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Abstract. Dryland ecosystems are a major source of land
cover, account for about 40% of Earth’s terrestrial surface
and net primary productivity, and house more than 30 % of
the human population. These ecosystems are subject to cli-
mate extremes (e.g. large-scale droughts and extreme floods)
that are projected to increase in frequency and severity un-
der most future climate scenarios. In this modelling study
we assessed the impact of single years of extreme (high or
low) rainfall on dryland vegetation in the Sahel. The magni-
tude and legacy of these impacts were quantified on both the
plant functional type and the ecosystem levels. In order to un-
derstand the impact of differences in the rainfall distribution
over the year, these rainfall anomalies were driven by chang-
ing either rainfall intensity, event frequency or rainy-season
length. The Lund–Potsdam–Jena General Ecosystem Simu-
lator (LPJ-GUESS) dynamic vegetation model was parame-
terized to represent dryland plant functional types (PFTs) and
was validated against flux tower measurements across the Sa-
hel. Different scenarios of extreme rainfall were derived from
existing Sahel rainfall products and applied during a single
year of the model simulation timeline. Herbaceous vegeta-
tion responded immediately to the different scenarios, while
woody vegetation had a weaker and slower response, inte-
grating precipitation changes over a longer timeframe. An
increased season length had a larger impact than increased
intensity or frequency, while impacts of decreased rainfall

scenarios were strong and independent of the season charac-
teristics. Soil control on surface water balance explains these
contrasts between the scenarios. None of the applied distur-
bances caused a permanent vegetation shift in the simula-
tions. Dryland ecosystems are known to play a dominant role
in the trend and variability of the global terrestrial CO2 sink.
We showed that single extremely dry and wet years can have
a strong impact on the productivity of drylands ecosystems,
which typically lasts an order of magnitude longer than the
duration of the disturbance. Therefore, this study sheds new
light on potential drivers and mechanisms behind this vari-
ability.

1 Introduction

Dryland ecosystems account for about 40 % of Earth’s ter-
restrial surface and net primary productivity (Grace et al.,
2006; Wang et al., 2012) and shelter more than 30 % of
the human population (Gilbert, 2011). These ecosystems are
subject to climate extremes that are projected to increase in
frequency and severity under most future climate scenarios
(IPCC, 2014; Sillmann et al., 2013). Such extremes (e.g.
large extent droughts and extreme floods) can have a dev-
astating impact on the ecosystems and livelihoods of global
drylands, as well as amplify pressure on fragile economic
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structures (Ibrahim, 1988; United Nations Office for the Co-
ordination of Humanitarian Affairs, 2013). The Sahel, situ-
ated south of the Sahara desert, is one of the largest dryland
areas of the world, covering more than 3×106 km2. It is home
to a population of around 135 million people, which is ex-
pected to increase by a factor of 2.3 between 2014 and 2050
(Haub and Toshiko, 2014).

The Sahel is mostly dominated by savanna grasslands.
These complex biomes consist of a sparse cover of C3
trees and shrubs, overlying an understory dominated by C4
grasses. The co-existence of herbaceous and woody species
in drylands has been the subject of many studies (e.g. Dodd
et al., 1998; McMurtrie and Wolf, 1983; van Wijk and
Rodriguez-Iturbe, 2002) and can be explained by different
strategies in root-water access and phenology. Disturbances
such as wildfires can have a major impact on the tree cover
as well, especially in mesic regions (mean annual precipi-
tation (MAP)> 650 mm) (Sankaran et al., 2008). Capturing
these complex ecosystems with dynamic vegetation models
can be challenging yet rewarding (Whitley et al., 2017), as
these models can provide novel insights into the dynamics
of tree–grass competition for resources, as well as dryland
ecosystem carbon and water cycling in general.

Although the vegetation structure and ecosystem produc-
tivity in water-limited ecosystems is mainly driven by annual
total precipitation (Lehmann et al., 2014; Sankaran et al.,
2005, 2008), intra-annual rainfall variability, which is char-
acterized by the variability in rain event intensity, frequency
and timing of the wet season, has a large impact on the veg-
etation as well, by changing the spatial and temporal avail-
ability of soil water for plant uptake (Berry and Kulmatiski,
2017; Case and Staver, 2018; Guan et al., 2018; Kulmatiski
and Beard, 2013; Xu et al., 2018; Zhang et al., 2018, 2019).
The year-to-year variation in these characteristics is signifi-
cant in global drylands, including the Sahel (Reynolds et al.,
2007; Zhang et al., 2017). Climate projections for the end of
the 21st century generally show a delay in timing of the rainy
season, with average shifts of around 5 to 10 d for the Sahel
(Dunning et al., 2018; IPCC, 2014; Pascale et al., 2016). To-
tal precipitation is expected to decrease in the western parts
and to increase in the central and eastern parts of the Sahel,
although a high variability remains among the different cli-
mate model predictions (Biasutti, 2019; Pascale et al., 2016).
Furthermore, an increase in rain event intensity, coupled with
a decrease in frequency, has been observed in recent years
(Panthou et al., 2014; Taylor et al., 2017) and is projected
for the coming century (Dunning et al., 2018). Even though
the region has a long history of adapting to drastic changes
in rainfall (Mortimore, 2010), it is still uncertain how current
and future changes in rainfall regimes will impact the plant
functional responses in the Sahel and in drylands in general.

Dryland vegetation is known to respond in contrasting
ways to intra-annual rainfall variability. An increased fre-
quency of heavy rainfall events is reported to facilitate woody
encroachment in savanna ecosystems (Kulmatiski and Beard,

2013; Zhang et al., 2019), but this response is modulated by
the underlying soil texture, as a more intense rainfall leads
to a lower tree cover on soils with a finer texture (Case and
Staver, 2018). Other studies found that regions with a given
amount of total seasonal rainfall have a higher woody cover
under a more frequent but less intense rainfall climatology,
which can be explained by differentiated tree and grass wa-
ter use strategies (Good and Caylor, 2011; Xu et al., 2015,
2018). D’Onofrio et al. (2019) found a positive relationship
between grass cover and rain event frequency but only a weak
link between tree cover and rainfall seasonality characteris-
tics for drylands (MAP5 650 mm). Zhang et al. (2018) found
vegetation in drylands to be impacted significantly by the
number of rainy days and timing of the wet season. A vegeta-
tion model study by Guan et al. (2018) did not find a signif-
icant difference in impacts between the different character-
istics of seasonal rainfall mentioned above, although mesic
regions depicted a stronger increase in gross primary pro-
ductivity (GPP) with an enhanced length of the season than
with an enhanced rain event intensity or frequency.

