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EINSTEIN CONSTRAINT EQUATIONS FOR KALUZA-KLEIN

SPACETIMES

CÉCILE HUNEAU AND CATERINA VÂLCU

Abstract. The aim of this article is to construct initial data for the Einstein equations
on manifolds of the form R

n+1
×T

m, which are asymptotically flat at infinity, without
assuming any symmetry condition in the compact direction. We use the conformal
method to reduce the constraint equations to a system of elliptic equation and work in
the near CMC (constant mean curvature) regime. The main new feature of our paper
is the introduction of new weighted Sobolev spaces, adapted to the inversion of the
Laplacian on product manifolds.

1. Introduction

In this paper, we study the constraint equations for Einstein equations on manifolds
of the form R

n+1 × T
m. Spacetimes with compact directions were introduced almost

a century ago by Theodor Kaluza and Oskar Klein [Kal18, Kle26] as an early attempt
of unifying electromagnetism and general relativity in a simple, elegant way. They
showed that Einstein vacuum equations on R

4+1 with a U(1) symmetry group reduce
to Einstein-Maxwell-Scalar field equations on R

3+1. In 1968, Kerner [Ker68] extended
this study to other compact isometry groups, obtaining in this way Einstein Yang-Mills
equations (see also Appendix 8 in [CB09]). Spacetimes with compact directions now
play an important role in supergravity and string theory ([CHSW85]). The symmetry
in the compact directions present in Kaluza-Klein theory at the beginning is relaxed
in more modern theories (see [BL87] and [Duf94]). The presence of a non symmetric
compact direction T

m yields the creation of modes (sometimes called Kaluza-Klein tower
of particles).

Einstein equations on product manifold have been the object of recent mathematical
study. In [Wya18], Zoe Wyatt proves the non-linear stability under perturbations of the
non-compact directions of the product of Minkowski spacetime with a m-dimensional
torus. A parallel result for the cosmological Kaluza-Klein spacetimes, where R

3+1 is
replaced with the 4-dimensional Milne spacetime has been proved [BFK19]. Finally,
stability has been proven for the product of higher-dimensional Minkowski spacetimes
with a compact, Ricci-flat K that admits a spin structure and a nonzero parallel spinor
[ABWY20]. In all these papers, the initial data are assumed to solve the constraint
equations, but the issue of the existence and behaviour of the initial data is not addressed.
Additionally, we would like to mention the paper of Xianzhe Dai on the positive mass
theorem for manifolds including those of Kaluza-Klein type [Dai04]. As an example of
the analysis of initial data on manifolds with other interesting asymptotics, we cite the
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work of Piotr T. Chruściel, Rafe Mazzeo and Samuel Pocchiola, who work on cylindrical
ends. [CM14, CMP13].

1.1. Preliminaries. The constraint equations on a Riemannian manifold (M, ĝ) estab-

lish the relationship between the metric ĝ and the extrinsic curvature K̂, which describes
the embedding ofM in a surrounding spacetime. For our model, we also accept the pres-
ence of a Klein-Gordon field 1. The resulting system takes the form

Rĝ + (trĝK̂)2 − ||K̂||2ĝ = 2ρ,

divĝK̂ −∇ĝtrĝK̂ = J,

where ρ is the energy density of the scalar field on M and J is the momentum den-
sity. The conformal method is a natural way to proceed when analyzing the constraint
equations [Lic44, CBY80]. Given a conformal change ĝ = ϕ2∗−2g, ϕ > 0, and the corre-

sponding decomposition of K̂ = ϕ−2(LgW +U)+ 2
nϕ

q−2g, the constraint equations take
the form

4(d− 1)

d− 2
∆gϕ+

(
Rg − |∇ψ|2g

)
ϕ =

(
V (ψ)−

d− 1

d
τ2
)
ϕ2∗−1 +

|U + LgW |2g + |π|2g
ϕ2∗+1

−→
∆gW =

d− 1

d
ϕ2∗dτ + πdψ.

(1.1)

Here, τ = trĝK̂ is the mean curvature of the spacelike hypersurface M , U is a sym-
metric 2-tensor, ψ and π are scalar functions corresponding to the scalar field and its
time derivative respectively, V is a smooth scalar function representing the potential of
the scalar field, and the positive scalar function u and vector field W are unknown. An
important point to signal is that d is the dimension of the entire manifold and 2∗ = 2d

d−2
is the critical Sobolev exponent corresponding to dimension d. We have also denoted
the covariant derivative with respect to g by ∇g, the conformal Lie derivative acting on
vector fields W in M as

(LgW )µν = ∇g µWν +∇g νWµ −
2

d
divgWgij, ∀µ, ν ∈ 1, d

and the conformal Laplace operator
−→
∆g takes the form

(
−→
∆gW )ν = −∇g µ

(
∇µ

gW
ν +∇ν

gW
µ −

2

d
gµν∇g kW

k

)
, ∀µ, ν ∈ 1, d.

Throughout this work, the Laplace-Beltrami operators are defined such that they have
positive eigenvalues, and thus negative sign.

We consider the product manifold M = R
n × T

m of dimension d = n + m. Let
(xi)i∈1,n be the coordinates of Rn and (θj)j∈1,m that of Tm. We call (M, ζ) the flat

1We believe that our study can be generalized to other matter fields, in the same way that it was
previously done for asymptotically Euclidean manifold. However, this is not the main focus of the present
paper.
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product manifold, where the metric ζ is defined as2

ζ = dx2 + dθ2.

The corresponding Laplacian takes the form ∆ζ = −
∑n

i=1 ∂
2
xi

−
∑m

j=1 ∂
2
θj
.

The behaviour of the Laplacian on R
n×T

m is different from that of the same operator
on the Euclidean space. First of all, when we speak of the behaviour at infinity of a
function u on R

n × T
m, we look at u(x, θ) ∈ R

n × T
m for |x| → ∞ and for all θ ∈ T

m.
So while ∆Rnu decays faster than u at infinity, the decay of ∆Tmu does not necessarily
follow suit. Another way to express this is that the zero and non-zero modes of u behave
differently under the Laplacian. In order to account for this, we define new weighted
Sobolev spaces which, while reminiscent of the function spaces that usually appear in
the treatment of asymptotically Euclidean manifolds [CbC81, Bar86], also keeps track
of the different decay rates.

Definition 1.1. The weighted Sobolev space W p
s,δ,γ(R

n × T
m) is the completion of the

space C∞
0 (Rn × T

m) of compactly supported smooth functions for the norm

‖u‖p
W p

s,δ,γ
(Rn×Tm)

=
∑

0≤|β|≤s

∫

Rn

|∂βx ū|
p〈x〉p(δ+|β|) dx+

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θ(u−ū)|
p〈x〉pγ dxdθ,

where ū(x) = 1
vol(Tm)

∫
Tm u(x, θ) dθ is the average on T

m for a fixed x and 〈x〉 =√
1 + |x|2. Here, 1 ≤ p <∞ and δ, γ ∈ R.

It is useful to also introduce notations for the separate components used in the above
definition. Let us denote the following weighted Sobolev norms

‖f‖p
W p

s,δ
(Rn)

=
∑

0≤|β|≤s

∫

Rn

|∂βxf |
p〈x〉p(δ+|β|) dx

and

‖f‖p
W̃ p

s,γ(Rn×Tm)
=

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θf |
p〈x〉pγ dxdθ.

Similarly, we write the Hölder norms

‖f‖Cm1
ρ1

(Rn) =
∑

0≤l≤m1

sup
Rn

(
|∂lxf |〈x〉

ρ1+l
)

and

‖f‖C̃m2
ρ2

(Rn×Tm) =
∑

0≤l≤m2

sup
Rn×Tm

(
|∂lx,θf |〈x〉

ρ2
)
.

2Our study also directly applies to the metrics ζα = dx2+α1(dθ
1)2 + ..+αm(dθm)2, with αi positive

constants. Note that these metrics are not isometric with each other.
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1.2. Main result. With the preliminaries out of the way, we are ready to present the
main theorem of the article. It states that initial data in the vacuum setting exist in the
near-CMC regime. We require the non-negativity of the scalar curvature and certain
decay rates at infinity. These conditions may not optimal, but are rather convenient.

Theorem 1.2. Let g be a metric on M = R
n × T

m, n +m = d, such that gij − ζij ∈
W p

2,σ,λ(M) and Rg ≥ 0, where d < p. We assume that the asymptotic decay of the metric

g verifies

−
n

p
< σ and 2−

n+m

p
< λ.

We consider the system corresponding to the vacuum constraint equations

4(d− 1)

d− 2
∆gϕ+Rgϕ = −

d− 1

d
τ2ϕ2∗−1 +

|LgW + U |2

ϕ2∗+1
, (1.2)

−→
∆gW =

d− 1

d
ϕ2∗dτ. (1.3)

Here, the mean curvature τ ∈W p
1,δ+1,γ , U is a vector field in W p

1,δ+1,γ and the scalar cur-

vature Rg ∈ W p
0,δ+2,γ is bounded and non-negative. We assume the following conditions

on their decay

−
n

p
< δ < −

n

p
− 2 + min(n, 2γ) and 0 < γ,

together with the coupling condition

δ − λ+ 2 < γ < δ + λ+
n

p
.

If the variation of the mean curvature is bounded,

||dτ ||W p
0,δ+2,γ

≤ ε,

with ε > 0 sufficiently small, we find solutions (ϕ,W ) to the vacuum constraint equations
(1.2)-(1.3), where ϕ = A+ u, u ∈W p

2,δ,γ, A > 0, ϕ > 0 and W ∈W p
2,δ,γ.

Comments on Theorem 1.2.

(1) We wrote our theorem on manifolds diffeomorphic to R
n × T

n, with one chart
and one end, but the result can be generalized to asymptotically flat manifolds
with several ends, as in the asymptotically Euclidean case.

(2) It would be interesting to generalize our result to R
n × K with K a compact

manifold. The main hiccup comes from the analysis of conformal Killing fields.
(3) We do not claim that our conditions on (σ, λ, δ, γ) are optimal. We can, however,

ensure that they hold by simply taking λ sufficiently large.
(4) Note also that the solutions we obtain have been taken to approach a constant

on the torus Tm as |x| goes to infinity: A > 0 in the case of ϕ and 0 in the case
of W .

(5) The condition Rg ≥ 0 can be relaxed, as in [CBIY00].

An immediate generalization of this result consists of finding initial data in the case
of the constraint equations in the presence of a scalar field ψ. The most straightforward
way to adapt the previous arguments is by asking that the coefficient of the zeroth
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order linear term h̃ := Rg − |∇ψ|2g is non-negative and that the scalar field’s potential

V satisfies |V (ψ)| ≤ d−1
d τ2. These standard conditions ensure that ∆g + h is injective

and that solutions of the inhomogeneous elliptic equation ∆gϕ+ h̃ϕ = v with v ≥ 0 are
positive.

