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A multiphysics model for ultra-high frequency optomechanical resonators
optically actuated and detected in the oscillating mode
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1)Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, UMR 7162, 10 rue Alice Domon et Léonie Duquet,
Paris 75013, France
2)Centre de Nanosciences et de Nanotechnologies, CNRS, UMR 9001, Université Paris-Saclay, Palaiseau 91120,
France

Optomechanical systems combine extreme sensitivity and bandwidth in the control of mechanical motion, of interest
for various applications. Integrated on a chip, actuated and detected all-optically by a single laser, they could disrupt
sensing technologies. We introduce here a multiphysics model that describes their operation in the oscillating mode,
under sinusoidal modulation of the laser, when both photothermal forces and radiation pressure/electrostriction are
present, and when (non)linear absorption occurs in the device. The model is validated by systematic experiments on
ultra-high frequency optomechanical disk resonators and leads to a quantitative assessment of the amplitude and phase
of the demodulated output signal, which carries the sensing information.

The small dimensions of mechanical micro- and nano-
resonators induces a large responsivity to external perturba-
tions, making these systems ideal for sensing purposes1,2. Ac-
tuation of the mechanical system is necessary to increase the
vibration amplitude and improve its sensing performances3,4.
Among multiple actuation mechanisms, optical driving of me-
chanical resonators enables broadband actuation up to the
GHz mechanical frequency range. At the same time, optical
techniques permit ultrasensitive, eventually quantum-limited,
detection of motion. For these reasons, several optomechani-
cal devices5,6 have been pushed forward for magnetic field7,
mass8,9,10,11 or atomic force sensing12,13. Driving and detect-
ing the mechanical sensor in an all-optical way, with a single
laser source, offers an obvious advantage of simplicity, well
suited for integration. The oscillating sensing mode, where
the mechanical system is sinusoidally forced, is then obtained
under coherent modulation of the laser, while the output light
is demodulated.

Early experiments in optomechanics, while not aiming at
sensing, did implement such modulation/demodulation ap-
proach in order to characterize the dynamical response of
the system under study14,15. In 15, the effect of photother-
mal forces, where photons are absorbed and thermally dis-
tort the mechanical system, was considered within a delayed
force model. The latter efficiently depicted the behaviour
of employed cantilevers of mechanical frequency ωm=2π

×10kHz, but was inadequate for high frequency devices op-
erating in the good cavity limit ωm & κ with κ the optical
cavity decay rate16. In contrast, the canonical optomechan-
ical radiation-pressure model6 correctly works at arbitrary
high mechanical frequency, and modulation/demodulation ex-
periments in this regime have been popularized as being
the optomechanical analogue of electromagnetically induced
transparency17,18. Unfortunately, the latter model neglects
photothermal interactions, which are often sizable at room
temperature and of concrete importance for operational op-
tomechanical sensors19,20,21. In a recent paper22, a model was
introduced that solved for that discrepancy by writing three
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coupled equations for the cavity mode, the mechanical and
thermal degrees of freedom of a resonator, allowing quantita-
tive modelling of dynamical backaction effects at ultra-high
frequency with significant photothermal interactions. Despite
its prime importance for sensing, the oscillating mode with a
sinusoidally-forced resonator was however not treated in this
latter work. This is done here, where the model of22 is ex-
tended and solved in the case of a modulated input laser and
demodulated output optical signal. We derive compact ana-
lytical expressions for both quadratures of the demodulated
signal, including in a regime where nonlinear absorption is
present, giving rise to a nonlinear component of the optical
force. We confront these expressions to systematic exper-
iments on optomechanical disk resonators with mechanical
modes in the ultra-high frequency range, varying the modula-
tion frequency, the optical operating conditions such as detun-
ing and power, and the investigated mechanical modes. The
validation of the tested model prepares the ground for the cal-
ibrated use of integrated oscillating optomechanical sensors
optically operated at room temperature, a required step for
concrete applications.