In order to gain a more detailed process-based insight into
how dryland vegetation is affected by the distribution of rain-
fall over the rainy season, we used a dynamic vegetation
model to study the impact and legacy of single anomalous
rainy seasons on the vegetation. The approach presented here
is therefore complementary to earlier studies, such as Guan
et al. (2018), which mainly assessed the impact on the veg-
etation of long-term changes in intra-seasonal rainfall vari-
ability, informing on the ecosystem state under prolonged
changes in rainfall regime. Hence, the vegetation response
in such studies is subject to cumulative effects of repeated
rainfall disturbances, obscuring the underlying mechanisms
that drive these responses.

We aimed at assessing the impact of different rainfall sce-
narios on the vegetation response at four flux tower sites
across the Sahel (Tagesson et al., 2016; Table 1), inves-
tigating the response of individual plant functional types
(PFTs) and of the ecosystem as a whole. We parameter-
ized the Lund–Potsdam–Jena General Ecosystem Simula-
tor (LPJ-GUESS) dynamic global vegetation model (Smith
et al., 2014) for the Dahra site in Senegal (Tagesson et al.,
2015), using field measurements and a literature study. The
model was evaluated at all Sahel sites by testing whether it
significantly improved the representation of the site ecosys-
tem fluxes relative to the published version of the model
(Smith et al., 2014). The model experiments were set up as a
disturbance event, where we altered the rainfall during 1 year
in the meteorological driver time series. We changed the total
rainfall together with one of the underlying seasonal charac-
teristics (i.e. intensity, frequency or length), while keeping
the other two characteristics invariant.

Adopting this approach, we addressed the following re-
search questions: (1) how do years of extreme rainfall with
different seasonal characteristics impact the fluxes and com-
position of dryland ecosystems in the Sahel in the period fol-
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Figure 1. Map including the Sahel region, showing the locations
of the different flux tower sites: Dahra (Senegal), Agoufou (Mali),
Wankama (Niger) and Demokeya (Sudan). Imagery © 2020 Terra-
Metrics; map data © 2020 Google.

lowing the extreme event, and (2) how do the magnitude and
legacy of these impacts vary across the different plant func-
tional types?

2 Methods

2.1 Study area

The Sahel is a semi-arid ecoclimatic transition zone, bridg-
ing the Sahara desert in the north with the Sudanian savanna
in the south. It is usually defined by the 150 and 700 mm
isohyets delineating its northern and southern borders, re-
spectively. In this study we used data from four flux tower
sites that have been established in the Sahel, measuring land–
atmosphere carbon, water and energy exchanges, together
with meteorological data (Tagesson et al., 2016; Table 1).
The flux towers are located at Dahra in Senegal (DAH),
Agoufou in Mali (AGG), Wankama in Niger (WFF) and
Demokeya in Sudan (DEM) (Fig. 1). All sites consist of a
grassy savanna with a sparse tree cover, growing on sandy
arenosol soils. Annual total rainfall varies from 339 mm in
the west (Dahra) to 164 mm in the east (Demokeya), with
mean annual temperatures around 29 ◦C (Table 1).

2.2 Vegetation model

We used the LPJ-GUESS process-based dynamic global veg-
etation model, which simulates the global vegetation struc-
ture with its associated carbon, nitrogen and water cycles
(Smith et al., 2014). Similar to many global models, LPJ-
GUESS uses plant functional types to represent physiolog-
ical, morphological and phenological differences in vegeta-
tion. Out of the 12 standard PFTs in LPJ-GUESS, three are
relevant for the Sahel: tropical broadleaved evergreen trees,
tropical broadleaved deciduous trees and C4 grasses. Within
each grid cell, LPJ-GUESS simulates plant growth based on
competition for light, space, water and soil nitrogen between
individuals from different PFTs. Processes related to photo-
synthesis, soil hydrology, respiration, stomatal conductance
and phenology are simulated on a daily time step, while car-

bon allocation, establishment, mortality and wildfire distur-
bance (Thonicke et al., 2001) are accounted for at the end of
each simulated year. To account for the heterogeneity in age
distribution of ecosystems, for each run 100 replicate patches
were forced with the same meteorological data but exposed
to stochastic differences in disturbances.

Phenology of the drought deciduous PFTs is based on a
water stress scalar in the model. Low values of this scalar rep-
resent stress due to reduced soil water content, leading to a
reduction of photosynthesis through stomatal closure. When
this variable drops below a given threshold, the dry season
starts and deciduous trees will shed their leaves. Likewise,
when this scalar rises above this threshold new leaves will
be produced, taking into account a prescribed minimum dor-
mancy period (Smith et al., 2014).

Soil hydrology is represented by a two-layer bucket model
with percolation between the layers and drainage at the bot-
tom (Gerten et al., 2004). The upper layer has a depth of
0.5 m, while the lower layer is 1 m deep, adding up to a to-
tal soil depth of 1.5 m. Rainfall will replenish plant-available
water in the upper layer up to field capacity, above which
excess water will be expelled as surface runoff. The lower
soil layer is supplied with water by percolation from the up-
per layer. Transpiration by plant canopies will in turn re-
duce the water content in both soil layers. Different PFTs
can have different root biomass distributions across the soil
layers; e.g. grasses will have 90 % of their root biomass in the
upper layer, while trees have deeper roots in the model (Ta-
ble 2). LPJ-GUESS has previously been used in sub-Saharan
Africa and other savanna studies, and the model is known to
give a reasonable representation of large-scale sensitivities to
drought in drylands at the global scale and for Africa specifi-
cally (Ahlstrom et al., 2015; Baudena et al., 2015; Boke-Olén
et al., 2018; Brandt et al., 2017, 2018; Lehsten et al., 2016).
Nonetheless, the parameterization of the PFTs has never been
optimized for the drylands in the Sahel specifically.