Corollary 1.3. The constraint equations in the presence of a scalar field (1.1) accept
solutions given the hypotheses of Theorem 1.2 if, moreover, |∇ψ|2g ≤ Rg and |V (ψ)| ≤
d−1
d τ2.

Other similar results are conceivable, for example by fixing different matter sources.
The work included here, however, mainly focuses on the intricacies of handling the
vacuum case as a necessary first step.

The structure of the paper. In Section 2, we derive the embedding and multi-
plication properties corresponding to the weighted Sobolev spaces, which establish the
foundation for the rest of the proof. Section 3 contains the bulk of the proof. We study
the behaviour of elliptic operators, first on the flat manifolds, and then on asymptoti-
cally flat manifolds. Special attention needs to be given to the kernel of the conformal
Laplacian: we want to show there are no nontrivial conformal Killing vector fields which
decay to zero at infinity. Finally, in Section 4, we apply the classical barrier method to
solve the scalar constraint equation, and then choose to subsequently use a fixed-point
argument to find solutions to the entire system. An inverse function theorem would also
have been possible.

Acknowledgements. The authors would like to thank Romain Giquaud for helpful dis-
cussions in the process of writing this paper. CV is indebted to Fondation Mathématiques
Jacques Hadamard and LabEx LMH. This work was supported by a public grant as
part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx
LMH. The first author was supported by the ANR-19-CE40-0004

2. Weighted Sobolev spaces on a product manifold

As previously hinted, the introduction of the weighted Sobolev spaces is essential to
the resolution of elliptic systems on the product manifold R

n × T
m. In particular, we

need to see how classical multiplication and embedding properties apply in these spaces,
much like in [CbC81].

Proposition 2.1. The following multiplication property holds

W p
s1,δ1,γ1

(Rn × T
m)×W p

s2,δ2,γ2
(Rn × T

m) ⊂W p
s,δ,γ(R

n × T
m) (2.1)

when the following conditions on the weights are verified

s ≤ s1, s2, s ≤ s1 + s2 −
n+m

p
, δ ≤ δ1 + δ2 +

n

p
, δ + s ≤ γ1 + γ2, (2.2)

γ ≤ γ1 + γ2, γ ≤ min

(
si,

n

p

)
+ δi + γj, i 6= j.
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Additionally, we prove the embedding properties of the weighted Sobolev and Hölder
spaces:

1. W p
s,δ,γ(R

n × T
m) ⊂⊂W p

s′,δ′,γ′(R
n × T

m), s < s′, δ < δ′, γ < γ′, (2.3)

2. W p
s,δ(R

n) ⊂ Cm1
ρ1 (Rn), m1 < s−

n

p
, ρ1 < δ +

n

p
,

3. W̃ p
s,γ(R

n × T
m) ⊂ C̃m2

γ (Rn × T
m) m2 < s−

n+m

p
.

This result can easily be generalized for K an arbitrary compact set instead of Tm.

Proof.
The multiplication property (2.1). Let u ∈W p

s1,δ1,γ1
(Rn ×T

m) and v ∈W p
s2,δ2,γ2

(Rn ×

T
m). In our calculations, we can assume that u, v ∈ C∞

0 (Rn×T
m) and obtain the desired

property through a standard density argument.
We begin by estimating the spherically symmetric term of the W p

s,δ,γ norm of the

product uv,

∑

0≤|β|≤s

∫

Rn

|∂βxuv|
p〈x〉p(δ+|β|) dx =

∑

0≤|α|≤|β|≤s

∫

Rn

|∂αxu∂
β−α
x v|p〈x〉p(δ+|β|) dx

≤
∑

0≤|α|≤|β|≤s

∫

Rn

|∂αxu∂
β−α
x v|p〈x〉p(δ+|β|) dx

+
∑

0≤|α|≤|β|≤s

∫

Rn

∣∣∣∂αx (u− ū)∂β−α
x (v − v̄)

∣∣∣
p
〈x〉p(δ+|β|) dx.

Here, we used the basic identity fg = f̄ ḡ+ (f − f̄)(g − ḡ) for f, g ∈ C∞
0 (Rn × T

m). The
first integral is controlled as in the paper of Choquet-Bruhat, Isenberg and York on the
existence of initial data solution on asymptotically Euclidean manifolds [CBIY00]. To
be precise, we obtain that

∑

0≤|α|≤|β|≤s

∫

Rn

|∂αxu∂
β−α
x v|p〈x〉p(δ+β) dx . ‖ū‖W p

s1,δ1
‖v̄‖W p

s2,δ2
,

if the following conditions are satisfied

s ≤ s1, s2, s < s1 + s2 −
n

p
, δ ≤ δ1 + δ2 +

n

p
. (2.4)

For the second integral, we use Jensen’s inequality. We recall that the classical result
states that for any f an integrable function on T

m,

|f̄ |p =

∣∣∣∣
1

vol(Tm)

∫

Tm

f dθ

∣∣∣∣
p

≤
1

vol(Tm)

∫

Tm

|f |p dθ = |f |p.
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By combining the above with Hölder’s inequality, and moreover with the fact that
〈x〉α1 ≤ C〈x〉α2 for 0 ≤ α1 ≤ α2, it follows that∫

Rn

∣∣∣∂αx (u− ū)∂β−α
x (v − v̄)

∣∣∣
p
〈x〉p(δ+|β|)

≤
1

vol(Tm)

∫

Rn×Tm

|∂αx (u− ū)∂β−α
x (v − v̄)|p〈x〉p(δ+|β|)

. ‖∂αx (u− ū)〈x〉θ‖pLpa(Rn×Tm)

× ‖∂β−α
x (v − v̄)〈x〉λ‖p

Lpb(Rn×Tm)
,

with
1

a
+

1

b
= 1 and δ + |β| ≤ θ + λ. (2.5)

The last condition is satisfied for all |β| ≤ s if

δ + s ≤ θ + λ. (2.6)

We apply the Sobolev embedding for W s1,p(Rn × T
m) ⊂ Wα,pa(Rn × T

m) with s1 ∈ R

such that
n+m

p
− s1 <

n+m

pa
− α, (2.7)

to get

‖∂αx (u− ū)〈x〉θ‖Lpa(Rn×Tm) ≤ ‖(u− ū)〈x〉θ‖Wα,pa(Rn×Tm) ≤ ‖(u− ū)〈x〉θ‖W s1,p(Rn×Tm).

For
θ < γ1, (2.8)

we arrive at

‖(u− ū)〈x〉θ‖W s1,p(Rn×Tm) ≤ ‖u− ū‖
W̃ p

s1,γ1
(Rn×Tm)

.

Similarly, for the remaining term, we see that

‖∂β−α
x (v − v̄)〈x〉λ‖Lpb(Rn×Tm) ≤ C‖v − v̄‖

W̃ p
s2,γ2

(Rn×Tm)
,

where
n+m

p
− s2 <

n+m

pb
− (β − α) (2.9)

and
λ ≤ γ2 (2.10)

Conditions (2.6), (2.8) and (2.10) can be satisfied if and only if

δ + s ≤ γ1 + γ2 (2.11)

and conditions (2.5), (2.7) and (2.9) can be satisfied if and only if

s < s1 + s2 −
n+m

p
. (2.12)

We look at the second term of the W p
s,δ,γ(R

n × T
m) norm of uv:

∑

0≤|β|<s

∫

Rn×Tm

|∂β(uv − uv)|p〈x〉pγ dxdθ.
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Knowing that uv = [ū−(ū−u)][v̄−(v̄−v)] and that uv = ūv̄+(u− ū)(v − v̄), it suffices
to control
∫

Rn×Tm

|∂βx,θ

(
ū(v − v̄) + v̄(u− ū)− (u− ū)(v − v̄) + (u− ū)(v − v̄)

)
|p〈x〉pγ dxdθ.

Using Hölder’s inequality, we estimate the term

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θ(u− ū)(v − v̄)|p〈x〉pγ dxdθ

= vol(Tm)
∑

0≤|β|≤s

∫

Rn

|∂βx (u− ū)(v − v̄)|p〈x〉pγ dx

.
∑

0≤|ξ|≤|β|≤s

∫

Rn×Tm

|∂ξx(u− ū)∂β−ξ
x (v − v̄)|p〈x〉pγ dxdθ

.
∑

0≤|ξ|≤|β|≤s

‖∂ξx(u− ū)〈x〉θ‖pLpa(Rn×Tm)‖∂
β−ξ
x (v − v̄)〈x〉λ‖p

Lpb(Rn×Tm)

for
1

a
+

1

b
= 1 and γ ≤ θ + λ.

We control both factors by W̃ p
s1,γ1 and W̃ p

s2,γ2 norms, respectively, given that

γ ≤ γ1 + γ2 (2.13)

and (2.12) hold. Both

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θū(v − v̄)|p〈x〉pγ and
∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θ(u− ū)v̄|p〈x〉pγ

are similarly controlled. Thus, for

γ ≤ θ + λ, (2.14)

we have

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θū(v − v̄)|p〈x〉pγ

.
∑

0≤|ξ|≤|β|≤s

‖∂ξxū〈x〉
θ‖pLpa(Rn)‖∂

β−ξ
x,θ (v − v̄)〈x〉λ‖p

Lpb(Rn×Tm)
,

(2.15)

∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θv̄(u− ū)|p〈x〉pγ

.
∑

0≤|ξ|≤|β|≤s

‖∂ξxv̄〈x〉
θ‖pLpa(Rn)‖∂

β−ξ
x,θ (u− ū)〈x〉λ‖p

Lpb(Rn×Tm)
,
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as well as
∑

0≤|β|≤s

∫

Rn×Tm

|∂βx,θ(u− ū)(v − v̄)|p〈x〉pγ

.
∑

0≤|ξ|≤|β|≤s

‖∂ξx,θ(u− ū)〈x〉θ‖pLpa(Rn×Tm)‖∂
β−ξ
x,θ (v − v̄)〈x〉λ‖p

Lpb(Rn×Tm)
.

We are left with estimating the right-hand side of the above inequalities. We detail here
the proof for (2.15); the two others follow in the same way. We use different Sobolev
embeddings for s1 − |ξ| > n

p and s1 − |ξ| ≤ n
p . In the first case, we fix a > 1 such that

n

p
− (s1 − |ξ|) =

n

pa
(2.16)

and get

‖∂ξxū〈x〉
θ‖Lpa(Rn) ≤ ‖∂ξxū‖W p

s1−|ξ|,θ
(Rn)

.


