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Abstract 

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of 

myeloid cells. Yet, the complexity of myeloid cell identity and plasticity has challenged efforts to 

define bona fide populations and determine their connections to T cell function and their relation 

to patient outcome. Here we leverage single-cell RNA-sequencing (scRNA-seq) analysis of 

several mouse and human tumors and find that monocyte-macrophage diversity is 

characterized by a combination of conserved lineage states as well as transcriptional programs 

accessed along the differentiation trajectory. Using mouse models, we also find that tumor 

monocyte-to-macrophage progression is profoundly tied to regulatory T cell (Treg) abundance. 

Importantly, in human kidney cancer, heterogeneity in macrophage accumulation and myeloid 

composition corresponded to variance in, not only Treg density, but also the quality of infiltrating 

CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a 

framework for critically different immune states in kidney tumors. 
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Introduction 

A key component of most immune responses, including those to cancers, are mononuclear 

phagocyte cell populations, which share common features of phagocytosis, tissue repair, and 

immunoregulation but diverge in functional specialization. Conventional dendritic cells (cDCs) 

are positioned in tissues to initiate and sustain adaptive T cell responses1,2 while macrophages 

(MFs) engage in high rates of phagocytosis and tissue remodeling3–5. Self-renewing tissue-

resident macrophages are seeded during embryonic development6–10, while inflammatory stimuli 

prompt infiltration of adult hematopoietic stem cell-derived monocytes that give rise to tumor 

macrophages11–14. These monocyte-derived macrophages preferentially accumulate as tumors 

progress15 and may predominate in regulating the ongoing antitumor T cell response16.  

 

 Macrophages consist of numerous subset populations that have been identified across 

tissues17–20. Therapeutic blockade of key epigenetic and signaling pathways has demonstrated 

their amenability to transcriptional reprogramming21–27, but how phenotypic diversity arises still 

remains poorly understood. Recruited bloodborne monocytes exhibit plasticity in differentiation 

potential and can acquire features of macrophages and/or DCs depending on the inflammatory 

setting12,13,17,28–32. In addition, early studies demonstrated that macrophage exposure to type 1- 

or type 2-associated cytokines induces “M1” or “M2” cellular programs, respectively, and a 

model was put forth in which myeloid cells are polarized to be pro- (“M1”) or anti- (“M2”) 

inflammatory33–35. Although this nomenclature was thereafter understood to require nuance to 

account for additional plasticity36, it remains undetermined if these binary programs are 

applicable to describe tumor macrophage differentiation in vivo. 

 

Myeloid phenotypic diversity has also challenged efforts to utilize myeloid populations as 

biomarkers for patient treatment options and outcome. cDCs are critical for coordinating 

antitumor T cell immunity37–42 and higher cDC abundance is broadly associated with improved 
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cancer patient survival, although additional TIME features may inform functionality38,39,43. In 

contrast, macrophages have largely been considered to be pro-tumoral5,44 and monocytes have 

often been described as myeloid-derived suppressor cells (MDSCs)45. Yet, several studies have 

exhibited variability in the use of macrophages as a negative predictor of patient prognosis46–49, 

and increased levels of circulating monocytes were unexpectedly linked to patient 

responsiveness to immune checkpoint blockade (ICB)50. These contrary findings speak to the 

need for improved resolution of myeloid cell categorization and phenotype in order to dissect 

heterogenous responses amongst cancer patients.  

 

We used scRNA-seq to uncover transcriptional heterogeneity amongst tumor-infiltrating 

myeloid cells and distinguished monocyte and macrophage lineage- and activation-induced 

programs shared between multiple mouse tumor models and human kidney cancer samples. 

Monocyte differentiation is dynamically regulated, and we found that Treg density is one example 

of an immunoregulatory axis that can modulate macrophage density. Further comprehensive 

analysis of key myeloid populations revealed distinct network connections between different 

myeloid cell types and T cell subsets, including Tregs and effector T cells. This is consistent with 

an archetypal organization of immune systems in tumors — collections of cell types that move 

together as modules51 — and improved classification of patients such that we could identify 

those with effective antitumor T cell responses.  
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Results 

 

Establishing Diversity of Differentiation and Environment-responsive Myeloid States in 

Mouse B16 Tumors 

 

Subcutaneous implantation of B16 melanoma cells is a well-established mouse tumor model 

with abundant infiltration of monocytes, macrophages, and cDCs38. To study these cells along 

their differentiation trajectories, we used conventional markers to sort bulk myeloid populations, 

along with reference sorted populations of Ly6C+ monocytes and two tumor-associated (TAM) 

populations, distinguished based on expression level of CD11c and MHC-II38 (Fig 1A, S1A), 

and then subjected all of these to scRNA-seq analysis. 

 

Within the bulk myeloid population, t-SNE clustering yielded eight transcriptionally-

distinct cell populations (Fig. 1B, S1B-C), including three Flt3+ Kit+ cDC populations (Clusters 4, 

6, 7), which were marked by signatures specific to cDC1s, cDC2s, and conserved cDC 

activation programs (Fig. S1D, Table S1)38,39,52. The remaining myeloid cells (Clusters 0, 1, 2, 3, 

5) broadly expressed Csf1r and Mafb (Fig. 1C), indicative of monocytes and macrophages. 

Having focused on the stimulatory capacity of cDC in previous work38,39,53, here we focused on 

the diversity of monocytes and macrophages as it related to the TIME. 

 

To align transcriptional cell type categorization with flow cytometry analysis, we 

generated cell-type-specific gene signatures from the scRNA-seq analysis of the FACS-sorted 

monocytes and TAMs (Fig. 1A, S1E). When applied (Fig. 1D), these indicated that four Csf1r+ 

Mafb+ populations (Clusters 0, 1, 2, 5) expressed monocyte-specific genes, an unexpected 

heterogeneity. The four monocyte populations expressed Ly6c2, but varied in levels of other 

monocyte-associated genes (e.g., Hp, Chil3) and, as found in Cluster 0, also expressed TAM-
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associated genes (e.g. H2-Ab1, C1qa, Ms4a7) (Fig. 1E-F, S1E). Monocyte-like clusters were 

differentiated from one another by cellular activation programs. For example, Cluster 1 (“IFN-

responsive”) was specifically enriched for interferon (IFN)-inducible genes such as Cxcl10, 

Gbp2, and IFIT-family members. Cluster 2 (“stress-responsive”) cells expressed Arg1 and were 

enriched for cellular stress processes, including oxidative stress-responsive genes and heat-

shock protein genes such as Hmox1, Hspa1a, Hilpda, Bnip3, Ero1l, and Ndrg1 (Fig. 1F, S1F). 

In contrast to the heterogeneity observed amongst monocytes, signatures for both populations 

of TAMs localized within Cluster 3 (Fig. 1D). 

 

 We applied pseudotime analysis54 to generate a model of tumor monocyte-to-

macrophage differentiation (Fig. 1G-H, S1G). This model placed Cluster 5 Ly6c2+ Hp+ 

monocytes and Cluster 3 C1qa+ TAMs at opposite ends of a linear trajectory consistent with 

expectations. Cluster 0 monocytes occupied the continuum between them and expressed a 

combination of both monocyte- and TAM-associated signatures such that we designated these 

cells “Intermediate monocytes” (“Mono-Int”). Kinetic analysis of cluster-enriched genes 

confirmed gradual downregulation of Ly6c2+ Hp+ monocyte-associated genes and up-regulation 

of “Mono-Int”- and TAM-associated genes along the pseudotime trajectory (Fig. 1I). This 

transcriptional model thus supported a framework of progressive monocyte-to-TAM 

differentiation, in which Ly6C down-regulation is paired with up-regulation of CD64, MHC-II, and 

F4/8028 (Fig. S1H-I). In contrast, IFN- and stress-responsive cells occupied distinct branches 

that diverged from the dominant differentiation trajectory at intermediate timepoints (Fig. 1H-I, 

S1G).  
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ScRNA-seq Highlights Heterogeneous Acquisition of ‘Stress-’ and ‘Interferon-

Responsive’ Cellular Programs during Tumor Monocyte-to-Macrophage Differentiation 

 

To gain higher resolution on the differentiation trajectories within this lineage, we next performed 

cluster analysis on the sorted monocyte and TAM samples. Sorted monocytes expressed Ly6c2 

and contained clusters similar to those identified within the bulk myeloid cell sample (Fig. 2A, 

S2A). Cluster analysis of CD11clo and CD11chi TAMs, however, resolved diversity beyond the 

C1qa+ TAM signature (Fig. 2B, S2B-C) including clusters enriched for cell cycle-related genes, 

and an Mgl2+ TAM subset that expressed immune modulators such as Ccl6, Il1b, and Retnla as 

compared to the C1qa+ cluster which more highly expressed genes such as Ms4a7. Although 

these cells had not formed a distinct population in our original analysis of bulk myeloid cells 

(Fig. 1), we did retrospectively detect Mgl2+ cells in in that scRNA-seq data, as well as by flow 

cytometry (Fig. S2D). TAM-subset clusters were surprisingly also accompanied by an Arg1+ 

stress-responsive cluster akin to that found in the sorted monocytes (Fig. 2B, S2B-C). Indeed, 

re-clustering of the entire stress-responsive cluster from the bulk tumor myeloid sample 

revealed that this program was acquired by monocytes, “Mono-Int” and TAMs (Fig. 2C, S2E).  

 

 Segregated expression of stress-responsive genes and canonical TAM-associated 

genes suggested divergent transcriptional programs and we sought to determine if these 

populations could also be distinguished by flow cytometry. Differential gene expression analysis 

of the stress-responsive and C1qa+ TAM clusters from our bulk myeloid cell sample revealed 

cluster-specific expression of cell surface genes Il7r and Vcam1, respectively (Fig. 2D). Using 

the same gating as in Fig. S1A, we confirmed this split in both “Mono-Int” and TAMs (Fig. 2E) 

and we found enriched arginase 1 (ARG1) expression in both IL-7Ra+ populations (Fig. 2E-F, 

S2F). As expected from the single-cell transcriptional analysis, VCAM1+ cells were more 

abundantly found within TAMs (Fig. 2E-F, S2F).  
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Together, this dissection of sorted cell populations lent support to a model in which 

monocytes and TAMs exist in a differentiation trajectory, along which cells can adopt 

specialized cellular programs (Fig. 2G-H). Some programs, such as those associated with 

Mgl2+ or Vcam1+ TAMs, selectively emerged later, in mature TAMs. Others, such as IFN-

induced signaling or stress-responsiveness may be more universally accessible across 

differentiation stages. Interestingly, we detected populations of IFN-responsive monocytes in the 

peripheral blood of B16 tumor-bearing mice (Fig. S2G-H), perhaps suggesting that systemic 

IFN signaling, or other induction of this program, may define monocytes prior to tumor entry. In 

contrast, stress-responsive populations were not detected in the blood, suggesting that 

microenvironmental cues in the TIME likely induce this activation program locally. Further 

studies are warranted to explore if these programs directly influence monocyte differentiation 

processes or act as ‘layers’ that accessorize a canonical differentiation trajectory. 

 

 

Mouse Tumor Macrophage Subset Heterogeneity Does Not Reflect “M1/M2” Polarization  

 

Macrophage exposure to type-1 or type-2 cytokines in vitro results in “M1” and “M2” 

transcriptional signatures that are often used to describe ‘pro-inflammatory,’ or ‘anti-

inflammatory’ and wound healing processes, respectively33–35. To address whether “M1/M2” 

polarization was a useful construct to define tumor macrophage diversity in vivo, we tested how 

“M1” and “M2” gene signatures55 corresponded to tumor myeloid cell subsets profiled here. 

Using correlation and clustering analyses (Fig. 3A, S3A), we found that, contrary to in vitro 

findings, tumor myeloid cells were marked by broad expression of both “M1”- and “M2”-

associated genes, and we did not observe substantial correlation of gene expression within 

“M1” or “M2” gene groups across single cells. These data suggest that while tumor myeloid cells 
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can express individual “M1” and “M2” genes, they rarely do so in any distinguishably consistent 

way during unperturbed tumor growth. Further, when a parallel sorting strategy was pursued to 

generate scRNA-seq analysis of tumor myeloid cells from the spontaneous mammary 

carcinoma MMTV-PyMT, we found that both share populations with the identical signatures 

defined in Figure 1, albeit in different proportions, and also show a lack of co-association 

between “M1” and “M2” signatures amongst the clusters (Fig 3B-C, S3B-E). 