2.3 Model parameterization and validation

We adjusted the parameterization of LPJ-GUESS to the local
conditions by updating two plant functional traits (specific
leaf area and wood density) to values from Nielsen (2016)
and Sibret (2021). The tropical evergreen tree PFT was based
on Balanites aegyptiaca, while the deciduous tree PFT was
based on Acacia tortilis and Acacia senegal, which are the
main woody species found at Dahra, Senegal. For the C4
grass parameters we used the average trait values of all C4
grasses identified by Sibret (2021) and the maximum daily
evapotranspiration rate from Gerten et al. (2004). The most
important parameters to differentiate the PFTs are given in
Table 2. Similar species, or at least a functionally similar veg-
etation composition, can be found at the other three sites. As
all sites are characterized by sandy arenosol soils (Table 1)
and the used soil database does not take into account differ-
ences in lower-level soil classification, all sites were assumed
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Table 1. Overview of the different flux tower sites used in this study, together with the 1979–2016 mean annual precipitation and its standard
deviation (MAP, mm yr−1) from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) v1.2 dataset (Beck et al., 2017), mean annual
temperature (MAT, ◦C) from the WFDEI (WATCH – WATer and global CHange – Forcing Data methodology applied to ERA-Interim) dataset
(Weedon et al., 2014), FAO (Food and Agriculture Organization) soil classification (FAO, 1988), ecosystem type and tree cover (Tagesson
et al., 2016), rainfall seasonality (fraction of rainfall inside the rainy season), measurement years (eddy covariance data available for model
validation), and literature reference.

Site Dahra, Senegal Agoufou, Mali Wankama, Niger Demokeya, Sudan

Coordinates 15.40◦ N, 15.43◦W 15.34◦ N, 1.48◦W 13.65◦ N, 2.63◦ E 13.28◦ N, 30.48◦ E
MAP± 1 σ (mm yr−1) 339± 107 258± 83.4 303± 67.8 164± 65.1
MAT (◦C) 28.7 30.2 29.5 28.1
Soil classification Luvic arenosol Ferralic arenosol Ferralic arenosol Cambic arenosol
Ecosystem type Shrubland savanna Open woody savanna Fallow bush Sparse acacia savanna
Tree cover 3 % 4 % < 1 % 7 %
Seasonality 0.94 0.93 0.93 0.92
Measurement years 2010–2013 2007 2005–2012 2007–2009
References Tagesson et al. (2015) Mougin et al. (2009) Boulain et al. (2009),

Ramier et al. (2009)
Sjöström et al. (2009)

Table 2. Important PFT parameter values used in LPJ-GUESS: pho-
tosynthetic pathway (Photo), specific leaf area (SLA, m2 kgC−1),
wood density (WD, kgC m−3), maximum daily evapotranspiration
rate (emax, mm d−1) and root distribution (RD, fraction of the root
biomass in the upper and lower soil layer, respectively) (Gerten et
al., 2004; Nielsen, 2016; Sibret, 2017; Sibret et al., 2021).

PFT Photo SLA WD emax RD

C4 grass C4 35.3 – 7 0.9 : 0.1
Evergreen trees C3 13.9 319.1 5 0.6 : 0.4
Deciduous trees C3 25.7 318.7 5 0.6 : 0.4

to have the same sandy soil texture in the simulations (90 %
sand, 5 % silt and 5 % clay).

The model was evaluated against flux tower data from the
four Sahel sites by comparing a 10 d moving average of the
measured daily net ecosystem productivity (NEP) and evapo-
transpiration (ET) time series with model predictions. Model
performance metrics were summarized in a Taylor diagram
(Taylor, 2001).

2.4 Model forcing timeline

By default, LPJ-GUESS is driven by daily interpolations
of monthly Climatic Research Unit and National Centers
for Environmental Prediction (CRU–NCEP) meteorological
forcing data (Viovy, 2018). To improve the temporal reso-
lution of the meteorological forcing, we used meteorolog-
ical data extracted from the WATCH (WATer and global
CHange) Forcing Data methodology applied to ERA-Interim
reanalysis (WFDEI; Weedon et al., 2014) with substituted
Multi-Source Weighted-Ensemble Precipitation v1.2 data
(MSWEP; Beck et al., 2017, 2019). Both reanalysis datasets
contain daily averages of meteorological data from 1979 to

2016 (Fig. 2). The data have a 0.5◦ by 0.5◦ spatial resolu-
tion, and only the grid cells containing the flux tower lo-
cations were selected. Vegetation demography and its asso-
ciated carbon, water and nitrogen stocks were initialized in
the model by a 500-year spin-up run from bare soil. During
this spin-up run the meteorological forcing data were used
in a cycle, combined with a constant CO2 concentration of
296 ppm, corresponding to the 1901 level. The spin-up run
was followed by a historical run from 1901 until 2016, using
the same cycled meteorological forcing but following the his-
torical CO2 record. After this historical run, the rainfall per-
turbation experiments were implemented. In order to account
for variability in meteorological conditions prior to the per-
turbation, all years with near-average rainfall (MAP± 1σ )
of the original meteorological driver cycle were perturbed,
each leading to a different ensemble member in the simula-
tion. For this period, a constant CO2 concentration (the 2016
value of 404 ppm) was applied (Fig. 3).

2.5 Disturbance experiment set-up

The rainfall disturbance experiments were developed to de-
pict an increase or decrease of the total precipitation in a
given year by 2 standard deviations of the annual rainfall,
therefore representative of extreme years in the historical
time series. This disturbance was applied in such a way that
only one of the three seasonal characteristics (intensity, fre-
quency or length; Table 3) changed, while the other two re-
mained invariant, thus creating a target rainy season for the
selected year (Table 4). A detailed description of the used
algorithms can be found in the Supplement, Sect. S1. In or-
der to preserve the internal meteorological consistency with
the other drivers (air temperature and incoming short-wave
radiation), we resampled all data from the original meteoro-
logical drivers: for each DOY (day of the year) in the goal
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Figure 2. Median and variability of the rainy-season characteris-
tics for the Sahel sites (Table 1) studied: (a) total annual rainfall,
(b) event frequency, (c) event intensity and (d) rainy-season length
(Table 3). Hinges represent the first and third quartiles; whiskers
represent the largest (smallest) value at most 1.5 times the interquar-
tile range above (below) the hinges; and dots represent outliers.
Based on the daily MSWEP rainfall data for the period 1979–2016.