 ∑

|t|≤s1−|ξ|

∫

Rn

|∂ξ+t
x ū|p〈x〉θ−ξ+ξ+t dx




1
p

. ‖ū‖W p
s1,δ1

(Rn)

if
θ ≤ δ1 + |ξ|. (2.17)

Similarly, it also holds that

‖∂β−ξ
x,θ (v − v̄)〈x〉λ‖Lpb(Rn×Tm) ≤ ‖(v − v̄)‖

W̃ p
s2,γ2

(Rn×Tm)
(2.18)

if
n+m

p
− s2 + β − ξ =

n+ 1

pb
, (2.19)

λ ≤ γ2. (2.20)

Condition (2.17) becomes
θ ≤ s1 + δ1, (2.21)

so (2.14) and (2.20) imply
γ ≤ s1 + δ1 + γ2. (2.22)

Moreover, (2.16) and (2.19) are covered by (2.12). Let us look at the case s1 − |ξ| > n
p .

We have the L∞ estimate

|∂ξxū| ≤ 〈x〉−δ1−
n
p
−|ξ|‖ū‖W p

s1,δ1
.

Consequently, it holds that
∫

Rn×Tm

|∂βx,θū(v − v̄)|p〈x〉pγ dxdθ . ‖ū‖W p
s1,δ1

‖v − v̄‖
W̃ p

s2,γ2

if γ − δ1 − |ξ| − n
p ≤ γ2. Since this must be true for all 0 ≤ |ξ| ≤ s1 −

n
p we obtain the

condition
γ ≤ γ2 + δ1 +

n

p
. (2.23)
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Conditions (2.4), (2.11), (2.12), (2.13) , (2.22), (2.23) (and the symmetric cases) can be
summarized in

s ≤ s1, s2, s ≤ s1 + s2 −
n+m

p
, δ ≤ δ1 + δ2 +

n

p
, δ + s ≤ γ1 + γ2,

γ ≤ γ1 + γ2, γ ≤ min(si,
n

p
) + δi + γj , i 6= j.

The Sobolev and Hölder embeddings (2.3). This proof is a straightforward adaptation
of the argument in the paper of Choquet-Bruhat Christodoulou [CbC81]. We consider
a sequence {fn}n∈N in the unit ball of W p

s,δ,γ(R
n × T

m). Let BR be the open ball BR =

{x ∈ R
n, |x| < R} and let χR be a smooth cutoff function such that χR ≡ 1 on BR×T

m

and χR ≡ 0 on C(B2R × T
m). Up to a subsequence, fn converges weakly to f ∈ W p

s,δ,γ.

In order to obtain strong W p
s′,δ′,γ′ convergence, we rewrite fn = χRfn + (1 − χR)fn.

First, we look at what happens in the interior of the manifold. The sequence {χRfn} is
bounded in the classical Sobolev space W s,p(B2R × T

m),

‖χRfn‖W p
s (B2R×Tm) ≤ CR‖fn‖W p

s,δ,γ
(B2R×Tm). (2.24)

By Rellich’s compactness theorem, there exists a subsequence of {χRfn}which converges

strongly in W s′,p to f in BR × T
m. In order to finish to proof, it remains to study the

behaviour of {fn}n∈N at infinity. We see that

‖f − fn‖W p

s′,δ′,γ′
(Rn×Tm) ≤





s′∑

β=0

∫

BR×Tm

〈x〉p(δ
′+m)|∂βx,θ(f − fn)|

p dxdθ





1/p

+ {

∫

BR×Tm

〈x〉pγ |∂βx,θ(f − fn − f − fn)|
p dxdθ}1/p.

+Rδ′−δ





s′∑

β=0

∫

CBR

〈x〉p(δ+m)|∂kx(f − fn)|
p dxdθ





1/p

+Rγ′−γ{

∫

C(BR×Tm)
〈x〉pγ |∂βx,θ(f − fn − f − fn)|

p dxdθ}1/p.

Since δ′ < δ and γ′ < γ, we can find R such that sup(Rδ′−δ, Rγ′−γ) supn ‖fn‖W p
s,δ,γ

≤ ε,

and then use the convergence on BR to conclude. �

It is important that the multiplication is “stable”, in a specific sense, for the non-
linearity in our equations to behave well.

Corollary 2.2. The following restrictions ensure that the multiplications we need are
stable. If

γ ≥ 0, 2 >
n+m

p
, δ ≥ −

n

p
and 2γ ≥ δ + 2, (2.25)

then we have the desired properties
W p

2,δ,γ ×W p
2,δ,γ ⊂W p

2,δ,γ,
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W p
1,δ+1,γ ×W p

1,δ+1,γ ⊂W p
0,δ+2,γ,

W p
0,δ+2,γ ×W p

2,δ,γ ⊂W p
0,δ+2,γ .

In the rest of the paper, we always assume the conditions of (2.25) to hold true. While
this does not ensure that the decay we obtain is necessarily optimal, it has the advantage
of considerably simplifying calculations and notations.

3. Elliptic theory on the product manifold

In order to construct solutions for the constraint equations, we must first understand

the behaviour of the Laplace-Beltrami operator ∆g and of the conformal Laplacian
−→
∆g

on the weighted Sobolev spaces we defined in M = R
n × T

m. We begin by looking at a
wider class of elliptic operators.

Definition 3.1. Let P be a homogeneous self-adjoint second order elliptic operator with
constant coefficients, acting on scalar functions or on vector fields of M = R

n×T
n. We

write

P (u) =
∑

|α|=2

B(α)∇αu,

where the B(α) are either scalars or matrices. For a vector operator, the ellipticity con-
dition means that for all ξ ∈ R

n+m with ξ 6= 0, v 7→
∑

|α|=2 ξ
αB(α)(v) is an ismorphism

on R
n+m. Let s ≥ 2. We say that a second order elliptic operator L is asymptotic to P

in W p
s,σ,λ if

L(u) =
∑

|α|≤2

a(α)∇αu,

with

• for |α| = l, a(α) −B(α) ∈W p
s,σ,λ ,

• for |α| < l, a(α) ∈W p
s+|l|−2,σ+|l|,λ.

In the same way, if P0 is an operator in R
n, we define the notion of being asymptotic to

P0 in W p
s,δ.

These operators verify a series of properties described below.

Theorem 3.2. Let P be a second order homogeneous elliptic self-adjoint operator, acting
on functions or vector fields of Rn × T

m with constant coefficients, and L be a second
order elliptic operator asymptotic to P in W p

2,σ,λ with n+m
p < 2, −n

p < σ and λ > 0. Let

δ, γ be such that

δ − λ+ 2 < γ < δ + λ+
n

p
.

• L : W p
2,δ,γ → W p

0,δ+2,γ is a continuous map,

• If −δ − n
p /∈ N then L : W p

2,δ,γ → W p
0,δ+2,γ has finite dimensional kernel and

closed range, and there exist C and R > 0 such that for all u ∈W p
2,δ,γ,

‖u‖W p
2,δ,γ

≤ C
(
‖Lu‖W p

0,δ+2,γ
+ ‖u‖Lp(BR)

)
. (3.1)
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In the particular case of ∆g or
−→
∆g, we can prove that given sufficient decay, the

operators are isomorphisms.

Theorem 3.3. Let g ∈W p
2,σ,λ with n+m

p < 2, −n
p < σ and λ > 0. Let δ, γ be such that

δ − λ+ 2 < γ < δ + λ+
n

p
,

and also

0 < γ, −
n

p
< δ < −

n

p
+ n− 2, 2−

n+m

p
< λ.

Let h ∈W p
0,δ+2,γ be a non negative bounded function. Then ∆g + h and

−→
∆g are isomor-

phisms W p
2,δ,γ(R

n × T
m) → W p

0,δ+2,γ(R
n × T

m). Moreover, we have

‖u‖W p
2,δ,γ

≤ C‖Lu‖W p
0,δ+2,γ

,

with L being either ∆g + h or
−→
∆g.

Theorems 3.2 and 3.3 are the analogue of the following classical theorem in asymp-
totically Euclidean manifolds, which we cite here for reference in a condensed form, (see
Appendix 2 of [CB09] and Theorem 1.10 in [Bar86]).

Theorem 3.4. Let P0 be a second order homogeneous elliptic operator acting on func-
tions or vector fields of Rn with constant coefficients and L0 be a second order elliptic
operator asymptotic to P0 in W p

2,σ with n
p < 2 and −n

p < σ.

• For any δ, we have L0 : W
p
2,δ →W p

0,δ+2.

• If −δ− n
p /∈ N, then L0 : W

p
2,δ →W p

0,δ+2 has finite dimensional kernel and closed
range.

• There exist C and R > 0 such that for all u ∈W p
2,δ,

‖u‖W p
2,δ

≤ C
(
‖L0u‖W p

0,δ+2
+ ‖u‖Lp(BR)

)
. (3.2)

Moreover, if g ∈ W p
2,σ and −n

p < δ < −n
p + n − 2, then ∆g and

−→
∆g are isomorphisms

acting from W p
2,δ into W p

0,δ+2.

To prove Theorems 3.2 and 3.3, we need to start with P the homogeneous second
order elliptic operator with constant coefficients. In Section 3.1 we study the non-zero
modes of P . The behaviour of the zero mode is described by Theorem 3.4. In Section
3.2, we show that Theorem 3.2 holds in the particular case of L = P . We finish the
proof of Theorem 3.2 in Section 3.3. This passage from P to L is very similar to the
asymptotically Euclidean case. Finally, in Section 3.4, we study the injectivity of ∆g

and
−→
∆g, and conclude the proof of Theorem 3.3.

3.1. Analysis of P on non zero modes. Let P be a second order elliptic homogeneous
self-adjoint operator with constant coefficients on R

n × T
m,

P = −
∑

α∈Zd,
|α|=2

B(α)∇α
ζ , (3.3)
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where B(α) are scalars or matrices with constant coefficients. We consider the equation
Pu = f . Since P has constant coefficients, this equation implies

P (u− ū) = f − f̄ .

The aim of this section is to prove the following proposition.

Proposition 3.5. Let γ, δ ∈ R, and u ∈ W p
2,δ,γ(R

n × T
m), f ∈ W p

0,δ+2,γ(R
n × T

m) such

that P (u− u) = f − f . Then

‖u− u‖
W̃ p

2,γ
. ‖f − f‖

W̃ p
0,γ
.

In particular, P (u− u) = 0 implies u− u = 0.

We begin by introducing some useful preliminaries and notations.
Let us take the Fourier transform in variables x, θ of the equation P (u− u) = f − f .

