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A multiphysics model for ultra-high frequency optomechanical resonators optically actuated and detected in the oscillating mode S. Sbarra, 1 P. E. Allain, 1 S. Suffit, 1 A. Lemaître, 2 and I. Favero 1, a) Optomechanical systems combine extreme sensitivity and bandwidth in the control of mechanical motion, of interest for various applications. Integrated on a chip, actuated and detected all-optically by a single laser, they could disrupt sensing technologies. We introduce here a multiphysics model that describes their operation in the oscillating mode, under sinusoidal modulation of the laser, when both photothermal forces and radiation pressure/electrostriction are present, and when (non)linear absorption occurs in the device. The model is validated by systematic experiments on ultra-high frequency optomechanical disk resonators and leads to a quantitative assessment of the amplitude and phase of the demodulated output signal, which carries the sensing information.

The small dimensions of mechanical micro-and nanoresonators induces a large responsivity to external perturbations, making these systems ideal for sensing purposes [START_REF] Hanay | Single-protein nanomechanical mass spectrometry in real time[END_REF][START_REF] Sage | Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators[END_REF] . Actuation of the mechanical system is necessary to increase the vibration amplitude and improve its sensing performances [START_REF] Sansa | Frequency fluctuations in silicon nanoresonators[END_REF][START_REF] Ekinci | Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[END_REF] . Among multiple actuation mechanisms, optical driving of mechanical resonators enables broadband actuation up to the GHz mechanical frequency range. At the same time, optical techniques permit ultrasensitive, eventually quantum-limited, detection of motion. For these reasons, several optomechanical devices [START_REF] Favero | Optomechanics of deformable optical cavities[END_REF][START_REF] Aspelmeyer | Cavity optomechanics[END_REF] have been pushed forward for magnetic field [START_REF] Forstner | Cavity optomechanical magnetometer[END_REF] , mass [START_REF] Liu | Sub-pg mass sensing and measurement with an optomechanical oscillator[END_REF][START_REF] Yu | Cavity optomechanical spring sensing of single molecules[END_REF][START_REF] Sansa | Optomechanical mass spectrometry[END_REF][START_REF] Sauer | Single laser modulated drive and detection of a nanooptomechanical cantilever[END_REF] or atomic force sensing [START_REF] Chae | Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale[END_REF][START_REF] Allain | Optomechanical resonating probe for very high frequency sensing of atomic forces[END_REF] . Driving and detecting the mechanical sensor in an all-optical way, with a single laser source, offers an obvious advantage of simplicity, well suited for integration. The oscillating sensing mode, where the mechanical system is sinusoidally forced, is then obtained under coherent modulation of the laser, while the output light is demodulated.

Early experiments in optomechanics, while not aiming at sensing, did implement such modulation/demodulation approach in order to characterize the dynamical response of the system under study [START_REF] Schliesser | Radiation pressure cooling of a micromechanical oscillator using dynamical backaction[END_REF][START_REF] Metzger | Optical self cooling of a deformable Fabry-Perot cavity in the classical limit[END_REF] . In 15 , the effect of photothermal forces, where photons are absorbed and thermally distort the mechanical system, was considered within a delayed force model. The latter efficiently depicted the behaviour of employed cantilevers of mechanical frequency ω m =2π ×10kHz, but was inadequate for high frequency devices operating in the good cavity limit ω m κ with κ the optical cavity decay rate [START_REF] Restrepo | Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator[END_REF] . In contrast, the canonical optomechanical radiation-pressure model 6 correctly works at arbitrary high mechanical frequency, and modulation/demodulation experiments in this regime have been popularized as being the optomechanical analogue of electromagnetically induced transparency [START_REF] Weis | Optomechanically induced transparency[END_REF][START_REF] Safavi-Naeini | Electromagnetically induced transparency and slow light with optomechanics[END_REF] . Unfortunately, the latter model neglects photothermal interactions, which are often sizable at room temperature and of concrete importance for operational optomechanical sensors [START_REF] Belacel | Optomechanical terahertz detection with single meta-atom resonator[END_REF][START_REF] Zhu | Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances[END_REF][START_REF] Guha | Force Sensing with an Optomechanical Self-Oscillator[END_REF] . In a recent paper [START_REF] Guha | High frequency optomechanical disk resonators in III-V ternary semiconductors[END_REF] , a model was introduced that solved for that discrepancy by writing three a) ivan.favero@u-paris.fr; coupled equations for the cavity mode, the mechanical and thermal degrees of freedom of a resonator, allowing quantitative modelling of dynamical backaction effects at ultra-high frequency with significant photothermal interactions. Despite its prime importance for sensing, the oscillating mode with a sinusoidally-forced resonator was however not treated in this latter work. This is done here, where the model of [START_REF] Guha | High frequency optomechanical disk resonators in III-V ternary semiconductors[END_REF] is extended and solved in the case of a modulated input laser and demodulated output optical signal. We derive compact analytical expressions for both quadratures of the demodulated signal, including in a regime where nonlinear absorption is present, giving rise to a nonlinear component of the optical force. We confront these expressions to systematic experiments on optomechanical disk resonators with mechanical modes in the ultra-high frequency range, varying the modulation frequency, the optical operating conditions such as detuning and power, and the investigated mechanical modes. The validation of the tested model prepares the ground for the calibrated use of integrated oscillating optomechanical sensors optically operated at room temperature, a required step for concrete applications.