Figure 3. Overview of the general simulation timeline for each
scenario. During the experiment period, 1 single year of the me-
teorological time series is disturbed, as illustrated by the different
branches, and immediately followed by an ensemble of spin-down
runs, consisting of average rainfall years only. Each horizontal seg-
ment represents a cycle of meteorological forcing data.

scenario, we found a date with matching rainfall (±1 mm)
in the original dataset and used all its meteorological data.
Some restrictions were introduced in order to preserve gen-
eral synoptic patterns: the resampled day should be close to
the original DOY (±3 d, ±1 year), and if none were found,
the neighbouring pixels from the reanalysis dataset were con-
sulted. If still no day with matching rainfall was found, the
time interval was gradually extended in days until a match
was found, up to a maximum of ±40 d.

The six simulation scenarios (Table 4) were applied to
each year of the meteorological cycle that had a total rain-
fall close (±1σ ) to the time series average, in order to avoid
applying additional perturbations to already extreme years.
Depending on the variability in annual rainfall for each site,

this results in Ne≈ 30 simulations (Fig. 3). Each disturbed
year was immediately followed by a set (Ns= 10) of spin-
down runs, with each run consisting of a random 100-year
sequence with rainfall within 1 standard deviation of the time
series average. This was implemented to average out any ef-
fects of the post-disturbance years’ rainfall characteristics on
our impact study. For this 100-year sequence, the same con-
stant CO2 concentration (the 2016 value of 404 ppm) was
applied.

This leads to an internally consistent set of meteorologi-
cal model drivers for all six disturbance scenarios (Table 4),
each simulated by an ensemble ofNe×Ns≈ 300 runs at four
Sahel sites (Fig. 3). For each of these disturbance runs, a ref-
erence run was included, based on exactly the same mete-
orological data but without applying the perturbation in the
disturbance year (Fig. 4).

For each site and each scenario, the impact of the distur-
bance and its legacy on vegetation were finally quantified as
the difference between the output of the reference and dis-
turbance runs, displayed as a function of time since the dis-
turbance event, and finally averaged over all ensemble mem-
bers (Fig. 4). Impact legacy is calculated as the last year for
which the average impact is larger than its standard devia-
tion, i.e. when the uncertainty on the impact becomes larger
than its difference with the reference run, resulting in a rel-
atively conservative estimation of legacy. We analysed the
response of individual PFTs, as well as the ecosystem as a
whole, by quantifying the impact on leaf area index (LAI),
carbon cycling and surface water balance. We show the full
impact time series for the Dahra site as an illustration, to-
gether with a summarized result to compare key response
descriptors (maximum impact and legacy) between the dif-
ferent sites. Full impact time series for all sites can be found
in the Supplement.

3 Results

3.1 Model evaluation

The updated parameterization of LPJ-GUESS captures the
net ecosystem productivity (NEP) and evapotranspiration
(ET) that were measured at the Dahra flux tower site, to
which the model was parameterized (Fig. 5). Carbon uptake
follows the timing of the rainy season, but the amplitude of
both NEP and ET are underestimated over the whole time
series. The uncertainty on the Dahra flux tower NEP mea-
surements varies around an average of 1.5 gC m−2 d−1 at the
peak of the rainy season, so the underestimation is signifi-
cant (Tagesson et al., 2016b). However, the fluxes measured
at the Dahra site are relatively high when compared to the
other Sahel sites (Fig. S1 in the Supplement; Tagesson et al.,
2016a). When evaluated against daily NEP measurements of
the other Sahel sites, this parameterization significantly im-
proves the agreement between simulated and observed daily
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Table 3. Definitions of the different rainy-season characteristics used in this study.

Characteristic Definition

Total rain Total rainfall within the rainy season (mm)
Season start Day of the year after the minimum in climatological anomalous accumulation; similar definition for the season end (DOY)
Season length Difference between season start and end day of the year (days)
Intensity Average daily total rainfall over all rainy days within the rainy season (mm d−1)
Frequency Inverse of average time (days) between rain events within the rainy season (d−1)

Table 4. Overview of the scenarios with actual rainy-season char-
acteristic values for the Dahra site (average and standard deviation
taken over all ensemble members).

Scenario Modified characteristic Change in total
rainfall

Len+ +73.3± 18.3 d +186± 25.6 mm
Freq+ +0.365± 0.079 events d−1

+203± 26.6 mm
Int+ +3.321± 1.737 mm per event +177± 57.9 mm
Len− −62.5± 21.8 d −206± 11.8 mm
Freq− −0.426± 0.077 events d−1

−209± 11.8 mm
Int− −4.179± 0.974 mm per event −209± 10.3 mm

Figure 4. Concept of the model experimental set-up, consisting of
a disturbance simulation in which a rainfall disturbance is applied,
and a reference run, which is based on the same meteorological
drivers but without any disturbance applied. Vegetation impact is
described by maximum impact (amplitude) and legacy (years). The
average impact is derived by subtracting the output of the reference
simulations from the output of the disturbance simulations for each
ensemble member and then taking the average of the result over
all ensemble members. The legacy is calculated as the last year for
which the average impact is larger than its standard deviation.

carbon fluxes with respect to the published model parame-
terization; this is also the case when the latter is driven by
the WFDEI–MSWEP meteorological forcing data which are
used in this study (Figs. 6 and S1). Interestingly, the im-
provement with respect to the published parameterization is
larger for the other Sahel sites than for the Dahra site. In addi-
tion, we note that yearly averaged simulated values of surface
runoff vary between sites from 16 to 49.8 mm yr−1, although
the runoff distributions have a long tail due to extreme years.

Figure 5. Time series of a 10 d moving average of (a) daily
net ecosystem productivity (NEP) and (b) daily evapotranspira-
tion (ET), comparing measurements from the flux tower near
Dahra, Senegal, with model results from LPJ-GUESS, using the
Sahel-specific parameterization and WFDEI–MSWEP meteorolog-
ical drivers.

Indeed, median runoff values are much lower, varying be-
tween 4.4 and 30 mm yr−1 (Fig. S2).

3.2 Experiment results

From all applied scenarios, an increase in rainy-season length
caused the largest increase in LAI at all sites and for all PFTs.
Especially C4 grasses had a particularly strong response of
∼ 120 % for all sites, except for Wankama (Figs. 7 and 8).
This impact of the season length was the weakest at the
Wankama site for all PFTs. For evergreen trees the amplitude
of this impact varied strongly across the sites, from 30 % at
Wankama to 110 % at Demokeya, while the legacy was of
the same order as for the grasses (2–4 years). For decidu-
ous trees this impact was less variable and generally lower in
amplitude (10 %–30 %) but longer in legacy, up to 14 years
at the Dahra site (Fig. 8).