 

While myeloid cell populations appeared to be largely defined by differentiation stage 

and activation programs, we considered whether other core cellular features could help to 

further distinguish subsets across diverse microenvironments. It is now increasingly appreciated 

that metabolic reprogramming accompanies differentiation of immune cells, including 

macrophages56. Indeed, assessment of metabolism-related genes57 demonstrated that 

glycolysis-associated genes were specifically enriched in the stress-responsive cell cluster 

whereas genes pertaining to oxidative phosphorylation were specifically enriched in C1qa+ 

TAMs in two distinct mouse models (Fig. 3D-E, S3F). This suggests that these populations 

have additional important biological features in common—namely those coupled to distinct 

bioenergetic processes and demands. 

 

Together, our data provides compelling evidence that “M1” and “M2” pathways have 

limited use in defining in vivo tumor myeloid cell differentiation and subset plasticity during 

normal tumor development. Rather, common microenvironmentally-induced programs and 

associated metabolic programs may yield greater insight in efforts to transcriptionally define and 

selectively target monocyte/TAM subsets. 

 

Human renal cell carcinoma-infiltrating monocytes and macrophages mirror murine 

populations 
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We then assessed how these mouse monocyte/macrophage transcriptional programs might 

compare to those from human kidney cancers, which are described to have substantial myeloid 

cell infiltration58. We performed scRNA-seq analysis on HLA-DRdim/+ Lin- myeloid cells sorted 

from a renal cell carcinoma (RCC) sample (Fig. 4A-B, S4A). Signatures derived from previously 

described blood myeloid cell populations59 guided cluster identification and exclusion of cDC 

(Fig. S4B). Analysis of the CSF1R+ MAFB+ clusters revealed a heterogenous collection of 

monocytes and macrophages with varying levels of CD14 and CD16 (Fig 4C-D).  

 

As in mouse models, we detected early-stage CD14+ S100A8+ classical monocytes 

(Cluster 1) along with terminally-differentiated C1QC+ TAMs (Cluster 3) (Fig. 4 E-F, Table S2). 

Another population (Cluster 0) were CD14+ and differentially expressed LYPD3 and MHC-II 

genes, consistent with intermediate differentiation of monocytes towards TAM (“Mono-Int”; Fig. 

4D-F). A population of CD16+ non-classical monocytes (Cluster 2) also expressed IFN-

stimulated genes and thus appear to functionally represent ‘IFN-responsive’ cells (Fig. 4D-F, 

S4C). Finally, we found that there were a mix of cells on the monocyte-macrophage trajectory 

that expressed the stress-responsive program identified in mice (Fig. S4C). Of these was a 

cluster transcriptionally similar to TAMs but marked by high expression of the antioxidant factor 

SEPP160–62 (Cluster 4). When compared further to C1Q+ TAMs, this SEPP1+ cluster was less 

mature based on higher expression of monocytic markers (i.e. S100A genes) and lower 

expression of MHC-II-related genes (Fig. 4E, S4D). Pseudotime analysis of human myeloid 

cells recapitulated the alignment of stress- and IFN-responsive programs over the monocyte-to-

macrophage trajectory (Fig. 4G), although in this RCC sample, IFN-responsive monocytes 

appeared more advanced in differentiation stage. As in the mouse samples, there was broad 

co-expression of “M1”- and “M2”-associated genes across the populations (Fig. S4E). Also, as 

in mice, there was a striking enrichment in a glycolytic signature57 within the stress-responsive 
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(SEPP1+) cluster as compared to the C1q clusters, supporting that these cells were functional 

orthologs in the two species (Fig 4H). Altogether, these data confirm the limitation of “M1” and 

“M2” applicability in human tumors and illustrate the ability of other pathways to better define 

myeloid cell subsets in vivo. 

 

Treg depletion impairs monocyte-to-macrophage differentiation and elicits inflammatory 

monocyte programs 

 

Myeloid cell density can vary across patients58, but how myeloid cell infiltration and 

differentiation is collectively regulated in human cancer is still not well understood. When we 

quantified myeloid cell populations in RCC patient biopsies using flow cytometry we found that 

the proportion of myeloid cells amongst live immune cells was increased in tumors of greater 

size and later stages (Fig. S5A). Closer examination revealed that the ratio of macrophages-to-

monocytes was also specifically increased in more advanced tumors (Fig. 5A, top). This 

suggested that the balance between monocytes and macrophages is dynamically regulated and 

that tumor growth was tied to higher macrophage density.  

 

We thus sought other immunosuppressive parameters that might work in concert with 

increased macrophage accumulation. Tregs are a potent immunosuppressive force in the TIME 

and ablation can result in tumor clearance39,63. Interestingly, we found that Tregs similarly 

accumulated as kidney tumor size increased (Fig. 5A, bottom), and that Treg abundance 

correlated well with macrophage-to-monocyte ratios in kidney as well as melanoma cancers 

(Fig. 5B). The positive correlation between Treg and macrophage density spurred us to ask 

whether one caused the other. Using Foxp3-DTR mice, we found that depletion of Tregs 

dramatically reduced the macrophage-to-monocyte ratio in mouse B16 tumors (Fig. 5C, top) as 
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assessed by flow cytometry. This result was phenocopied by treatment of mice with an anti-

CTLA-4 antibody that specifically depletes tumor Tregs
39 (Fig. 5C, bottom, S5B-C).  

 

To further examine how Tregs may be influencing monocyte and macrophage proportions, 

we performed scRNA-seq analysis on mouse tumor myeloid cells from B16 tumor-bearing 

control and FoxP3-DTR mice. Csf1r+ Mafb+ clusters from this experiment were aggregated with 

those from the original wild-type B16 tumor sample in Figure 1 and we observed similar cell 

populations across both experiments and treatment conditions (Fig. 5D, S5D-E). Cluster 

proportions were modestly shifted with Treg loss (Fig. 5D), but cells from control and Treg-

depleted tumors shared similar differentiation trajectories (Fig. 5E). However, Monocle analysis 

revealed differences in the accumulation of cells along the trajectory. Namely, while tumor 

monocytes, “Mono-Int”, and TAMs from the control sample acquired progressively increased 

pseudotime scores, “Mono-Int”, and TAM populations in the Foxp3-DTR sample did not exhibit 

sequential increases in pseudotime scores (Fig. 5E). In effect, TAM progression appeared 

stunted following depletion of Tregs.  

 

Indeed, in addition to increased expression of inflammatory and immunomodulatory 

genes (e.g., Ccl24, Arg1, Retnla, Mmp12, Mmp13, Nos2), expression of monocyte-associated 

genes was sustained in TAMs from Treg-depleted tumors (Fig. 5F-G, Table S3). Moreover, 

expression of genes tied to macrophage differentiation (e.g., C1qa, H2-Ab1, Apoe, Ms4a7) were 

decreased across stages of differentiation (Fig. 5H, S5F), further indicating these TAMs were 

more immature. Our analysis suggests that the Treg-depletion may impair implementation of 

TAM transcriptional programs, a remodeling detected early during tumor monocyte 

differentiation. Altogether these findings support a model in which Treg abundance promotes an 

accumulation of terminally-differentiated TAMs in both mouse and human tumors. 
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Multiparametric analysis of myeloid cell composition improves classification of kidney 

cancer patient antitumor responses 

 

Given this association between T cell subset density and TAM maturation, we sought to further 

explore how features of tumor macrophage infiltration could be harnessed to reliably inform 

features of patient outcome, such as survival. Analysis of TCGA kidney cancer samples using a 

myeloid gene signature from CiberSort64 demonstrated that patients with varying levels of 

overall myeloid cell density did not significantly differ in their survival (Fig. 6A, left). We next 

stratified TCGA patients based on levels of monocyte/macrophage lineage genes CSF1R and 

MAFB, finding that patients with higher levels of these appreciated only modest improvements 

in outcome (Fig. 6A, middle). As these genes are not strictly macrophage-specific, we 

leveraged our scRNA-seq analyses of human kidney samples to generate signature scores 

based on the ratio between macrophage and monocyte (Fig 4E). However, no significant 

differences in survival were revealed using this metric (Fig. 6A, right).   

 

As TAM density did not appear to robustly inform patient outcome, we sought to test how 

TAM abundance corresponds with other immune parameters and may stratify patients. We thus 

analyzed a cohort of kidney cancer patient biopsies by flow cytometry and quantified immune 

cell population frequencies. Unbiased clustering analysis of samples revealed three groups of 

patients that exhibited distinct immune composition patterns (Fig. 6B). As suggested from our 

previous analysis (Fig. 5A) macrophage/monocyte ratio and Treg density represented a strong 

classifier which delineated the patients and revealed a group that was highly enriched for both 

macrophages and Tregs (Treg-Mp; red). Although the other groups were generally 

TAM/monocytelo/int, one group (CD8-Mo-cDC1; pink), but not the other (CD4-cDC2; yellow), 

was distinguished by notable infiltration of cDC1, which are critical for CD8+ T cell responses 

37,38,40, and that group presented with uniformly high CD8+ T cell infiltration. Further, the same 
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patients clustered together based on expression levels of checkpoint regulators (i.e., PD-1, 

CTLA-4, CD38) and proliferative capacity (i.e. Ki-67) within the CD8+ T cell compartment (Fig. 

6C). Notably, CD8+ T cells from the CD8-Mo-cDC1 group (pink) expressed low levels of 

exhaustion markers PD-1 and CD38 (Fig. 6C-D) and were also distinguished by higher CTLA-4 

protein expression, which may indicate ongoing activation65 (Fig. 6C-D). In contrast, the Treg-

Mp (red) group showed the highest levels of both exhaustion markers and Ki-67. 

 

In testament to the heightened antitumor CD8+ T cell profile associated with low 

macrophage and Treg abundance but high cDC1 density, the subset of patients with these 

attributes (pink) appreciated dramatically improved survival (Fig. 6E). Moreover, we found that 

measuring the ratio of cDC1s to macrophages through combined gene signatures rather than 

use of either signature alone (Fig. S6A-C) allowed for identification of kidney cancer patients 

with better survival in an external bulk RNAseq dataset (TCGA). Thus, fine-tuned stratification of 

kidney cancer TIME provided the resolution critical for identifying distinct patient classes 

including this CD8-Mo-cDC1 group, which defines patient with the best anti-tumor immune 

response regardless of tumor stage and treatment.  
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Discussion 

 

Here we undertook scRNA-seq analysis of tumor monocytes and macrophages to 

determine the key hallmarks of their transcriptional diversity. We found two types of 

differentiation to manifest during tumor development. On the one hand we found a classical 

lineage differentiation trajectory that progresses from monocytes-to-macrophages in a way that 

has been long appreciated66 with a discernable ‘intermediate’ monocyte (“Mono-Int”) cell 

population. A “Mono-Int” population is, for reference, well-described in other settings. For 

example, Randolph and colleagues detect ‘intermediate’ monocytes in lymphoid and non-

lymphoid tissue in steady-state conditions67, and fluorescent real-time lineage tracing identifies 

cells undergoing that transition during allergic challenge68.   

 

On the other hand, we found two differentiation layers – ‘stress-responsive’ and ‘IFN-

responsive’ – that co-exist along that trajectory and that were shared across multiple mouse 

models as well as a profiled human kidney cancer biopsy (Fig. 1, 4). These programs were also 

present in other recently published studies18,60,69. For example, in a pan-cancer study, Cheng et 

al. discern myeloid populations whose primary distinction is their expression of IFN-induced 

genes (e.g., ISG15+ TAMs). A notable difference in our interpretation compared to these reports 

lies in our incorporation of these layers within the monocyte-macrophage differentiation axis, 

rather than proposing them as a unique trajectory. Through independent profiling of purified 

monocytes and macrophages in our study and pseudotime analysis (Fig. 1-2), we find the 

stress-responsive signatures evident in both cell populations and indeed across them. In 

additional support of such a view, we found that an IFN-responsive signature was enriched 

amongst monocytes in one mouse model and macrophages in another (Fig. 1, 3). We believe 

that this represents that macrophages can differentiate in two dimensions – progression through 

the classical lineage as well as acquisition of specialized states characterized by examples of 
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IFN or stress exposure. Intuitively, this is similar to CD4+ T cells that can differentiate along a 

naïve-effector-memory axis while also being able to layer on Th1/Th2/Th17 programs70.  