A electron micrograph of the optomechanical system under investigation is shown in Fig. 1 (a).

It consists of a Gallium Arsenide (GaAs) disk patterned on an GaAs(200 nm)/Al 0.8 Ga 0.2 As(1800 nm)/GaAs(substrate) epitaxial wafer using e-beam lithography and inductively coupled plasma etching. Hydrofluoric acid under-etching is employed to selectively remove the AlGaAs and shape the disk pedestal. This structure supports optical whispering gallery modes (WGMs) that can be excited via an integrated suspended waveguide at a rate κ ex (Fig. 1 (b)). Radiative contributions to the WGM cavity losses (bending and scattering losses) are grouped under the rate κ rad . Intracavity photons are absorbed at a rate κ abs . As depicted in Fig. 1 (c), a single telecom (sub-bandgap) photon can be absorbed in a transition involving a mid-gap state [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF][START_REF] Guha | Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 1e6[END_REF] (κ lin ), while a pair can be directly absorbed by two-photon absorption (κ TPA ), such that κ abs = κ lin + κ TPA . Both effects, linear and nonlinear in the circulating power, are responsible for heating up the resonator. For a ∆T temperature increase of the disk, the local stress induced by thermal expansion is given by [START_REF] Favero | Optomechanical Interactions[END_REF] :

σ th i j = C i jkl β th δ kl ∆T (1) 
with C i jkl the stiffness tensor and β th the thermal expansion coefficient of the material. Each mechanical mode of the resonator is impacted its own way by this thermal stress. In a lumped element model associated to a given mechanical mode, the effective mass on a spring is subjected to a photothermal force F pth , whose amplitude is given by [START_REF] Favero | Optomechanical Interactions[END_REF] :

F pth = V dV σ th i j S i j = α × ∆T (2) 
where S i j is the strain field of the considered mechanical mode. Another consequence of the temperature increase in the disk is the red-shift of optical and mechanical resonances. The first is a consequence of the thermo-optic effect (TO) while the second is related to the thermo-elastic (TE) softening of the material at high temperature. When combined with the canonical optomechanical coupling between the motion x and the optical cavity field a, these various thermal effects give rise to a close set of interactions between optical, mechanical and thermal degrees of freedom (Fig. 1 (d)), governed by three coupled equations:

ȧ = - κ 2 a + i ∆ + g om x + ω cav n g dn e f f dT ∆T a + √ κ ex a in , m eff ẍ + m eff Γ m ẋ + m eff ω 2 m x = F pth + F opt , ∆T = - 1 τ th ∆T -R th κ abs hω L |a| 2 ,( 3 
)
with ∆ = ω Lω cav the laser-cavity detuning, g om = -∂ ω cav /∂ x the optomechanical frequency-pull parameter, n g and dn e f f /dT being respectively the effective group refractive index and thermo-optic coefficient. Optical fields are written in the rotating frame. |a| 2 is normalized to the number of photons in the cavity and a in such that hω L |a in | 2 is the input power in the waveguide. We chose a phase reference such that ā ( āin ) is real (complex) valued. m eff , Γ m and ω m are the mechanical resonator's effective mass, damping rate and (temperature-dependent through TE) resonant frequency. Forces acting on the mass include a photothermal (F pth ) and a radiation pressure and electrostrictive (F opt ) contribution. The latter is given by as F opt = hg om |a| 2 , where g om is calculated numerically considering both the geometrical and photoelastic coupling [START_REF] Baker | Photoelastic coupling in gallium arsenide optomechanical disk resonators[END_REF] . R th and τ th are the thermal resistance and relaxation time of the resonator. This model serves as a starting point to describe modulation/demodulation experiments of interest for sensing in the oscillating mode. Fig. 2 shows the experimental set-up employed to perform optical actuation and detection of the mechanical device previously described. The light of a tunable telecom laser is amplitude-modulated by a Mach-Zehnder electro-optic modulator (EOM), generating two side-bands in the input field [START_REF] Rogers | Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator[END_REF] : a in (t) = āin 1 + β /2e +iΩt + β /2e -iΩt , where Ω and β are the modulation angular frequency and depth. Two microlensed fibers provide injection into and collection from the waveguide coupled to the disk, where a TE or TM WGM is excited depending on the polarization controller (PC) selection. The intracavity field response to the modulation is [START_REF] Weis | Optomechanically induced transparency[END_REF] : a(t) = ā + δ a(t) with δ a(t) = A -e -iΩt + A + e +iΩt , while we write the displacement and temperature increase: x(t) = x+δ x(t), ∆T (t) = ∆T +δ T (t) with δ x(t) = Xe -iΩt +X * e +iΩt and δ T (t) = ∆T c e -iΩt + ∆T * c e +iΩt . The steady-state value of the fields are given by: ā = √ κ ex āin /(κ/2i ∆), x = ( Fopt + Fpth )/(m eff ω 2 m ), ∆T = R th (κ lin + κTPA )hω L | ā| 2 , with ∆ = ∆ + g om x + ω cav /n g × dn e f f /dT × ∆T the detuning modified by the optomechanical coupling and the thermo-optic effect. The output optical signal is first amplified by an Erbiumdoped fiber amplifier (EDFA) and converted into an electrical signal by a photo-detector (PD), which is then fed into an Ultra-High-Frequency (UHF) Lock-in Amplifier (LIA). This latter signal is proportional to the modulus squared of the output light field:

|a out (t)| 2 = āin -k ex ā + β 2 āin -k ex A -e -iΩt + β 2 āin -k ex A + e +iΩt 2 ( 4 
)
which comprises a DC term and two additional components oscillating at Ω and 2Ω. The LIA demodulates this signal at Ω and decomposes it into an in-phase (I) and quadrature (Q) component:

I = Re{( ā * in - √ κ ex ā)( āin β - √ κ ex (A -+ A + ))} Q = Im{( ā * in - √ κ ex ā)( √ κ ex (A --A + ))} (5)
or into an amplitude (R = I 2 + Q 2 ) and phase (θ = arctan (Q/I)). Injecting the field ansatz into the governing equations, we find:

A + (Ω) = i 2 2φ (Ω + ∆ -iκ/2) + (φ + φ * ) (ζ * opt + ζ * th ) ∆2 + ∆(ζ * opt + ζ * th ) -(Ω -iκ/2) 2 (6) 
A

-(Ω) = i 2 2φ (-Ω + ∆ -iκ/2) + (φ + φ * ) (ζ opt + ζ th ) ∆2 + ∆(ζ opt + ζ th ) -(Ω + iκ/2) 2 (7) 
with φ = √ κ ex āin β /2, ζ opt = 2 ā2 hg 2 om χ(Ω), ζ th = 2 ā2 (ω cav /n g × dn e f f /dT + αg om χ(Ω))R th hω L (κ lin + 2 κTPA )(1 -iΩτ th ) -1 , φ * , ζ *
opt and ζ * pth their complex conjugates, and χ(Ω) = m eff (ω 2 m -Ω 2 -iΩΓ m ) -1 the mechanical susceptibility. When thermal effects are switched off, and under the approximation of a single sideband in the input field, Eqs. 6 and 7 lead back to the results established in the context of optomechanically induced transparency [START_REF] Weis | Optomechanically induced transparency[END_REF] . Expressions for ∆T c and X are given in the supplementary material.

With the model now in hands, we start by presenting results of modulation/demodulation both at low frequency (10 kHz-100 MHz) and at high frequency, close to the first order Radial Breathing Mode (RBM1), whose resonant frequency is located at 132 MHz for the present disk (11 µm radius, 200 nm thickness). An optical power of 200 µW is injected in the integrated waveguide and the laser wavelength is tuned to the blue flank of the optical WGM resonance (∆ > 0). (Note that systematic measurements on the red-detuned flank could not be completed because of limiting thermo-optic instabilities). When sweeping the modulation frequency from 10 kHz to 100 MHz, a dip in the phase and a decrease in the amplitude appear in the demodulated signal (Fig. 3 (a)), as consequence of a thermal phase lag. Indeed, as apparent in the first line of Eq. 3, the thermo-optic effect, just as the canonical optomechanical coupling, modifies the amplitude and the phase of the cavity optical field. Being a consequence of photon absorption, the former is filtered by the thermal response of the device (in the microsecond range), and hence distinguishable from the latter. Much larger amplitude and phase shifts in the demodulated signal are however found closer to the resonant frequency of the RBM1 (Fig. 3 (b)), whose mode profile is shown in the inset. The photothermal force DC amplitude is three orders of magnitude larger than radiation pressure (αR th ω cav κabs /g om = 3 × 10 3 ), which contributes to an efficient driving of motion even at the frequency of RBM1.