We can write
P (ξ, k)Fx,θ(u− u)(ξ, k) = Fx,θ(f − f)(ξ, k),

where we denote by (ξ, k) the Fourier variable associated to (x, θ) (note that k ∈ Z
m), and

P (ξ, k) is either a scalar function or a d× d matrix, whose coefficients are homogeneous
polynomials of order 2 in ξ and k. The assumption that P is elliptic means that P (ξ, k)
is invertible for (ξ, k) 6= (0, 0). By homogeneity, this implies that, for (ξ, k) 6= (0, 0),

‖P−1(ξ, k)‖ ≤
C

|ξ|2 + k2
. (3.4)

Since Fx,θ(u − u)(ξ, k) and Fx,θ(f − f)(ξ, k) are supported away from k = 0, we can
write

Fx,θ(u− u)(ξ, k) = P−1(ξ, k)Fx,θ(f − f)(ξ, k),

and
u− u = F−1

x,θ (P
−1(ξ, k)Fx,θ(f − f)(ξ, k)). (3.5)

By taking order l derivatives, we obtain

∇l
x,θ(u− u) = F−1

x

(
∑

k∈Zm∗

pl(ξ, k)P (ξ, k)
−1Fx,θ(f − f)(ξ, k)eik·θ

)
, (3.6)

where we denote by pl a homogeneous polynomial or rational fraction of order l.
Our goal is to study the behaviour of derivatives of u − ū of order zero, one and

two. Given (3.6), we sometimes choose to concentrate our attention only on estimates
of order two, the more delicate case, when the other estimates follow trivially using the
same reasoning. This is to avoid adding unnecessarily heavy notation. Consequently, we
write

∇2
x,θ(u− u) = h ∗ (f − f), (3.7)

where the kernel h can be expressed as

h(x, θ) = F−1
x

(
∑

k∈Zm∗

p2(ξ, k)P (ξ, k)
−1eik·θ

)
. (3.8)

Let us denote the corresponding symbol as

a(ξ, k) = p2(ξ, k)P (ξ, k)
−1.
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With the preliminaries out of the way, we can focus on the proof of Proposition
3.5. The desired estimate follows from the next two lemmas. The first is simply the
corresponding L2 estimate. Note that we are interested in both positive and negative
weight values δ and γ. This becomes useful when studying the behaviour of the adjoint
operator P ∗ later in the paper.

Lemma 3.6. Let γ, δ ∈ R and u ∈ W 2
2,δ,γ(R

n × T
m), f ∈ W 2

0,δ+2,γ(R
n × T

m) such that

P (u− u) = f − f . Then we have

‖u− u‖
W̃ 2

2,γ
. ‖f − f‖

W̃ 2
0,γ
.

Proof. From (3.4), (3.5) and its equivalent for derivatives of u− ū of order one and two,
we obtain, thanks to the Plancherel formula, that

‖u− u‖
W̃ 2

2,0
. ‖f − f‖

W̃ 2
0,0
. (3.9)

Note that W̃ 2
2,0 = H2 and W̃ 2

0,0 = L2. We can prove Lemma 3.6 iteratively for γ > 0 in
the following way. First, we note that

P ((u− u)〈x〉γ) = (f − f)〈x〉γ + g, (3.10)

with

‖g‖
W̃ 2

0,0
. ‖u− u‖

W̃ 2
1,γ−1

+ ‖u− u‖
W̃ 2

0,γ−2
.

Consequently, if we take 0 < γ ≤ 1 we obtain

‖(u− u)〈x〉γ‖
W̃ 2

2,0
. ‖(f − f)〈x〉γ‖

W̃ 2
0,0

+ ‖g‖
W̃ 2

0,0

. ‖f − f‖
W̃ 2

0,γ
+ ‖u− u‖

W̃ 2
1,0

. ‖f − f‖
W̃ 2

0,γ

thanks to (3.9). Moreover,

‖u− u‖
W̃ 2

2,γ
. ‖(u− u)〈x〉γ‖

W̃ 2
2,0

+ ‖u− u‖
W̃ 2

1,0
.

Thus, Lemma 3.6 holds for 0 < γ ≤ 1 and we can continue inductively to prove Lemma
3.6 for all γ > 0.

We prove Lemma 3.6 in the case γ < 0 by duality, using the fact that P is self-adjoint.

‖〈x〉γP−1(f − f)‖L2 = sup
h∈L2, ‖h‖

L2=1

〈〈x〉γP−1(f − f), h〉

= sup
h∈L2, ‖h‖

L2=1

〈〈x〉γP−1(f − f), h− h〉

= sup
h∈L2, ‖h‖

L2=1

〈f − f, P−1(〈x〉γ(h− h))〉

. sup
h∈L2, ‖h‖

L2=1

‖〈x〉γ(f − f)‖L2‖〈x〉−γP−1(〈x〉γ(h− h))‖L2
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We can apply Lemma 3.6 for −γ > 0

‖〈x〉γP−1(f − f)‖L2 .‖f − f‖
W̃ 2

0,γ
sup

h∈L2, ‖h‖
L2=1

‖〈x〉γ(h− h)‖W 2
0,−γ

.‖f − f‖
W̃ 2

0,γ

We have proved the desired weighted L2 estimate. It remains to show the full W̃ 2
2,γ

estimate. For this, we use again (3.10), which implies that

‖u− u‖
W̃ 2

2,γ
. ‖f − f‖

W̃ 2
0,γ

+ ‖u− u‖
W̃ 2

1,γ−1
+ ‖u− u‖

W̃ 2
0,γ−2

.

We can use interpolation to estimate ‖u− u‖
W̃ 2

1,γ−1
. We have

‖u− u‖
W̃ 2

1,γ−1
. ‖(u− u)〈x〉γ−1‖H1

. ε‖(u− u)〈x〉γ−1‖H2 +
1

ε
‖(u− u)〈x〉γ−1‖L2

ε‖u− u‖
W̃ 2

2,γ
+

1

ε
‖(u− u)‖

W̃ 2
0,γ

We obtain

‖u− u‖
W̃ 2

2,γ
. ‖f − f‖

W̃ 2
0,γ

+ ε‖u− u‖
W̃ 2

2,γ
+ C(ε)‖u− u‖

W̃ 2
0,γ−1

.

We can use the L2 estimate we have proved and absorb the term ε‖u − u‖
W̃ 2

2,γ
to write

‖u− u‖
W̃ 2

2,γ
. ‖f − f‖

W̃ 2
0,γ
,

which concludes the proof of Lemma 3.6. �

The second lemma we need for Proposition 3.5 follows. The proof uses harmonic
analysis applied to singular integrals.

Lemma 3.7. We recall that |x, θ| = (x21 + ..+ x2n + (eiθ1 − 1)2 + ..+ (eiθm − 1)2)
1
2 . We

have the following useful bounds on h, defined by (3.8).
(i) For 0 < |x, θ| < 1,

|h(x, θ)| .
1

|x, θ|d
and |∇h(x, θ)| .

1

|x, θ|d+1
.

(ii) For |x, θ| ≥ 1, we have, for |k| ≤ 1 and N ∈ N

|∇kh(x, θ)| ≤
CN

|x, θ|N
.

Proof of Lemma 3.7. (i) This proof is an adaptation of [SMP93], where periodic di-
rections are added. In order to obtain the desired estimate, we divide the ξ space into
suitable spherical shells. Given a smooth cut-off function δ0 defined on R

n with δ0(ξ) = 1
for |ξ| ≤ 1 and δ0(ξ) = 0 on |ξ| ≥ 2, we define a difference function δ1(ξ) = δ0(ξ)−δ0(2ξ)
and δj = δ1(2

−jξ) for j ≥ 1. We obtain the following partition of unity

1 = δ0(ξ) +
∑

j=1

δj(ξ).
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We define a0(ξ, k) = a(ξ, k)δ0(ξ) and aj(ξ, k) = a(ξ, θ)δj(ξ), supported in 2j ≤ |ξ| ≤
2j+1, for j ∈ N

∗. Furthermore, let

hj(x, θ) = F−1
x,θ (aj(ξ, k)),

for all j ∈ N. In order to obtain estimates on h and ∇h away from the origin, we study
quantities of the type

(eiθ − 1)αxβhj and (eiθ − 1)αxβ∇x,θhj ,

where α, β are multi-indices and (eiθ − 1)α = (eiθ1 − 1)α1 ...(eiθm − 1)αm . We note that
taking a derivative with respect to x or θ is equivalent to multiplying by an order one
polynomial in ξ, k in the Fourier side:

∇x,θhj = F−1
x

(
∑

k∈Zm∗

p1(ξ, k)a(ξ, k)δj(ξ)e
ik·θ

)
.

Multiplying by xβ is equivalent to deriving β times with respect to ξ on the Fourier

side. Since we are deriving homogeneous functions, ∇β
ξ (p1(ξ, k)a(ξ, k)) is homogeneous

of order 1 − |β|. For the multiplication by (eiθi − 1), we note that we have a telescopic
sum. For any function p(ξ, θ), we have

∑

k∈Zm∗

(eiθ1 − 1)p(ξ, k)eik·θ (3.11)

=
∑

k′∈Zm−1

eik
′·θ′

∑

k1∈Z,(k1,k′)6=(0,0)

(eiθ1 − 1)p(ξ, k)eiθ1k1

=
∑

k′∈Zm−1

eik
′·θ′

∑

k1∈Z, (k1,k′)6=(0,0), (k1−1,k′)6=(0,0)

eiθ1k1(p(ξ, k1 − 1, k′)− p(ξ, k1, k
′))

(3.12)

− p(ξ, 1, 0)eiθ1 + p(ξ,−1, 0). (3.13)

Here, we have written θ = (θ1, θ
′), θ′ ∈ T

m−1. We can write

p(ξ, k1 − 1, k′)− p(ξ, k1, k
′) =

∫ k1

k1−1
∇up(ξ, u, k

′) du,

and if p is homogeneous of degree l, then ∇up(ξ, u, k
′) is homogeneous of degree l − 1.

Multiplying (3.11) by another factor (eiθi − 1), we can apply the same procedure to
separate the term (3.12) into a term which is a sum over k ∈ Z

m of homogeneous
functions of order l−2, plus a term which is of order l−1, but which is not summed over
k. However, the term (3.13), which is of degree l, does not lose degrees of homogeneity
with a multiplication by (eiθi − 1), so we keep this factor unchanged. We can iterate the
procedure, and note that for integrable functions we can always estimate a discrete sum
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by a continuous integral. We write

|(eiθ − 1)αxβ∇x,θh
γ
j | ≤

∫

supp δj

∫

ρ∈Rm,|ρ|≥1
p1−|α|−|β|(ξ, ρ) dρdξ

+
∑

|γ|<|α|

|(eiθ − 1)γ |

∫

supp δj

p2−|α|−|β|+|γ|(ξ, 1, 0) dξ,

where we recall that p1−|α|−|β| and p2−|α|−|β|+|γ| are homogeneous functions. The second
term represents the remainder after we extract the telescopic sums. Similarly, we obtain

|(eiθ − 1)αxβhj | ≤

∫

supp δj

∫

ρ∈Rm,|ρ|≥1
p−|α|−|β|(ξ, ρ) dρdξ

+
∑

|γ|<|α|

|(eiθ − 1)γ |

∫

supp δj

p1−|α|−|β|+|γ|(ξ, 1, 0) dξ.