A electron micrograph of the optomechanical system
under investigation is shown in Fig. 1 (a). It con-
sists of a Gallium Arsenide (GaAs) disk patterned on an
GaAs(200 nm)/Al0.8Ga0.2As(1800 nm)/GaAs(substrate) epi-
taxial wafer using e-beam lithography and inductively cou-
pled plasma etching. Hydrofluoric acid under-etching is em-
ployed to selectively remove the AlGaAs and shape the disk
pedestal. This structure supports optical whispering gallery
modes (WGMs) that can be excited via an integrated sus-
pended waveguide at a rate κex (Fig. 1 (b)). Radiative con-
tributions to the WGM cavity losses (bending and scattering
losses) are grouped under the rate κrad. Intracavity photons
are absorbed at a rate κabs. As depicted in Fig. 1 (c), a sin-
gle telecom (sub-bandgap) photon can be absorbed in a tran-
sition involving a mid-gap state23,24 (κlin), while a pair can
be directly absorbed by two-photon absorption (κTPA), such
that κabs = κlin +κTPA. Both effects, linear and nonlinear in
the circulating power, are responsible for heating up the res-
onator. For a ∆T temperature increase of the disk, the local
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FIG. 1. (a) Electron micrograph: GaAs optomechanical disk (blue)
in the vicinity of its coupling waveguide (green), whose extremities
are tapered for efficient light injection and collection. The guide is
supported by two hexagonal holding pads (left), which play no opti-
cal nor mechanical role. (b) Three contributions to the optical cavity
loss rate (κ): the radiative losses (κrad), coupling rate to the waveg-
uide (κex) and absorption losses (κabs). (c) Linear absorption (κlin)
involves single telecom photon processes, while two-photon absorp-
tion TPA (κTPA) involves pairs of photons. (d) Optical, mechanical
and thermal degrees of freedom in interaction (see text).

stress induced by thermal expansion is given by25:

σ
th
i j =Ci jklβthδkl∆T (1)

with Ci jkl the stiffness tensor and βth the thermal expansion
coefficient of the material. Each mechanical mode of the res-
onator is impacted its own way by this thermal stress. In
a lumped element model associated to a given mechanical
mode, the effective mass on a spring is subjected to a pho-
tothermal force Fpth, whose amplitude is given by25:

Fpth =
∫

V
dV σ

th
i j Si j = α×∆T (2)

where Si j is the strain field of the considered mechanical
mode. Another consequence of the temperature increase in the
disk is the red-shift of optical and mechanical resonances. The
first is a consequence of the thermo-optic effect (TO) while
the second is related to the thermo-elastic (TE) softening of
the material at high temperature. When combined with the
canonical optomechanical coupling between the motion x and
the optical cavity field a, these various thermal effects give
rise to a close set of interactions between optical, mechanical
and thermal degrees of freedom (Fig. 1 (d)), governed by
three coupled equations:

ȧ =−κ

2
a+ i

(
∆+gomx+

ωcav

ng

dne f f

dT
∆T
)

a+
√

κexain,

meffẍ+meffΓmẋ+meffω
2
mx = Fpth +Fopt,

∆̇T =− 1
τth

(
∆T −Rthκabsh̄ωL|a|2

)
,(3)

with ∆ = ωL − ωcav the laser-cavity detuning, gom =
−∂ωcav/∂x the optomechanical frequency-pull parameter, ng
and dne f f /dT being respectively the effective group refractive
index and thermo-optic coefficient. Optical fields are writ-
ten in the rotating frame. |a|2 is normalized to the number
of photons in the cavity and ain such that h̄ωL|ain|2 is the
input power in the waveguide. We chose a phase reference
such that ā (āin) is real (complex) valued. meff, Γm and ωm
are the mechanical resonator’s effective mass, damping rate
and (temperature-dependent through TE) resonant frequency.
Forces acting on the mass include a photothermal (Fpth) and
a radiation pressure and electrostrictive (Fopt) contribution.
The latter is given by as Fopt = h̄gom|a|2, where gom is calcu-
lated numerically considering both the geometrical and photo-
elastic coupling26. Rth and τth are the thermal resistance and
relaxation time of the resonator. This model serves as a start-
ing point to describe modulation/demodulation experiments
of interest for sensing in the oscillating mode.

Fig. 2 shows the experimental set-up employed to perform
optical actuation and detection of the mechanical device pre-
viously described. The light of a tunable telecom laser is
amplitude-modulated by a Mach-Zehnder electro-optic mod-
ulator (EOM), generating two side-bands in the input field27:
ain(t) = āin

(
1+β/2e+iΩt +β/2e−iΩt

)
, where Ω and β are

the modulation angular frequency and depth. Two micro-
lensed fibers provide injection into and collection from the
waveguide coupled to the disk, where a TE or TM WGM
is excited depending on the polarization controller (PC) se-
lection. The intracavity field response to the modulation
is17: a(t) = ā+δa(t) with δa(t) = A−e−iΩt +A+e+iΩt , while
we write the displacement and temperature increase: x(t) =
x̄+δx(t), ∆T (t)=∆T +δT (t) with δx(t)=Xe−iΩt +X∗e+iΩt

and δT (t) = ∆Tce−iΩt + ∆T ∗c e+iΩt . The steady-state value
of the fields are given by: ā =

√
κexāin/(κ/2− i∆̄), x̄ =

(F̄opt + F̄pth)/(meffω
2
m), ∆T = Rth(κlin + κ̄TPA)h̄ωL|ā|2, with

∆̄ = ∆+gomx̄+ωcav/ng×dne f f /dT ×∆T the detuning mod-
ified by the optomechanical coupling and the thermo-optic ef-
fect. The output optical signal is first amplified by an Erbium-
doped fiber amplifier (EDFA) and converted into an electri-
cal signal by a photo-detector (PD), which is then fed into an
Ultra-High-Frequency (UHF) Lock-in Amplifier (LIA). This
latter signal is proportional to the modulus squared of the out-
put light field:

|aout(t)|2 =
∣∣∣āin−

√
kexā+

(
β

2
āin−

√
kexA−

)
e−iΩt

+

(
β

2
āin−

√
kexA+

)
e+iΩt

∣∣∣2 (4)

which comprises a DC term and two additional components
oscillating at Ω and 2Ω. The LIA demodulates this signal at
Ω and decomposes it into an in-phase (I) and quadrature (Q)
component:

I = Re{(ā∗in−
√

κexā)(āinβ −
√

κex(A−+A+))}
Q = Im{(ā∗in−

√
κexā)(

√
κex(A−−A+))} (5)

or into an amplitude (R =
√

I2 +Q2) and phase (θ =
arctan(Q/I)). Injecting the field ansatz into the governing
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FIG. 2. Experimental setup of the all-optical actuation/detection of
mechanical motion. The amplitude of the laser power is modulated
by an electro-optic modulator (EOM). The polarization is selected
with a polarization controller (PC). Light is injected into the inte-
grated waveguide evanescently coupled to the disk resonator, and
then collected and amplified by an Erbium-doped Fiber Amplifier
(EDFA). The signal is converted into current by a high-bandwidth
photo-detector (PD) and finally sent to a Ultra-High Frequency Lock-
in Amplifier (UHF-LIA), where it is mixed with the reference signal.

equations, we find:

A+(Ω) =
i
2

2φ(Ω+ ∆̄− iκ/2)+(φ +φ ∗)(ζ ∗opt +ζ ∗th)

∆̄2 + ∆̄(ζ ∗opt +ζ ∗th)− (Ω− iκ/2)2 (6)

A−(Ω) =
i
2

2φ(−Ω+ ∆̄− iκ/2)+(φ +φ ∗)(ζopt +ζth)