The experimental results of Fig. 3 (a) and (b) are well reproduced by the model introduced above (Eqs. 6,7) (solid line), when using the parameters listed in Table I. The vast majority of these parameters have been independently measured or calculated with finite element method (FEM), while τ th has been obtained from the fit of the low frequency region (≤100 MHz) (Fig. 3 (a)) and found to be consistent with the FEM value. The amplitude of the absorptive effects, parametrized by κ lin , κ TPA and R th , was obtained by fitting the thermo-optic shift and distortion of the WGM resonance [START_REF] Parrain | Origin of optical losses in gallium arsenide disk whispering gallery resonators[END_REF] (see supplementary material). The nonlinear absorption rate is proportional to the TPA coefficient β TPA [START_REF] Johnson | Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator[END_REF] :

κ TPA = Γ TPA β TPA c 2 V TPA n 2 g hω L |a| 2 (8) 
with Γ TPA and V TPA the TPA confinement factor and volume, c the speed of light and n g the group index. With all parameters of Table I fixed this way, the fit of the response in the high frequency region is obtained with no additional adjustable parameter (Fig. 3 (b)).

To better appreciate the relative contributions of the photothermal force and radiation pressure/electrostriction in our experiments, in Fig. 3 (c,d) we extract from our model the mechanical displacement modulation component X as func- tion of the modulation frequency (solid line) and compare it to situations where the photothermal forces only are switchedoff (thin dashed line, α = 0) and where all thermal effects are switched off (thick dashed line, α, R th = 0). At frequencies below 10 6 Hz the amplitude of X is three order of magnitude larger when the photothermal force is present (Fig. 3 (c)). It reduces above the thermal frequency (∼ 10 6 Hz), following a first-order filter function. At the same time, a π/2 phase lag is present at modulation frequencies higher than 10 6 Hz, which disappears when thermal effects are switched off. At even higher frequency, close to the mechanical resonance, the X amplitude also increases by a decade when the photothermal force is present (α = 0), despite the two order of magnitudes difference between thermal and mechanical frequencies (Fig. 3 (d)). A π phase shift is retrieved in X when scanning over the mechanical resonance, in accordance with an harmonic oscillator response. This overall behavior is consistent with that of a damped mechanical oscillator driven by two forces, radiation pressure/electrostriction and photothermal, of different intensity and response function.

In order to further test the validity of our model, which includes a photothermal force that has both linear and nonlinear components in the number of photons, we now systematically vary the incident optical power and the laser-cavity detuning. Figure 4 reports the amplitude and phase response of the demodulated optical signal at the RBM1 resonance frequency, as a function of the power (a,b) and detuning (c,d). When the number of intracavity photons increases, i.e. at larger power and/or smaller detuning, the red-shift of the mechanical resonance due to thermal softening of the material becomes visible. Here again, the full model (solid line) reproduces well the experimental data, all over the explored range. For the largest power and smaller detuning, TPA is twice as large as linear absorption. In this regime, it is responsible for increasing the cavity line width and gives rise to a dominating nonlinear photothermal force. For a given optical power and detuning, the oscillation amplitude can be enhanced by increasing the modulation depth (β ). This generally results in improved performances for sensing applications. Measurements of the frequency stability of our optomechanical disk sensor down to 10 -7 are shown in the supplementary material. The model presented here can be applied to any mechanical mode of a sensor, by using the proper mechanical susceptibility, proper optomechanical coupling, and proper photothermal force. In Fig. 5 we report experimental data acquired on the second order RBM (RBM2), together with the fit by the model. Both the peak amplitude and phase jump are smaller with respect to those of RBM1. This is the consequence of a lower mechanical quality factor (Q RBM2 /Q RBM1 = 0.4) and of an increased spectral distance to the thermal cut-off frequency, which reduces the photothermal actuation efficiency. Similar data and analysis on a yet different category of mechanical modes, called the wine glass modes, are reported in the Supplementary Material.

In conclusion, we have developed and systematically tested a model that correctly depicts all-optical actuation and detection of optomechanical devices operating at ultra-high frequency in the oscillating mode. In contrast to prior models, it does account for photothermal forces, both linear and nonlinear, while also embedding radiation pressure and electrostrictive effects, without limitation on the mechanical frequency range. These features are essential for a precise description of chip-based semiconductor optomechanical sensors work- ing at room temperature, which are currently under development. Their modelling will enable the accurate interpretation of the demodulated sensor output when a physical signal (to be detected) triggers its response.