In what follows, the estimates for ∇hj and hj are obtained in the exact same way. In
order to avoid the introduction of unnecessarily heavy notation, we only write the proof
for hj .

By writing ξ = |ξ|ω, we get
∫

ρ∈Rm,|ρ|≥1
p−|α|−|β|(ξ, ρ)dρ

.

∫

ρ∈Rm,|ρ|≥1
|ξ|−|α|−|β|p−|α|−|β|(ω,

ρ

|ξ|
) dρ

.

∫

ρ∈Rm,|ρ|≥ 1
|ξ|

|ξ|m−|α|−|β|p−|α|−|β|(ω, ρ) dρ

.

∫

ρ∈Rm

|ξ|m−|α|−|β|(1 + |ρ|)−|α|−|β| dρ

. |ξ|m−|α|−|β|

where we have used |α| + |β| > m. Integrating on supp δj, where 2j ≤ |ξ| ≤ 2j+1, we
obtain ∫

supp δj

∫

ρ∈Rm,|ρ|≥1
p−|α|−|β|(ξ, ρ) dρdξ ≤ 2j(d−|α|−|β|)

and, for the remainder term,

|(eiθ − 1)γ |

∫

supp δj

p1−|α|−|β|+|γ|(ξ, 1, 0) dξ ≤ |(eiθ − 1)γ |2j(1+n−|α|−|β|+|γ|).

Finally, we are able to draw profit from the partitioning of the frequency space we

previously introduced. We denote hj(x, θ) = hprincj +
∑

γ h
γ
j for all j, where

|xβ(eiθ − 1)αhprincj | ≤ 2j(d−|α|−|β|),

|xβ(eiθ − 1)αhj | ≤ |(eiθ − 1)γ |2j(1+n−|α|−|β|+|γ|).
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We fix (x, θ). As we are interested in estimations on h =
∑

j hj , we split the sum in the
following way: ∑

j

hprincj (x, θ) =
∑

2j≤ 1
|x,θ|

hprincj +
∑

2j≥ 1
|x,θ|

hprincj .

For the first part, fixing |α|+ |β| = d− 1 leads to

∑

2j≤ 1
|x,θ|

hprincj ≤
1

|x, θ|d−1

∑

2j≤ 1
|x,θ|

2j .
1

|x, θ|d
.

For the second part, we fix |α|+ |β| = d+ 1 and obtain

∑

2j≥ 1
|x,θ|

hprincj ≤
1

|x, θ|d+1

∑

2j≥ 1
|x,θ|

2−j =
1

|x, θ|d+1

∑

2−j≤|x,θ|

2−j ≤
1

|x, θ|d
.

Similarly, we study the remainder terms hγ , which can be written as
∑

j

hγj (x, θ) =
∑

2j≤ 1
|x,θ|

hγj +
∑

2j≥ 1
|x,θ|

hγj .

We denote A = |α|+ |β|. For A < 1 + n we have

∑

2j≤ 1
|x,θ|

hγj ≤
1

|x, θ|A

∑

2j≤ 1
|x,θ|

2j(1+n−A+|γ|)|(eiθ − 1)γ |

≤
1

|x, θ|A

∑

2j≤ 1
|x,θ|

2j(1+n−A)

≤
1

|x, θ|1+n

≤
1

|x, θ|d
.

as |(eiθ − 1)γ |2j|γ| ≤ 1. Finally, with A > 1 + n+ |γ|

∑

2j≥ 1
|x,θ|

hγj .
1

|x, θ|A

∑

2j≥ 1
|x,θ|

2j(1+n+|γ|−A)|(eiθ − 1)γ |

.
1

|x, θ||1+n+|γ||
|(eiθ − 1)γ |

.
1

|x, θ|1+n

(
|
eiθ − 1|

|x, θ|

)γ

.
1

|x, θ|d
.

(ii) The argument for the decay at infinity is quite straightforward. For N sufficiently
large, ∇N

ξ a ∈ L1. This implies that |x|N |h(x)| ≤ CN , where CN is a constant depending

on N . Similarly, |x|N |∇h(x)| ≤ C ′
N . �
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We are ready to prove Proposition 3.5. A useful reference is the Lp estimate result of
Theorem 3, Section 5, Chapter 1 of [SMP93], together with the Remark (iii) of Section
7.4. As all other results in Chapter 1 of the book, the operators can be defined on
homogeneous spaces in general, according to Section 1.1.

Proof of Proposition 3.5. The idea is to adapt the operators we have seen so far to Lp

spaces, and then use existent singular integral theory. We write f̃ = (f − f̄)〈x〉γ , so that

f̃ ∈ Lp if and only if f − f̄ ∈ W̃ p
0,γ and ||f̃ ||Lp = ||f − f̄ ||

W̃ p
0,γ

. Let

T (f̃) =

∫

Rn×Tm

K ((x, θ), (y, χ)) f̃(y, χ) dydχ,

where K ((x, θ), (y, χ)) = 〈x〉γ

〈y〉γ h ((x, θ)− (y, χ)). So, by (3.7), T (f̃) = ∇2
x,θ(u − ū)〈x〉γ .

In this proof, as mentioned before, we concentrate on obtaining the estimates for the
second derivatives of u− ū. The lower order derivatives result from the same procedure
applied to the the corresponding operator T .

According to [SMP93], we need to check the following properties. Given f̃ ∈ L2 ∩Lp,
we verify that

(1) ||T (f̃)||L2 ≤ A||f̃ ||L2 ,

(2) K((x, θ), (y, χ)) ≤
A

|(x, θ)− (y, χ)|d
,

(3) Let c > 1 Then
∫

|(x,θ)−(y,χ)|≥cρ
|K((x, θ), (y, χ)) −K((x, θ), (ȳ, χ̄))| dxdθ ≤ C,

where |(y, χ) − (ȳ, χ̄)| ≤ ρ for all (y, χ) ∈ R
n × T

m, ρ > 0. The same must be
true with the roles of (x, θ) and (y, χ) reversed.

If this holds, then ||T (f̃)||Lp . ||f̃ ||Lp , and the result extends to all f̃ ∈ Lp.

The first condition is immediately satisfied thanks to Lemma 3.6.

For the second condition, if |(x, θ) − (y, χ)| ≤ 1, then 〈x〉γ

〈y〉γ ≤ 2γ and Lemma 3.7

(i) imply the desired result. For |(x, θ) − (y, χ)| > 1, we apply Lemma 3.7 (ii) with
N > d+ |γ|.

For the last condition, we note that

∇xK ((x, θ), (y, χ)) = γ
x〈x〉γ−2

〈y〉γ
h ((x, θ)− (y, χ)) +

〈x〉γ

〈y〉γ
∇xh ((x, θ)− (y, χ)) ,

∇θK ((x, θ), (y, χ)) =
〈x〉γ

〈y〉γ
∇θh((x, θ)− (y, χ)),

∇yK ((x, θ), (y, χ)) = γ
y〈x〉γ

〈y〉γ+2
h ((x, θ)− (y, χ)) +

〈x〉γ

〈y〉γ
∇yh ((x, θ)− (y, χ)) ,

∇χK ((x, θ), (y, χ)) =
〈x〉γ

〈y〉γ
∇ξh((x, θ) − (y, χ)).
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We define Ω1 = {((x, θ), (y, χ)) ∈ (Rn × T
m)2 | cρ ≤ |(x, θ) − (y, χ)| ≤ 1} and Ω2 =

{((x, θ), (y, χ)) ∈ (Rn × T
m)2 | 1, cρ ≤ |(x, θ)− (y, χ)|}. Depending on the value of ρ, Ω1

might be a null set.
First, we note that for ((x, θ), (y, χ)) ∈ Ω1,

|K ((x, θ), (y, χ)) −K ((x, θ), (ȳ, χ̄)) |

.

∫ 1

0
|((y − ȳ) · ∇yK + (χ− χ̄) · ∇χK) ((x, θ), (y + t(ȳ − y), χ+ t(χ̄− χ)))| dt

.
|(y, χ)− (ȳ, χ̄)|

|(x, θ)− (y, χ)|d+1
.

Consequently,
∫

Ω1

|K ((x, θ), (y, χ)) −K ((x, θ), (ȳ, χ̄)) |dxdθ . ρ

∫

cρ≤|(x′,θ′)|≤1

1

|(x′, θ′)|d+1
dx′dθ′ . 1.

For Ω2, we use the strong decay properties of h and ∇h to obtain the desired results.
By symmetry, the same must be true with the roles of (x, θ) and (y, χ) reversed. �

3.2. Proof of Theorem 3.2 for P . We recall that P is a second order homogeneous
elliptic operator with constant coefficients. We prove the following properties for P .

• P :W p
2,δ,γ →WP

0,δ+2,γ is a continuous map.

• P has a finite dimensional kernel.
• The a-priori estimate (3.1) holds.
• P has closed range.

Let u ∈ C∞ ∩W p
2,δ,γ . Since P has constant coefficients, we have Pu = Pu, and

‖Pu‖W p
0,δ+2,γ

=

∫

Rn

|Pu|p〈x〉p(δ+2) dx+

∫

Rn×Tm

|(Pu− Pu)|p〈x〉pγdxdθ,

≤
∑

0≤|β|≤2

(∫

Rn

|∂βu|p〈x〉p(δ+|β|) dx+

∫

Rn×Tm

|∂β(u− u)|p〈x〉pγ dxdθ

)

.‖u‖W p
2,δ,γ

.

Consequently, the operator P can be extended by density to an operator W p
2,δ,γ →

W p
0,δ+2,γ .

We study the kernel of P . Let δ be such that −δ − n
p /∈ N and u ∈ W p

2,δ,γ such that

Pu = 0. Then u ∈ C∞ and, by taking the average over Tm, we see that P0u = 0, where
P0 is the operator obtained from P by keeping only the derivatives with respect to x. Its
Fourier symbol is P (ξ, 0), which is invertible for ξ 6= 0, so P0 is elliptic. Consequently, ū
belongs to KerP0, which by Theorem 3.4 is finite dimensional. Moreover, P (u−u) = 0,
so Proposition 3.5 implies u− u = 0. This shows that KerP is finite dimensional.
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We prove estimate (3.1). We have,

‖u‖W p
2,δ,γ

. ‖ū‖W p
2,δ

+ ‖u− u‖W p
2,δ,γ

. ‖P0ū‖W p
0,δ+2

+ ‖ū‖Lp(BR) + ‖P (u− u)‖
W̃ p

2,γ

. ‖ū‖Lp(BR) + ‖Pu‖W p
0,δ+2,γ

,

where R is chosen from Theorem 3.4.
From the fact that KerP is finite dimensional, and from the estimate above, we can

show that P has closed range. We can follow the proof of Theorem 1.10 in [Bar86]). As
Ker(P ) is finite dimensional, we can write W p

2,δ,γ = Ker(P ) + Z, where Z is a closed

space with Ker(P ) ∩ Z = ∅. Moreover, from the estimate above, there exists C such
that for all z ∈ Z,

‖z‖W p
2,δ,γ

≤ C‖Pz‖W p
0,δ+2,γ

. (3.14)

Let us consider a sequence un ∈W p
2,δ,γ such that P (un) converges in W

p
0,δ+2,γ . We write

un = wn+zn with wn ∈ Ker(P ) and zn ∈ Z. From (3.14) we obtain that zn is a Cauchy
sequence, so it converges to some z. Consequently, P (un) converges to P (z) and the
range of P is closed.