Scenarios of increased rain event frequency generally had
a slightly larger impact than those of increased intensity. The
impact of both scenarios was the weakest for deciduous trees
(15 %–25 %) and slightly stronger for evergreen trees (25 %–
45 %) and grasses (30 %–55 %), with an exception for the
Demokeya site, which showed a larger impact of these sce-
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Figure 6. Taylor diagrams showing the correspondence between modelled and observed daily NEP values (10 d moving averages) for
the Sahel flux tower sites, evaluated over (a) the whole year and (b) the rainy season only. We show a comparison between runs based on
published model parameters using CRU–NCEP meteorological data (∗), published model version parameters using WFDEI–MSWEP drivers
(4) and runs based on the new drylands-specific parameterization using the WFDEI–MSWEP drivers (•). Values were normalized so that
the standard deviations of the observations equal unity; i.e. observations are located at the (1, 0) coordinate on this figure. Grey arcs represent
the root mean square error (RMSE) between model output and observations.

narios on the evergreen trees (65 % for increased intensity
and 85 % for increased frequency) (Fig. 8).

In contrast, for the scenarios of decreased total rainfall, the
simulated reduction in LAI was largely independent of the
rainy-season characteristic that was adjusted, although sce-
narios of decreased intensity depicted a slightly lower decline
in LAI overall (Figs. 7 and 8). For C4 grasses, both the max-
imum impact, and the legacy of the impact varied between
sites: Wankama experienced the least negative change in LAI
(−45 %) with a legacy of 3 years, while for Demokeya the
amplitude and legacy were higher (−75 % and 6 years, re-
spectively; Fig. 8). For the tree PFTs the maximum impacts
were of the same order for all sites and scenarios, with values
around −50 % for evergreen trees and −30 % for deciduous
trees. On the other hand, the legacies of the negative distur-
bances on the trees varied across the sites, from 3 years at
Demokeya to 7 years at Dahra, but were largely independent
of how rainfall was reduced (except for a decreased rainfall
intensity at the Demokeya site; Fig. 8).

For all scenarios and all sites, grasses responded imme-
diately to changes in precipitation, with the highest impact
occurring during the perturbed year (Figs. 7d and S5–S7).
In contrast, the tree PFTs exhibited their peak impact in the
year following the disturbance (Figs. 7e–f and S5–S7). At
all sites, deciduous trees experienced a reversal in response
(“overshoot”) following the initial impact, which is up to the
same order of magnitude as the initial impact, in particular
for scenarios of increased rainy-season length and rainfall
reduction (Figs. 7f and S5–S7). Depending on the site and
scenario, these overshoots can last for multiple (> 5) years,
although they remain within model variability limits.

On the ecosystem level, the reference net ecosystem pro-
ductivity (NEP) was mostly positive but relatively small,
ranging between −0.008 and 0.026 kgC m−2 yr−1 for all
sites (Figs. 9a and S8–S10), while reference yearly photo-
synthesis (gross primary productivity, GPP) varied between
0.16 and 0.47 kgC m−2 yr−1. Rainfall disturbance scenarios
had a major impact on ecosystem productivity, with max-
imum NEP impact values typically an order of magnitude
larger than the reference values (Figs. 9b and 10), ranging
from 10 % to 47 % of the typical reference GPP. Increased
season length had again the largest impact on NEP, and this
contrast between the positive scenarios was most pronounced
at the Dahra site. For the reduced rainfall scenarios, the con-
trast in impact varied mainly between the sites and again
mostly by differences in legacy rather than amplitude. For
scenarios of increased rainfall it takes 4 to 7 years to con-
verge back to reference NEP values, while for scenarios of
reduced rainfall the impact legacy varies from 2 years at
the drier sites (Demokeya and Agoufou) up to 10 years at
the wetter sites (Dahra and Wankama). For all sites and all
disturbance scenarios, the NEP also displayed a substantial
reversal (overshoot) in impact response, starting 2–3 years
after the disturbance (Figs. 9b and S8–S10). The maximum
amplitude of this reversal varies between 11 % and 51 % of
the original impact and scales linearly with the initial im-
pact value; i.e. scenarios of increased season length will have
the strongest overshoot, while scenarios of decreased rainfall
will have overshoots that differ between the sites but not be-
tween the disturbance scenarios for each site (Figs. S8–S10).
The net effect of this reversal on the cumulative NEP is to
balance out the initial impact in the long run, which can take
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Figure 7. Response of the vegetation to the different rainfall scenarios for the Dahra site, as a function of years since the disturbance event.
(a–c) Reference LAI of each PFT, averaged over all ensemble members; (d–f) vegetation response as the mean relative LAI difference
between the scenario runs and the reference runs. Shaded areas indicate variability of the model runs over all ensemble members (±1σ ).

Figure 8. Summarized overview of the vegetation response to the different rainfall scenarios for all sites, showing the maximum impact (%)
on the LAI for each PFT, along with its legacy (years), which is defined as the last year for which the impact is 1 standard deviation away
from the reference value. Sites are represented by different colours; scenarios are represented by symbols.

several decades, depending on the site and scenario (Figs. 9d
and 10).

The disturbance scenarios have a varying impact on the
surface balance between water evaporation, runoff and infil-
tration into the soil (Figs. 11 and 12). For disturbances that
are based on a higher event frequency or a higher rainfall
intensity, more than half of the added rainfall will be evapo-

rated or lost to runoff for all sites so that the resulting amount
of infiltrated water will be reduced accordingly (Fig. 12).
Increased rainfall intensity caused a ∼ 10 % higher loss
through evaporation than the scenario of increased event fre-
quency, while increased frequency caused a ∼ 10 % higher
loss through runoff than rainfall intensity. For the scenario
with an increased rainy-season length, there is only a slight
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Figure 9. Impact of the different scenarios on the cumulative NEP at the Dahra site. (a) Average reference yearly NEP over a period of
25 years after the disturbance. (b) Impact of the disturbances on yearly NEP. (c) Average reference cumulative NEP (cNEP) on a longer
timescale (70 years). (d) Impact of the disturbances on the cumulative NEP (1cNEP). The year prior to the perturbations is used as a starting
point for the cumulative sum. Shaded areas indicate variability of the model runs over all ensemble members (±1σ ).

Figure 10. Summarized overview of the net ecosystem flux response to the different rainfall scenarios for all sites, showing the impact on
the net ecosystem productivity (NEP) and the cumulative NEP. Different sites are represented by different colours, while the symbol shapes
represent the applied scenarios.

increase in runoff because the rainfall has more time to per-
colate through the soil before saturation occurs, while evap-
oration increased due to longer exposure. On the other hand,
the scenarios with reduced precipitation all have similar im-
pacts on surface water balance, again mainly varying be-
tween the different sites rather than the season characteris-

tic (Fig. 12). Legacy was mostly site-dependent and timed
around 3–4 years for positive impacts on evaporation and
percolation, while the variation was higher for runoff (0–
8 years). The legacy of reduced rainfall scenarios lasted again
longer (3–10 years). During the years following the initial
impact, the surface evaporation and runoff show a significant

https://doi.org/10.5194/bg-18-77-2021 Biogeosciences, 18, 77–93, 2021



86 W. Verbruggen et al.: Contrasting responses of woody and herbaceous vegetation

reversal in response at all sites. For the scenarios of reduced
rainfall, these overshoots are of the same order of magni-
tude as the initial impact (Figs. 11 and S11–S13). For the
Demokeya and Wankama sites, the overshoots can be even
higher than the initial impact, which is why the maximum
impact value appears in the (positive) upper half of Fig. 12.

Although fire can play a major role in affecting the vege-
tation structure of African savannas, sites with a MAP below
350 mm are more rarely regulated by fire because of the low
fuel availability (Sankaran et al., 2008). All sites considered
in this study have a MAP of 339 mm or less (Table 1), and
most fire events are anthropogenic. Nevertheless, as annual
precipitation levels may increase under future climate sce-
narios, fires may play an increasing role at these sites in the
future. The standard LPJ-GUESS model has a relatively sim-
ple fire module, where ignition is based on fuel load and litter
moisture (Thonicke et al., 2001). In our study, fires only oc-
curred at the wettest sites (Dahra and Wankama) when the
fuel load was high and desiccated during a dry period fol-
lowing an occasional wet year. In these cases, fires mostly
contributed for a small fraction (< 3 % of the GPP) to the to-
tal carbon emission from the ecosystem to the atmosphere,
although there were a few exceptional years where the con-
tribution was higher (6 %–11 %). This was also observed in
the disturbance experiments: for the rainfall exclusion sce-
narios, fires increased during the disturbed year due to re-
duced moisture, adding on average 1.8 to 40 gC m−2 yr−1 to
the total carbon emissions, depending on the scenario. For
rainfall addition scenarios there was a peak in fires in the
year after the disturbance due to increased litter, adding up
to 10 gC m−2 yr−1 to the total carbon emissions. However,
for all scenarios the model uncertainty of the carbon fluxes
due to fires was high, as the standard deviation of the impacts
over all ensemble members was similar to the mean impact.

4 Discussion

4.1 Summary of key results

A combination of the updated model parameter values
and daily-scale WFDEI–MSWEP meteorological drivers im-
proved the agreement between model simulations and flux
tower measurements of NEP for all Sahel sites. Our model
disturbance experiments illustrated a strong contrast between
scenarios of increased and decreased rainfall for all sites. For
increased rainfall scenarios, the impact strongly depends on
how rainfall is distributed over the season, while this was
not the case for decreased rainfall scenarios. Out of the rain-
fall addition scenarios, increasing the length of the rainy sea-
son had the strongest impact at all sites, especially on C4
grasses. Impact legacies are calculated conservatively and
generally last 1–5 years longer for negative scenarios com-
pared to the positive scenarios and are mostly site-dependent.
The impact and legacy of scenarios of increased rainfall also

varied among the sites. Grasses experienced their peak im-
pact during the disturbed year, and the legacy was limited to
3 years for positive scenarios and 6 years for negative sce-
narios. For tree PFTs the peak impact was delayed by 1 year,
and it took longer to return to reference values. Impacts (pos-
itive or negative) on the net ecosystem carbon uptake (NEP)
ranged from 10 % to 47 % of the reference yearly total photo-
synthesis (GPP), depending on the site and the applied distur-
bance. Due to overshoots following the initial NEP impact,
the cumulative carbon uptake balances out again after a pe-
riod which ranges from 6 to 25 years. The contrast between
the scenarios is mainly explained by the different impacts
on surface water balance, as increased season length allowed
for a higher fraction of added rainfall to infiltrate into the soil
than increased frequency or intensity, which led to a higher
amount of runoff and surface evaporation, respectively. The
impact of rainfall reduction scenarios varied between the dif-
ferent sites but not between the scenarios.

4.2 Model evaluation

The improved model performance was expected, as the pub-
lished model PFTs (Smith et al., 2014) represent generic
tropical species, while the new parameter values are specific
for dryland ecosystems. A one-at-a-time sensitivity analysis
revealed that updating other relevant parameters did not lead
to a significant improvement in simulating the carbon fluxes
and ET (not shown), but parameter covariance sensitivities
are still to be tested. Moreover, the daily MSWEP data show
a better match with precipitation measured at the flux tower
(Fig. S3) and capture the onset and end of the rainy season
better than the interpolated CRU–NCEP monthly data. One
factor that is not included in these simulations is livestock
grazing, which was found to have a positive impact on both
gross primary productivity (GPP) and ecosystem respiration
(ER) (Tagesson et al., 2016b), although further studies are
needed to fully understand this mechanism. At the Dahra
site, cattle density was the highest during 2010, potentially
explaining the higher discrepancy with the model that year
(Fig. 5) (Tagesson et al., 2016b). Simulated reference values
of surface runoff are relatively high when compared against
earlier published ranges for the Sahel (Fekete et al., 2002).
This has been observed in earlier land surface model inter-
comparison studies as well, stressing the need for a good rep-
resentation of soil hydrology in vegetation models (Grippa et
al., 2017).

4.3 Response of woody versus herbaceous cover

At all sites, the model simulates co-existence of woody and
herbaceous PFTs, which will compete for resources and
therefore generate complex vegetation dynamics. The herba-
ceous layer generally responded more strongly and swiftly
to perturbations in precipitation than the woody vegetation
for almost all sites and scenarios, especially to increases in
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Figure 11. Impact of the different disturbance scenarios on surface water balance. Reference values and impact on (a, b) surface evaporation,
(c, d) surface runoff and (e, f) infiltration of water into the soil. Shaded areas indicate variability of the model runs over all ensemble members
(±1σ ). Results shown for the Dahra site simulations.