∆̄2 + ∆̄(ζopt +ζth)− (Ω+ iκ/2)2 (7)

with φ =
√

κexāinβ/2, ζopt = 2ā2h̄g2
omχ(Ω), ζth =

2ā2(ωcav/ng × dne f f /dT + αgomχ(Ω))Rthh̄ωL(κlin +

2κ̄TPA)(1 − iΩτth)
−1, φ ∗, ζ ∗opt and ζ ∗pth their complex

conjugates, and χ(Ω) =
[
meff(ω

2
m−Ω2− iΩΓm)

]−1 the
mechanical susceptibility. When thermal effects are switched
off, and under the approximation of a single sideband in the
input field, Eqs. 6 and 7 lead back to the results established
in the context of optomechanically induced transparency17.
Expressions for ∆Tc and X are given in the supplementary
material.

With the model now in hands, we start by presenting results
of modulation/demodulation both at low frequency (10 kHz-
100 MHz) and at high frequency, close to the first order Radial
Breathing Mode (RBM1), whose resonant frequency is lo-
cated at 132 MHz for the present disk (11 µm radius, 200 nm
thickness). An optical power of 200 µW is injected in the in-
tegrated waveguide and the laser wavelength is tuned to the
blue flank of the optical WGM resonance (∆ > 0). (Note that
systematic measurements on the red-detuned flank could not
be completed because of limiting thermo-optic instabilities).
When sweeping the modulation frequency from 10 kHz to
100 MHz, a dip in the phase and a decrease in the ampli-
tude appear in the demodulated signal (Fig. 3 (a)), as con-
sequence of a thermal phase lag. Indeed, as apparent in the
first line of Eq. 3, the thermo-optic effect, just as the canoni-
cal optomechanical coupling, modifies the amplitude and the
phase of the cavity optical field. Being a consequence of pho-
ton absorption, the former is filtered by the thermal response
of the device (in the microsecond range), and hence distin-
guishable from the latter. Much larger amplitude and phase
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FIG. 3. Amplitude and (unwrapped) phase response function of the
demodulated optical signal when the modulation frequency is swept
between 10 kHz and 100 MHz (a) and around the mechanical res-
onance frequency of RBM1 (b). The mode profile of RBM1 is in
inset. The amplitude is normalized by its maximum value over the
frequency span. (c),(d): X deduced from the model. The solid line
represents the results obtained with the full model when photothe-
mal forces and heating are present (α 6= 0, Rth 6= 0), while the thin
and thick dashed lines represents respectively the case where pho-
tothermal forces (α = 0) and heating of the resonator (Rth,α = 0)
are switched off.

shifts in the demodulated signal are however found closer to
the resonant frequency of the RBM1 (Fig. 3 (b)), whose mode
profile is shown in the inset. The photothermal force DC am-
plitude is three orders of magnitude larger than radiation pres-
sure (αRthωcavκ̄abs/gom = 3× 103), which contributes to an
efficient driving of motion even at the frequency of RBM1.
The experimental results of Fig. 3 (a) and (b) are well repro-
duced by the model introduced above (Eqs. 6,7) (solid line),
when using the parameters listed in Table I. The vast majority
of these parameters have been independently measured or cal-
culated with finite element method (FEM), while τth has been
obtained from the fit of the low frequency region (≤100 MHz)
(Fig. 3 (a)) and found to be consistent with the FEM value.
The amplitude of the absorptive effects, parametrized by κlin,
κTPA and Rth, was obtained by fitting the thermo-optic shift
and distortion of the WGM resonance23 (see supplementary
material). The nonlinear absorption rate is proportional to the
TPA coefficient βTPA

28:

κTPA =
ΓTPAβTPAc2

VTPAn2
g

h̄ωL|a|2 (8)

with ΓTPA and VTPA the TPA confinement factor and volume,
c the speed of light and ng the group index. With all parame-
ters of Table I fixed this way, the fit of the response in the high
frequency region is obtained with no additional adjustable pa-
rameter (Fig. 3 (b)).

To better appreciate the relative contributions of the pho-
tothermal force and radiation pressure/electrostriction in our
experiments, in Fig. 3 (c,d) we extract from our model the
mechanical displacement modulation component X as func-
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TABLE I. Model Parameters

Parameter Value Units Source
ωcav/(2π) 1.93×1014 Hz measured
κrad/(2π) 1.62 GHz measured
κext/(2π) 1.27 GHz measured
κlin/(2π) 0.13 GHz measured
βTPA 30 cm GW−1 fit and 29,30,31

ΓTPA 0.9994 - FEM (based on 28)
VTPA 2.42×10−17 m3 FEM (based on 28)
ng 3.47 - Effective Index Method

ref.32, and FEM
Pin 210 µW measured
2β 6.87% measured
dne f f /dT 2.35×10−4 K−1 Effective Index Method,

refs.33,32, and FEM
gom/(2π) 2.34×1019 Hz m−1 FEM (based on 34,26)
meff 255 pg FEM (based on 34,26)
ωm 2π×131.7 MHz measured
Γm 2π×135 kHz measured
α 7.83 µN K−1 FEM (based on25)
τth 3.99 µs fit and FEM (based on22)
Rth 5.64×104 K W−1 fit and FEM (based on22)
βth 5.7×10−6 K −1 ref.35

∆̄/(2π) 0.5 GHz measured

tion of the modulation frequency (solid line) and compare it
to situations where the photothermal forces only are switched-
off (thin dashed line, α = 0) and where all thermal effects are
switched off (thick dashed line, α , Rth = 0). At frequencies
below 106 Hz the amplitude of X is three order of magnitude
larger when the photothermal force is present (Fig. 3 (c)). It
reduces above the thermal frequency (∼ 106 Hz), following
a first-order filter function. At the same time, a π/2 phase
lag is present at modulation frequencies higher than 106 Hz,
which disappears when thermal effects are switched off. At
even higher frequency, close to the mechanical resonance, the
X amplitude also increases by a decade when the photother-
mal force is present (α 6= 0), despite the two order of magni-
tudes difference between thermal and mechanical frequencies
(Fig. 3 (d)). A π phase shift is retrieved in X when scan-
ning over the mechanical resonance, in accordance with an
harmonic oscillator response. This overall behavior is con-
sistent with that of a damped mechanical oscillator driven by
two forces, radiation pressure/electrostriction and photother-
mal, of different intensity and response function.

In order to further test the validity of our model, which in-
cludes a photothermal force that has both linear and nonlinear
components in the number of photons, we now systematically
vary the incident optical power and the laser-cavity detuning.
Figure 4 reports the amplitude and phase response of the de-
modulated optical signal at the RBM1 resonance frequency,
as a function of the power (a,b) and detuning (c,d). When the
number of intracavity photons increases, i.e. at larger power
and/or smaller detuning, the red-shift of the mechanical res-
onance due to thermal softening of the material becomes vis-
ible. Here again, the full model (solid line) reproduces well
the experimental data, all over the explored range. For the

largest power and smaller detuning, TPA is twice as large as
linear absorption. In this regime, it is responsible for increas-
ing the cavity line width and gives rise to a dominating nonlin-
ear photothermal force. For a given optical power and detun-
ing, the oscillation amplitude can be enhanced by increasing
the modulation depth (β ). This generally results in improved
performances for sensing applications. Measurements of the
frequency stability of our optomechanical disk sensor down to
10−7 are shown in the supplementary material.
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FIG. 4. Amplitude and (unwrapped) phase response function of the
demodulated optical signal when the modulation frequency is swept
around the mechanical resonance frequency of RBM1 for different
input powers (a,b) and laser-cavity detuning (c,d). Amplitude is nor-
malized with respect to its maximum value over the frequency span.
Dots represent experimental data while the model is shown as a solid
line.

The model presented here can be applied to any mechanical
mode of a sensor, by using the proper mechanical susceptibil-
ity, proper optomechanical coupling, and proper photother-
mal force. In Fig. 5 we report experimental data acquired on
the second order RBM (RBM2), together with the fit by the
model. Both the peak amplitude and phase jump are smaller
with respect to those of RBM1. This is the consequence of
a lower mechanical quality factor (QRBM2/QRBM1 = 0.4) and
of an increased spectral distance to the thermal cut-off fre-
quency, which reduces the photothermal actuation efficiency.
Similar data and analysis on a yet different category of me-
chanical modes, called the wine glass modes, are reported in
the Supplementary Material.

In conclusion, we have developed and systematically tested
a model that correctly depicts all-optical actuation and de-
tection of optomechanical devices operating at ultra-high fre-
quency in the oscillating mode. In contrast to prior models, it
does account for photothermal forces, both linear and nonlin-
ear, while also embedding radiation pressure and electrostric-
tive effects, without limitation on the mechanical frequency
range. These features are essential for a precise description
of chip-based semiconductor optomechanical sensors work-
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FIG. 5. Amplitude (a) and phase (b) response function of the demod-
ulated optical signal at RBM2 resonance frequency. The amplitude
is normalized with respect to its maximum value over the frequency
span. Dots represent experimental data, while the model is shown as
a solid line. The RBM2 displacement profile is reported in inset.

ing at room temperature, which are currently under develop-
ment. Their modelling will enable the accurate interpretation
of the demodulated sensor output when a physical signal (to
be detected) triggers its response.

I. SUPPLEMENTARY MATERIAL

See Supplementary Material for the measurements of the
device thermo-optic resonance shift, of the mechanical fre-
quency stability, mechanical wine-glass modes, and for the
derivation of X and ∆Tc.
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I. SUPPLEMENTARY MATERIAL

A. Supplementary Figures
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FIG. S1. (a) Measured (dots) and fitted (solid line) WGM optical response spectrum at different input pow-

ers, using the model introduced in Ref.S1. (b) The thermo-optic red-shift of the cavity resonant wavelength

is quadratic in the input power Pin, revealing the effect of TPA.
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FIG. S2. Frequency stability of the driven optomechanical resonator at different modulation depths given

as a percentage of the input power (2β in the main text). The Allan deviation is calculated following Ref.S2.

A 10−7 frequency stability is obtained for the largest EOM driving voltage (750 mV, 34.5% of modulated

input power), at 10 ms of integration time (τA).

FIG. S3. Amplitude and phase of the demodulated output signal around 190 MHz. Dots represent exper-

imental data, while the model is shown as a solid line. The total displacement profile of the mechanical

mode is reported in inset. It belongs to the wine glass modes family.
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B. Supplementary Equations

In presence of a small amplitude modulation of the input light at frequency Ω, the governing

equations (Eq.3 of the main text) lead to the following relations:(
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ā+
√

κext āin
β

2
= 0,(

−iΩ+ i∆̄− κ

2

)
A++ i

(
gomX∗+

ωcav

ng

dne f f

dT
∆T ∗c

)
ā+
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+

h̄ωLRthκabs

τth
ā(A−+(A+)∗) = 0, (S1)

The resulting expressions of A− and A+ as function of the frequency Ω are given in the main text,

while the temperature and displacement components are:

∆Tc(Ω) =
h̄ωLRth(κlin +2κ̄TPA)ā

1− iΩτth
× i∆̄(φ −φ∗)+(κ/2− iΩ)(φ +φ∗)

∆̄2 + ∆̄(ζopt +ζth)− (Ω+ iκ/2)2 (S2)

X(Ω) = χ(Ω) ā
(

h̄gom +
α h̄ωLRth(κlin +2κ̄TPA)

1− iΩτth

)
i∆̄(φ −φ∗)+(κ/2− iΩ)(φ +φ∗)
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