3.3. Proof of Theorem 3.2 for L. In this section, we assume that L is asymptotic to
P in W p

2,σ,λ. We extend the elliptic theory we have established in the previous section

to prove Theorem 3.2, following the proof of Theorem 1.10 in Bartnik [Bar86].
In order to check that L :W p

2,δ,γ →W p
0,δ+2,γ , we need the multiplication properties

W p
2,σ,λ ×W p

0,δ+2,γ ⊂W p
0,δ+2,γ ,

W p
1,σ+1,λ ×W p

1,δ+1,γ ⊂W p
0,δ+2,γ ,

W p
0,σ+2,λ ×W p

2,δ,γ ⊂W p
0,δ+2,γ .

Thanks to Proposition 2.1, we can verify them, if the following conditions are satisfied

n+m

p
< 2, −

n

p
< σ, δ − λ+ 2 < γ < δ + λ+

n

p
. (3.15)

From now on, we assume (3.15). The strategy involves looking at estimates on scalar
functions supported in a ball or at infinity. We start with the following lemma.

Lemma 3.8. If u is supported in {r ≥ R} then

‖(L− P )u‖W p
0,δ+2,γ

≤ ε(R)‖u‖W p
2,δ,γ

,

with ε(R) → 0 as R→ ∞.

Proof. We can find τ > 0 such that

‖(L− P )u‖W p
0,δ+2,γ

. (
∑

|α|≤2

‖a(α)‖W p

|α|,σ+2−|α|−τ,λ−τ
)‖u‖W p

2,δ,γ
,
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so if u is supported in {r ≥ R}

‖(L− P )u‖W p
0,δ+2,γ

. (
∑

|α|≤2

‖a(α)‖W p

|α|,σ+2−|α|−τ,λ−τ
({r≥R}))‖u‖W p

2,δ,γ

. R−τ (
∑

|α|≤2

‖a(α)‖W p

|α|,σ+2−|α|,λ
)‖u‖W p

2,δ,γ
.

�

We are ready to finish the Proof of Theorem 3.2.

Proof of Theorem 3.2. . We write u = u0+u∞ where u0 = χ( r
R)u, and u∞ =

(
1− χ( r

R )
)
u,

with χ supported in B(0, 2) with χ = 1 on B(0, 1). We have

‖u∞‖W p
2,δ,γ

.‖u∞‖W p
2,δ

+ ‖u∞ − u∞‖W p
2,δ,γ

.‖P0u∞‖W p
0,δ+2

+ ‖P (u∞ − u∞)‖W p
0,δ,γ

.‖Pu∞‖W p
0,δ+2,γ

.

where we used Theorem 1.7 in Bartnik [Bar86] to write 3 ‖u∞‖W p
2,δ(R

n) ≤ ‖P0u∞‖W p
0,δ+2(R

n)

and Lemma 3.5 for the non zero modes. Consequently,

‖u∞‖W p
2,δ,γ

. ‖Lu∞‖W p
0,δ+2,γ

+ Cε(R)‖u∞‖W p
2,δ,γ

with ε(R) → 0 as R→ ∞. We choose R big enough to write

‖u∞‖W p
2,δ,γ

. ‖Lu∞‖W p
0,δ+2,γ

.

We can write

‖Lu∞‖W p
0,δ+2,γ

.‖(1− χ(
r

R
))Lu+ [L, (1 − χ(

r

R
))]u‖W p

0,δ+2,γ

.‖Lu‖W p
0,δ+2,γ

+ C(R)‖u‖W 1,p(AR),

where AR is the annulus R ≤ r ≤ 2R. Moreover, the interior estimate given by Theorem
8.8 in Gilbarg Trudinger [GT84] gives

‖u0‖W 2,p(B2R) . ‖Lu0‖Lp(B3R) + ‖u0‖W 1,p(B3R) . ‖Lu‖Lp(B3R) + ‖u‖W 1,p(B3R).

By interpolation, on the usual Sobolev spaces W k,p(B3R) we obtain

‖u‖W p
2,δ,γ

. C(R)‖Lu‖W p
0,δ+2,γ

+ ‖u‖Lp(B3R).

This proves (3.1) and yields that the unit ball of kerL is compact inW p
2,p,δ, which implies

that kerL is finite dimensional. The argument to show that the image is closed is the
same as for P . �

3.4. The injectivity of the Laplacian and conformal Laplacian.

3This result uses the fact that ∆ is an isomorphism on homogeneous weighted Sobolev spaces, where

the weight (1 + r2)
1

2 is replaced by r. As in [Bar86], the result can easily be generalized to elliptic
operators with constant coefficients.
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3.4.1. A maximum principle for ∆g. In the case of solutions which decay at infinity, the
injectivity of ∆g can be obtained from the maximum principle. The following result is
a direct consequence of the maximum principle stated in Theorem 8.19 of [GT84] in the
compact case.

Lemma 3.9. Let g be a Riemannian metric on M with bouded coefficients and φ ∈W 1,2
loc

be such that

∆gϕ+ hϕ ≥ 0,

where h is a non negative bounded scalar field. Suppose moreover that there exists A ∈ R

such that u→ A at infinity.

(1) If A > 0, then there exists 0 < ε ≤ A such that ϕ ≥ ε on the manifold.
(2) If A = 0, then ϕ ≥ 0.

Proof. Let 0 < ε0 < A. In a neighborhood of infinity, we have that φ ≥ A − ε0,
consequently, if the property we want to prove were not true, then there would exist a
compact K such that infK φ = infM φ ≤ 0: by the maximum principle (Theorem 8.19
in [GT84]), this would imply that φ is constant, equal to A, which is a contradiction.

Suppose that φ takes a negative value λ < 0. Let 0 < ε0 < |λ|. In a neighborhood
of infinity we have −ε0 ≤ φ. Consequently there would exist a compact K such that
infK φ = infM φ < 0 which again implies that φ is a constant, equal to 0, which is again
a contradiction. �

From this Lemma, we obtain the following corollary, which is our desired injectivity
result for ∆g.

Corollary 3.10. Let g−ζ ∈W p
2,σ,λ. Let us assume that (σ, λ, δ, γ) satisfy the conditions

(3.15), together with the hypothesis

0 < γ, −
n

p
< δ. (3.16)

Let h ∈ W p
0,δ+2,γ be a non negative bounded function. Then ∆g + h : W p

2,δ,γ → W p
0,δ+2,γ

is injective.

Proof. Let u ∈ W p
2,δ,γ be such that ∆gu + hu = 0. The hypothesis (3.16) implies that

u → 0 at infinity. Therefore, Lemma (3.9) implies that u ≥ 0. By considering −u, we
obtain u = 0, so ∆g + h is injective. �

3.4.2. Conformal Killing Vector Fields That Vanish at Infinity. We recall that we are
interested in metrics gij − ζij ∈ W p

2,σ,λ. We study the injectivity of the conformal

Laplacian
−→
∆g : W

p
2,δ,γ →W p

0,δ+2,γ .

We always assume that δ, γ, σ, λ satisfy the set of hypothesis (3.15) that we recall

n+m

p
< 2, −

n

p
< σ, δ − λ+ 2 < γ < δ + λ+

n

p
.

In order to satisfyingly solve the momentum constraint, we first want to check that
X ≡ 0 is the only conformal Killing vector field in W p

2,δ,γ . This is similar to the classical

case of the asymptotically Euclidean manifold. We start with a general property of
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conformal Killing fields, which can be found in [COM81]. We give the proof for the sake
of completness.

Lemma 3.11. Let X be a conformal Killing vector field in any manifold M of dimension
n > 2. Then, the following results hold true in local coordinates,

∇λ∇γ∇αXβ = RX +∇(RX),

where RX is an operator comprised of linear terms of the Riemann curvature tensor,
and d = n+m is the dimension of the manifold.

Proof. We recall that a conformal Killing vector field X verifies

∇αXβ +∇βXα =
2

d
divgXgαβ (3.17)

and that, by the definition of the Riemannian curvature tensor, we commute two deriva-
tives of X to get

∇µ∇νX = ∇ν∇µX +RX. (3.18)

We use the notation RX to designate (any) linear operator in the Riemannian tensor.
We do not specify the exact form of RX to lighten the proof. The operator RX is not
always the same in every line. If we derive (3.17) by ∇α, we obtain

∇α∇αXβ +∇α∇βXα −
2

d
∇αdivgXgαβ = 0,

and by applying (3.18), it follows that
(
2

d
− 1

)
∇βdivX = ∇α∇αXβ +RX. (3.19)

If we derive again by ∇λ, we see that
(
2

d
− 1

)
∇λ∇βdivX = ∇λ∇

α∇αXβ +∇(RX)

= ∇α∇α(−∇βXλ +
2

d
gλβdivX) +∇(RX) +R∇X

= −∇β

((
2

d
− 1

)
∇λdivX

)
+

2

d
gλβ∆divX +∇(RX) +R∇X

= −

((
2

d
− 1

)
∇λ∇βdivX

)
+

2

d
gλβ∆divX +∇(RX) +R∇X

Contracting by gλβ , we obtain

2

(
2

d
− 1

)
∆dixX = 2∆dixX +∇(RX) +R∇X

which yields

4

(
1

d
− 1

)
∆dixX = ∇(RX) +R∇X. (3.20)
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If we derive (3.17) by ∇γ and again apply (3.18) twice, we obtain

∇γ∇αXβ = −∇β∇γXα +
2

d
gαβ∇γdivX +RX (3.21)

= −∇β

(
−∇αXγ+

2

d
gαγdivX

)
+

2

d
gαβ∇γdivX +RX (3.22)

= −∇α∇γXβ +
2

d
gγβ∇αdivX −

2

d
gαγ∇βdivX +

2

d
gαβ∇γdivX +RK. (3.23)

so that altogether we obtain

∇λ∇γ∇αXβ =
∆gdivX

d2
(
2
d − 1

)(gαβgλγ − gαγgλβ + gγβgλα) +RX +∇(RX).

Applying (3.20) to the above equation gives us the result. �

Remark 3.12. Note that, in the case of a flat metric, the aforementioned terms RX
and ∇(RX) vanish.

First, we look at the manifold (Rn × T
m, ζ).