Figure 12. Impact of the different disturbance scenarios on surface water balance for all sites, showing the maximum impact on the surface
evaporation, runoff and percolation as a percentage of added/reduced rainfall amount (%1Rain), along with its legacy (years).

rainy-season length (Figs. 7–8). This contrasting behaviour
reflects differences in plant representation in the model. In-
creased precipitation will lead to increased carbon uptake,
which for grasses can be allocated to roots and leaves only.
The tree PFTs will need to allocate a significant amount of
carbon to woody components as well, which in turn will pro-
vide a safety net during the scenarios of decreased rainfall.

The difference in the timing of the impact between grasses
and trees is also partly due to the differences in root distri-
bution. Grasses will be mostly affected by the water con-
tent in the upper soil layer, as it contains 90 % of their root
biomass in the model. Therefore, they will directly respond
to changes in precipitation (Brandt et al., 2018; Gherardi and
Sala, 2015). In contrast, trees have 40 % of their root biomass
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in the lower soil layer of the model, where the water content
integrates changes in precipitation over a longer timeframe.
Together with physiological differences (e.g. allocation to
woody parts), this explains the longer reaction time of the
trees in the model. Further differences in response between
evergreen and deciduous trees are due to their difference in
SLA and phenology. Positive disturbances of increased rain-
fall initially benefit both woody PFTs, but the positive im-
pacts last longer on evergreen trees, while the positive im-
pacts on deciduous trees are followed by a negative over-
shoot, especially for the scenario of increased season length.
Similarly, evergreen trees recover more slowly from nega-
tive disturbances than deciduous trees, which display a posi-
tive overshoot following the initial negative impact. These re-
sults show that single-year disturbances can shift the weights
in the competition for resources among the different PFTs
for several years. Kulmatiski and Beard (2013) have shown
experimentally that an increase in rainfall intensity (without
changing the total rainfall) will increase aboveground woody
plant growth and decrease grass growth. This behaviour is
not observed in our model study. However, as Kulmatiski
and Beard (2013) argued, this increase reflects the ability of
woody plants to increase their rooting depth, a process that
is not included in our model, which only simulates two soil
layers for which total root biomass can vary but in which the
PFT root distribution between the two layers remains fixed.
Earlier research showed that the water use of Acacia tortilis
trees in the Sahel is not much impacted by the dry season,
as these trees have a deep taproot which reaches the water
table (Do et al., 2008). Only after several dry years, when
the water level in deeper soil layers plummets, this may have
a major impact on tree water stress. A new model version
of LPJ-GUESS is being developed which will contain 15
soil layers and therefore may address these issues more ad-
equately in the future. The model does not contain complex
dynamics such as hydraulic distribution, but Barron-Gafford
et al. (2017) showed that the existence of taproots does not
have a strong impact on tree–grass facilitation through hy-
draulic redistribution.

On the ecosystem scale there is an increase in carbon up-
take in response to a year of increased precipitation, but
most of this gain is quickly lost again during the following
years (Figs. 9 and S4). The largest part of the photosynthe-
sized carbon will be allocated to leaf and root biomass of
the C4 grasses, which will end up in the litter and soil car-
bon pools after the rainy season, where in turn most of it will
respire again to the atmosphere during the following decades
(Fig. S4). In response to a year of decreased precipitation,
the ecosystem net productivity is reduced due to increased
water stress on the plants, leading to a lower leaf production.
During the years after this initial impact, the amount of leaf
litter will therefore be lower than in the reference run. This
causes a relative reduction in heterotrophic respiration and
therefore a positive overshoot in the NEP impact. Neverthe-
less, it can take up to several decades before this increased

NEP can balance out the initial carbon loss again (Figs. 9d
and 10). For all scenarios and all sites, the ecosystem proved
to be resilient to single-year disturbances in precipitation, as
no permanent change in ecosystem state was induced. How-
ever, the high magnitude and extensive legacy of the impacts
of a single-year disturbance on ecosystem carbon uptake may
potentially drive the high contribution of drylands to inter-
annual variability in the global land carbon sink (Ahlstrom et
al., 2015; Poulter et al., 2014).

The contrast between the scenarios of increased rainfall
was also simulated by Guan et al. (2018) for scenarios with
long-term changes in precipitation, although this is only
found for regions of higher mean annual precipitation (700–
1600 mm yr−1). Wu et al. (2018) reported a negative asym-
metry in the response to exceptionally wet and dry years
for temperate grasslands, where increases in aboveground
net primary productivity (ANPP) were found to be smaller
in magnitude during extremely wet years compared to de-
creases in ANPP during extreme dry years. The outcomes
of our model experiments add a degree of nuance to these
results, as we showed that the distribution of rainfall over
the rainy season further modulates these asymmetrical re-
sponses: for the scenarios where rain event intensity or fre-
quency was modified, the asymmetry was negative, while
it was positive for scenarios in which season length was
modified; i.e. increases in NPP due to a longer season had
a larger magnitude than decreases due to a shorter season
(Fig. S4). Wu et al. (2018) constructed their altered rainfall
scenarios by increasing or decreasing the amount of rainfall
in each event by a given factor, essentially producing scenar-
ios of modified rainfall intensity (Sect. S1). Dannenberg et
al. (2019) found that trees in drylands also displayed a neg-
ative asymmetry to precipitation variability, which was also
further nuanced by our experiments. The contrast between
the scenarios is explained by the amount of water that in-
filtrates the soil (Figs. 12 and S11–S13), as the same asym-
metry in the distribution of water between scenarios with in-
creased and decreased rainfall was found in the vegetation
response. These results agree with earlier research showing
that soil texture and structure may play a mediating role in
the vegetation response to rainfall variability, although in our
study only the sandy soil type was used (Case and Staver,
2018). These results may also clarify why models better cap-
ture the response of vegetation to rainfall exclusion than ad-
dition in the study of Paschalis et al. (2020), as the impact
of scenarios of decreased rainfall is much less dependent
on the rainy-season characteristics than the impact of in-
creased rainfall scenarios. Further vegetation model experi-
ments could test the sensitivity of our results to different soil
types, as we expect an even stronger contrast between the
characteristics for finer structured soil. In general, local vari-
ations in hydraulic conductivity are known to have a major
impact on the local-scale water balance in the Sahel, where
soil surface crusting plays an important role (Leauthaud et
al., 2017; Velluet et al., 2014).
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It is expected that variations between the different sites are
largely due to differences in historical meteorological condi-
tions, as all other model parameters remained the same across
sites. Variations between the sites were most clearly distin-
guished in the scenarios of reduced rainfall, where especially
the impact legacy varied across the sites. No clear relation-
ship was found between site conditions (Table 1) and ecosys-
tem response to any of the disturbances. However, sites with
a lower MAP, such as Demokeya and Agoufou, experienced
a lower NEP impact and a shorter legacy from scenarios of
reduced rainfall, compared to the wetter sites. The impact is
likely lower because these drier sites will conceive a lower
reference vegetation cover, leading to a lower impact on het-
erotrophic respiration after an exceptionally dry year. Sim-
ilarly, wetter sites had a higher fraction of rainfall that per-
colated into the soil than drier sites, while surface evapora-
tion increased more at drier sites than wetter sites. This may
be due to shading, which is higher in wetter sites because
of a higher vegetation cover. Nevertheless, in order to de-
rive a clear relationship between site conditions (e.g. MAP)
and disturbance impacts, a follow-up study could focus on
sites along a stronger gradient in site conditions (e.g. a north–
south precipitation gradient).

