory because it requires to store all the elements of the output feature map between
two convolutional layers, and it slows down computing since it requires approximatively as many steps as there
are pixels in its input images, versus a single one for parallel convolutions [16]. In the next section we describe
how to operate RF convolutions fully in parallel.

1.2. Fully-parallel architecture for radio-frequency convolutions
To perform all multiply-and-accumulate operations in parallel, we propose a novel architecture using multiple
chains of spintronic resonators. This architecture is represented in figure 2(b). Unlike the sequential method,
here we simultaneously send all the elements of the input image to the resonators. Each pixel is mapped to a
different RF signal with power proportional to its value, which is simultaneously injected into several spintronic
resonators, each belonging to a different chain. A single field-line corresponds to a row in figure 2(b). The
different resonators of the same chain are arranged in a column and correspond to different coefficients of the
filter. For instance, the resonators of the first column correspond to the coefficients w1,1, w1,2, w2,1, and w2,2

(in that order) of the filter, as it is represented in the left-hand side of figure 2(a). The resonators of the second
column correspond to the coefficients w1,0, w1,1, w1,2, w2,0, w2,1, and w2,2 of the filter, as it is represented in the
right-hand side of figure 2(a). The resonators of the fifth column correspond to all the coefficients of the filter,
from the 1st to the 9th. The resonance frequencies of resonators in a row all match the corresponding input RF
signal they need to rectify, but are not identical as they encode different synaptic weights: as the filter is sled,
the same input gets multiplied by a different weight (see figures 1(a) and 2(a)). In figure 2(b) each spintronic
resonator is represented with a color that corresponds to one of the synaptic weights, which themselves are
represented in figure 2(a).

In memristor crossbar arrays, each memristor is placed at a crosspoint between input lines and output
lines. Sneak-path currents between crosspoints are then possible [8, 21, 27, 44–46]. Here, since we inject the
input signals in the spintronic resonators through field-lines electrically separated from the array, there are no
current paths between the different chains of spintronic resonators. Moreover, the frequency selectivity of the
spintronic resonators prevents them from being influenced by signals from neighboring field-lines.

We have to tune the resonance frequencies of the resonators to change the synaptic weights they implement
in order to train the network. In figures 3(a) and (b), all resonators implementing the same filter coefficient are
represented with the same color. In the crossbar architecture studied until now, all the resonators that encode
the same synaptic weights are aligned in a diagonal (see figure 3(a)). Alternatively, as shown in figure 3(b),
we can change the spatial arrangement of the spintronic resonators, to implement a compacter architecture in
which the resonators implementing the same filter coefficient are aligned in a column. Since they are aligned,
we can tune simultaneously the resonators coding for the same synaptic weight with a single write-line. Write-
lines provide an electrical control of synaptic weights either by changing the state of memristors placed above
each spintronic resonator as it was done in [47] or in [48], or by switching the magnetization of spintronic
resonators between two states [49–54] such as in binary neural networks [55–59]. Independently of the control
method, a physical implementation of a network with the proposed architecture can be trained with a number
of field-lines that does not scale with the number of devices, but only with the number of synaptic weights per
filter.

1.3. Multi-layer convolutional neural network implementation with chains of resonators and spintronic
nano-oscillators
In the previous sections we presented convolutions with single channel images and only one filter per layer.
In typical convolutional layers, the input image is convolved with multiple filters, that produce different fea-
ture maps. Each feature map becomes a different channel of the input image in the next layer, as shown in
figure 4(b). Filters are 3D tensors whose depth is equal to the number of channels of their input image. The
pixel values in each of the Nm different feature maps resulting from the convolution of an input image with Nc
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Figure 2. (a) Example of a 2D convolution with an image of size 3 × 3, a padding of 1 and a filter of size 3 × 3. Padding of 1
means that the image is padded at its outer edge with 1 layer of zeros. Each element of the output feature map is the sum of the
element-wise matrix multiplication (multiply-and-accumulate operation) between a subset of the input image and the weights of
the filter. (b) Schematic of the corresponding parallel convolution with RF signals and multiple chains of spintronic resonators.
RF input signal powers are mapped to the image pixels. The RF signals are injected to resonators through field-lines, represented
by yellow stripes. Spintronic resonators are represented with colors corresponding their matching weights, themselves represented
in (a). Resonators encoding the same weights are aligned in diagonal. The voltage of each chain is a multiply-and-accumulate
operation between a subset of the input microwave powers and synaptic weights encoded in the resonators’ resonance frequencies.