Lemma 3.13. Let X ∈ W p
0,δ,γ be a nontrivial conformal Killing vector field on (Rn ×

T
m, ζ) with δ > −n

p and γ > 0. Then X ≡ 0.

Proof. Given that the third derivatives ∇3
ζ is null, the coefficients of the vector field X

must all be polynomials in x and θ of degree at most 2. However, as X also decays to
zero at infinity, this implies that all the coefficients are null. �

We are ready to move on to studying conformal Killing fields on the asymptotically
flat manifold (M,g). We denote E1 = (Rn × T

m) − (B1 × Tm). In this part, we follow
closely [Max04]. In order to show that X vanishes in R

n × T
m, we begin by analyzing

its behaviour on a neighbourhood close to infinity, and then in an interior domain.

Lemma 3.14. Let g be such that gij − ζij ∈ W p
2,σ,λ. Suppose X is a conformal Killing

vector field in W p
0,δ,γ. In addition to the set of hypothesis (3.15) we assume

λ+
n+m

p
> 2, δ > −

n

p
, γ > 0. (3.24)

Then X vanishes in a neighbourhood of infinity.

Proof. The proof requires a rescalling argument. For (x, θ) ∈ E1, we define gm(x, θ) =
g(2mx, 2mθ). Remember that

ḡm(x) =
1

(2π)k

∫

Tk

g(2mx, 2mθ)

=
1

(2π)k

2m−1∑

l1=0

2m−1∑

l2=0

· · ·
2m−1∑

lk=0

∫
∏k

i=1[
2πli
2m

,
2π(li+1)

2m
]
g(2m, x2mθ)

=
2mk

(2π)k2mk

∫

Tk

g(2mx, θ)

= ḡ(2mx).
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We can say that ||gm − ζ||W p
2,δ,γ

→ 0 as m→ ∞ as for l ∈ 0, 2,

∫

Rn

|∇lgm|p〈x〉p(σ+l) dx ≤ (2m)−pσ−n||g||W p
2,σ,λ

(3.25)

and ∫

Rn×Tm

|∇l(gm − ḡm)|p〈x〉pλdxdθ ≤ (2m)−pλ−(n+m)+2p||g||W p
2,σ,λ

. (3.26)

The hypothesis σ > −n
p present in the set of hypothesis (3.15) ensures that the quantities

present in (3.25) tends to zero, and the additionnal hypothesis λ+ n+m
p > 2 ensures that

the quantites present in (3.26) tends to zero, as m tend to infinity.
We assume that there is no neighborhood of infinity in which X is identically 0.

Let X̂m(x, θ) = X(2mx, 2mθ). With our hypothesis, we have ||X̂m||W p
2,δ,γ

6= 0 and we

can define the normalized vector field Xm = X̂
||X̂m||

W
p
2,δ,γ

. Note that LgmXm = 0 and

−→
∆gm(Xm) = 0. We use estimate (3.1), together with Proposition 5.2 in [Max04] to treat
the inner boundary of E1 :

‖Xm1 −Xm2‖W p
2,δ,γ

.‖
−→
∆gm1

(Xm1 −Xm2)‖W p
0,δ+2,γ

+ ‖Xm1 −Xm2‖Lp(BR∩E1) + ‖Lgm1
(Xm1 −Xm2)‖

W
1− 1

p ,p
(∂E1)

.‖gm1 − gm2‖W p
2,σ,λ

+ ‖Xm1 −Xm2‖Lp(BR∩E1)

From theW p
2,δ,γ boundedness of the sequence (Xm), it follows that, up to a subsequence,

the vectors Xm converge in Lp(BR) to some X0. which means that (Xm) is a Cauchy
sequence in W p

2,δ,γ and Xm → X0 in W p
2,δ,γ . This implies that X0 is a conformal Killing

vector field with respect to the ζ metric, and thus X0 = 0. Hence, Xm → 0 in W p
2,δ,γ,

which contradicts ||Xm||W p
2,δ,γ

= 1. �

Theorem 3.15. Let g be such that gij − ζij ∈ W p
2,δ,γ. We assume (3.15) and (3.24).

Then there exists no nontrivial conformal Killing vector field on (M,g) in W p
2,δ,γ.

Proof. Loosely speaking, the proof of Theorem 6.4 in [Max04] applies to Theorem 3.15
since when we zoom on a point of M , there is no difference between R

n+m and R
n×T

n.
But to be precise, we rewrite the proof here. So far, we have proved that X vanishes
in a neighborhood of infinity. Consequently we can consider the minimum of the radius
R such that X vanishes in (Rn − BR) × T

n. If this minimum is zero, then X vanishes
everywhere. Otherwise, let R0 > 0 be that minimum: there exists x0 on SR0 × T

m, and
xk → x0 such that X(xk) 6= 0. We may choose a set of coordinates centered around x0
such that gµν(0) = δµν(0) (x0 is the point of coordinate 0). Let rk = 2|xk|: we have

rk > 0 and rk → 0 by definition. We construct a sequence of metrics gk(x, θ) = g( x
|xk|

, θ
rk
)

on the unit ball B1 centered in 0. Obviously, gk → δ in W 2,p(B1).
We define a corresponding sequence of vectors

Xk(x, θ) =
X(x/rk, θ/rk)

‖X(x/rk, θ/rk)‖W 2,p
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in B1. Note that the renormalization is possible as the vectors are nontrivial by our
supposition. We have

LgkXk = 0,
−→
∆gkXk = 0.

Consequently, as in the proof of Lemma 3.14, we have

‖Xk1 −Xk2‖W 2,p(B1) . ‖gk1 − gk2‖W 2,p(B1) + ‖Xk1 −Xk2‖Lp(B1).

From the W 2,p boundedness of Xk, it follows that up to a subsequence, Xk converges
strongly in C0 to some X0 ∈ W 2,p. From the inequality above, this implies in fact that
Xk converges strongly in W 2,p.

It follows thatX0 is a conformal Killing vector field for δ. From the C0(B1) convergence
ofXk toX0, and the fact that by definition of x0, the vector fieldXk vanish in a fixed open
set, then X0 also vanishes in this open set. Since the coefficients of X0 are polynomials,
this implies that X0 = 0, which contradicts the fact that ||Xk||W 2,p = 1. This contradicts
the fact that R0 > 0 and implies that X = 0 on M . �

Finally, we can apply this result to study the injectivity of
−→
∆g.

Proposition 3.16. Assume that δ, γ, σ, λ satisfy the set of hypothesis (3.15) and (3.24).

Then
−→
∆g :W p

2,δ,γ →W p
0,δ+2,γ is injective.

Proof. The Laplacian operator
−→
∆g is injective. Indeed, any smooth compactly supported

X in the kernel of
−→
∆g is a conformal Killing vector field, as

∫

M
X
−→
∆gXdµg =

∫

M
(LgX)2dµg = 0.

By a density argument, the same holds true for X ∈W p
2,δ,γ . As conformal Killing fields

that decay at infinity vanish everywhere (Theorem 3.15), we conclude that the kernel of
−→
∆g is trivial. �

3.5. Proof of Theorem 3.3. We recall that gij − ζij ∈W p
2,σ,λ. The aim of this section

is to prove that the operators ∆g,
−→
∆g : W p

2,δ,γ → W p
0,δ+2,γ are isomorphisms, under the

conditions (3.15), (3.24), and the additional condition

δ < −
n

p
+ n− 2. (3.27)

To prove Theorem 3.3, we first consider the case where g is the flat metric, and go to
the asymptotically flat case with a continuity argument.

Let P equal to either ∆ or
−→
∆. Both cases can easily be treated at the same time.

From the previous section, we see that, when δ > −n
p and γ > 0, P : W p

2,δ,γ → W p
0,δ+2,γ

is injective. We also know that

Im(P :W p
2,δ,γ →W p

0,δ+2,γ) = (Ker(P ∗ : W p′

0,−δ−2,−γ → W p′

−2,−δ,−γ))
⊥,

where p′ is the dual of p. Recall thatW p′

−2,−n−δ,−γ is the subspace of D′(Rn×T
m) consist-

ing of the distributions which extend to give bounded linear functionals on W p
2,δ,γ , with

the dual norm. We study the kernel of P ∗. Assume that P ∗u = 0 for u ∈ W p′

0,−δ−2,−γ .

Since P is symmetric, we have Pu = 0. Then u is smooth and, since P has constant
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coefficients, Pū = 0 and P (u− ū) = 0. Proposition 3.5 implies then that u− ū = 0. To
prove that ū = 0, we notice that, with estimate (3.1), and since ū does not depend on

the θ coordinates, ū belongs to W p′

2,−δ. Moreover if we assume (3.27), we have

−
n

p′
= −n+

n

p
< −δ − 2,

so by Proposition 3.16 we have that ū = 0.
In this case, we have that P ∗ is injective, and therefore that P is surjective. By this

reasoning, both P and P ∗ are bijective.

We consider L equal to either ∆g or
−→
∆g. To prove the bijectivity, we use the following

continuity result from Theorem 5.2 in Gilbarg Trudinger [GT84].

Theorem 3.17. Let S0, S1 : B → V be bounded linear operator from a Banach space B
to a normed vector space V. Let St = (1 − t)S0 + tS1. We assume that there exists C
such that for all t ∈ [0, 1] we have

‖x‖B ≤ C‖Stx‖V .

Then S1 is surjective if and only if S0 is surjective. Moreover, the decomposition St =
(1− t)S0 + tS1 can be relaxed in ‖St − Ss‖B→V ≤ C(t− s).

We are ready to conclude the proof of Theorem 3.3.

Proof of Theorem 3.3. Let gij − ζij ∈ W p
2,σ,λ. We work under the hypothesis (3.15),

(3.24) and (3.27). Let us write, for t = [0, 1] : gt = (1 − t)ζ + tg, and consider St equal

to either ∆gt or
−→
∆gt. Thanks to Corollary 3.10 and Proposition 3.16 we have that St is

injective. Therefore (3.1) yields

‖u‖W p
2,δ,γ

. ‖Stu‖W p
0,δ+2,γ

.

Since S0, which is either the Laplacian or the conformal Laplacian for the flat metric,

is an isomorphism, it is the same for S1, which is either ∆g or
−→
∆g. This concludes the

proof of Theorem 3.2. �

4. Solving the constraint equations

4.1. The barrier method. The barrier method (or the sub- and super-solution method)
was initially developed by Isenberg as a means of solving non-linear equations on a com-
pact set in R

n. Its proof can be extended to the asymptotically flat product manifold
(M,g) in the same way as for the asymptotically Euclidean manifold. The following
theorem is the equivalent of Theorem 1, Appendix B in [CBIY00]. We give the proof
here for the sake of completeness, so that the reader is convinced that it is the same as
the one for asymptotically Euclidean manifolds.

Let I = [l,m] be a bounded interval in R. We define the operator F : M × I → R

such that
F (x, θ, y) =

∑

i

aPi
(x, θ)yPi .