 

Despite the latter comparison, we notably do not find any populations, nor indeed any 

cells, that have an exclusively “M1” or “M2” signature (Fig. 3). Individual genes such as Arg1 

are associated with certain clusters, as some have observed18, but both correlation and 

signature analyses fail to identify any of the described ‘M1’ or ‘M2’ genes as either being 

selectively linked with one another in single cells, or as key classifiers of cell clusters. To this 

extent, the ‘M1/M2’ nomenclature has provided direction in the fruitful study of myeloid cell 

signaling and differentiation but does not appear to be accurately categorize distinct 

differentiation states, at least for tumors in vivo. We note the absence of data to the contrary of 

this conclusion in other recent reports55,58,69 although of course individual nomenclature (e.g., 

“M2-like”) is clearly a matter of choice and needs only discussion as to which part of the in vitro 

signature might be biologically relevant. 

 

One important aspect of myeloid biology that requires further elaboration is how to 

identify IFN- and stress-responsive phenotypes. For example, Gubin et al. use iNOS as a 

marker by flow cytometry to define the IFN-stimulated population induced by ICB whereas 

Cheng et al. utilize ISG15. Particularly in the former study which studied macrophage identity 

post checkpoint blockade therapies, varied levels of type I and II IFNs may also modulate 

properties of this differentiation layer. In the case of ‘stress-responsive’ populations, our data 

also point to IL-7Ra expression, which may indicate involvement of TSLP signaling through 

heterodimeric pairing with TSLPR71,72. In human macrophages, SEPP1 was present in our study 

as well as in Cheng et al., but this or its homolog is not formative for what appears to be the 

analogous population in mice. An important set of conserved genes for ‘stress-responsive’ 

macrophages, taken from our manuscript, is their consistent and significant enrichment for 
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glycolytic genes, particularly in comparison to conventional C1q ‘mature’ TAMs. Given that HIF-

1 is known to induce glycolytic genes in hypoxic conditions73, this finding raises the questions of 

whether these cells are selected for hypoxic environments where oxidative phosphorylation may 

not proceed, as well as their specific function. Going forward, the use of multiplexed imaging 

technologies such ion beam imaging (MIBI) 74,75 and single-cell spatial transcriptomics76–78 will 

enable this analysis. 

 

Our investigation of monocyte/macrophage differentiation led us to explore how its 

regulation could inform our understanding of antitumor immunity. Analysis of kidney cancer and 

melanoma patient cohorts revealed an increase in macrophage-to-monocyte ratios with tumor 

grade, a rise that coincided with Treg density and was Treg-dependent. Tregs exert potent 

immunosuppression and are thought to restrain T cell activity and antitumor responses through 

modulation of DC stimulatory capacity, production of immunosuppressive cytokines and 

substrates, and competitive usage of growth factors and metabolic byproducts39,79–81. It is 

becoming clear now that tumor Tregs also strongly influence the monocyte/macrophage lineage, 

likely through multiple mechanisms. In a recent study, tumor Tregs promoted tumor macrophage 

numbers by supporting their mitochondrial capacity and viability82. Here our scRNA-seq data 

demonstrates that early-stage monocytes and “Mono-Int” cells are already unable to properly 

implement TAM-associated transcriptional programs in the absence of Tregs, indicating that Tregs 

also fuel macrophage differentiation processes. This liaison between Tregs and macrophages 

mirrors one identified elsewhere such as adipose fat of lean mice where Tregs are thought to 

actively maintain homeostasis and hold inflammatory macrophages at bay83,84. Similarly, during 

the resolution of injury and inflammation in skeletal muscle and heart tissue, a transition from 

pro- to anti-inflammatory macrophages occurs in a manner that appears to rely on Treg 

accumulation85–88. That Tregs may act on tumor macrophages in a similar fashion offers another 
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example of how the TIME can exploit immune programs of “accommodation” that are otherwise 

in place to achieve tissue homeostasis in the face of perturbations89.  

 

Accumulation of a broad swath macrophages in the TIME has previously been 

implicated with poor outcome90. Consistent with this but at higher resolution, we detected a 

group of kidney cancer patients for whom high macrophage-to-monocyte abundance was 

associated with diminished T cell infiltration and exhaustion of those cells detected, concurring 

with other very recent reports58,60. Our manuscript thus points to an emerging trio of Tregs, 

macrophages, and exhausted T cells, whereby effector T cells may be corrupted through direct 

cellular interactions with TAMs, as has been suggested by observations of TAM-CD8+ T cell co-

localization in ccRCC60, or indirectly through macrophage-induced Treg expansion and 

activity15,91 or DC suppression39,92. 

 

Yet, high myeloid infiltration or skewed macrophage-to-monocyte ratios alone were not 

prognostic for KIRC patient survival. Indeed, although macrophages have often been found to 

be negatively associated with patient outcome, macrophage abundance as a sole biomarker 

has not been universally useful with prior studies similarly reporting instances in which 

macrophage abundance is not informative for patient cohorts with specific cancer sub-types, 

treatment regimens, or tumor stage93–96. Clustering analysis of kidney TIME composition using 

comprehensive immune parameters, however, uncovered an archetype characterized by low 

macrophage-to-monocyte in conjunction with high cDC1 infiltration. These patients (CD8-Mo-

cDC1) had elevated infiltration of CD8+ T cells with low surface expression of proteins 

associated with exhaustion and appreciated highly enhanced survival rates (Fig. 6, pink). 

Notably, recent work focused on ascertaining the different immune archetypes across solid 

tumors suggests that these patient groups span cancer type51.   
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Identification of a CD8-Mo-cDC1 archetype emphasizes the value of integrating 

multiparametric biomarkers as a means to better parse patient outcome and to establish 

principles of TIME organization. Given that T cell activity appears to be collectively influenced by 

multiple immune cell populations with distinct partnering patterns, our analysis suggests that 

dual targeting of TIME axes may elicit the best CD8+ T cell responses. For example, 

reprogramming and/or depletion of macrophages may relieve active suppression5,44 and 

strategies that boost cDC1 recruitment and survival2 may further benefit even those with 

favorable macrophage-to-monocyte density. It is also notable that this protective archetype is 

specifically enriched for monocytes. Indeed, monocyte differentiation into macrophages may not 

be inevitable and accumulation of “Mono-Int” cells have been detected in multiple forms of 

inflammation17,29,97–100. Additionally, the potential importance of monocytes is indicated by their 

increased numbers in the blood of ICB responsive as compared to non-responsive melanoma 

patients50. In ccRCC patients, IFN-responsive TAMs exhibited lower levels of HLA-DR, 

reminiscent of “Mono-Int” cells described here, and higher levels of these TAM-ISGhi were 

predictive of survival after TKI treatment94. Such a relationship opens questions across cancer 

type; namely, whether “Mono-Int” are distinct in their antitumor function, and how might 

monocytes be additive or synergistic with cDC1 to drive antitumor CD8 T cells?  

 

Altogether these findings contribute to the endeavor of clarifying useful distinctions in 

myeloid gene expression and highlights settings in which multiparametric analysis of tumor 

myeloid composition can inform patient immune archetype and guide development of relevant 

therapies. 
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Methods 

 

Mice 

The following mice were housed and/or bred under specific pathogen-free conditions at the 

University of California, San Francisco Animal Barrier Facility: C57BL/6J (The Jackson 

Laboratory), MMTV-PyMT-mCherry-OVA transgenic101, and Foxp3-DTR (The Jackson 

Laboratory). All mice were handled in accordance with NIH and American Association of 

Laboratory Animal Care standards, and experiments were approved by the Institutional Animal 

Care and Use Committee of the University of California, San Francisco.  

 

Human Tumor Samples 

RCC or melanoma tumor samples were transported from various cancer operating rooms or 

outpatient clinics. All patients consented by the UCSF IPI clinical coordinator group for tissue 

collection under a UCSF IRB approved protocol (UCSF IRB# 20-31740). Samples were 

obtained after surgical excision with biopsies taken by Pathology Assistants to confirm the 

presence of tumor cells. Patients were selected without regard to prior treatment. Freshly 

resected samples were placed in ice-cold DPBS or Leibovitz’s L-15 medium in a 50 mL conical 

tube and immediately transported to the laboratory for sample labeling and processing. The 

whole tissue underwent digestion and processing to generate a single-cell suspension. In the 

event that part of the tissue was sliced and preserved for imaging analysis, the remaining 

portion of the tissue sample was used for flow cytometry analysis.  

 

Tumor Cell Lines 

B16-F10 cells (ATCC, CRL-6475) were purchased and cultured at 37°C in 5% CO2 in DMEM 

(Invitrogen), 10% FCS (Benchmark), Penicillin, Streptomycin, and L-Glutamine (Invitrogen). 

B16-F10-ZsGreen was previously generated in our laboratory as described102. 
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Mouse Tumor Cell Injections and Growth  

Prior to injection, adherent B16-F10 or B16-ZsGreen tumor cells were dissociated with 0.05% 

Trypsin-EDTA (Thermo Fisher Scientific) and washed 2-3X with DPBS (Thermo Fisher 

Scientific). 1.0x105 – 2.5x105 cells were resuspended in DPBS and mixed 1:1 with Matrigel GFR 

(Corning). Mice were injected subcutaneously with a volume of 50 µl either unilaterally or 

bilaterally depending on the experimental setup. Tumor tissue was harvested approximately 12-

16 days later. 

MMTV-PyMT-mCherry-OVA transgenic mice were bred and genotyped for the transgene 

by PCR. Spontaneous tumor growth was monitored, and tumors were harvested when the mice 

were approximately 20-30 weeks of age. 

 

Mouse Tissue Processing and Flow Cytometry Staining 

Mouse tumor tissue was harvested and enzymatically digested with 0.2mg/ml DNase I (Sigma-

Aldrich), 100U/ml Collagenase I (Worthington Biochemical), and 500U/ml Collagenase Type IV 

(Worthington Biochemical) for 30 minutes at 37°C while under constant agitation. Blood was 

collected via cardiac puncture from mice that were euthanized by overdose with 2.5% Avertin. 

Blood samples were treated with 175 mM NH4Cl for 5 minutes at room temperature to lyse red 

blood cells. 

Samples were filtered, washed with stain media (DPBS, 2% FCS), and resuspended 

again with stain media. Cells from this single cell suspension were washed with DPBS and 

stained with Zombie NIR fixable viability dye (BioLegend) for 30 minutes at 4°C. Cells were 

washed and resuspended with stain media containing anti-CD16/32 (BioXCell), 2% rat serum, 

2% Armenian hamster serum, and antibodies against surface proteins of interest. Cells were 

stained for 30 minutes at 4°C. At times cells were then washed and stained for intracellular 
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protein levels, for which they were fixed, permeabilized, and stained according to BD 

Cytofix/Cytoperm Kit (BD Biosciences) or the FoxP3/Transcription Factor Staining Buffer Set 

(Thermo Fisher).  

The following antibodies were from Biolegend: anti-mouse CD45, anti-mouse Ly-6C 

(HK1.4), anti-mouse CD11b (M1/70), anti-mouse CD11c, anti-mouse MHC-II, anti-mouse F4/80, 

anti-mouse CD24, anti-mouse Ly-6G, anti-mouse NK1.1, anti-mouse CD90.2, anti-

mouse/human CD45R/B220, anti-mouse CD301b, anti-mouse CD64, anti-mouse CD127. The 

following antibodies were from BD Biosciences: anti-mouse Siglec-F, anti-mouse CD106. The 

following antibodies were from R&D: anti-mouse/human ARG1, normal sheep IgG. The 

following antibodies were from ThermoFisher: anti-mouse FoxP3.  

Following staining, cells were washed, resuspended in stain media, and analyzed on a 

BD Biosciences Fortessa or sorted with a BD Biosciences FACSAria Fusion. Flow cytometry 

data was analyzed using FlowJo software (BD Biosciences). 

 

Human Tissue Processing and Flow Cytometry Staining 

Tumor or metastatic tissue was thoroughly chopped with surgical scissors and transferred to 

gentleMACS C Tubes (Miltenyi Biotec) containing 20 uL/mL Liberase TL (5 mg/ml, Roche) and 

50 U/ml DNAse I (Roche) in RPMI 1640 (Invitrogen) per 0.3 g tissue. gentleMACS C Tubes 

were installed onto the gentleMACS Octo Dissociator (Miltenyi Biotec) and incubated for 45 

minutes according to the manufacturer’s instructions. Samples were then quenched with 15 mL 

of sort buffer (DPBS, 2% FCS, 2mM EDTA), filtered through 100 µm filters, and spun down. Red 

blood cell lysis was performed with 175 mM ammonium chloride if needed.   