channels with a filter of size k × k × Nc are given by the formula:

zh,w,m =

Nc−1∑
c=0

k−1∑
j=0

k−1∑
i=0

Wi,j,c,mxi+h,j+w,c + bm, (1)

where W are the filter coefficients, x the input pixel values, b are the biases, m is the feature map index, h and
w are the height and width positions of the pixel in the feature map, i and j are the vertical and horizontal
coordinates of the pixel in the filter, and c is the input channel index. To make this operation fully parallel,
additional resonators are employed as illustrated in figure 4(a). To implement different channels, additional
sets of RF signals (in blue) are employed, which are sent to additional sets of spintronic resonators connected
in series with the resonators rectifying the RF signals from the first channel (in red). Additional filters are
implemented by adding new chains of resonators after the chains of resonators implementing the first filter, as
in the right-hand side of figure 4(a). Similarly, multiple channels can be convolved with multiple filters with
the compact architecture described in figure 3(b).

Building deep neural networks requires transferring information between different layers of neurons and
synapses. We propose using spintronic oscillators as artificial neurons emitting RF signals as inputs to each
convolutional layer. It was already demonstrated that these oscillators can be used as artificial neurons thanks
to their nonlinear dynamics [35, 37, 38]. Here, we leverage the nonlinear transformation between the input
direct current to the oscillators and the output microwave power they produce [35, 60, 61] (see methods). Using
the fully parallel architecture, it is then possible to cascade the information between different convolutional
layers: provided a voltage-to-current amplification, every direct voltage output of the convolution can be used
to supply an artificial neuron of the next layer. Then the RF signals emitted by spintronic oscillators become the
inputs of chains of spintronic resonators, these resonators rectify RF signals into direct voltage which supplies
the next layer of spintronic oscillators, and so on. This architecture alternating between RF and DC signals
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Figure 3. Schematics of a parallel convolution with an input image of size 5 × 5, a padding of 1 and a filter of size 3 × 3 with RF
signals and chains of spintronic resonators implementing the synaptic weights. To simplify the figure, spintronic resonators are
represented by colored squares in central panels and field-lines carrying RF signals are represented by yellow lines. Golden shade
stripes represent write-lines that can simultaneously tune multiple spintronic resonators electrically. (a) Architecture similar to a
traditional crossbar with input lines perpendicular to output lines. Spintronic resonators implementing the same synaptic weights
are aligned in diagonals. (b) Compact architecture is a spatial rearrangement of synaptic components: unlike in traditional
crossbars, output lines are parallel to input lines. Spintronic resonators implementing the same synaptic weights are aligned in
columns.

is illustrated in figure 4(b). In practice, CMOS components are needed to convert voltages to currents and
amplify them to match the threshold current of spintronic oscillators.

As in the two previous sections, a different frequency is assigned to each oscillator. Here again, because we
use field-lines to transmit RF signals locally to specific resonators and because we rely on a resonant effect, each
artificial synapse only multiplies its corresponding input. Thus, our implementation can perform convolutions
in parallel using multiple resonator chains without sneak-path currents that can be problematic in memristor
crossbar arrays [8, 21, 27, 44–46].

1.4. Handwritten digits classifications with a convolutional neural network implemented on spintronic
nano-oscillators and resonators
In this section, we simulate a network with spintronic oscillators as neurons and spintronic resonators as
synapses based on the proposed convolutional architecture. The goal is to prove that chains of resonators
can calculate convolutional operations with high accuracy, that it is possible to tune the convolutional filter
coefficients by tuning the resonance frequencies, and to demonstrate the capacity of spintronic oscillators to
implement activation functions in such networks.

We benchmark our network on the standard MNIST dataset. It consists of 28× 28 pixel images of handwrit-
ten digits. The topology of our network is shown in figure 5(a); 32 filters of 5 × 5 with stride 1 and padding
1 for the first convolutional layer, a max-pooling of size 2 × 2 and stride 2, a layer of spintronic oscillators
as activation functions, 64 filters of 5 × 5 with stride 1 and padding 1 for the second convolutional layer,
a second max pooling of size 2 × 2 and stride 2, a second layer of spintronic oscillators as activation func-
tions, a fully connected layer of size 1600 × 10, and a softmax layer in the end. The physical analytical models
used to simulate spintronic devices are detailed in the methods. It has already been proven experimentally in
[27, 28] that fully-connected layers can be implemented by chains of spintronic resonators, applying multiply-
and-accumulate operations on RF encoded inputs and the same operating principle is assumed here. Max-
pooling layers and the softmax layer are assumed to be implemented by more classical technologies such as
CMOS circuits.

To train the network, we use 60 000 images for training and 10 000 for testing. At each training iteration, a
batch of 20 images is presented to the network, the output of the network is computed with the softmax layer,
and the cost function is the cross-entropy loss [62]. We use the backpropagation algorithm [2] and Adam
optimizer [63] of the software PyTorch to train the network. The learning rate is 10−4.

In our implementation, the synaptic weights depend both on the frequency of the input and the resonance
frequency of the resonators (see equation (7) in methods). The input frequency is kept fixed and the trained
parameters are the resonance frequencies of the resonators. An additional constraint arises in the case of parallel
convolutions due to weight sharing. Indeed, resonators corresponding to the same filter coefficient have to
implement the same synaptic weight even if they receive input signals with different frequencies. In order to
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Figure 4. (a) Schematic of a parallel convolution with RF signals and chains of spintronic resonators implementing the synaptic
weights similar to figure 2(b) but with different channels and features. First (second) input channel pixels are mapped to a first
(second) set of RF signals represented in red (in blue). Chains of spintronic resonators corresponding to the outputs of the second
feature map are parallel to the first set of chains corresponding to the outputs of the first feature map. (b) Diagram of a deep
convolutional network with multiple channels and features with spintronic oscillators to emulate neurons and resonators to
emulate synapses. Direct signal electrical connections are represented by black arrows while field-lines carrying RF signals are
represented by yellow arrows.

ensure that this is the case, our training algorithm updates the resonance frequency of each resonator with
a function that depends both on the frequency it receives, and a trainable parameter ζ i,j,c,m learned through
backpropagation that corresponds to its filter coefficient:

f res
i,j,c,h,w,m ← f RF

h+i,w+j,c

(
1 − ζi,j,c,m

)
. (2)

This expression indicates that when multiple spintronic resonators are tuned simultaneously with a single
write-line in a hardware implementation, the resonance frequency update of each resonator should scale with
its input signal frequency. In the methods section, we demonstrate that using this expression, chains of res-
onators voltages correspond to convolution outputs, described by equation (1). For the fully-connected layer,
we simply set the resonance frequencies as trainable parameters learned through backpropagation, as it was
done in [33].

7



Neuromorph. Comput. Eng. 2 (2022) 034002 N Leroux et al

Figure 5. (a) Neural network architecture used to classify images of the MNIST dataset. (b) Accuracy of image recognition
measured in percentage of successful classification, versus the number of epochs (the number of times we present the training
dataset to the network to train it). The red (blue) solid line shows the mean accuracy for a simulated RF spintronic devices
network (a software neural network) for ten repetitions on the test dataset. In green (black) solid line the mean accuracy for a
simulated RF spintronic devices network (a software neural network) on ten repetitions on the training dataset. Shaded areas
represent standard deviations.

To optimize the spacing between RF signal frequencies in the same neural layer in order to avoid crosstalk,
we use a similar relation as in [33]:

f RF
i+1 = f RF

i

⎛
⎝1 +

Δf RF
i

f RF
i

1 − Δf RF
i

f RF
i

⎞
⎠ , (3)

withΔf RF
i the frequency linewidth of an oscillator. Using equation (3), the emission peaks of two oscillators are

separated by their linewidth, which ensures that they do not interfere. The larger neural layer of the considered
network (the input of the second convolutional layer) is made of 5408 spintronic oscillators. Tsunegi et al

have shown that it is possible to make a spintronic oscillator with a quality factor of f RF

Δf RF = 6400 [64]. Using

equation (3) with
Δf RF

i
f RF
i

= 1
6400 , we compute that we can arrange 5408 frequencies between 1 GHz and 5.4 GHz

with spacings equivalent to the linewidths of the different oscillators. In conclusion, it is possible to arrange
the frequencies of the oscillators in a reasonable range while avoiding crosstalk.

In experimental hardware implementations, signals should be amplified between a layer of spintronic oscil-
lators and a layer of spintronic resonators. Therefore, in our simulations we introduce an amplification factor
for each synaptic layer. Amplification factors are set as trainable parameters and are trained through backprop-
agation. Adjusting these parameters during training balances the fact that spintronic resonators can only be
tuned within a finite range of synaptic weights.

We plot in figure 5(b) the learning curve of the network. We see that at the end of the training, our spintronic
network (red solid line) has a mean accuracy of 99.11% on ten trials, with a standard deviation of 0.1%, as
good as the 99.16% accuracy (with a standard deviation of 0.07%) we found with a software convolutional
neural network with the same architecture (solid blue line). The difference in accuracy is smaller than the
standard deviation, represented in shaded area in figure 5(b). In addition, the classification results are higher
than with a multi-layer-perceptron [3], which indicates that the advantages of convolution are preserved with
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Figure 6. Accuracy of image recognition measured in percentage of successful classification on the MNIST test set, versus the
standard deviation σ of variability of spintronic resonators resonance frequencies respect to the resonance bandwidth in log 10
scale. For instance, a variability of standard deviation σ = 10−2 means that spintronic resonators have an initial standard
deviation of 1% respect to the resonance bandwidth.

our RF spintronic network. These results show the feasibility of convolutions with RF signals and spintronic
resonators.

In hardware implementation, spintronic resonators can have inter-devices variability. We simulate the vari-
ability of resonance frequency between different resonators implementing the same synaptic weight into our
neural network. Before training, at initialization, instead of using equation (2), we set the resonance frequencies
of the resonators of the network using

f res
i,j,c,h,w,m ←

[
f RF

h+i,w+j,c + Γh+i,w+j,cN (0,σ)
] (

1 − ζi,j,c,m

)
, (4)

where devices variability is introduced by N (0,σ), a sample from the normal distribution of center 0 and
standard deviationσ, andΓh+i,w+j,c is the bandwith of resonance of the resonators [60]. The standard deviation
σ quantifies how much the resonance frequencies are deviated from their ideal values with respect to their
bandwidth. In figure 6, we plot the result of convolutional neural network simulations including the variability
of resonance frequencies between resonators for different standard deviations σ. Since we tune simultaneously
all the resonators implementing the same synaptic weight, we see in figure 6 that the variability between the
resonance frequencies of these resonators degrades the performance of the network, but that it stays accurate
when the resonance frequency deviation is below 10% of the resonance bandwidth (σ = 0.1), at which point
the accuracy is 99.05%. These results show that if the resonance frequency deviation is below 10%, such a
network can be trained even though by using single write-lines for many synapses, we have fewer degrees of
freedom than if we had individual control over each synapse.

1.5. Benchmarking the performance of a convolutional neural network with chains of resonators and
spintronic nano-oscillators
We consider that we can optimize the resonators and field-lines such that the sensitivity of rectification is
103 μV μW−1, as demonstrated experimentally [65]. Then, if the RF power injected per resonator is 0.1 μW,
the order of magnitude of the rectified voltage output by the resonators is 0.1 mV, which is sufficiently large to
be amplified by CMOS dc amplifiers. The minimum power consumption per synapse is then 0.1 μW. The DC
amplifiers must deliver a power sufficient to match the threshold current of spintronic oscillators. Projections
show that spintronic oscillators can be downscaled to nano-pillars of 20 nm radius, and then have a threshold
current density of 1010 A m−2 [66]. With a resistance area product RA = 10−12 Ω m2, as seen in the literature
[61], and radius of 20 nm, the minimum power delivered by each DC amplifier to a spintronic oscillator is
0.1 μW, which means that the minimum power consumption of the system per neuron is 0.1 μW. In the
convolutional neural network architecture we use to solve the MNIST dataset, there are 7792 neurons and
6.7 million synapses. We then estimate the total power consumption of the implementation with RF spintronic
devices as ∼0.67 W. The computing speed is limited by the relaxation time of the oscillator with the smallest
frequency. If the smallest frequency of the system is f RF

min = 1 GHz and the magnetic damping is α = 0.01,
which is the magnetic damping of permalloy [67], then the relaxation time is Tmin = 1

αf RF
min

= 100 ns. Since

the relaxation time of each resonator and oscillator is 100 ns and since all the devices operate in parallel, we
estimate that the total latency to process one image is inferior to 1 μs. In comparison, a Nvidia Tegra TK1 GPU
consumes 8 W during inference, with a latency of 650 μs per image for an accuracy of 98.8% on the MNIST
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dataset [68]. We then estimate a factor 11.9 of power consumption reduction compared to a Nvidia Tegra TK1
GPU, and the extremely parallel architecture we propose leads to more two orders of magnitude of latency
reduction, thus ensuring a drastic energy consumption reduction.

Since spintronic oscillators and resonators can be downscaled to 20 nm [66], we can consider unit cells
of area 40 × 40 nm2. The area of a traditional unfolded convolution implemented on a crossbar array scales
with NinNc × NoutNm [14, 21] where Nin is the number of pixels in the input images, Nc is the number of
channels, Nout is the number of pixels in the output feature maps, and Nm is the number of output feature
maps. The optimized architecture we propose in figure 3(b) mitigates the problem of unused space in unfolded
convolution implementations on crossbar arrays [21], and scales only in NoutNm × k2Nc, with k2Nc the number
of pixels in a convolutional filter. Scaling with the size of the convolutional filter instead of the size of the
image is advantageous because the convolutional filter is often much smaller than the image. For instance,
in the architecture we use to solve MNIST, in the first convolutional layer, Nin = 784, Nc = 1, Nout = 676,
Nm = 32 and k2 = 25. We can then compute that with a unit cell of 40 × 40 nm2, a traditional crossbar array
implementing this convolutional layer would have an area of 2.7 × 10−2 mm2, whereas our optimized crossbar
would have an area of 8.6 × 10−4 mm2, hence two orders of magnitude less. Since the number of neurons is
much smaller than the number of synapses (7792 neurons versus 6.7 million synapses in the example we use),
and since CMOS amplifies are only used for neurons, we can consider the area footprint of CMOS amplifiers
to be smaller than the area footprint of spintronic resonators.

2. Conclusion

Using chains of spintronic resonators as artificial synapses rectifying RF signals into dc voltages, and nano-
oscillators as nonlinear activation functions converting direct currents to RF signals, our system cascades
information between different neural layers and performs the different multiplications of convolutions fully
in parallel. In this paper, we showed how we can use chains of resonators to rectify multiple RF signals to make
convolutions. We described the concept through a sequential convolution with a single chain of resonators,
and then we showed how it can be extended to operate convolutions in parallel with multiple chains. This
parallelization provides a tremendous processing time reduction: a sequential convolution requires approxi-
matively as many steps as there are pixels in its input images, versus a single one for parallel convolutions. We
have highlighted that with the two different proposed architectures, a single write-line can tune simultaneously
many resonators to adjust their synaptic weights. The number of resonators adjustable by the same write-line
is equal to the number of positions the filters take in the convolution. This can reduce the complexity and time
required to train such hardware neuromorphic architecture. Since we use a resonance effect and field-lines that
locally inject RF signals to spintronic resonators, each synapse only multiplies its corresponding neural input,
and our architecture does not suffer from sneak-path that are common in memristor crossbar arrays. We can
thus use a large number of devices in parallel to perform convolutions in a single step. Using spintronic oscil-
lators as RF emitters emulating neurons, we show that chains of resonators can rectify neural signals, and that
these rectification voltages can supply another layer of spintronic oscillators, hence enabling direct connectiv-
ity between different neural layers. We have demonstrated the performance of such network on the MNIST
dataset though physical simulations of these RF spintronic devices and obtained 99.11% accuracy. Spintronic
oscillators and resonators are similar devices that require the same materials and are both compatible with
CMOS technology. Moreover, as these components can be downscaled to 20 nm, our architecture can contain
a very large number of devices on a small surface. The density of devices is critical in a neural network, both to
reduce power dissipation and to allow parallelism. The computing parallelism also limits the inference latency,
which is crucial for modern embedded applications such as autonomous driving. In conclusion, this work
opens new avenues to very large spintronic neuromorphic networks able to efficiently perform convolutions.

3. Methods

For the numerical simulations of handwritten digit classification, the physical response of hardware-based
convolutional layers, nonlinear layers and fully connected layers is simulated based on well-established physical
models of spintronic devices as detailed below.

3.1. Spintronic oscillators simulations
The output of each spintronic oscillator is computed with the universal auto-oscillator theory [60] in the case
of a spin-torque nano-oscillator the normalized magnetization power is
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Figure 7. (a) Normalized magnetization oscillation power of a spin-torque nano-oscillator versus the ratio between direct
current and threshold current. Plot realized using equation (5) with Q = 2. (b) Voltage rectified by spin-diode effect versus
microwave frequency for different microwave powers PRF = 0.2, 0.4, 0.6, 0.8 and 1 μW. Plot realized using equation (6) with
f res = 1 GHz, α = 0.01, and A = 1 μV μW−1.

p =

⎧⎨
⎩

Idc/Ith − 1

Idc/Ith + Q
if Idc > Ith

0 if Idc � Ith

, (5)

with Idc the direct current, and Q is the nonlinear damping coefficient. In this paper we chose Q = 2 according
to experimental works [30, 36, 69]. This normalized magnetization power is simulated and plotted in figure
7(a). In the handwritten digits demonstration we chose a threshold current of 2 mA because it is coherent
with experimental works [35, 47] and we clamp each direct current input to 8 mA because in practice, these
nano-devices can be damaged above a particular current [61]. Since the threshold current density is typically
around 1011 A m−2, in the future the threshold current of these oscillators can be decreased to tens of μA with
lateral size reduction to tens of nanometers. Moreover, projections show that size reduction could also reduce
threshold current density down to 1010 A m−2 [66].

Most spintronic oscillators have a frequency dependence with input direct current [60, 70, 71]. We want
to avoid this effect because, as we see in equation (7), the weights also depend on microwave frequencies, and
we cannot allow the weights to depend on the input values. To avoid these frequency shifts, oscillators with
compensated magnetic anisotropy can be used [69, 72].

3.2. Spintronic resonators simulations
Due to spin-diode effect, the voltage rectified by each spintronic resonator is:

V
(
PRF, f RF, f res

)
= PRFf RF f RF − f res

α2f res2 +
(

f RF − f res
)2 A. (6)

This expression comes from the experimentally validated [65, 73] auto-oscillator model [60]. Here PRF is
the emitted power of an oscillator, f RF its frequency, f res is the resonance frequency of a spintronic resonator, α
the magnetic damping of the material used for the spintronic resonators, and A a scaling factor. This voltages
is simulated and plotted in figure 7(b). Writing equation (6) we neglect the frequency-symmetric Lorentzian
component of the voltage and keep only the anti-symmetric Lorentzian component [73]. This approximation
is useful because it lets the synaptic weight be either positive or negative, and is valid because in practice it
is possible to tune the ratio between the symmetric and the anti-symmetric components by changing the
orientation of a magnetic field [74, 75].

Then each rectification of a RF signal with a spintronic resonator is a multiplication operation on the
microwave power P RF, with a weight

W
(
f RF, f res

)
= f RF f RF − f res

α2f res2 +
(
f RF − f res

)2 A. (7)

We see that because of the anti-Lorentzian shape of equation (7), we can tune the amplitude and the sign of
the synaptic weight by tuning the resonance frequency f res. In this paper we chose a magnetic damping coef-
ficient α = 0.01, which is the magnetic damping of permalloy [67], and an arbitrarily chosen amplification
factor A = 1 μV μW−1. For the neural network, the resonance frequencies are randomly initialized between 1
and 2 GHz for each layer.
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3.3. Convolution specific multiply-and-accumulate operations with chains of spintronic resonators
In this subsection we demonstrate that with the correct choice of resonance frequencies, the voltages of our
chains of spintronic resonators are convolution outputs like equation (1). From equation (6), we know that in
a convolutional framework the voltage of each resonator inside each chain is

Vi,j,c,h,w,m = PRF
h+i,w+j,c f RF

h+i,w+j,c

f RF
h+i,w+j,c − f res

i,j,c,h,w,m

α2f res
i,j,c,h,w,m

2 +
(

f RF
h+i,w+j,c − f res

i,j,c,h,w,m

)2 A. (8)

Replacing f res
i,j,c,h,w,m in this equation by the expression of equation (2), we find

Vi,j,c,h,w,m = PRF
h+i,w+j,c

ζi,j,c,m

α2
(
1 − ζi,j,c,m

)2
+
(
ζi,j,c,m

)2 A. (9)

Since the total voltages of each chain of spintronic resonators is the sum of the voltages of each resonator
of the chain, they are equal to

Uh,w,m =

NC−1∑
c=0

k−1∑
j=0

k−1∑
i=0

PRF
h+i,w+j,c

ζi,j,c,m

α2
(
1 − ζi,j,c,m

)2
+
(
ζi,j,c,m

)2 A, (10)

and we can identify this equation to equation (1), with Uh,w,m equivalent to the outputs zh,w,m, PRF
h+i,w+j,c

equivalent to the inputs xi+h,j+w,c, and
ζi,j,c,m

α2(1−ζi,j,c,m)2
+(ζi,j,c,m)2 A equivalent to the filter coefficients Wi,j,c,m.
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