Here, Pi ∈ R are a finite number of exponents and the coefficients aPi
∈ W p

0,δ+2,γ . We

are interested in solving the equation ∆gϕ = F (x, θ, ϕ) for ϕ ∈W p
2,δ,γ . By a slight abuse

of notation, we denote F (x, θ, ϕ) the function (x, θ) 7→ F (x, θ, ϕ(x, θ)).
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A function ϕ− ∈ C2 is called a subsolution of the equation ∆gϕ = F (x, θ, ϕ) if

∆gϕ− ≤ F (x, θ, ϕ−).

Similarly, we call ϕ+ ∈ C2 a supersolution if

∆gϕ+ ≥ F (x, θ, ϕ+).

Theorem 4.1. Let g be a metric on M such that gij − ζij ∈ W p
2,σ,λ(M). We assue

the hypothesis of Theorem 1.2 for (σ, λ, δ, γ). Let us assume that the aPi
∈W p

0,δ+2,γ are

bounded. Suppose that ∆gϕ = F (x, θ, ϕ) admits a subsolution ϕ− and a supersolution
ϕ+ such that

0 < l ≤ ϕ− ≤ ϕ+ ≤ m,

and that
A− := lim

∞
ϕ− ≤ A, A+ := lim

∞
ϕ+ ≥ A.

Then the equation admits a solution ϕ that verifies

ϕ− ≤ ϕ ≤ ϕ+, A− ϕ ∈W p
s+2,δ,γ.

In the case where F (x, θ, y) does not contain negative powers of y, the condition l > 0
is not necessary.

Proof. First, we note that if ϕ takes values in [l,m], then F ∈W p
0,δ+2,γ . Let k ∈W p

0,δ+2,γ

be a bounded positive function such that

k(x, θ) ≥ sup
l≤y≤m

|∂yF (x, θ, y)| .

We set ϕ1 = A+ u1, where u1 ∈W p
2,δ,γ is the unique solution of the linear equation

∆gu1 + ku1 = F (x, θ, ϕ−) + k(ϕ− −A),

as seen in Theorem 3.3. The function ϕ1 can easily be shown to take values between ϕ−

and ϕ+. The first bound follows directly from the maximum principle of Lemma 3.9,
given that

∆g(ϕ1 − ϕ−) + k(ϕ1 − ϕ−) ≥ 0

and ϕ1 − ϕ0 tends to A−A− ≥ 0 at infinity.
On the other hand,

∆g(ϕ+ − ϕ1) + k(ϕ+ − ϕ1)≥ F (x, θ, ϕ+)− F (x, θ, ϕ−) + k(ϕ+ − ϕ−) ≥ 0

and ϕ+ − ϕ1 tends to A+ −A ≥ 0 at infinity, then by the same maximum principle we
obtain the desired result.

We proceed by recurrence and define ϕi = A+ ui, with

∆gui + kui = F (x, θ, ϕi−1) + kui−1.

For the sake of this argument, we may denote ϕ− = u0. In order to show that the
sequence is increasing, we may assume that ui−1 ≥ ui−2 (the initial step u1 ≥ u0 has
been shown above). Since

∆gui−1 + kui−1 = F (x, θ, ϕi−2) + kui−2. (4.1)

we see that (∆+ k)(ui − ui−1) ≥ 0. Since ui − ui−1 tends to 0 at infinity, the maximum
principle tells us that ui ≥ ui−1, and thus ϕi ≥ ϕi−1.
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As before, we can easily see that ϕ− ≤ ϕi ≤ ϕ+. Consequently, for all x, ϕi(x) has a
limit that we note ϕ(x).

We would like to show that ϕ − A ∈ W p
2,δ,γ and that it is a solution of our equation.

We use Theorem 3.3 to see that

‖ui+1‖W p
2,δ,γ

≤ C‖F (x, θ, ϕi) + kui‖W p
0,δ+2,γ

,

which implies that (ui)i∈N are uniformly bounded in W p
2,δ,γ (thanks to the uniform born

l ≤ ϕi ≤ m). We can thus extract a sequence that converges in W p
1,δ′,γ′ norm to a

function in u ∈W p
2,δ,γ , where −n

p < δ′ < δ and 0 < γ′ < γ.

We recall the product estimate

W p
1,δ′,γ′ ×W p

0,δ+2,γ →W p
0,δ+2,γ

which holds if n+m
p < 1, γ ≤ 2 + δ + γ′ and δ + 2 ≤ γ + γ′. Since δ + 2 > 0, these

conditions can be fulfied with γ′ close to γ. Thanks to this product estimate, we can
show that F (x, θ, ϕi) converges toward F (x, θ, ϕ) in W p

0,δ+2,γ , which implies that ϕ is a
solution to

∆gϕ = F (x, θ, ϕ).

�

4.2. The Hamiltonian equation.

Theorem 4.2. Let gij − ζij ∈ W p
2,σ,λ(M) and let a, b ≥ 0, a, b, h ∈ W p

0,δ+2,γ , bounded.

We assume the hypothesis of Theorem 1.2 for (σ, λ, δ, γ). The equation

∆gϕ+ hϕ = −bϕ2∗−1 +
a

ϕ2∗+1

has a solution ϕ = A+ u, u ∈W p
2,δ,γ, A > 0, ϕ > 0.

Proof. We identify a subsolution ϕ− ≤ A and a supersolution ϕ+ ≥ A to the equation,
where ϕ− ∈W p

2,δ,γ and ϕ+ ∈W p
2,δ,γ solve

∆gϕ− + hϕ− + bϕ2∗−1
− = 0 (4.2)

and

∆gϕ+ −
a

ϕ2∗+1
+

= 0, (4.3)

respectively. In order to solve both (4.2) and (4.3), we once more apply the barrier
method, and are thus tasked with finding subsolutions and supersolutions for each of
them.

The subsolution ϕ− solving (4.2). The subsolution of equation (4.2) is chosen to be
as the constant ψ− = 0. The supersolution of equation (4.2) is a constant ψ+ > A.
Therefore, we can always find a non-negative solution ϕ−. Finally, the positivity of ϕ−

follows from Alecksandrov’s uniqueness theorem (Theorem 1.7, [Can79], a special case
of Theorem A, [SS62]). Consider the linear equation

∆gϕ+ (h+ bϕ2∗−2
− )ϕ = 0,
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which clearly accepts both ϕ− and 0 as solutions. If there exists p ∈ M such that
ϕ−(p) = 0, then this is a minimum and ∇ϕ− = 0. By Alecksandrov’s uniqueness
theorem, ϕ− ≡ 0, which contradicts the fact that ϕλ0 tends to A > 0 at infinity.

The supersolution ϕ+ which solves (4.3). We fix the subsolution ψ− = A to (4.3). We
find a supersolution ψ+ as the limit of a sequence constructed iteratively as follows: let
ψ0 = A, and ψi = A+ ui

∆gui =
a

ψ2∗+1
i−1

.

We prove iteratively that ui ≥ 0. We get that

‖ui‖W p
2,δ,γ

≤ C

∥∥∥∥
a

(ui−1 +A)2
∗+1

∥∥∥∥
W p

0,δ+2,γ

≤ C‖a‖W p
0,δ+2,γ

.

We can thus extract a subsequence that converges in W p
1,δ′,γ′ to ϕ+ − A ∈ W p

2,δ,γ , with

δ′ < δ, γ′ < γ. Then ϕ+ is then a solution of (4.3). �

4.3. The coupled system. We are ready to provide the proof for Theorem 1.2, which
treats the problem of the existence of initial data for the vacuum case. We prove it with
an iteration scheme, using a compactness argument.

Proof of Theorem 1.2. In order to prove the existence of a solution of the coupled system,
we want to construct a convergent sequence ϕi = A+ ui, defined by iteration. We start
with ϕ0 = 0. If ϕi−1 is a function, bounded by a constant M , we use Theorem 3.3 to
define Wi ∈W p

2,δ,γ to be the unique solution of the linear equation,

∆gWi =
d− 1

d
ϕ2∗

i dτ.

It satisfies the estimate

‖Wi‖W p
2,δ,γ

≤ CM‖dτ‖W p
0,δ+2,γ

. (4.4)

Then we define the scalar field ϕi to be the solution, given by Theorem 4.2, of

4(d− 1)

d− 2
∆gϕi +Rgϕi = −

d− 1

d
τ2ϕ2∗−1

i +
a(Wi)

ϕ2∗+1
i

,

where

a(Wi−1) = |LgWi−1 + U |2.

The solution ϕi can be written ϕi = A+ ui, with ui ∈W 2
p,δ,γ. To show the compactness

of the sequence, it is sufficient to show that ui is uniformly bounded in W 2
p,δ,γ. Solving

the scalar equation requires the existence of sub and super solutions at each iteration.
In fact, the most straightforward way to go about it is to use the same sub and super
solution at each iteration, such that ϕ− ≤ ϕi ≤ ϕ+. It will ensure that the ϕi are all
uniformly bounded by the same constant M = supϕ+. The subsolution ϕ− solves the
same equation (4.2) as before (it does not depend on Wi !). As for the supersolution,
we ask that it solves

∆gϕ+ =
A

ϕ2∗+1
+

,
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where A ∈W p
0,δ+2,γ , fixed, is to be chosen sufficiently large such that for all i, a(ϕi) ≤ A,

in order to ensure that ϕ+ stays a supersolution each iteration. Therefore, by default,

A > |U |2.

Thanks to the embeding W p
1,δ+1,γ ⊂ C0

ρ with ρ < min(γ, δ + 1 + n
p ), we can write

|LgW | ≤ C
‖Wi‖W p

2,δ,γ

〈x〉2ρ
≤
CMε

〈x〉2ρ
,

where we have used (4.4) the hypothesis ‖dτ‖W p
0,δ+2,γ

≤ ε. We choose ε small enough in

order to have CεM ≤ 1. Then we can write

a(Wi−1) ≤ 2|U |2 +
2

〈x〉2ρ
= A.

In this way, we have defined a fixed functionA, which belongs toW p
0,δ+2,γ if 2ρ > δ+2+n

p .

This condition is satisfied under the conditions δ + n
p > 0 and 2γ > δ + 2 + n

p . We have

consequently constructed a uniform supersolution ϕ+.
Now that we have proved the functions ϕi are uniformly bounded, from bellow and

from above, we have a uniform bound for ‖Wi‖W p
2,δ,γ

, and the elliptic estimate yield a

uniform bound for ‖ui‖W p
2,δ,γ

. By compactness, we can extract a subsequence ϕf(i) which

converges uniformly in C0 to some ϕ, and such that ϕf(i)−A converges weakly inW p
2,δ,γ.

Then Wf(i) converges strongly in W 2
2,δ,γ to some W , and the limit (ϕ,W ) is a solution

to the constraint equations.
�
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