I. SUPPLEMENTARY MATERIAL

See Supplementary Material for the measurements of the device thermo-optic resonance shift, of the mechanical frequency stability, mechanical wine-glass modes, and for the derivation of X and ∆T c .
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 1 FIG. 1. (a)Electron micrograph: GaAs optomechanical disk (blue) in the vicinity of its coupling waveguide (green), whose extremities are tapered for efficient light injection and collection. The guide is supported by two hexagonal holding pads (left), which play no optical nor mechanical role. (b) Three contributions to the optical cavity loss rate (κ): the radiative losses (κ rad ), coupling rate to the waveguide (κ ex ) and absorption losses (κ abs ). (c) Linear absorption (κ lin ) involves single telecom photon processes, while two-photon absorption TPA (κ TPA ) involves pairs of photons. (d) Optical, mechanical and thermal degrees of freedom in interaction (see text).

FIG. 2 .

 2 FIG.2. Experimental setup of the all-optical actuation/detection of mechanical motion. The amplitude of the laser power is modulated by an electro-optic modulator (EOM). The polarization is selected with a polarization controller (PC). Light is injected into the integrated waveguide evanescently coupled to the disk resonator, and then collected and amplified by an Erbium-doped Fiber Amplifier (EDFA). The signal is converted into current by a high-bandwidth photo-detector (PD) and finally sent to a Ultra-High Frequency Lockin Amplifier (UHF-LIA), where it is mixed with the reference signal.

FIG. 3 .

 3 FIG.3. Amplitude and (unwrapped) phase response function of the demodulated optical signal when the modulation frequency is swept between 10 kHz and 100 MHz (a) and around the mechanical resonance frequency of RBM1 (b). The mode profile of RBM1 is in inset. The amplitude is normalized by its maximum value over the frequency span. (c),(d): X deduced from the model. The solid line represents the results obtained with the full model when photothemal forces and heating are present (α = 0, R th = 0), while the thin and thick dashed lines represents respectively the case where photothermal forces (α = 0) and heating of the resonator (R th , α = 0) are switched off.

FIG. 4 .

 4 FIG.4. Amplitude and (unwrapped) phase response function of the optical signal when the modulation frequency is swept around the mechanical resonance frequency of RBM1 for different input powers (a,b) and laser-cavity detuning (c,d). Amplitude is normalized with respect to its maximum value over the frequency span. Dots represent experimental data while the model is shown as a solid line.

FrequencyFIG. 5 .

 5 FIG. 5. Amplitude (a) and phase (b) response function of the demodulated optical signal at RBM2 resonance frequency. The amplitude is normalized with respect to its maximum value over the frequency span. Dots represent experimental data, while the model is shown as a solid line. The RBM2 displacement profile is reported in inset.

  

  

TABLE I

 I 

			. Model Parameters
	Parameter	Value	Units	Source
	ω cav /(2π) 1.93 × 10 14	Hz	measured
	κ rad /(2π)	1.62	GHz	measured
	κ ext /(2π)	1.27	GHz	measured
	κ lin /(2π) β TPA	0.13 30	GHz cm GW -1	measured fit and 29,30,31
	Γ TPA	0.9994	-	FEM (based on 28 )
	V TPA	2.42 × 10 -17	m 3	FEM (based on 28 )
	n g	3.47	-	Effective Index Method
				ref. 32 , and FEM
	P in	210	µW	measured
	2β	6.87%		measured
	dn e f f /dT	2.35 × 10 -4	K -1	Effective Index Method,
				refs. 33,32 , and FEM
	g om /(2π)	2.34 × 10 19	Hz m -1	FEM (based on 34,26 )
	m eff	255	pg	FEM (based on 34,26 )
	ω m	2π × 131.7	MHz	measured
	Γ m	2π × 135	kHz	measured
	α	7.83	µN K -1	FEM (based on 25 )
	τ th R th β th ∆/(2π)	3.99 5.64 × 10 4 5.7 × 10 -6 0.5	µs K W -1 K -1 GHz	fit and FEM (based on 22 ) fit and FEM (based on 22 ) ref. 35 measured
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B. Supplementary Equations

In presence of a small amplitude modulation of the input light at frequency Ω, the governing equations (Eq.3 of the main text) lead to the following relations:

The resulting expressions of A -and A + as function of the frequency Ω are given in the main text, while the temperature and displacement components are: