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Tour de France, Giro d’Italia and Vuelta a España in Spain are the three grand tours of
professional road cycling. Three weeks long with daily stages, these three races all use
three jerseys to distinguish the leader, the best sprinter and the best climber.
We first discuss the physics of road cycling and show that these three jerseys are
associated with three different dynamical regimes. We then propose a phase diagram for
road cycling which enables to discuss the different physiological characteristics observed
in the peloton. We finally establish the phase diagram for the Tour de France 2017 and
show that the final three jerseys do belong to the expected three optimal regions of the
phase diagram.

Key words: Physics of cycling, road cycling, grand tour, time trial, mountain stage,
descent.

1. Introduction
The science of cycling is the subject of many studies reported in books [Wilson &
Schmidt (2020)] and reviews [Faria et al. (2005b), Faria et al. (2005a), Crouch et al.
(2017)]. Here we focus on the specific question of the different dynamics observed in road
cycling during professional grand tours and their impact on the rewards used (jerseys).

The oldest grand tour is the Tour de France (1903) which was initially 2428 km long
in 6 stages, organized by the newspaper "L’Auto" and inspired by the popular six-days
on track races [Chany (1983), Lucia et al. (2003), Mignot (2016)]. The Giro d’Italia and
the Vuelta a España started in 1909 (2448 km) and in 1935 (3425 km), respectively, and
were also organized by newspapers, "La Gazzetta dello Sport" and "Informaciones".
Since 1919, the leader of the general classification wears the yellow jersey in the Tour
(introduced by Henri Desgrange) and the pink jersey in the Giro since 1931. These colors
being those of the newspapers L’Auto and La Gazzetta dello Sport. The history for the
Vuelta is more complex : the jersey has been orange (1935, 1942, 1977), white (1941),
white with a red stripe (1945-1950), yellow (1955-1976, 1978-1997), gold (1998-2009)
and finally red since 2010.

Besides the general classification, grand tours also reward the best climber via the
classification of the king-of-the-mountains (Tour and Giro since 1933, Vuelta since 1935)
and the best sprinter by points classification (Vuelta since 1945, Tour since 1953 and
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Figure 1. General information for the three grand tours in 2019 : for the different jerseys, we
indicate the name of the winner, his age, size and mass, as well as, for the leader, his average
velocity.

Giro since 1966) [Mignot (2016)]. The point classification rewards the rider who has
accumulated the most points over all the stages. The greatest number of points being
awarded to the first place of each stage ; however the scale is not fixed and a greater
number of points is awarded for the so-called plain stages intended for sprinters. An
intermediate sprint during the stage also allows you to collect points. For these reasons,
most of the time the point jersey goes to a sprinter.

All the jerseys have been introduced after the first classifications and their colors have
their own history : concerning the sprint, the green jersey in the Tour was first introduced
in 1953 for the 50th anniversary. The color green came from the sponsor "la belle
jardinière" [Soula (2013)]. The corresponding jerseys for the Vuelta and the Giro appeared
in 1955 and 1967.
For the best climber in Tour de France, the polka-dot jersey was introduced in 1975 by
Félix Lévitan, director of "la Société du Tour de France" , in memory of Henri Lemoine,
French track cyclist who was using these colors with his teammate Marcel Guimbretière
[Carrey (2015)]. For the Giro, the jersey for the best climber was introduced in 1974 and
was initially green [Carrey et al. (2019)]. For the Vuelta, it appeared in 1976.

While the first few Tour de France were less than 3000 km long, they soon evolved to
long editions (> 5000 km) divided into 14 to 17 stages. This peaked in 1927 with 5745
km in 17 stages (∼337 km per stage) where each stage last typically ∼14 hours leading
to the legend of "convicts of the road". High Mountain stages were introduced in 1910
for the Pyrenees (Tourmalet and Aubisque) and in 1911 for the Alps (Galibier). The first
time trial appeared in 1934. The current configuration is composed of 21 stages raced
over three weeks. General information on the three grand tours in 2019 is summarized
in Figure 1. We observe that they have almost the same total distance of 3400± 150 km
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Figure 2. Range of velocities observed during Tour de France : α stands for the slope of the
road, ᾱ for its mean value and T for the typical duration of the climb, time-trial, sprint and
descent (from left to right). Photos Credits : Thomas Vergouwen / AFP / Presse Sport.

and are run with almost the same average speed of 39.9± 0.7 km/h.

The three grand tours have been the subject of a large number of studies and books
[Chany (1983); McGann & McGann (2008); Carrey et al. (2019); McGann & McGann
(2012); Fallon & Bell (2005)]. Here we only discuss the physics involved in road cycling
and its impact on these stage races. The general features of grand tours are presented in
section 2, the model in section 3 and its connection to the three jerseys is done via the
phase diagram presented in section 4 prior to the conclusion.

2. General characteristics in road cycling grand tour
The range of velocities observed during Tour de France are presented in Figure 2 :
unsurprisingly, the slowest velocity is measured in high mountain (MT) where the mean
slope ᾱ of the order of +8% is climbed with a characteristic velocity of 20 km/h [Vogt
et al. (2008)]. At the opposite limit, one finds the descent where velocities as high as
100 km/h are regularly recorded [Blocken et al. (2018a)].
In between these two limits we mention the characteristics of flat time trial (TT) where
the cyclists typically run one hour at 50 km/h [Earnest et al. (2009)] and sprints which
last typically 10 seconds and where the athletes reach 70 km/h during few seconds
[Menaspa et al. (2013); Blocken et al. (2019)]. Beyond these orders of magnitudes,
the precise values of the velocities, slopes and durations for these different stages are
presented in the following sections.

Throughout the article we use the classification of stages defined by race organizers
[Padilla et al. (2001)] : flat stages (FLT), in which the total distance riding uphill was
shorter that 13 km, the total altitude change was lower than 800 m, and the hills were
scattered along the stage, but never at the end of it ; semi-mountainous stages (SMT),
with a total uphill distance between 13 and 35 km, and a total altitude change ranging
between 800 and 2000 m ; high-mountain stages (MT), in which the total uphill distance
was longer than 35 km, and the total altitude change was higher than 2000 m. Stages
finishing with more than 12 km uphill and an altitude change of more than 800 m are
also included in this (MT) category.

The anthropometric profiles of riders in the Tour (body mass Mc, height Lc, and body-
mass index BMI = Mc/L

2
c) have been studied and correlated to their success during
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Figure 3. Elements for the model : (a) schematics of the cyclist of mass Mc and of his bike of
mass Mb climbing a slope of angle α (b) Evolution of the power, Pm, with the pedaling rate, θ̇,
for two different athletes (reproduced from Dorel et al. (2005)) (c) Time evolution of the power
to mass ratio, Pmax/Mc, in cycling : the grey points are the Maximal Mean Power (MMP)
obtained for 15 riders of Tour de France 2005 ranking from 40 to 150 by Vogt et al. (2007).
The different greys are used to differentiate road type (FLT=flat, SMT=semi-mountainous,
MT=mountainous). The blue points are the MMP obtained for 9 riders from the same
professional team on the Giro 2016 and reported by Sanders & Heijboer (2019). As for greys, the
different blues are used to distinguish the different types of road. Plus dark blue for time trial
(TT). The orange points corresponds to a single top ten rider of Tour de France studied by Pinot
& Grappe (2014). The two solid lines correspond to the predictions of the heuristic equation
(3.3) using τ = 32 s, γ = 0.0886 and Π = 9.7 W/kg for the orange line and Π = 7 W/kg for
the blue line.

the different types of stages [Lucia et al. (2000); Santalla et al. (2012)] : TT specialists
are generally 180 to 185 cm tall, weight 70 to 75 kg, and have a BMI ∼ 22 kg/m2. This
anthropometry allows them to achieve higher absolute power outputs (W) than climbers
(175 − 180 cm, 60 − 66 kg, BMI = 19 − 20 kg/m2), who are better able to maintain
higher power to mass ratio (W/kg) [Padilla et al. (1999); Lucia et al. (2000)].

3. Physics of road cycling
The problem of cycling is sketched in Figure 3-(a). The dynamics of the rider is governed
by the balance of energy :

d

dt

(
1

2
MV 2 +Mgz

)
= Pm − Pf , (3.1)

where V is the velocity of the center of mass, z the vertical elevation, g gravity and M
stands for the total mass, M = Mc +Mb (Mc and Mb being respectively the mass of the
cyclist and of the bike †). On the right-hand side of equation (3.1), Pm is the mechanical

†. At the moment the legal minimal mass for bikes on the Tour is 6.8 kg and the typical mass
for bikes in Time Trial is 8 kg.
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power injected by the cyclist and Pf is the power dissipated by friction [di Prampero
et al. (1979)].
Studies dedicated to the friction reveal that Pf is mainly composed of aerodynamic and
rolling resistance Pf = 1

2ρSCDV
3 +µMgV , where ρ is the density of air, S is the frontal

area of the cyclist and bicycle experience the drag coefficient CD (here the product SCD
will be referred to as the ‘drag area’) and µ is the rolling resistance coefficient [Martin
et al. (1998); Crouch et al. (2017)]. Since the aerodynamic drag increases as V 3 and the
rolling resistance as V there is a velocity Vµ for which both contributions are equal :
Vµ =

√
2µMg/ρSCD. Using typical values ρ = 1.2 kg/m3, SCD = 0.25 m2, µ = 0.0032

and M = 80 kg, we get Vµ ≈ 15 km/h. Since the velocities in Tour de France are larger
than Vµ the main contribution will be aerodynamic and we will generally neglect rolling
resistance in this study. The only exception will be in the section dedicated to climbing
where the velocities get close to Vµ.

Concerning the maximal mechanical power produced by the cyclist, Pm, it depends on
both the pedaling rate, θ̇, and the duration of the exercice, T . As shown by Dorel et al.
(2005) the relation between the mechanical power and the pedaling rate is parabolic :

Pm

(
θ̇, T

)
= 4Pmax(T )

θ̇

θ̇max

(
1− θ̇

θ̇max

)
(3.2)

where θ̇ is the pedaling rate, θ̇max its maximum value and Pmax(T ) the maximum power
which can be developped over the duration T . Two examples reproduced from Dorel et al.
(2005) obtained with track cyclists with T = 5 s exercices are presented in Figure 3-(b).
For the hollow circles, one reads Pmax ≈ 1800 W and θ̇max ≈ 260 rpm. Since the power
is maximal for a given pedaling rate, one expects professional road cyclists to ride at a fix
pedaling rate and to use gears to adapt to the road profile. This is indeed what is reported
in the literature : Considering flat [FLT], semi-mountainous [SMT] and mountainous [MT]
stages Vogt et al. (2007) reports that "the average cadense for FLT, SMT and MT was
87, 86 and 81 rpm respectively".
The maximum power per unit of mass Pmax/Mc is presented as a function of time T on a
log-linear scale in Figure 3-(c) : The three different sets of colors (grey, blue and orange)
correspond to three different studies. The grey points have been obtained on Tour de
France 2005 with 15 different riders ranking from 40 to 150 [Vogt et al. (2007)]. The blue
set has been obtained with 9 riders of the same professional team on Giro 2016 [Sanders
& Heijboer (2019)]. For each set, a different intensity is used to distinguish the different
types of roads (FLT, SMT, MT). No big difference is observed between the different
intensities. We will thus assume that Pmax/Mc is independent of the road type. Finally,
the orange points have been obtained for a single rider top 10 Tour de France finisher
[Pinot & Grappe (2014)].
The log-linear scale used in Figure 3-(c) reveals that the power to mass ratio reaches
values of the order of 14−19 W/kg during very short periods (several seconds) and then
decreases as the duration of the effort increases down to a quasi-plateau of the order of
5− 6 W/kg reached after few minutes. For the single rider (orange points) the power to
mass ratio is 18.1 W/kg during 5 s, 7.2 W/kg after 5 minutes, 6.9 W/kg after 10 minutes,
5.7 W/kg after 1 hour and 4.9 W/kg after 4 hours.
The continuous lines presented in Figure 3-(c) correspond to the heuristic fit of the power
to mass ratio :

Pmax(T )

Mc
= Π

[
e−T/τ + 1− γ ln (T/τ + 1)

]
(3.3)
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For the two cases plotted in Figure 3-(c), τ = 32 s, γ = 0.0886 and Π = 9.7 W/kg for
the orange line and Π = 7 W/kg for the blue line. To discuss the records observed in
Tour de France we will use the value obtained for the top 10 finisher (Π = 9.7 W/kg).
The physical interpretation of this heuristic fit is that the power to mass ratio reaches
its maximal value at short times limT/τ�1(Pmax/Mc) = 2Π and then decreases over
the characteristic time τ of the order of 30 s to a quasi-plateau limT/τ�1(Pmax/Mc) =
Π [1− ln(T/τ)γ ]. These two regimes correspond to the anaerobic regime (T < τ) and to
the aerobic regime (T � τ). The initial exponential decrease of the power has already
been reported and modeled by Sanders & Heijboer (2018). In their study, they use a
similar value for the characteristic time of the anaerobic phase (τ = 38.4 s). The log
term in the heuristic fit (3.3) describes the slow decrease of the power to mass ratio in
the long efforts limit [Morton & Hodgson (1996)]. It accounts for the effect of fatigue : if
γ = 0 there is no fatigue and if γ is positive (γ > 0) the larger its value the stronger the
effect of fatigue. Figure 3-(c) shows that the value γ = 0.0886 allows to account for the
fatigue for the different sets of data taken from the literature.
This discussion on the different terms of equation (3.1) reveals that the term Pm is
"active" and depends on the skills of the cyclist while the three other terms are "passive".
Equation (3.1) can thus be rewritten in order to show how the human power Pm is used :

Pm =
1

2
ρSCDV

3 +MgαV +
d

dt

(
1

2
MV 2

)
(3.4)

Equation (3.4) thus reveals that human power can be stored in three different terms, the
aerodynamic friction 1

2ρSCDV
3, the ascending term MgαV and the accelerating term

d/dt(MV 2/2). Each of these terms is connected to different cycling regimes which are
discussed below.

3.1. Time Trial (TT)
The results from all individual time trials in Tour de France from 2010 to 2019 are
presented in table 1. For the winner, the average velocity V̄TT = D/T defined as the
ratio between the distance D of the time trial and his time T is indicated in column 9.
Even if the distance of time trial changes from 6.4 km to 54 km we observe that flat time
trials (type FLT in blue) are covered with a mean velocity of the order of 52.5±2.5 km/h
while time trial in mountain (type MT in red) have velocities of the order of 35±2 km/h.
We first address the limit of flat time trial and treat the general case in a second step.

3.1.1. Flat Time Trial (FLT)
Since TT is observed to be a steady effort (d/dt = 0), equation (3.4) states that in
the limit of flat time trial (α = 0) the mechanical power is mainly injected in the
aerodynamical friction so that the equation for flat TT reduces to Pm ≈ 1/2ρSCDV

3. To
maximize his velocity the rider will select Pm = Pmax and for long time efforts (T � τ),
the power Pm will reach the quasi plateau associated to aerobic efforts presented in
Figure 3-(c). One thus deduces the characteristic velocity for flat TT :

VTT (T ) =

(
2Pmax(T )

ρSCD

)1/3

(3.5)

Using Pmax(T ) = ΠMc [1− ln(T/τ)γ ] with Π = 9.7 W/kg, τ = 32 and γ = 0.0886 we
evaluate Pmax(T ) for each rider in table 1 (column 10).
Concerning the drag area, SCD, recent experimental and numerical studies have revealed
the complex structure of the flow around the cyclist [Crouch et al. (2014); Hosoi (2014)].
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Table 1. Results from all individual time trials in Tour de France from 2010 to 2019. Flat time
trials are indicated with (FLT), hilly time trials with (SMT) and those in mountain with (MT).
The name of the winner is given together with his height Lc and mass Mc. The distance D of
the time trial is given together with the best time T . From these values, we calculate the actual
average velocity V̄TT = D/T . The expected power is calculated using equation (3.3) with the
time of the race T and the mass Mc of the winner. The predicted velocity VTT (T ) is calculated
using equation (3.5). The error between V̄TT and VTT (T ) is given in the last column.

year stage type winner Lc Mc D T V̄TT Pmax(T ) VTT (T ) error
(m) (kg) (km) (h min sec) (km/h) (W) (km/h) (%)

2019 13 SMT J. Alaphilippe 1.73 62 27.2 35’ 00” 46.6 378 48.9 5.0
2018 20 SMT T. Dumoulin 1.85 69 31 40’ 52” 45.5 411 50.3 10.7
2017 1 FLT G. Thomas 1.83 71 14 16’ 04” 52.3 479 53 1.4

20 SMT M. Bodnar 1.86 75 22.5 28’ 15” 47.8 470 52.7 10.2
2016 13 SMT T. Dumoulin 1.85 69 37.5 50’ 15” 44.8 399 49.9 11.4

18 MT C. Froome 1.86 66 17 30’ 43” 33.2 409 50.3 51.5
2015 1 FLT R. Dennis 1.82 72 13.8 14’ 56” 55.4 490 53.4 3.6
2014 20 SMT T. Martin 1.85 75 54 1h 6’ 21” 48.8 416 50.5 3.6
2013 11 FLT T. Martin 1.85 75 33 36’ 29” 54.3 454 52 4.0

17 MT C. Froome 1.86 66 33 51’ 33” 38.4 380 49.0 27
2012 1 FLT F. Cancellara 1.86 82 6.4 7’ 13” 53.2 606 57.3 7.8

9 SMT B. Wiggins 1.90 69 41.5 51’ 24” 48.4 397 49.8 2.8
19 FLT B. Wiggins 1.90 69 53.5 1h 4’ 13” 50.0 384 49.3 1.4

2011 20 SMT T. Martin 1.85 75 42.5 55’ 33” 45.9 427 51.0 11.1
2010 1 FLT F. Cancellara 1.86 82 8.9 10’ 0” 53.4 585 56.6 6.1

19 FLT F. Cancellara 1.86 82 52 1h 0’ 56” 51.2 460 52.3 2.2

Figure 4. Isosurfaces of average streamwise vorticity behind a cyclist as revealed by Griffith
et al. (2014), (b) Reported drag area measurements from wind tunnel testing of cyclists in
different positions and different studies : study 1 is [Davies (1980)], 2 is [Kyle & Burke (1984)],
3 is [Martin et al. (1998)], 4 is [Padilla et al. (2000)], 5 is [Jeukendrup & Martin (2001)], 6 and 7
are [Garcıa-Lopez et al. (2008)], 8 is [Gibertini & Grassi (2008)], 9 is [Underwood et al. (2011)],
10 is [Defraeye et al. (2010)], 11 is [Barry et al. (2014)] and 12 is [Barry et al. (2015)].

This complexity is illustrated in Figure 4-(a) using the isosurfaces of average streamwise
vorticity (reproduced from Griffith et al. (2014)). A summary of the values of SCD found
in wind tunnels and reported in the literature is presented in Figure 4-(b). For the TT
position we observe that SCD ≈ 0.25 m2. Using ρ = 1.2 kg/m3 we calculate VTT (T ) with
equation (3.5) and evaluate the error with the actual value V̄TT in the last column of
table 1. For all flat TT (FLT in blue) we observe that the error is smaller than 8%. For
hilly (SMT) and mountain types (MT) the velocity VTT predicted by assuming α = 0 is
unsurprisingly larger than the actual one and the discrepancy can reach 50%.
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Figure 5. (a) Road profile for the mountain type individual time trial of stage 18 in tour de
France 2016 between Sallanches and Megève [Photos Credits : AFP / Presse Sport] (b) Table
of comparison for the race of the winner C.Froome : s is the distance from departure, α the
slope of the road average over a km, tmeas is the time measured during the race at 4 different
locations (6.5 km, 10 km, 13.5 km and arrival), VTTc is the velocity computed using equation
(3.7), tcalc is the time calculated at each km. The last column compares tcalc and tmeas.

3.1.2. Non flat Time Trial
While studying Time Trial performance in section 3.1.1, we underlined that the velocity
VTT predicted by equation (3.5) only holds in the limit of a flat road (α = 0). When this
limit is not achieved, observations show that the average velocity is significantly reduced
(table 1). For the case of the individual time trial of the 18th stage of the Tour de France
2016, the road profile is clearly not flat as illustrated in Figure 5-(a). As presented in table
1, Froome wins the stage with a mean velocity of 33.2 km/h, much below the 50 km/h
predicted by equation (3.5) for the flat TT limit.
To account for gravity, one needs to reconcider the equation of motion (3.4) without the
unsteady term (TT is a steady regime) but with the gravitational contribution : Pm =

1/2ρSCDV
3 + MgαV . Using the flat limit expression VTT (T ) = (2Pmax(T )/ρSCD)

1/3,
this equation can be re-written as :[

VTTc(s)

VTT

]3

+ Fα(s)

[
VTTc(s)

VTT

]
= 1 (3.6)

where VTTc(s) is the velocity at the location s and F = MgVTT (T )/Pmax(T ). Using
Viete’s substitution VTTc(s)/VTT = Y − αF/3Y equation (3.6) is transformed into the
quadratic form Z2−Z−(αF/3)3 = 0, where Z = Y 3. Finally, one gets the exact solution
for the velocity as a function of the slope α :

VTTc(α)

VTT
=

(
1 +

√
1 + 4(αF/3)3

2

)1/3

− αF/3(
1+
√

1+4(αF/3)3

2

)1/3
(3.7)

In the small slope limit (αF/3 � 1), this expression reduces to : VTTc(α) =
VTT (1− αF/3). The velocity decrease is thus directly proportional to the slope.
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Table 2. Some classic mountain climbs and their records reproduced from Vayer & Portoleau
(2001). The average slope is indicated in the second column, the length of the climb D in the
third and the record time T in the fifth. From these values we calculate the average velocity
V̄MT = D/T (column 6). The record holder is given in 4 and his height and mass in 7 and 8. Using
equation (3.3) we evaluate the power Pmax(T ) in column 9. The velocity VMT0 predicted by
equation (3.8) is given in column 10. The corrected velocity VMT1 accounting for the aerodynamic
drag and rolling resistance is calculated with equation (3.9) in column 11. The error between
the predicted velocity VMT1 and the actual velocity V̄MT is indicated in the last column.

MT slope D recordman T V̄MT Lc Mc Pmax VMT0 VMT1 error
(%) (km) (min sec) (km/h) (m) (kg) (W) (km/h) (km/h) (%)

The Pyrenees
Tourmalet (ouest) 7.5 18.7 T. Pinot 54’ 57” 20.7 1.80 63 363 24.3 20.2 1.0
Luz Ardiden 7.4 13.8 R. Laiseka 37’ 20” 22.2 1.84 60 366 25.9 20.8 6.0
Plateau de Beille 7.8 15.9 M. Pantani 43’ 30” 21.9 1.72 57 340 23.8 19.8 9.6
Soulor (nord) 8.1 8.5 R. Virenque 25’ 15” 20.4 1.79 65 418 25.2 21.1 4.6
Hautacam 7.7 13.8 B. Riis 34’ 35” 23.95 1.84 71 437 25.7 21.4 10.4
Aspin (ouest) 7.6 5 L. Piepoli 14’ 00” 21.4 1.69 54 374 28.2 21.5 0.73

The Alps
La planche des
belles filles 9 5.8 G. Bennett 17’ 21” 20.1 1.80 58 391 23.4 20.1 0.44
Ventoux (sud) 8.6 15.9 M. Pantani 46’ 20.7 1.72 57 337 21.5 18.6 10.0
Alpe d’Huez 8.1 13.8 M. Pantani 36’ 50” 22.5 1.72 57 348 23.5 19.8 12
Izoard (sud) 7.4 9.1 M. Indurain 26’ 30” 20.6 1.86 76 485 28.0 22.7 10.3
Izoard 7 13.8 W. Barguil 37’ 53” 21.9 1.82 61 371 27.4 21.2 2.6
Galibier (nord) 6.9 17.9 M. Pantani 48’ 20” 22.2 1.72 57 335 26.6 20.5 7.4
Madeleine 7.8 19 R. Virenque 56’ 20.3 1.97 65 373 23.4 19.9 2.3

It also depends on the athlete characteristics via the parameter F = MgVTT /Pm =(
2M3g3/ρSCDP

2
m

)1/3. The larger this parameter the larger the relative velocity decrease.
In the case of Froome in this stage, one finds Pmax = 409.3 W, VTT = 13.97 m/s
(50.3 km/h) and F = 22.1.
Using the slopes α(s) in the different sections of the stage presented in Figure 5-(a),
one can then evaluate the corresponding velocity VTTc(α(s)) using equation (3.7) and
deduce the time tcalc(s) =

∫ s
0
ds′/VTTc(α(s′)). This time is presented in the fifth column

of Figure 5-(b). It can be compared to the 4 intermediate times measured during the race
at the locations 6.5 km, 10 km, 13.5 km and 17 km. These times are reported in the third
column tmeas. The error between the estimated and the actual time never exceed 3% and
the mean velocity we calculate is 33.4 km/h, very close to the 33.2 km/h reported in
table 1.

3.2. High Mountain (MT)
The characteristics of some emblematic mountain climbs associated to Tour de France
together with the records reproduced from the book of Vayer & Portoleau (2001) are
presented in table 2.
The typical mean slope is 8%, the length varies from 5 to 19 km and the mean velocity
for the fastest climbers is 22 ± 2 km/h. At this velocity, the power consumed through
aerodynamical friction is typically 20− 30 W while the power developed by the rider is
still of the order of 400 W. We thus first neglect the aerodynamical drag in our analysis
of mountain climb. In the steady regime, equation (3.4) reduces to the balance between
the maximal generated muscle power Pm = Pmax(T ) and the climbing termMgαV . This
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Figure 6. (a) Example of final sprint in a road race. Photos Credits : Thomas Vergouwen
(b) Example of power output and speed recorded at the end of a road race. The final sprint
is highlighted in grey. Reproduced from Menaspa (2015) (c) Characteristics of road sprints in
professional competitions ; mean ± SD (range). Reproduced from Menaspa et al. (2015).

balance leads to the expression of the climbing velocity VMT0 :

VMT0(T ) =
Pmax(T )

Mgα
(3.8)

Using equation (3.3) with τ = 32 s, γ = 0.0886 and Π = 9.7 W/kg we estimate Pmax(T )
for all the riders in table 2 (column 9) and deduce the velocity VMT0(T ) (column 10)
with equation (3.8) taking Mb = 10 kg. The predicted velocity is always larger than the
actual velocity by typically 20%-30%.

To obtain a better prediction, one needs to account for the aerodynamic drag and for the
rolling resistance. In the equation Pm = 1/2ρSCDV

3 + MgαV + µMgV , the dominant
term in climbing is the one associated to α. Using a perturbative method, we get the
correction associated to the extra two terms :

VMT1(T ) = VMT0(T )

(
1− µ

α
− 1

2

ρSCDV
2
MT0

Mgα

)
(3.9)

In the limit α � 1 the corrective terms vanish and we recover VMT1 = VMT0. With
µ = 0.0032, ρ = 1.2 kg/m3 and SCD = 0.25 m2, the corrected velocity VMT1(T ) is
calculated and the results are listed in column 11 of table 2. The error reported in the
last column reveals that the corrected velocity is closer to reality (less than 10 %).

3.3. The Sprint
The last term of equation (3.4) is associated to the acceleration of the rider. This term
has been neglected so far since we have only considered phases where the velocity remains
mainly constant. This is no longer the case for sprints. Some characteristics of a road
sprint are presented in Figure 6 : the power output recorded in a bunch sprint performed
in a professional road cycling competition is presented in Figure 6-(b) together with the
corresponding velocity [Menaspa (2015)]. Interestingly, the power data were recorded
during a successful sprint. In this example the duration of the final sprint is 11 s, and
the mean power was 1020 W (peak power 1248 W), with a maximal recorded speed of
66 km/h. The authors also report the intensity recorded before the sprint. The cyclist
rode at an average power output of 490 W in the last 3 minutes. The data collected over
a larger number of sprinters are gathered in the table presented in Figure 6-(c).
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Figure 7. Four different positions used during descents with the corresponding static pressure
coefficient CP = 2(P − P0)/ρV 2

0 on cyclist and bicycle surfaces. P is the static pressure, P0

the atmosphéric pressure and V0 the velocity of the center of mass. The frontal area S and
the drag area SCD are also indicated for four significantly different positions : (a) the Froome
position, (b) the Pantani position, (c) Top Tube 4 and (d) The superman position. This figure
is reproduced from Blocken et al. (2018a).

Since the slope of the road α is small for sprints, their dynamic is described by a
simplified version of equation (3.4) : d/dt(1/2MV 2)+1/2ρSCDV

3 = Pm. This non linear
equation can be turned into a linear equation in V 3 by replacing the time derivative term
d/dt(1/2MV 2) by its spatial equivalent d(1/3MV 3)/ds :

dV 3

ds
+

V 3

Lsprint
=

3Pm
M

(3.10)

where Lsprint = 2M/3ρSCD appears as the characteristic length scale of sprints. Ac-
cording to the data presented in Figure 6, before launching the sprint the power is of
the order of Pm0 ≈ 490 W which leads in the steady limit to the velocity before sprint
V0 ≈ (2Pm0/ρSCD)

1/3. With SCD ≈ 0.25 m2 this leads to V0 = 53 km/h. When the
sprint is launched the power increases to Psprint ≈ 1100 W and the maximum velocity
which could be reached in steady state is Vsprint = (2Psprint/ρSCD)

1/3. The value of the
aerodynamic coefficient in the sprint regular position is 0.3 m2 [Blocken et al. (2019)].
We thus deduce Vsprint ≈ 66 km/h. The exact solution of equation (3.10) is :

V (s) = Vsprint

[
1− e−s/Lsprint +

(
V0

Vsprint

)3

e−s/Lsprint

]1/3

(3.11)

This exact solution reveals that the acceleration from V0 to Vsprint requires the cha-
racteristic length Lsprint. With M = 80 kg and SCD ≈ 0.3 m2 one deduces that the
sprints must start at least 150 m before the finish line. At an average speed of 60 km/h,
this distance is covered over 9 s, which is the characteristic duration of sprints [Menaspa
et al. (2013)]. The characteristic velocities V0 and Vsprint as well as the duration of actual
sprints are thus correctly described by equation (3.10).

3.4. The Descent
In a first approximation, we consider that during descents, cyclists mainly rest (Pm ≈ 0)
and change their position in order to maximize their velocity. Different positions have
been tested as illustrated in Figure 7 reproduced from the detailed study of Blocken et al.
(2018a). Since the muscle power is null and the regime steady, the characteristic velocity
in the descent VD0 results from the balance between the propulsive gravitational power
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Figure 8. (a) Chris Froome in stage 8 of Tour de France 2016 pedaling during the descent
of Peyresourde. Photos Credits : France TV. (b) Impact of the pedaling on the speed during
descent. The needed power (3.13) is presented in blue and the muscle power (3.14) is presented
with a pink solid line.

Mg(−α)VD0 and the resistive aerodynamical friction :

VD0 =

√
2Mg(−α)

ρSCD
(3.12)

In their study, Blocken et al. (2018a) considered the descent of Chris Froome in stage 8
of Tour de France 2016. This stage ended with the descent of Peyresourde which is steep
with a regular slope (α = −8%) and not characterized by sharp bends. On the day of the
descent, the weather conditions were good and the road surface was dry. Near the very
end of this stage, just before the top of Peyresourde, Chris Froome accelerated and broke
away from the group. During part of the descent, he adopted the position shown in 7-(a)
and achieved speeds up to 90 km/h. Since Mc = 66 kg for Froome, we use M = 76 kg,
α = −8% and SCD = 0.233 in equation (3.12) to evaluate VD0 = 20.6 m/s = 74 km/h
which is smaller than the reported value. The difference is due to the injected power :
"Froome" position is used instead of the "Superman" position since it allows for pedaling
and Chris Froome was indeed pedaling during the descent of Peyressourde (figure 8-(a)).

To quantify the effect of pedaling during descent, one can rewrite equation (3.4) in the
steady state limit of a descent under the form :

Pm =
1

2
ρSCDV

(
V 2 − V 2

D0

)
. (3.13)

When Pm = 0 we recover V = VD0 and when Pm is positive, the velocity increases. This
first relationship between the injected power and the velocity is plotted with a blue line
in figure 8-(b), using SCD = 0.233, ρ = 1.2 kg/m3 and VD0 = 20.6 m/s. As already
discussed, the injected power also depends on the pedaling rate θ̇ (which is related to
the velocity by the relation V = RGθ̇, where R is the radius of the wheel and G is the
gear ratio). Typically in mountain stages, professional cyclists have a maximal gear ratio
G = 54/11 = 4.91. This second relationship between the injected power and the velocity



Guidelines for authors 13

takes the form :

Pm = 8ΠMc
V

RGθ̇max

(
1− V

RGθ̇max

)
(3.14)

In this expression we have used the relationship Pmax = 2ΠMc that applies for short
efforts after rest (limit of equation (3.3) when T = 0). This equation is presented with a
pink solid line in figure 8-(b), using Π = 9.7 W/kg, Mc = 66 kg, G = 4.91, R = 0.334 m
and θ̇max = 18.8 rad/s †. The first observation is that power can only be used if the
maximal pedaling velocity RGθ̇max is larger than VD0. This condition imposes a minimal
gear ratio Gmin = VD0/Rθ̇max. In the case of Froome, we get Gmin = 3.3. The typical
gear ratio used in mountain stages G = 54/11 = 4.91 > Gmin ensures that power can
be injected during the descent. Once this condition is fulfield, the effect of the injected
power on the velocity is obtained by equating the needed power (equation (3.13)) and
the injected power (equation (3.14)). This balance corresponds to the crossing point of
the blue and pink lines in figure 8-(b). One reads VD1 = 25.5 m/s which is 91.8 km/h.
A value much closer to the one observed in 2016 during the descent of Froome. One
also observes in figure 8-(b) that it exists a maximal velocity of descent VDmax obtained
when the injected power is maximal. In the case of Froome in Peyresourde we read
VDmax = 27.4 m/s = 98.8 km/h. In order to achieve this maximal velocity of descent he
should use a gear ratio such that RGmaxθ̇max = 2VDmax that is Gmax = 8.7. A huge
modification (extra kg during the climb) for a modest gain. One major characteristic
of descent is breaking which is not addressed here but constitutes a perspective of this
work.

4. Phase diagram for road cycling
Up to now, the best descender does not have a special jersey. In this section, we thus
analyse the other phases identified in section 3 and propose a phase diagram for road
cycling.

4.1. What is a climber ?
In the peloton, climbers are identified and usually associated to light weight together
with a large power to mass ratio [Lucia et al. (2000, 2001)] such as Marco Pantani (1.72
m, 57 kg), Alberto Contador (1.76 m, 61 kg), Nairo Quintana (1.67 m, 58 kg), Egan
Bernal (1.75 m, 60 kg).
On the physical side, one way to define a climber is to discuss the validity domain of
equation (3.8) for VMT0 : in the steady regime, equation (3.8) only holds if the power
dissipated by aerodynamical forces can be neglected. Since VMT0 ∝ 1/α the smaller
the slope the larger the velocity. This implies that equation (3.8) only holds above a
critical slope α? for which the gravitational power request Mgα?V (α?) exactly balances
the power dissipated by the aerodynamical friction 1/2ρSCDV (α?)3 (we neglect solid
friction to simplify the discussion). This balance leads to the following expression :

α? =

(
Pm
M

)2/3(
ρSCD
2Mg3

)1/3

(4.1)

This angle separates the flat region (α < α?) where the aerodynamics dominates gravity
from the mountain region (α > α?) where gravity dominates. The limit α? = ∞
corresponds to g = 0 where the mountains do not influence the velocity any more.

†. which corresponds to θ̇max = 180 RPM
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Figure 9. Phase diagram for road cycling. Photos Credits : Thomas Vergouwen / AFP /
Presse Sport.

The angle α? also depends on the athlete characteristics (Pm,M, SCD) and one deduces
from the zero g discussion that climbers have a large α?.
Equation (4.1) shows that in order to achieve a large α?, one needs a large power to mass
ratio (first term) but also a small mass (second term), thus recovering what has been
reported for climbers by Lucia et al. (2000).
Since the power to mass ratio can be approached by the heuristic equation (3.3), one
deduces that for a climb, which lasts in general T ≈ 30 min� τ , the power to mass ratio
reduces to Pm/Mc = Π [1− ln(T/τ)γ ] ≈ 0.64 ΠMc/M , using γ = 0.0886 and τ = 32 s.
If N stands for the number of cyclists of the Tour de France, one can define the climbers
as the best 20% of the peloton by a critical angle α?80 such that 80% of the peloton has
a lower angle α?. One can then use a scale of α? as the horizontal axis of the diagram
presented in Figure 9. The riders with a personal α? larger than α?80 are climbers.

4.2. What is a sprinter ?
The first remark about sprinters is that they win lots of stages : the examination of the
sprint results in several grand tours (2008-2011) indicates that 79 stages (31 % of 252
total number of stages) were won by only 24 sprinters. Five sprinters won 54 stages of
which 1 sprinter won 30 stages [Menaspa et al. (2013)]. Mark Cavendish (70 kg), Peter
Sagan (73 kg), Erik Zabel (69 kg) are some emblematic figures of this discipline.
On the physical side, according to equation (3.10), the best sprinter is the one with the
largest peak velocity Vsprint = (2Psprint/ρSCD)

1/3. A sprinter is thus characterized by a
large absolute power and does not depend on the power to mass ratio. What we know from
figure 3-(c) is that the maximal power is obtained during short period corresponding to
an anaerobic effort. Since sprints occur at the end of a race that last few hours, a sprinter
must be protected by his team in order to keep his energy for the last hundreds of meters.
What we also learn from 3-(c) is that the maximal value of the power depends on the
cyclist. Always using equation (3.3), we can evaluate the power Psprint with T = 10 s
and we find Psprint = 1.70 ΠMc. As we did for climbers, the associated velocity Vsprint
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can be calculated for all the riders in the peloton in order to evaluate Vsprint|80 such
that 80% of the peloton has a lower peak velocity. The sprinters can then be defined as
the ones who verify :Vsprint > Vsprint|80. The vertical axis of the diagram presented in
Figure 9 presents this classification.

4.3. The 3 jerseys
The phase diagram presented in Figure 9 is thus composed of two axis, the horizontal
one dedicated to climbers and the vertical axis to sprinters. This diagram defines four
different regions and we need to discuss the associated physical properties to understand
the origin of the three jerseys : to be on the right hand-side of the diagram, a cyclist
must have α? > α?80, which implies to have a large P 2

m/M
3 = (Pm/M)

2
/M . In other

words a climber is defined by both a large power to mass ratio Pm/M and a small mass.
On the other hand, to be on the upper part of the diagram, a cyclist must have a large
power Psprint and a small drag area SCD. Since the power scales with the mass, a large
mass is expected to be in the upper part.
The upper-right part is populated with a category of cyclist which have both a large power
to mass ratio and which are able to develop a large power. This rather rare combination
defines time trial specialists and very complete cyclists which are the qualities recognized
for Tour winners.
The phase diagram for road cycling thus have three optimal regions, occupied by three
different physics and physiological characteristics and which are associated to three
different jerseys : the green for the best sprinter (top left), the polka dot for the best
climber (bottom right) and the yellow for the more complete one (top right).
Usually, the three jerseys are for three different cyclists but depending on the route of
the grand tour, one can have some overlap between these different regions. In 2019, the
results presented in Figure 1 reveal that the three jerseys winners were indeed different
in Tour de France and in Giro but for the Vuelta, the leader Primoz Roglic was also the
best sprinter.
Since 1903, over the 106 Tour de France we observe only one exception in 1969 where
Eddy Merckx won the three jerseys †.

4.4. Phase diagram for the Tour de France 2017
To construct the phase diagram of Tour de France 2017, one needs to determine α? and
Vsprint for each cyclist involved in the race. According to the discussions presented in
subsections 4.1 and 4.2, one needs to determine the individual value of Π. We use the
first stage of the Tour 2017 which was a flat time trial with D = 14 km. From the average
velocity V̄TT measured during the race for each rider we calculate the individual value
2Π = ρSCDV̄

3
TT /

[
Mc

(
1− γ ln(D/τV̄TT )

)]
. This expression is obtained using equations

(3.5) and (3.3). This value is then used to evaluate the two characteristics :

α? =

(
0.64 Π

Mc

M

)2/3(
ρSCD
2Mg3

)1/3

and Vsprint =

(
3.4 Π Mc

ρSCD

)1/3

(4.2)

The massMc and the size Lc of each cyclist are listed in annexe A. As we did throughout
the article SCD is taken constant to 0.25 m2, ρ = 1.2 kg/m3 andMb = 10 kg. From these
values, one is able to evaluate α? and Vsprint for the whole peloton.
The cumulative distribution of α? is presented in Figure 10-(a). One observes that α?
varies from 2.5% to 4.2% and we extract the value α?80 = 3.77%. Only 20% of the riders
have a higher α?. The cumulative distribution of Vsprint is presented in Figure 10-(b).

†. We thank Philippe Odier for this historical remark.
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Figure 10. Phase diagram for the Tour de France 2017 : (a) determination of α?
80, (b)

determination of Vmax|80, (c) construction of the phase diagram for the Tour 2017 : each black
square corresponds to a cyclist. The winner C. Froome is indicated with a large yellow square,
the green jersey M. Matthews is indicated with a large green square and the polka dot jersey
W. Barguil with a large white and red square. The large square in grey are used for the final
top 10.

The maximum velocity ranges from 60 km/h to 72 km/h with Vmax|80 = 68.7 km/h. So
that only 20% of the riders have a higher Vmax.
Using these values, one can thus construct the phase diagram of the Tour 2017 which is
presented in Figure 10-(c) : the three jerseys of C. Froome (yellow square), M. Matthews
(green square) and R. Bargil (white and red square) stand in the three different regions
discussed in subsection 4.3. We also report with grey squares the location of the riders
who finish in the top 10 of the general classification (2-R.Urán, 3-R. Bardet, 4-M. Landa,
5-F. Aru, 6-D. Martin, 7-S. Yates, 8-L. Meintjes, 9-A. Contador, 10-W. Barguil). Clearly
they are in the "climber" zone which underline the fact that the Tour 2017 had a hilly
design : 11 of the 21 stages where either medium mountain SMT (6) or high mountain
MT (5).

5. Conclusion and perspectives
In this paper, we first establish the equation of motion of a road cyclist and show that
it is able to account for the data measured during Tour de France for the four different
"disciplines" : Time-Trial, Climbing, Sprint and Descent. Using this equation we then
discuss the physics of the phases with continuous propulsion (Time-Trial, Climbing,
Sprint) and propose a phase diagram for road cycling which allows for the definition
of three optimal areas, connected to the three different jerseys. This analysis is applied
to the Tour de France 2017 and is shown to be consistent with actual data.
This work on the physics of cycling can be completed in different directions :
- We have only discussed individual phases. Collective effects such as the ones at play in
peloton induce a very stimulating physics which has just started to be considered [Belden
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et al. (2019); Blocken et al. (2018b)].
- Team strategy is known to have a major effect in the final ranking of a grand tour.
This team strategy which leads to an optimisation of the performance of the leader is an
open field as far as physics is concerned.
- We have only considered phases were the cyclist uses his maximal available power. The
issue of energy management during a race is completely open.
- The state of the road does not play a major role in our analysis. However, it is known
to be important for some special races such as the Paris–Roubaix which is famous for
rough terrain and cobblestones, or pavé (setts). The terrain has led to the development
of specialised frames, wheels and tyres. If one had to adapt the model to analyse
Paris–Roubaix, the friction term Pf should be differently discussed.
- For the descent, we have not discussed the question of breaking associated to turns.
If one had to study the evolution of speed in descent, breaking should obviously be
considered.
- All the study is conducted assuming that the bikes have gears which allow the rider to
keep his optimal physiological pedaling rate. Since there are no gear in track cycling, the
model developed only applies for road cycling. And a similar study must be conducted
for track cycling.
Finally, all sport uncertainties like motivation, resistance to pressure, wind and weather
in general have been neglected in our discussion. We just propose the view of physicists
and do not pretend to replace the living side of sport.
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Annexe A. Riders of the Tour de France 2017
The tables below presents the list of the riders of the Tour de France 2017 in alphabetic
order. For each of them we indicate their team, their age, height Lc, massMc reproduced
from the website (https ://www.google.fr/amp/s/todaycycling.com/tour-de-france-2017-
presentation-coureurs-age-poids-taille/amp/). Their average velocity V̄TT during the first
stage of the Tour 2017 which was a flat time trial run over a distance of 14 km in the
streets of the city of Düsseldorf is then given. This velocity is then used in section 4.4 to
construct the phase diagram presented in figure 10.
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Name Team Age (y.o.) Lc (m) Mc (kg) V̄TT (m/s)

ALBASINI Michael ORICA-Scott 36 1.72 65 13.910
AMADOR Andrey Movistar 30 1.81 73 14.120
ARNDT Nikias Team Sunweb 25 1.88 77.5 14.279
BACKAERT Frederik Wanty-Groupe Gobert 27 1.88 77 13.44
BAKELANTS Jan AG2R La Mondiale 31 1.77 67 13.60
BARDET Romain AG2R La Mondiale 26 1.84 65 13.79
BARGUIL Warren Team Sunweb 25 1.83 60 13.68
BAUER Jack Quick-Step Floors 32 1.91 74 13.81
BENNATI Daniele Movistar 36 1.83 71 13.72
BENNETT George LottoNL-Jumbo 27 1.80 58 13.19
BENOOT Tiesj Lotto Soudal 23 1.90 72 13.47
BETANCUR Carlos Movistar 27 1.67 65 13.75
BETTIOL Alberto Cannondale-Drapac 23 1.80 69 13.77
BEVIN Patrick Cannondale-Drapac 26 1.80 75 13.05
BOASSON HAGEN Edvald Dimension Data 30 1.85 75 14.28
BODNAR Maciej BORA – hansgrohe 32 1.86 70 14.04
BOLE Grega Bahrain Merida 31 1.77 68 13.40
BOUHANNI Nacer Cofidis 26 1.75 66 12.64
BRAMBILLA Gianluca Quick-Step Floors 29 1.70 57 13.46
BUCHMANN Emanuel BORA – hansgrohe 24 1.81 62 13.94
BURGHARDT Marcus BORA – hansgrohe 33 1.89 75 13.11
CALMEJANE Lilian Direct Energie 24 1.84 69 13.76
CARUSO Damiano BMC Racing Team 29 1.79 67 13.84
CASTROVIEJO Jonathan Movistar 30 1.71 62 14.22
CAVENDISH Mark Dimension Data 32 1.75 70 13.08
CHAVANEL Sylvain Direct Energie 37 1.81 73 13.83
CHAVES Johan Esteban ORICA-Scott 27 1.64 55 13.49
CIMOLAI Davide FDJ 27 1.85 69 13.15
CINK Ondrej Bahrain Merida 26 1.80 66 13.49
CLAEYS Dimitri Cofidis 30 1.89 77 13.40
CLARKE Simon Cannondale-Drapac 30 1.75 63 13.64
COLBRELLI Sonny Bahrain Merida 27 1.76 71 14.05
CONTADOR Alberto Trek – Segafredo 34 1.76 61 13.75
CURVERS Roy Team Sunweb 37 1.88 73 12.77
DE GENDT Thomas Lotto Soudal 30 1.77 69 13.44
DE KORT Koen Trek – Segafredo 34 1.79 69 13.75
DE MARCHI Alessandro BMC Racing Team 31 1.80 65 13.95
DEGAND Thomas Wanty-Groupe Gobert 31 1.76 63 13.29
DEGENKOLB John Trek – Segafredo 28 1.80 77 13.81
DELAGE Mickaël FDJ 31 1.80 70 13.37
DEMARE Arnaud FDJ 25 1.82 78 13.81
DOMONT Axel AG2R La Mondiale 26 1.79 65 13.46
DURBRIDGE Luke ORICA-Scott 26 1.87 78 12.22
EDET Nicolas Cofidis 29 1.76 60 13.67
ERVITI Imanol Movistar 33 1.89 75 13.83
FELLINE Fabio Trek – Segafredo 27 1.75 68 13.98
FRANK Matthias AG2R La Mondiale 30 1.76 64 13.55
FROOME Christopher Team Sky 32 1.86 69 14.34
FUGLSANG Jakob Astana Pro Team 32 1.82 68 13.75
GALLOPIN Tony Lotto Soudal 29 1.80 70 12.20
GASTAUER Ben AG2R La Mondiale 29 1.90 73 13.49
GAUTIER Cyril AG2R La Mondiale 29 1.68 64 13.11
GESCHKE Simon Team Sunweb 31 1.70 64 13.85
GESINK Robert LottoNL-Jumbo 31 1.89 70 14.06
GILBERT Philippe Quick-Step Floors 34 1.79 67 14.08
GOGL Michael Trek – Segafredo 23 1.86 70 13.53
GREIPEL André Lotto Soudal 34 1.84 75 13.71
GRIVKO Andre Astana Pro Team 33 1.81 70 14.26
GRMAY Tsgabu Bahrain Merida 25 1.75 63 13.53
GROENEWEGEN Dylan LottoNL-Jumbo 24 1.77 70 12.97
GRUZDEV Dmitriy Astana Pro Team 31 1.83 72 13.75
GUARNIERI Jacopo FDJ 29 1.89 78 13.05
HALLER Marco Katusha – Alpecin 26 1.78 72 13.29
HANSEN Adam Lotto Soudal 36 1.86 75 12.92
HAYMAN Mathew ORICA-Scott 39 1.90 78 13.65
HENAO Sergio Luis Team Sky 29 1.69 61 13.46
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Name Team Age (y.o.) Lc (m) Mc (kg) V̄TT (m/s)

HERRADA Jesús Movistar 26 1.83 72 13.94
HOLLENSTEIN Reto Katusha – Alpecin 31 1.97 80 13.99
HOWSON Damien ORICA-Scott 24 1.88 68 13.90
IMPEY Daryl ORICA-Scott 32 1.81 70 14.24
IRIZAR Markel Trek – Segafredo 37 1.82 73 13.64
IZAGIRRE Ion Bahrain Merida 28 1.73 60 12.18
KEUKELEIRE Jens ORICA-Scott 28 1.85 69 13.61
KITTEL Marcel Quick-Step Floors 29 1.88 82 14.28
KIRYIENKA Vasil Team Sky 35 1.82 69 14.41
KNEES Christian Team Sky 36 1.94 81 13.72
KONOVALOVAS Ignatas FDJ 31 1.90 75 13.85
KREUZIGER Roman ORICA-Scott 31 1.83 65 13.72
KRISTOFF Alexander Katusha – Alpecin 29 1.81 78 13.99
LAENGEN Vegard Stake UAE Team Emirates 28 1.95 80 13.52
LAMMERTINK Maurits Katusha – Alpecin 26 1.70 59 13.63
LANDA Mikel Team Sky 27 1.73 60 13.56
LAPORTE Christophe Cofidis 24 1.89 76 13.48
LATOUR Pierre AG2R La Mondiale 23 1.80 64 14.15
LE GAC Olivier FDJ 23 1.80 70 13.40
LEEZER Tom LottoNL-Jumbo 31 1.85 76 13.40
LEMOINE Cyril Cofidis 34 1.81 70 13.65
LUTSENKO Alexey Astana Pro Team 24 1.75 70 14.09
MACHADO Tiago Katusha – Alpecin 31 1.78 63 13.61
MAJKA Rafa BORA – hansgrohe 27 1.73 62 13.81
MARTENS Paul LottoNL-Jumbo 33 1.78 69 13.94
MARTIN Daniel Quick-Step Floors 30 1.75 59 13.81
MARTIN Guillaume Wanty-Groupe Gobert 24 1.73 55 13.13
MARTIN Tony Katusha – Alpecin 32 1.85 75 14.39
MATÉ Luis Ángel Cofidis 33 1.77 69 12.76
MATTHEWS Michael Team Sunweb 26 1.80 72 14.22
MCCARTHY Jay BORA – hansgrohe 24 1.74 63 13.53
MEINTJES Louis UAE Team Emirates 25 1.73 61 13.51
MINNAARD Marco Wanty-Groupe Gobert 28 1.78 65 13.11
MOINARD Amaël BMC Racing Team 35 1.80 69 13.34
MOLLEMA Bauke Trek – Segafredo 30 1.81 64 13.43
MORENO Daniel Movistar 35 1.73 59 13.40
NAESEN Oliver AG2R La Mondiale 26 1.84 71 13.46
NAVARRO Daniel Cofidis 33 1.75 60 12.95
NIEVE Mikel Team Sky 33 1.73 62 13.40
OFFREDO Yoann Wanty-Groupe Gobert 30 1.89 68 13.29
PANTANO Jarlinson Trek – Segafredo 28 1.73 61 13.83
PHINNEY Taylor Cannondale-Drapac 26 1.97 82 14.26
PINOT Thibaut FDJ 27 1.80 63 13.80
POLITT Nils Katusha – Alpecin 23 1.92 80 13.92
POLJANSKI Pawel BORA – hansgrohe 27 1.80 67 13.25
PORTE Richie BMC Racing Team 32 1.72 62 13.84
QUINTANA Nairo Movistar 27 1.67 59 13.83
ROCHE Nicolas BMC Racing Team 32 1.78 70 13.48
ROGLIC Primoz LottoNL-Jumbo 27 1.77 65 13.77
ROLLAND Pierre Cannondale-Drapac 30 1.84 67 13.46
ROOSEN Timo LottoNL-Jumbo 24 1.94 75 14.02
ROWE Luke Team Sky 27 1.85 72 13.03
SABATINI Fabio Quick-Step Floors 32 1.87 74 13.48
SAGAN Juraj BORA – hansgrohe 28 1.73 65 13.19
SAGAN Peter BORA – hansgrohe 27 1.84 73 14.15
SELIG Rüdiger BORA – hansgrohe 28 1.88 80 13.14
SÉNÉCHAL Florian Cofidis 23 1.79 76 13.35
SEPÚLVEDA Eduardo Fortuneo-VVital Concept 26 1.73 61 13.55
SIMON Julien Cofidis 31 1.76 65 13.29
SINKELDAM Ramon Team Sunweb 28 1.93 77 13.49
SWIFT Ben UAE Team Emirates 29 1.79 69 13.56
TALANSKY Andrew Cannondale-Drapac 28 1.75 63 13.81
TEN DAM Laurens Team Sunweb 36 1.84 69 13.63
TEUNISSEN Mike Team Sunweb 24 1.84 73 13.92
THOMAS Geraint Team Sky 31 1.83 71 14.52
TIMMER Albert Team Sunweb 32 1.86 71 13.79
TRENTIN Matteo Quick-Step Floors 27 1.79 74 14.36
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Name Team Age (y.o.) Lc (m) Mc (kg) V̄TT (m/s)

ULISSI Diego UAE Team Emirates 27 1.75 61 13.90
URAN Rigoberto Cannondale-Drapac 30 1.73 63 13.63
VAN AVERMAET Greg BMC Racing Team 32 1.81 74 13.91
VAN BAARLE Dylan Cannondale-Drapac 25 1.87 78 13.88
VAN EMDEN Jos LottoNL-Jumbo 32 1.86 74 14.29
VAN KEIRSBULCK Guillaume Wanty-Groupe Gobert 26 1.92 85 12.98
VALGREN Michael Astana Pro Team 25 1.79 71 13.73
VALVERDE Alejandro Movistar 37 1.78 61 12.18
VANSPEYBROUCK Pieter Wanty-Groupe Gobert 30 1.86 72 13.20
VERMOTE Julien Quick-Step Floors 27 1.79 71 13.69
VOECKLER Thomas Direct Energie 38 1.74 71 13.25
VUILLERMOZ Alexis AG2R La Mondiale 29 1.74 60 13.64
WAGNER Robert LottoNL-Jumbo 34 1.86 75 13.87
WELLENS Tim Lotto Soudal 26 1.83 65 14.05
WYSS Danilo BMC Racing Team 31 1.76 65 13.67
YATES Simon ORICA-Scott 24 1.72 59 13.98
ZABEL Rick Katusha – Alpecin 23 1.84 72 12.77
ZEITS Andrey Astana Pro Team 30 1.89 73 13.11