Cells were incubated with Human FcX (Biolegend) to prevent non-specific antibody 

binding. Cells were then washed in DPBS and incubated with Zombie Aqua Fixable Viability 

Dye (Thermo). Following viability dye, cells were washed with sort buffer and incubated with cell 

surface antibodies that had been diluted in the BV stain buffer (BD Biosciences) for 30 minutes 
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on ice. Cells were subsequently fixed in either Fixation Buffer (BD Biosciences) or in 

Foxp3/Transcription Factor Staining Buffer Set (eBioscience) if intracellular staining was 

required. The following antibodies were from BD Biosciences: anti-human HLA-DR, anti-human 

CD56, anti-human CD127, anti-human CD25, anti-human CD45RO, anti-human PD-1, anti-

human CTLA-4, and anti-human CD64. The following antibodies were from ThermoFisher: anti-

human CD45, anti-human CD3e, anti-human FoxP3, anti-human Ki-67, anti-human CD19, anti-

human CD20, anti-human CD56, and anti-human CD11c. The following antibodies were from 

Biolegend: anti-human CD4, anti-human CD8a, anti-human CD38, anti-human CD16, 

CD1C/BDCA-1, anti-human CD14, anti-human CD304, and streptavidin. Anti-human BDCA-3 

was purchased from Miltenyi, 

Stained cells were washed and analyzed on a BD Biosciences Fortessa or sorted with a 

BD Biosciences FACSAria Fusion. Flow cytometry data was analyzed using FlowJo software 

(BD Biosciences). 

 

Single Cell RNA-Sequencing Data Generation 

Sorted cells were resuspended at a concentration of 1x103 cells/µl in media (DPBS, 0.04% 

BSA) and loaded onto the Chromium Controller (10X Genomics). Samples underwent single-

cell encapsulation and cDNA library preparation using the Chromium Single Cell 3’ v1 or v2 

Reagent Kits (10X Genomics). The cDNA library was sequenced on an Ilumina HiSeq 4000 

(Illumina).  

 

Single Cell RNA-Sequencing Data Processing 

Sequencing data was processed using 10X Genomics Cell Ranger V1.2 pipeline. Fastq files 

were generated from Ilumina bcl files with the Cell Ranger subroutine mkfastq. Fastq files were 

then processed with Cell Ranger’s count to align RNA reads against UCSC mm10 or GRCh38 
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genomics for mouse and human cells, respectively, using the aligner STAR103. Redundant 

unique molecular identifiers (UMI) were filtered, and a gene-cell barcode matrix was generated 

with count. Mkfastq and count were run with default parameters.  

For mouse B16 tumor samples, the gene-cell barcode matrix was passed to the R 

software package Seurat (v2.3.0)104 for all downstream analyses. Genes that were expressed in 

at least 3 cells were included. Cells that did not express at least 200 genes were excluded, as 

were those that contained >5% reads associated with cell cycle genes105,106. For mouse PyMT 

and human RCC tumor samples, raw feature-barcode matrices were loaded into Seurat 

(v3.1.5)107 and genes with fewer than 3 UMIs were dropped from the analyses. Matrices were 

further filtered to remove events with greater than 20% percent mitochondrial content, events 

with greater than 50% ribosomal content, or events with fewer than 200 total genes. The cell 

cycle state of each cell was assessed using a published set of genes associated with various 

stages of human mitosis108. 

Using Seurat’s ScaleData function, read counts were log2 transformed and scaled using 

each cell’s proportion of cell cycle genes as a nuisance factor. A set of highly variable genes 

was generated by Seurat’s FindVariableGenes function, which were used for principal 

component (PC) analysis. Genes associated with PCs (selected following visualization with 

scree plots) were used for graph-based cluster identification and dimensionality reduction using 

t-distributed stochastic neighbor embedding (t-SNE) analysis. Seurat’s FindAllMarkers function 

was used for subsequent cluster-based analyses, including cluster marker identification and DE 

gene analyses. 

 

Single Cell RNA-Sequencing Signature Generation 

To generate mouse monocyte- and macrophage-specific gene signatures (Fig. 1), sorted 

monocyte, TAM1, and TAM2 samples were aggregated, log2 transformed, and scaled using 

Seurat. DE gene analysis was performed using FindMarkers with the parameters log N fold 
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change > 1.5 and a min.pct of 0.25. Genes were selected by ranked fold change and the criteria 

that min.pct1/min.pct2 > 1.5. Genes used for cell cycle regression analysis were excluded. The 

top 10 genes (or fewer if less remained) were median normalized and aggregated, scaled 0-1, 

and plotted on specific t-SNE plots. 

Gene signatures for cellular programs such as metabolism57, “M1” and “M2” 

polarization55, and MHC-II-associated genes (GSEA, 

REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION), previously published cell 

types53,59, or cell populations identified here were generated by taking the mean of log-

normalized expression for a particular set of genes related to the specific pathway or phenotype. 

To visualize the distribution of these scores across cells, we binarized the distribution of the 

score at the 70th percentile unless specified otherwise and overlaid on the calculated t-SNE 

coordinates. 

For correlation analysis of “M1” and “M2” genes, the expression of each gene in the 

signatures was calculated for each B16 tumor Csf1r+ Mafb+ cluster cell and binarized at the 

median. A cross-correlation gene-gene matrix was obtained using the R cor function with 

method=”pearson”. 

 

 

Single Cell RNA-Sequencing Sample Aggregation 

To perform pairwise comparison analyses between B16 tumor myeloid cell clusters from 

wildtype and Treg-depleted mice, the objects were first transformed from Seurat v2 to Seurat v3. 

The raw UMI counts were renormalized using person residuals from “regularized negative 

binomial regression,” with sequencing depth a covariate in a generalized linear model via the R 

sctransform package109. Pairwise “anchor” cells were identified between the three objects using 

the wild-type mouse from Figure 1 as a reference via the Seurat FindIntegrationAnchors 

function. Briefly, each pair of samples was reduced to a lower dimensional space using 
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diagonalized Canonical Correlation Analysis (CCA) using the top 3000 genes with the highest 

dispersions. The canonical correlation vectors were normalized using L2-normalization. Multiple 

Nearest Neighbors (MNNs) across datasets were identified for each cell in each dataset and 

cell-cell similarities are used as anchors to integrate the datasets together using the Seurat 

IntegrateData function. 

 

Single Cell RNA-Sequencing Pseudotime Analysis 

Raw UMI counts from the cleaned and processed Seurat objects for the control and Treg-

depleted mouse experiment were extracted and coerced into Monocle254,110. CellDataSet 

objects, normalizing the data using a negative binomial distribution with fixed variance 

(negbinom.size). Each object was independently processed to identify a pseudotime trajectory. 

Briefly, each object was processed to estimate per-cell coverage and sequencing depth 

(estimateSizeFactors) and gene dispersions (estimateDispersions). Cells were further filtered to 

retain high-quality cells with >=500 genes and genes were filtered to retain only those in at least 

10 cells. The dataset was reduced to 2 dimensions using the DDRTree algorithm and the 

marker genes that differentiated the Ly6c2+ Hp+ monocytes and C1qa+ TAM clusters from other 

cell types were used to guide the trajectory inference. Relative pseudotime was obtained 

through a linear transformation relative to the cells with the lowest and highest pseudotimes (1-

min_pseudotime)/max_pseudotime. The “wave” plots in Figure 1 were constructed using the 

Seurat LogNormalized counts and the relative pseudotime described above for the top 5 genes 

per cluster as identified by scRNA-seq. 

 

TCGA Survival Analyses 

Tumor RNAseq counts and transcripts-per-million (TPM) values for kidney renal clear cell 

carcinoma (KIRC) samples from the Toil recompute data in the TCGA Pan-Cancer (PANCAN) 

cohort111 were downloaded from the UCSC Xena browser112. A gene signature score for each 
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patient was calculated using the gene signature score method below. The feature gene 

signature scores were calculated using an m x n matrix where m represented the TPM 

normalized log2 counts per million (logCPM) expression of the feature signature genes and n 

represented the selected sample set113. The expression of each gene was converted to 

percentile ranks across the samples using the SciPy Python module114. The top and bottom 30 

percentile were then used to define low and high patients for each respective signature unless 

otherwise noted.  

 

In Vivo Mouse Treatments 

To deplete Treg cells, Foxp3-DTR and control mice were injected intraperitoneally with 500ng of 

unnicked diptheria toxin (List Biologics, 150). Mice were typically injected 9, 10, and 12 days 

following initial inoculation with tumor cells. 

 For specified experiments, wild-type mice were injected intraperitoneally 7, 9, 10, 11, 

and 13 days following tumor injection with 250 µg of anti-mouse CTLA-4 IgG2c (modified clone 

9D9, Bristol-Myers-Squibb), mouse IgG2C isotype, anti-mouse CTLA-4 IgG1 (modified clone 

9D9, Bristol-Myers-Squibb), or mouse IgG1 isotype.  

 

Statistical analysis and data visualization 

Comparisons between groups were analyzed using GraphPad Prism software. Experimental 

group allocation was determined by genotype or by random designation when all wild-type mice 

were used. Error bars represent mean ± SEM calculated with Prism unless otherwise noted. 

Comparisons between 2 groups were analyzed with Student’s t-test. For statistical measures 

between more than 2 groups, one-way ANOVA was performed unless otherwise noted. 

Nonsignificant comparisons are not shown. Investigators were not blinded to experiment group 

assignment during experimental data generation or analyses. The R packages Seurat and 

ggplot2 were used to generate figures. 
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Figure 1. ScRNA-seq analysis of mouse B16 tumor myeloid cells maps transcriptional 

heterogeneity amongst monocytes and TAMs.  

 

(A) Schematic illustration of workflow for isolation of specified myeloid populations from B16 

tumors subcutaneously implanted in wild-type C57Bl/6 mice.  

(B) t-SNE plot of graph-based clustering of Ly6C+ CD11b+ monocytes and Ly6C- MHCII+ 

myeloid cells that were sorted and pooled from B16 tumors, and underwent scRNA-seq 

(A).  

(C) Expression of Csf1r (left) and Mafb (middle) on t-SNE plot of bulk myeloid cells (B), and 

display of selected Csf1r+ Mafb+ clusters (right).  

(D) Expression of gene signatures specific to Ly6C+ monocyte, CD11clo TAM1, or CD11chi 

TAM2 populations (A, Fig. S1E) displayed on t-SNE plot of Csf1r+ Mafb+ myeloid cells 

(C). Cells with top median of signature expression level labeled in red. 

(E) Heatmap displaying expression levels of top 5 differentially expressed (DE) genes 

between Csf1r+ Mafb+ cell clusters (C). Genes ranked by fold change. 

(F) Expression levels of selected genes amongst Csf1r+ Mafb+ cell clusters (C). 

(G) Differentiation trajectory model using Monocle analysis of cells from Csf1r+ Mafb+ 

clusters (C). Color coding corresponds to previous labels (B). 

(H) Graph of relative pseudotime values of Csf1r+ Mafb+ cluster cells (C) from Monocle 

analysis (G). 

(I) Expression levels of cluster-specific genes (E) over relative pseudotime (H). Each line 

corresponds to an individual gene. 

 

Figure 2. ScRNA-seq analysis highlights layering of microenvironment-induced 

programs during tumor monocyte-to-macrophage differentiation. 
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(A) t-SNE plot of graph-based clustering (top) of Ly6C+ monocytes sorted from B16 tumors 

and processed for scRNA-seq (Fig. 1A), and heatmap displaying expression levels of 

top 5 DE genes between clusters (bottom) with genes ranked by fold change. 

(B) t-SNE plot and graph-based clustering (top) of CD11chi TAMs sorted from B16 tumors 

and processed for scRNA-seq (Fig 1A), and heatmap displaying expression levels of top 

5 DE genes between clusters (bottom) with genes ranked by fold change. 

(C) Stress-responsive cells (Cluster 2) from bulk B16 myeloid cells (Fig. 1B) were selected 

for further clustering analysis (top). Heatmap of expression levels of monocyte- and 

macrophage-specific genes (Fig. 1E) by Cluster 2 sub-clusters (bottom).  

(D) Heatmap of DE gene expression levels between Cluster 2 and Cluster 3 of bulk tumor 

myeloid sample (Fig. 1B). Genes ranked by degree of exclusivity to a given cluster 

(min.pct1/min.pct2). 

(E) Expression levels of IL7Ra and VCAM-1, as assessed by flow cytometry, of “Mono-Int” 

(Ly6C+ CD64+) (top) and TAMs (Ly6C- F4/80+ CD64+) (bottom) from B16 tumors.   

(F) Example (left) and quantification (right) of intracellular ARG1 expression by VCAM-1+ 

(top) or IL7ra+ (bottom) TAMs from B16 tumors using flow cytometry. ARG1+ gating 

determined by isotype control. Data are representative of 2 independent experiments 

with 3-5 mice (mean ± SEM). 

(G) Expression levels of selected genes along differentiated trajectory generated by Monocle 

(Fig. 1G). 

(H) Schematic model of tumor monocyte-to-macrophage differentiation that integrates 

lineage-associated and microenvironmentally-induced transcriptional programs.  

 

Figure 3. B16 and PyMT tumor monocyte/macrophage heterogeneity can be attributed to 

diversity in transcriptional and metabolic programs, but not “M1/M2” polarization. 
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(A) Heatmap (left) and density plot (right) of Pearson r coefficient scores between “M1”- 

and “M2”-associated gene expression levels within Csf1r+ Mafb+ cells from B16 tumors 

(Fig. 1C). 

(B) t-SNE plot of Csf1r+ Mafb+ clusters from B16 tumors (top; Fig. 1C) with expression 

levels of “M1” (bottom, left) and “M2” (bottom, right) gene signatures (A) displayed. 

Cells with top median of signature expression level labeled in red. 

(C) t-SNE plot and graph-based clustering of Csf1r+ Mafb+ clusters from PyMT tumor 

myeloid cells that were sorted and processed for scRNA-seq (top; Supplementary Fig. 

3B). Expression levels of “M1” (bottom, left) and “M2” (bottom, right) gene signatures 

(A) displayed. Cells with top 70 percentile of signature expression level labeled in red 

(D) Expression levels of glycolysis (left) and oxidative phosphorylation (“OxPhos”) (right) 

gene signatures (Supplementary Fig. 3F) displayed on t-SNE plot of Csf1r+ Mafb+ 

clusters from B16 tumors (Fig. 1C). Cells with top 70 percentile of signature expression 

level labeled in red  

(E) Expression levels of glycolysis (left) and oxidative phosphorylation (“OxPhos”) (right) 

gene signatures (Supplementary Fig. 3F) displayed on t-SNE plot of Csf1r+ Mafb+ 

clusters from PyMT tumors (C). Cells with top 70 percentile of signature expression level 

labeled in red   

 

Figure 4. Human RCC and mouse tumor myeloid compartments exhibit shared 

transcriptional features. 

 

(A) Schematic of human RCC biopsy sample processed for scRNAseq analysis.  

(B) t-SNE plot of graph-based clustering of bulk myeloid (Lin- HLA-DR+) cells sorted from 

human RCC biopsy sample (A). 
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(C) Gene expression levels of CSF1R (left) and MAFB (right) displayed on t-SNE plot of 

human RCC-infiltrating myeloid cells (B). 

(D) Expression levels of selected genes (CD14, FCGR3A, CD68) or gene signature (MHC-

II-associated genes) displayed on t-SNE plot of CSF1R+ MAFB+ clusters (C). 

(E) Heatmap of top 5 DE genes expressed by CSF1R+ MAFB+ clusters (C). Genes ranked 

by fold change. 

(F) Expression levels of selected genes by CSF1R+ MAFB+ cluster cells (C). 

(G) Differentiation trajectory model generated by Monocle analysis of CSF1R+ MAFB+ 

clusters (C). 

(H) Expression levels of glycolysis-associated gene signature by cells in stress-responsive 

(Cluster 4) and C1Q+ TAM (Cluster 3) cells (B). 

 

Figure 5. Immunosuppressive Treg cells promote tumor monocyte-to-macrophage 

differentiation.  

 

(A) Human RCC biopsies were measured and processed for flow cytometric analysis. The 

ratio of macrophage-to-monocyte (log2) cell numbers (top) and Treg frequency amongst 

CD45+ cells (bottom) were quantified. *p<0.05. 

(B) Dot plot and Spearman’s correlation coefficient of macrophage-to-monocyte cell number 

ratio (log2) and Treg frequency within CD45+ cells in human RCC (top) and melanoma 

(bottom) biopsies that were analyzed by flow cytometry. 

(C) Quantification of the ratio between macrophages (Ly6C- F4/80+ CD64+) and monocytes 

(Ly6C+ CD11b+) cell number ratio in B16 tumors of DT-treated control and Foxp3-DTR 

mice (top), or of wild-type mice treated with depleting anti-CTLA-4 (IgG2c clone) or 

isotype antibody (bottom). Data is representative of 2 independent experiments. **p 

<0.01, ****p<0.0001. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 33 

(D) t-SNE plot of graph-based clustering (top) of aggregated B16-infiltrating Csf1r+ Mafb+ 

cells from wildtype mice (Fig. 1), as well as DT-treated control and Foxp3-DTR mice 

(Supplementary Fig. 5D). Cell numbers in specified clusters were quantified (bottom). 

(E) Differentiation trajectory model generated from Monocle analysis (top) and relative 

pseudotime values (bottom) of Csf1r+ Mafb+ cluster cells from B16 tumors from DT-

treated control (left) and FoxP3-DTR mice (right). 

(F) Volcano plot displaying DE genes between B16 tumor “Mono-Int” (top) and C1qa+ TAM 

(bottom) cluster cells from DT-treated control and FoxP3-DTR mice (D). Genes with > 

0.4 log-fold changes and an adjusted p value of 0.05 (based on Bonferroni correction) 

are highlighted in red. Genes of interest labeled.  

(G) Expression of selected monocyte-associated genes displayed on the differentiation 

trajectory (E) of control (top) or Foxp3-DTR (bottom) B16 tumor-infiltrating Csf1r+ Mafb+ 

cells.  

(H) Expression of selected macrophage-associated genes displayed on the differentiation 

trajectory (E) of control (top) or Foxp3-DTR (bottom) B16 tumor-infiltrating Csf1r+ Mafb+ 

cells. 

 

 

Figure 6. Multiparametric analysis of tumor myeloid composition identifies kidney cancer 

patients with effector CD8+ T cell responses and improved survival rates.  

 

(A) Survival curves of kidney tumor patients whose TCGA tumor samples exhibited high 

(33%) or low (33%) levels of expression levels of pan-myeloid gene signatures derived 

from CIBERSORT (left), MAFB and CSF1R (middle), or ratio of monocyte-to-TAM gene 

signatures (Fig. 4) (right).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 34 

(B) Heatmap of specified immune cell population frequencies detected in human kidney 

tumor samples by flow cytometry. 

(C) Heatmap of specified surface receptor or Ki-67 expression frequencies amongst CD8+ T 

cells from human kidney tumor samples that were analyzed with flow cytometry. 

(D) Quantification of the frequency of CD8+ T cells from human tumor kidney samples that 

are PD1+ or CD38+. Labeling of dots corresponds to patient groups (B,C). 

(E) Survival curves of kidney cancer patients in cohort analyzed (B-D). 

 

Supplementary Figure 1 

 

(A) Flow cytometry gating schematic for sorting and analysis of specified B16 tumor myeloid 

populations.  

(B) Quantification of cells recovered from scRNA-seq analysis of B16 bulk tumor myeloid 

cells (Fig. 1B). 

(C) Quantification of unique molecular identified (UMI) counts in each myeloid cell cluster 

(Fig. 1B). 

(D) Expression of Flt3 (left) and Kit (right) displayed on t-SNE plot of B16 tumor myeloid 

cells (Fig. 1B).  

(E) List of cell type-specific DE genes identified from comparative analysis of Ly6C+ 

monocyte, CD11clo TAM1, or CD11chi TAM2 populations that were individually sorted 

and processed for scRNA-seq analysis. (Fig. 1A). 

(F) Expression levels of selected stress-response genes amongst Csf1r+ Mafb+ cell clusters 

(Fig. 1C). 

(G) Differentiation trajectory model of Csf1r+ Mafb+ cells (Fig. 1G) with display of cells from 

individual clusters (Fig. 1C).  
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(H) Expression of selected canonical monocyte- and macrophage-related genes displayed 

on the differentiation trajectory plot (Fig. 1G). 

Flow cytometric gating of B16 tumor-infiltrating monocytes (pink; Ly6C+ CD64-), “Mono-

Int” (magenta; Ly6C+ CD64+), and macrophages (purple; Ly6C- CD64+) (top), and their 

surface protein expression of MHC-II (middle) and F4/80 (bottom),  

 

Supplementary Figure 2 

 

(A) t-SNE plot of sorted Ly6C+ monocytes sorted from B16 tumors (left; Fig. 2A) with 

expression of Ly6c2 (middle) and H2-Ab1 (right) displayed. 

(B) t-SNE plot of graph-based clustering (left, top) and quantification (left, bottom) of 

CD11clo TAMs sorted from B16 tumors and processed for scRNA-seq, and heatmap 

showing expression levels of top 5 DE genes between clusters (right). Genes are 

ranked by fold change. 

(C) t-SNE plot of sorted CD11chi TAMs sorted from B16 tumors (left; Fig. 2B) with 

expression of Ly6c2 (middle) and H2-Ab1 (right) displayed.  

(D) Expression levels of Mgl2 displayed on t-SNE plot of bulk Csf1r+ Mafb+ cells sorted from 

B16 tumors (left; Fig. 1C), and MGL2 surface protein levels on TAMs from B16 tumors 

(right). 

(E) t-SNE plot of graph-based clustering analysis of stress-responsive cluster (Cluster 2) 

from bulk myeloid cells (Fig. 2C). 

(F) Quantification of frequency of VCAM-1- IL7Ra-, VCAM-1+, or IL7Ra+ cells detected within 

B16 tumor monocyte, Mono-Int, or TAMs by flow cytometry. Data is pooled from 2 

independent experiments, each with 3-5 mice (mean ± SEM). 
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(G) t-SNE plot of graph-based clustering of myeloid cells sorted from peripheral blood of B16 

tumor-bearing mice and processed for scRNA-seq (top), and expression levels of 

selected genes amongst myeloid clusters (bottom). 

(H) Heatmap displaying expression levels of top 10 DE genes between blood myeloid cell 

clusters (G) with genes ranked by fold change. 

 

Supplementary Figure 3 

 

(A) Heatmap displaying expression levels of selected “M1”- and “M2”-associated genes by 

Csf1r+ Mafb+ cluster cells from B16 tumors (Fig 1C). 

(B) t-SNE plot and graph-based clustering of myeloid cells sorted from PyMT tumors and 

processed for scRNA-seq (left) with expression levels of Csf1r (middle) and Mafb 

(right) displayed.  

(C) Expression levels of B16 Csf1r+ Mafb+ cluster-specific gene signatures (Fig. 1E) 

displayed on t-SNE plots of Csf1r+ Mafb+ clusters from PyMT tumors (Fig. 3C). Cells 

with top 70 percentile of signature expression level labeled in red.  

(D) Heatmap displaying expression levels of B16 Csf1r+ Mafb+ cluster-specific genes (Fig. 

1E) by PyMT-infiltrating Csf1r+ Mafb+ cells (Fig. 3C). 

(E) Expression of Il7r (left) and Vcam1 (right) by cells in PyMT Csf1r+ Mafb+ clusters (Fig. 

3C). 

(F) Heatmap displaying expression levels of glycolysis- and oxidative phosphorylation 

(“OxPhos”)-associated genes in PyMT Csf1r+ Mafb+ cluster cells (Fig. 3C). 

 

Supplementary Figure 4 
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(A) Gating approach (left) and t-SNE plot (right) generated from flow cytometry analysis of 

the human RCC myeloid compartment. Example representative of more than 5 

experiments. 

(B) Expression levels of previously established blood myeloid cell signatures59 displayed on 

t-SNE plot of myeloid cells from human RCC biopsy (Fig. 4B). 

(C) Expression levels of mouse B16 tumor myeloid cell signatures (Fig. 1E) displayed on t-

SNE plot of CSF1R+ MAFB+ clusters from human RCC biopsy (Fig. 4C). 

(D) Heatmap of top 20 DE genes between human RCC stress-responsive (Cluster 4) and 

C1Q+ TAM (Cluster 3) clusters (Fig. 4B). Genes ranked by fold change. 

(E) Expression levels of “M1” (left) and “M2” (right) gene signatures (Fig. 3) displayed on t-

SNE plot of CSF1R+ MAFB+ clusters from human RCC biopsy (Fig. 4C). 

 

Supplementary Figure 5 

 

(A) Quantification by flow cytometry of myeloid cell frequency within CD45+ cells from 

human RCC biopsies.  

(B) Quantification of Treg cell number per milligram of B16 tumor from wildtype mice that 

were treated with anti-CTLA-4 antibodies (IgG2c or IgG1 clone) or corresponding isotype 

antibody controls (mean ± SEM). Data was pooled from two independent experiments.  

(C) Quantification of the ratio between macrophages (Ly6C- F4/80+ CD64+) and monocytes 

(Ly6C+ CD11b+) in B16 tumors from wild-type mice treated with non-depleting anti-

CTLA-4 (IgG1 clone) or isotype antibody control. Data is representative of two 

independent experiments. **p <0.01, ***p<0.001. 

(D) t-SNE plot of graph-based clustering of (left) and expression levels of select genes 

(right) of B16 tumor myeloid cells sorted from DT-treated FoxP3-DTR mice. 
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(E) Heatmap displaying expression of top 10 DE genes between B16-infiltrating Csf1r+ 

Mafb+ clusters aggregated from wildtype (Fig. 1C), DT-treated control and DT-treated 

FoxP3-DTR mice. Genes are ranked by fold change.  

(F) Volcano plot displaying DE genes between B16 tumor Ly6c2+ Hp+ monocytes from DT-

treated control and FoxP3-DTR mice. Genes with > 0.4 log-fold changes and an 

adjusted p value of 0.05 (based on Bonferroni correction), are highlighted in red. Genes 

of interest labeled. 

 

Supplementary Figure 6 

 

(A) Survival curves of kidney tumor patients whose TCGA tumor samples exhibited 

differential levels of the ratio of macrophage (Fig. 4E) to cDC153 gene signature scores. 

A score threshold of 50% (left), 33% (middle), and 10% (right) was used to determine 

high and low comparison groups.  

(B) Survival curves of kidney tumor patients whose TCGA tumor samples exhibited 

differential levels of the cDC1 gene signature expression score53. A score threshold of 

10% was used for patient group selection. 

(C) Summary of hazard ratios and p-values from analyses of kidney tumor samples from 

TCGA (A,B). 

  

 

Table S1. DE genes between B16 tumor myeloid populations. DE analysis was performed 

between B16 tumor clusters (Fig. 1B). DE genes with log N fold change >0.5 and min.pct of 

0.25 are listed.  
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Table S2. DE genes between human RCC myeloid populations. DE analysis was performed 

on RCC myeloid clusters (Fig. 4B), and DE genes with log N fold change >0.4 and min.pct of 

0.25 are listed.  

 

Table S3. DE genes between monocyte/macrophage populations in control and Foxp3-

DTR tumors. DE analysis was performed on aggregated myeloid cell clusters from control and 

Foxp3-DTR (Fig. 5D). DE genes with log N fold change > 0.001 and min.pct of 0.1 listed. DE 

analysis for each cell cluster is listed on the specified tab.     

 

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 40 

References 

 

1. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The Dendritic Cell Lineage: Ontogeny 

and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. 

Annu Rev Immunol 31, 563–604 (2013). 

2. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev 

Immunol 20, 7–24 (2020). 

3. Lavin, Y., Mortha, A., Rahman, A. & Merad, M. Regulation of macrophage development and 

function in peripheral tissues. Nat Rev Immunol 15, 731 744 (2015). 

4. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. 

Immunity 41, 49 61 (2014). 

5. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and 

immunotherapy. Nat Rev Immunol 19, 369–382 (2019). 

6. Schulz, C. et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem 

Cells. Science 336, 86–90 (2012). 

7. Hashimoto, D. et al. Tissue-Resident Macrophages Self-Maintain Locally throughout Adult 

Life with Minimal Contribution from Circulating Monocytes. Immunity 38, 792–804 (2013). 

8. Ginhoux, F. et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive 

Macrophages. Science 330, 841–845 (2010). 

9. Ginhoux, F. & Guilliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. 

Immunity 44, 439–449 (2016). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 41 

10. Hoeffel, G. et al. C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to 

Adult Tissue-Resident Macrophages. Immunity 42, 665–678 (2015). 

11. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. 

Science 344, 921 925 (2014). 

12. Arwert, E. N. et al. A Unidirectional Transition from Migratory to Perivascular Macrophage Is 

Required for Tumor Cell Intravasation. Cell Reports 23, 1239–1248 (2018). 

13. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour 

metastasis. Nature 475, 222–225 (2011). 

14. Loyher, P.-L. et al. Macrophages of distinct origins contribute to tumor development in the 

lung. J Exp Med 215, 2536–2553 (2018). 

15. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche 

to early NSCLC cells. Nature 1–7 (2021) doi:10.1038/s41586-021-03651-8. 

16. Zhu, Y. et al. Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate 

from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity 47, 323 338.e6 

(2017). 

17. Etzerodt, A. et al. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes 

and promotes T cell–mediated tumor regression. J Exp Med 216, 2394–2411 (2019). 

18. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid 

cells. Cell 184, 792-809.e23 (2021). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 42 

19. Gubin, M. M. et al. High-Dimensional Analysis Delineates Myeloid and Lymphoid 

Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell 175, 

1014-1030.e19 (2018). 

20. Zhang, L. et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in 

Colon Cancer. Cell 181, 442-459.e29 (2020). 

21. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases 

through anti-tumour macrophages. Nature 543, 428 432 (2017). 

22. Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 

539, 437–442 (2016). 

23. Henau, O. D. et al. Overcoming resistance to checkpoint blockade therapy by targeting 

PI3Kγ in myeloid cells. Nature 539, 443–447 (2016). 

24. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits 

phagocytosis and tumour immunity. Nature 545, 495 499 (2017). 

25. Baer, C. et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage 

activation and promotes anti-tumour immunity. Nat Cell Biol 18, 790–802 (2016). 

26. Molgora, M. et al. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing 

Anti-PD-1 Immunotherapy. Cell 182, 886-900.e17 (2020). 

27. Katzenelenbogen, Y. et al. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an 

Immunosuppressive Role of TREM2 in Cancer. Cell 182, 872-885.e19 (2020). 

28. Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-

presenting functions. Nat Rev Immunol 17, 349 362 (2017). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 43 

29. Iijima, N., Mattei, L. M. & Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral 

Th1 immunity in infected tissue. Proc National Acad Sci 108, 284–289 (2011). 

30. Plantinga, M. et al. Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and 

Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen. Immunity 38, 322–

335 (2013). 

31. Hohl, T. M. et al. Inflammatory Monocytes Facilitate Adaptive CD4 T Cell Responses during 

Respiratory Fungal Infection. Cell Host Microbe 6, 470–481 (2009). 

32. Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient 

macrophages in the liver. Nat Med 22, 945–951 (2016). 

33. Nathan, C. F., Murray, H. W., Wiebe, M. E. & Rubin, B. Y. Identification of interferon-gamma 

as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial 

activity. J Exp Med 158, 670–689 (1983). 

34. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine 

macrophage mannose receptor activity: a marker of alternative immunologic macrophage 

activation. J Exp Med 176, 287–292 (1992). 

35. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 Macrophages and 

the Th1/Th2 Paradigm. J Immunol 164, 6166–6173 (2000). 

36. Murray, P. J. et al. Macrophage Activation and Polarization: Nomenclature and Experimental 

Guidelines. Immunity 41, 14–20 (2014). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 44 

37. Roberts, E. W. et al. Critical Role for CD103+/CD141+ Dendritic Cells Bearing CCR7 for 

Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 30, 324–

336 (2016). 

38. Broz, M. L. et al. Dissecting the Tumor Myeloid Compartment Reveals Rare Activating 

Antigen-Presenting Cells Critical for T Cell Immunity. Cancer Cell 26, 638–652 (2014). 

39. Binnewies, M. et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T 

Cell Immunity. Cell 177, 556-571.e16 (2019). 

40. Salmon, H. et al. Expansion and Activation of CD103+ Dendritic Cell Progenitors at the 

Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 

44, 924–38 (2016). 

41. Hildner, K. et al. Batf3 Deficiency Reveals a Critical Role for CD8a+ Dendritic Cells in 

Cytotoxic T Cell Immunity. Science 322, 1097–1100 (2008). 

42. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour 

immunity. Nature 584, 624–629 (2020). 

43. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. 

Nature 580, 257–262 (2020). 

44. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat 

Rev Drug Discov 17, 887–904 (2018). 

45. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the 

immune system. Nat Rev Immunol 9, 162–174 (2009). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 45 

46. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer 

Cell 27, 462 472 (2015). 

47. Roxburgh, C. S. D. & McMillan, D. C. The role of the in situ local inflammatory response in 

predicting recurrence and survival in patients with primary operable colorectal cancer. Cancer 

Treat Rev 38, 451–466 (2012). 

48. Quatromoni, J. G. & Eruslanov, E. Tumor-associated macrophages: function, phenotype, 

and link to prognosis in human lung cancer. Am J Transl Res 4, 376–89 (2012). 

49. Edin, S. et al. The Distribution of Macrophages with a M1 or M2 Phenotype in Relation to 

Prognosis and the Molecular Characteristics of Colorectal Cancer. Plos One 7, e47045 (2012). 

50. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 

immunotherapy. Nat Med 24, 144–153 (2018). 

51. Combes, A. J. et al. A Pan-Cancer Census of Dominant Tumor Immune Archetypes. Biorxiv 

2021.04.26.441344 (2021) doi:10.1101/2021.04.26.441344. 

52. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat 

Immunol 13, 888 899 (2012). 

53. Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive 

tumor microenvironments. Nat Med 24, 1178–1191 (2018). 

54. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by 

pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386 (2014). 

55. Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor 

Microenvironment. Cell 174, 1293-1308.e36 (2018). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 46 

56. O’Neill, L. A. J., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for 

immunologists. Nat Rev Immunol 16, 553–565 (2016). 

57. Argüello, R. J. et al. SCENITH: A Flow Cytometry-Based Method to Functionally Profile 

Energy Metabolism with Single-Cell Resolution. Cell Metab 32, 1063-1075.e7 (2020). 

58. Chevrier, S. et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 169, 736-

749.e18 (2017). 

59. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, 

monocytes, and progenitors. Science 356, eaah4573 (2017). 

60. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal 

cell carcinoma. Cancer Cell (2021) doi:10.1016/j.ccell.2021.02.013. 

61. Roberts, A. W. et al. Tissue-Resident Macrophages Are Locally Programmed for Silent 

Clearance of Apoptotic Cells. Immunity 47, 913-927.e6 (2017). 

62. Barrett, C. W. et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating 

stemness and oxidative damage. J Clin Invest 125, 2646–2660 (2015). 

63. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient regulatory T cell 

ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210, 

2435–2466 (2013). 

64. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. 

Nat Methods 12, 453–457 (2015). 

65. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of 

T cells to stimulation. J Exp Medicine 182, 459 465 (1995). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 47 

66. Furth, R. van & Cohn, Z. A. The Origin and Kinetics of Mononuclear Phagocytes. J Exp 

Medicine 128, 415–435 (1968). 

67. Jakubzick, C. et al. Minimal Differentiation of Classical Monocytes as They Survey Steady-

State Tissues and Transport Antigen to Lymph Nodes. Immunity 39, 599–610 (2013). 

68. Sen, D. et al. Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage 

Differentiation in Inflamed Lung. Plos One 11, e0165064 (2016). 

69. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal 

cell carcinoma. Cancer Cell (2021) doi:10.1016/j.ccell.2021.02.015. 

70. Kiner, E. et al. Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH 

archetypes. Nat Immunol 22, 216–228 (2021). 

71. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal 

lymphopoietin. Nat Immunol 1, 59–64 (2000). 

72. Park, L. S. et al. Cloning of the Murine Thymic Stromal Lymphopoietin (Tslp) Receptor. J 

Exp Medicine 192, 659–670 (2000). 

73. Corcoran, S. E. & O’Neill, L. A. J. HIF1α and metabolic reprogramming in inflammation. J 

Clin Invest 126, 3699–3707 (2016). 

74. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast 

Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373-1387.e19 (2018). 

75. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat Med 20, 436–

442 (2014). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 48 

76. Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the 

Developing Human Heart. Cell 179, 1647-1660.e19 (2019). 

77. Hu, K. H. et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat 

Methods 17, 833–843 (2020). 

78. Lee, Y. et al. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression 

heterogeneity in the tumor microenvironment. Sci Adv 7, eabg4755 (2021). 

79. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic 

autoimmunity throughout the lifespan of mice. Nat Immunol 8, 191–197 (2007). 

80. Plitas, G. & Rudensky, A. Y. Regulatory T Cells in Cancer. Annu. Rev. Cancer Biol. 4, 459–

477 (2020). 

81. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat Rev 

Immunol 8, 523–532 (2008). 

82. Liu, C. et al. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-

Promoting Macrophages via Repression of CD8+ T Cell-Derived Interferon-γ. Immunity 51, 381-

397.e6 (2019). 

83. Cipolletta, D., Cohen, P., Spiegelman, B. M., Benoist, C. & Mathis, D. Appearance and 

disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: 

age, diet, and PPARγ effects. Proc National Acad Sci 112, 482 487 (2015). 

84. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose 

tissue macrophage polarization. J Clin Invest 117, 175–184 (2007). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 49 

85. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 

155, 1282 1295 (2013). 

86. Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute 

myocardial infarction. J Mol Cell Cardiol 62, 24–35 (2013). 

87. Weirather, J. et al. Foxp3+ CD4+ T Cells Improve Healing After Myocardial Infarction by 

Modulating Monocyte/Macrophage Differentiation. Circ Res 115, 55–67 (2014). 

88. Panduro, M., Benoist, C. & Mathis, D. Treg cells limit IFN-γ production to control 

macrophage accrual and phenotype during skeletal muscle regeneration. Proc National Acad 

Sci 115, 201800618 (2018). 

89. Mujal, A. M. & Krummel, M. F. Immunity as a continuum of archetypes. Science 364, 28–29 

(2019). 

90. DeNardo, D. G. et al. Leukocyte Complexity Predicts Breast Cancer Survival and 

Functionally Regulates Response to Chemotherapy. Cancer Discov 1, 54–67 (2011). 

91. Mondini, M. et al. CCR2-dependent recruitment of Tregs and monocytes following 

radiotherapy is associated with TNFα-mediated resistance. Cancer Immunol Res 7, 

canimm.0633.2018 (2019). 

92. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to 

chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 

623 637 (2014). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 50 

93. Medrek, C., Pontén, F., Jirström, K. & Leandersson, K. The presence of tumor associated 

macrophages in tumor stroma as a prognostic marker for breast cancer patients. Bmc Cancer 

12, 306 (2012). 

94. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-

resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662-677.e6 

(2021). 

95. Hakimi, A. A. et al. Transcriptomic Profiling of the Tumor Microenvironment Reveals Distinct 

Subgroups of Clear cell Renal Cell Cancer - Data from a Randomized Phase III Trial. Cancer 

Discov 9, CD-18-0957 (2019). 

96. McDermott, D. F. et al. Clinical activity and molecular correlates of response to 

atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. 

Nat Med 24, 749–757 (2018). 

97. Soudja, S. M., Ruiz, A. L., Marie, J. C. & Lauvau, G. Inflammatory Monocytes Activate 

Memory CD8+ T and Innate NK Lymphocytes Independent of Cognate Antigen during Microbial 

Pathogen Invasion. Immunity 37, 549–562 (2012). 

98. Leirião, P., Fresno, C. del & Ardavín, C. Monocytes as effector cells: Activated Ly-6Chigh 

mouse monocytes migrate to the lymph nodes through the lymph and cross-present antigens to 

CD8+T cells. Eur J Immunol 42, 2042–2051 (2012). 

99. Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent 

alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 

6, 498–510 (2013). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 51 

100. Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut 

and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J 

Immunol 42, 3150–3166 (2012). 

101. Engelhardt, J. J. et al. Marginating Dendritic Cells of the Tumor Microenvironment Cross-

Present Tumor Antigens and Stably Engage Tumor-Specific T Cells. Cancer Cell 21, 402 417 

(2012). 

102. Headley, M. B. et al. Visualization of immediate immune responses to pioneer metastatic 

cells in the lung. Nature 531, 513 517 (2016). 

103. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 

(2013). 

104. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of 

single-cell gene expression data. Nat Biotechnol 33, 495–502 (2015). 

105. Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and 

differentiation programs upon aging of hematopoietic stem cells. Genome Res 25, 1860 1872 

(2015). 

106. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells 

Using Nanoliter Droplets. Cell 161, 1202 1214 (2015). 

107. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 

(2019). 

108. Dominguez, D. et al. A high-resolution transcriptome map of cell cycle reveals novel 

connections between periodic genes and cancer. Cell Res 26, 946–962 (2016). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


 52 

109. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq 

data using regularized negative binomial regression. Genome Biol 20, 296 (2019). 

110. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat 

Methods 14, 979–982 (2017). 

111. Vivian, J. et al. Toil enables reproducible, open source, big biomedical data analyses. Nat 

Biotechnol 35, 314–316 (2017). 

112. Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena 

platform. Nat Biotechnol 38, 675–678 (2020). 

113. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome Biol 11, R25 (2010). 

114. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat 

Methods 17, 261–272 (2020). 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A B Bulk B16 tumor: 
Mono & Ly6C- MHC-II+ cells

Figure 1

E

D
C

F
Bulk B16 Tumor: 

Csf1r+ Mafb+ Clusters

IFN-resp.
Mono

Ly6c2+ Hp+

Mono

Ly6c2+ H2-Ab1+

Mono-Int 

Stress-resp.

C1qa+

TAM

5 1 0 2 3

5
1
0
2
3
4
7
6

Ly6c2+ Hp+ Mono
IFN-resp. Mono
Mono-Int
Stress-resp.
C1qa+ TAM
cDC2
cDC1
Ccr7+ cDC

Ly6c2 H2-Ab1 Hp

Cxcl10 Arg1 C1qa

Ly6C+ Mono
CD11clo TAM1
CD11chi TAM2

individual myeloid
populations

Ly6C+ Mono,
bulk myeloid pool

Ly6C- MHC-II+
Harvest B16F10 

s.c. tumors

C57BL/6

FACS isolation 
for single-cell RNA-seq.

mAb 
stain

I

Relative Pseudotime

Mono

Mono-Int

TAM

IFN-resp.

Stress-resp.

5401 cells

t-SNE 1

t-S
N

E
 2

Csf1r Mafb

t-SNE 1

t-S
N

E
 2

Sorted myeloid population signatures

Ly6C+ Mono CD11clo TAM CD11chi TAM

t-SNE 1
t-S

N
E

 2

G

Component 1

C
om

po
ne

nt
 2

H

Relative Pseudotime

C1q+ TAM

Stress-resp.

Mono-Int 

IFN-resp. Mono

Ly6c2+ Hp+ Mono

0.0 0.3 0.6 0.9

Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


D

2 3

Stress-resp. C1qa+

TAM

0 103 104 105

0

103

104

105

E

IL7Rα

V
C

A
M

-1

TAM

V
C

A
M

-1

0 103 104 105

0

103

104

105

ARG1

IL7Ra+ TAM

0 103 104 105

0

103

104

105

VCAM-1+ TAM

0

10

20

30

40

50

%
A
rg
1+

VCAM-1-
IL7Ra-

VCAM-1-
IL7Ra+

VCAM-1+
IL7Ra-

0 103 104 105

0

103

104

105

F

Mono-
Int

Figure 2

HG
Model for 

monocyte-to-TAM differentiation

IFN-responsive

TAMMono

Stress-responsive

Proliferative

A
FACS-isolated Ly6C+ Mono

3 2 0 1 4

3
2
0
1
4

Ly6c2+ Hp+ 
IFN-resp. 
Ly6c2+ H2-Ab1+ 
Stress-resp.
DC

4589 cells

t-SNE 1

t-S
N

E
 2

B
FACS-isolated CD11chi TAM2

2
1
0
3
4

Stress-resp.
Mgl2+ 
C1qa+ 

Mki67+ 
DC

2 01 43

3203 cells

t-SNE 1

t-S
N

E
 2

C
 Bulk B16 Csf1r+ Mafb+ 

2.1 2.22.0

2 Stress-resp

Re-cluster
t-SNE 1

t-S
N

E
 2

1Vcam1Mgl2

Cxcl10Arg1

Mki67

Component 1

C
om

po
ne

nt
 2

Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A

B

Glycolysis OxPhos
D

Figure 3

C

E

“M1” Signature

Glycolysis 

“M2” Signature

OxPhos

Ly6c2+ Mono3
7
1
2
0 C1qa+ TAM

Mgl2+ TAM
Stress-responsive
IFN-responsive

PyMT Tumor

Kynu
Ido1

Cd40
Irf1
Irf5

Ccl5
H2−Ab1

Tnf
Il6

Il1b
Il1a

Cd86
Cxcl9
Il23a

Cxcl10
Cd80
Fcgr1
Il12a
Il12b
Nos2

Irf4
Fn1

Msr1
Cd276
Tnfsf8

Tnfsf12
Mmp19
Mmp14

Tgfb3
Tgfb1

Ctsd
Ctsc
Ctsb
Ctsa

Egf
Vegfc
Vegfb
Vegfa
Lyve1
Ccl24
Ccl22
Ccl17

Ccl4
Il4ra
Il1r2
Il1rn

Mrc1
Csf1r

Marco
Cd274

Pdcd1lg2
Cd200r1

Fcer1g
Cd163
Fcgr2b

Il10
Arg2
Arg1

Arg1
Arg2

Il10
Fcgr2b

Cd163
Fcer1g

Cd200r1

Pdcd1lg2

Cd274
Marco

Csf1
r

Mrc1Il1rnIl1r2Il4raCcl4Ccl1
7

Ccl2
2

Ccl2
4

Lyve
1

Vegfa
Vegfb

Vegfc
Egf

CtsaCtsbCtscCtsdTgfb1
Tgfb3

Mmp14

Mmp19

Tnfsf1
2

Tnfsf8
Cd276

Msr1Fn1Irf4Nos2
Il12b

Il12a
Fcgr1

Cd80
Cxcl

10
Il23a

Cxcl
9

Cd86
Il1aIl1b Il6Tnf

H2−Ab1
Ccl5Irf5Irf1Cd40

Ido1
Kynu

−1.0
−0.5
0.0
0.5
1.0

Pearson r

0

5

10

15

−0.2 0.0 0.2 0.4
Pearson r

D
en

si
ty

M1 vs. M1
M1 vs. M2
M2 vs. M2

“M1” genes
“M2” genes

B16F10 Tumor

Ly6c2+ Mono5
1
2
0
3

C1qa+ TAM

Ly6c2+ H2-Ab1+ 
Mono-Int

Stress-responsive

IFN-responsive

“M1” Signature “M2” Signature

t-SNE 1

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1t-SNE 1

t-S
N

E
 2

t-S
N

E
 2

Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


Renal cell 
carcinoma

 (RCC)

MAFB

CD14 FCGR3A (CD16)

MHC II genesCD68

CD14+ 
Mono

CD14+ 
Mono-Int

IFN-resp.

Stress-
resp.

C1q+

TAM

Figure 4

t-S
N

E
 2

CSF1R

t-SNE 1

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1

0 1 2 3 4

CD14+

Mono-Int

CD14+

Monocytes

C1q+

TAM

Stress-responsive
Mono-Int

IFN-responsive
Monocytes

C1QC SEPP1

LYPD3 ISG15S100A8

Glycolysis
Score

Mujal AM, Combes AJ, et al.

A B Bulk myeloid cells

C

D

E

F

G H

Fresh tumor biopsy
digest & processing

mAb stain

FACS isolate HLA-DR+ Lin- 
myeloid cells for scRNA-seq

0
1
2
3
4
5

CD14+ Mono-Int
CD14+ Mono
IFN-resp. Mono
C1q+ TAM
Stress-resp. Mono-Int
cDC

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A B

Figure 5

C

F

D

M
ac

ro
ph

ag
e-

to
-

m
on

oc
yt

e
ra

tio
 (l

og
2)

Freq. Tregs of CD45+ cells

1 2 3 4 5 6 7 8 9 10

-5.0

-2.5

0.0

2.5

5.0
Spearman ρ: 0.6412

M
ac

ro
ph

ag
e-

to
-

m
on

oc
yt

e
ra

tio
 (l

og
2)

Melanoma

Renal Cell Carcinoma

0.5 1.0 1.5 2.0 2.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0
Spearman ρ: 0.8513

Macrophage-to-monocyte
ratio

Renal Cell Carcinoma
M

ac
ro

ph
ag

e-
to

-
m

on
oc

yt
e

ra
tio

 (l
og

2)
Fr

eq
. T

re
gs

 o
f

C
D

45
+  c

el
ls

0

5

10

15 *

*
*

ns
ns

ns

0-4 4-7 7-10 10+

-5

0

5

10

15 *

*
*

ns
ns

*

0-4 4-7 7-10 10+

Tumor size (cm)

B16 Tumor

Ly6c2+ Hp+ Mono
IFN-responsive
Ly6c2+ H2-Ab1+ 

Mono-Int
Stress-responsive

Mgl2+ TAM
C1qa+ TAM

B16 Tumor Aggregate:
Control & Foxp3-DTR

Mgl2+ TAM

Ly6c2+ Hp+ Mono

C1qa+ TAM

IFN-responsive

Ly6c2+ H2-Ab1+ 
Mono-Int

Stress-responsive

p-
va

lu
e 

(-
lo

g 10
)

Control Foxp3-DTR

0 0.3 0.6 0.9 0 0.4 0.8 1.2

PseudotimePseudotime

E

G

H

0 50 100

Control

0 50 100

Foxp3-
DTR

Freq. of cells

Chil3

C1qa

Arg1

Ms4a7

p-
va

lu
e 

(-
lo

g 10
)

Ly6c2+ H2-Ab1+ Mono-Int

log N fold change

C1qa+ TAM

t-SNE 1

t-S
N

E
 2

Ly6c2

Apoe

Component 1

C
om

po
ne

nt
 2

Foxp3-
DTR

Control

Foxp3-
DTR

Control

C
om

po
ne

nt
 2

Component 1

Mujal AM, Combes AJ, et al.

Foxp3-DTR

Control

0.0 0.5 1.0 1.5

**

Iso IgG2c

0.0 0.5 1.0 1.5 2.0

Anti-CTLA-4
IgG2c

**
**

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


B

M
ac

/M
on

o
Tr

eg
cD

C
1

cD
C

2
C

D
4 

T 
C

on
v

C
D

8 
T 

ce
lls

Patient 16
Patient 4
Patient 5
Patient 8
Patient 18
Patient 19
Patient 11

Patient 6
Patient 20
Patient 3
Patient 17
Patient 15
Patient 12

Patient 9
Patient 14
Patient 7
Patient 10
Patient 2
Patient 13
Patient 1

0

-3

3

C

Patient 7

Patient 1
Patient 2

Patient 13
Patient 14

Patient 9
Patient 10

Patient 15
Patient 20

Patient 12
Patient 17

Patient 6

Patient 3
Patient 18
Patient 16

Patient 19
Patient 4

Patient 8

Patient 11
Patient 5 

C
TL

A
4

P
D

1
C

D
38

K
i6

7

0

-3

3

A

High
Low

P-value: 
0.28

High
Low

P-value: 
0.02  1

  0.8

  0

  0.6

  0.4

  0.2Fr
ac

tio
n 

su
rv

iv
in

g

High
Low

P-value: 
0.8

Time (Days)
  0   2000   4000  0   2000   4000  0   2000   4000

TCGA Overall Survival in Kidney Tumors 

All myeloid
(CIBERSORT)

 Monocyte-macrophage lineage
(MAFB CSF1R)

Monocyte-macrophage ratio
(Mono sig/TAM sig)

  1

  0.8

  0.6

  0.4

  0.2

 
0 50 100

0

50

100

Normalized 
%CD38+CD8+T cells 

N
or

m
al

iz
ed

 
%

PD
1+  C

D
8+ 

T 
ce

lls
 

CD8-Mo-cDC1 Rich Cluster
CD4-cDC2 Rich Cluster
Treg-Mp Rich Cluster

E

0

CD8-Mo-cDC1 Rich (n=6)
CD4-cDC2 Rich (n=6)
Treg-Mp Rich (n=7)

  1

  0.8

  0.6

  0.4

  0.2Fr
ac

tio
n 

su
rv

iv
in

g

  500  1000  1500

Time (Days)

  0

Log-rank cox test
p.value
0.045

D

Figure 6Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


Supplementary Figure 1Mujal AM, Combes AJ, et al.

A B
0
1
2
3
4
5
6
7

5401 cells

Ly6c2+ H2-Ab1+ Mono-Int
IFN-responsive Mono
Stress-responsive
C1qa+ TAM
cDC2
Ly6c2+ Hp+ Mono
Ccr7+ DC
cDC1TAMsC

D
24

F4/80

DCs

M
H

C
-II

Ly6C

C
D

11
b

CD11c

CD11clo

TAM
CD11chi

TAM

C
D

11
b

Ly6C

Mono

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

C

U
M

I (
x1

03 )

0 1 2 3 4 5 6 7
0

5

10

15

FD
KitFlt3

E
Plac8, Ly6c2, Chil3, Il1b, S100a4,

Hp, Ifi205, Clec4e, Ly6i, Ifitm6 
Ccl8, Pf4, Ms4a7, Cd63, Timp2,

Trem2, Serpinb6a, Stmn1, Wwp1, Mrc1
Cd81, Ccl5, Cd72, 2810417H13, Cadm1,

Stmn1, Top2a, Gatm, Clec4b1, Acp5CD11chi TAM

CD11clo TAM

Ly6C+ Mono

Hmox1 Hspa1a Hilpda

Ero1l Ndrg1Bnip3

HG
Ly6c2+ Hp+

Mono
Ly6c2+ H2-Ab1+

Mono-Int 
C1qa+

TAM

Stress-
responsive

Component 1

IFN-
responsive

Component 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 2

I

Component 1

C
om

po
ne

nt
 2

Fcgr1

Adgre1

Ly6c2

H2-Ab1

CD64

Ly
6C

0 103 104 105

0

103

104

105

MHC-II

%
 o

f m
ax

0 102 103 104 105
0

20

40

60

80

100

F4/80

%
 o

f m
ax

0 103 104 105
0

20

40

60

80

100

t-SNE 1

t-S
N

E
 2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A Sorted Ly6Chi Mono

Ly6c2

Ly6c2

B

H2-Ab1

Sorted CD11chi TAMC

H2-Ab1

F

Mono Mono-Int TAM
0

20

40

60

80

100

Fr
eq

. o
f p

op
ul

at
io

n

VCAM-1- IL7Rα-

VCAM-1+

IL7Rα+

Peripheral blood
Tumor-bearing host

G

Csf1r Ly6c2 Cxcl10

Nr4a1 Flt3 Retnlg

Supplementary Figure 2

H Peripheral blood
Tumor-bearing host

0 12 3 46 7

Blood Ly6c2+ 
Hp+ Mono

Blood Nr4a1+ 
Patrolling Mono

Blood Ly6c2+  
H2-Ab1+ Mono

Blood DC

Blood Neutrophil

Blood Neutrophil

Blood IFN-resp. 
Ly6c2+ Hp+ Mono

2887 cells

0
1
2
3
4

Sorted CD11clo TAM

Arg1+

TAM
Mki67+

TAM
Mki67+

TAM
C1qa+

TAM
Mgl2+ 
TAM

0

1

2
3
4

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1

t-S
N

E
 2

t-SNE 1

D
Bulk B16 Tumor

Mgl2

CD64+ F4/80+
TAM

0 103 104 105

0

103

104

105

MGL2

t-S
N

E
 2

t-SNE 1

0
1
2
3
4
5
6
7
8
9

5683 cells

t-S
N

E
 2

t-SNE 1

Bulk B16 Tumor:
Stress-resp. Cluster 2

E
t-S

N
E

 2

t-SNE 1

0 Mono-Int
1 Mono
2 TAM

Mujal AM, Combes AJ, et al.

C
D

11
c

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A
B16 Tumor: 

Csf1r+ Mafb+ Clusters

“M1”

“M2”

B

C

D

Il7r Vcam1

F

Supplementary Figure 3

PyMT Myeloid Cells

0
1
2
3
4
5
6
7

C1qa+ TAM
Stress-resp.
Mgl2+ TAM
Ly6c2+ Mono
Neutrophil
cDC2
cDC1
IFN-resp. 

E

3 7 1 2 0

Glycolysis
Signature

OxPhos
Signature

3 7 1 2 0

Csf1r Mafb
t-SNE 1

t-S
N

E
 2

Ly6c2+ Hp+ Mono

IFN-resp.Stress-resp.

Mgl2+ TAM

t-SNE 1

t-S
N

E
 2

3 51 20

Mujal AM, Combes AJ, et al.

C1qa+ TAM

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


Classical

 blood monocyte

Non-classical

 blood monocyte

“Mono3”

blood monocytes

“Mono4”

blood monocytes

cDC1

 blood DCs

cDC2

 blood DCs

pDC

 blood DCs

Supplementary Figure 4

t-SNE 1

t-S
N

E
 2

A

C1Q+ TAM Stress-responsive 

t-SNE 1

t-S
N

E
 2

Ly6c2+ Hp+

Monocytes

Ly6c2+ H2-Ab1+

Mono-Int

IFN-responsive

Monocytes

C1qa+

TAM

Stress-

responsive

t-SNE 1

t-S
N

E
 2

‘M1’ 

Signature

‘M2’ 

Signature

t-S
N

E
 2

t-SNE 1

B

C

D E

Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A

D
Retnlg Treml4

Foxp3-DTR
Tumor Myeloid Cells

3837 cells

Supplementary Figure 5

Flt3

C

0.0 0.5 1.0 1.5 2.0

Anti-CTLA-4
IgG1

Iso IgG1

Macrophage-to-Monocyte
Ratio

B

0

20

40

60

80 ns
*

*
*

ns

*

Fr
eq

. m
ye

lo
id

 c
le

lls
 o

f C
D

45
+  c

el
ls

0-4 4-7 7-10 10+

Tumor size (cm)

Renal Cell Carcinoma

E

F
Ly6c2hi Hp+ Mono

log N fold change

p-
va

lu
e 

(-
lo

g 10
)

t-SNE 1
t-S

N
E

 2

Mujal AM, Combes AJ, et al.

Exp.1: WT
Exp.2: Control 
Exp.2: Foxp3-DTR

Ly6c2+ 
Hp+ 

Mono

Ly6c2+ 
H2-Ab1+ 
Mono-Int

C1qa+ TAMIFN-responsiveStress-responsive Mgl2+ 

TAM

Iso IgG1

Anti-CTLA-4 IgG1 

Iso IgG2c

Anti-CTLA-4 IgG2c

0

5000

10000

15000

20000

25000

Tr
eg

s/
m

g 
of

 tu
m

or

**

***

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502


A

B C

Signature Threshold HR [95%Cl] Pvalue
Mac/cDC1
Mac/cDC1
Mac/cDC1
cDC1

50%
33%
10%
10%

0.77
0.68
0.42
0.79

6.66E-04
8.44E-05
8.69E-05
1.17E-02

Macrophage-cDC1 ratio: 
Threshold 50%

Macrophage-cDC1 ratio:
Threshold 33%

Macrophage-cDC1 ratio: 
Threshold 10%

TCGA Overall Survival in Kidney Tumors 

cDC1: 
Threshold 10%

Time (Days)
  0   2000   4000   0   2000   4000   0   2000   4000

  1

  0.8

  0

  0.6

  0.4

  0.2Fr
ac

tio
n 

su
rv

iv
in

g

  1

  0.8

  0

  0.6

  0.4

  0.2

  1

  0.8

  0

  0.6

  0.4

  0.2

  0   2000   4000

  1

  0.8

  0

  0.6

  0.4

  0.2Fr
ac

tio
n 

su
rv

iv
in

g

High
Low

P-value: 
0.00066

High
Low

P-value: 
0.000084

High
Low

P-value: 
0.000086

High
Low

P-value: 
0.017

Supplementary Figure 6Mujal AM, Combes AJ, et al.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451502