Finally, our results seem to contrast earlier research which
has shown that phenology of cropland and grassland in sub-
Saharan Africa is mainly driven by photoperiodicity, while in
our model a longer rainy season will cause a longer growing
season (Adole et al., 2019). Photoperiodicity is only imple-
mented for crop PFTs in LPJ-GUESS, while for the natural
vegetation PFTs that were used in this study, simulated phe-
nology is driven by water availability and therefore follows
the rainy season. However, at the local scale the importance
of photoperiodicity is diminished in the Sahel. While individ-
uals of several species are photoperiodic, phenological plas-
ticity is strong, and a longer rainy season does seem to bring a
longer growing season due to cohort and species succession.

4.4 Strengths and limitations

The approach developed in this study presents a unique way
to investigate the impact of different rainy-season character-
istics on the vegetation in the Sahel. Our algorithm allows us
to create artificial rainfall scenarios which strongly resem-
ble the original rainfall data, while also retaining the inter-
nal consistency with other meteorological variables. Some
ensemble members in our scenarios may suffer from a loss
of autocorrelation in temperature or incoming radiation, as
the algorithm for constructing the artificial scenarios occa-
sionally had to consult neighbouring pixels or longer time
periods. However, as these dryland ecosystems are mostly
sensitive to rainfall and as it was rainfall which was varied
the strongest (±2σ ) in our simulations, we expect the influ-
ence of loss of autocorrelation to be limited. By introducing
one single year of anomalous rainfall in the time series, the
impact on the ecosystem can be quantified in both magni-

tude and timing. The use of large ensembles of such distur-
bance scenarios has enabled us to gain a detailed insight into
the processes that drive this vegetation response in drylands.
These techniques may be applicable in other regions and may
be used to answer similar questions related to climate sensi-
tivity of ecosystems. While earlier research often focuses on
the impact of intra-annual rainfall distribution and variability
on tree cover, this work also takes into account the impact
on grasses in drylands. Changes in ecosystem composition,
such as woody encroachment, would manifest themselves
over decadal timescales. Such changes are rather driven by
changes in rainfall regimes than singular anomalous years,
and therefore we do not expect such shifts to happen here.
Applying extreme precipitation repeatedly over a variable
number of consecutive years will potentially lead to a tip-
ping point, after which the ecosystem does not recover to its
original state. However, this is beyond the scope of this re-
search, and the question remains as to how realistic or useful
such a threshold would be. Experimental verification of the
results predicted by this model should be feasible, but the re-
sults of earlier in situ experimental studies (e.g. Kulmatiski
and Beard, 2013) are difficult to link with this study. Finally,
this study does not take into account possible asymmetries in
the distribution of rainfall over the rainy season, as rainfall
increases in the core wet season are found to impact herba-
ceous foliar mass, while increases in the early or late parts
of the rainy season impact mainly woody foliage production
(Brandt et al., 2019).

As this is a modelling study, its outcome is as reliable as
the model assumptions and parameterization, in addition to
the quality of the meteorological drivers. Allocation to car-
bon pools happens at the end of each simulated year, which
may influence our results, although we mainly look at inter-
annual impacts. A model version which includes daily car-
bon allocation for grasses has been developed for studying
grass dynamics and grazing potential in more detail, which
could be further developed to include daily allocation for
tree PFTs as well (Boke-Olén et al., 2018). The represen-
tation of drought stress and hydraulic dynamics through the
soil–plant–atmosphere continuum is expected to play an im-
portant role in determining the impact of drought response
of ecosystems, especially in drylands (Medlyn et al., 2016).
However, like many vegetation models, LPJ-GUESS has a
relatively simple representation of these processes, based on
empirical relationships (Gerten et al., 2004; Smith et al.,
2014). Recently, efforts have been made to improve these
processes in the Ecosystem Demography (ED) model, by in-
cluding a representation of the hydraulic pathway through
the plant, connecting phenology with hydraulic status, and by
parameterizing the hydraulic model based on plant hydraulic
traits (Xu et al., 2016). Adapting these or similar ideas for
LPJ-GUESS will most likely improve both the validation and
the reliability of the results presented in this study. The qual-
ity of soil hydrology representation in the model may have
an influence on the results of this study as well, given the
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importance of runoff and percolation for the vegetation im-
pact. Furthermore, implementing a photoperiodicity-driven
phenology may be necessary to upscale this research to the
regional level (Adole et al., 2019). Finally, although fires play
a major role in regulating woody cover in African savannas,
its impact was limited for the dryland sites in this study, and
the model uncertainty was high where fires occurred. Most
likely fire will play a larger role at lower latitudes, where the
MAP levels are sufficient to generate the necessary fuel load
for fires to occur. Studying the impact of rainfall disturbances
on fire occurrence in those regions will lead to a better un-
derstanding of the complex disturbance-driven dynamics of
mesic savannas (Sankaran et al., 2008), especially when LPJ-
GUESS is coupled with more sophisticated fire models such
as SPITFIRE (SPread and InTensity of FIRE), which signif-
icantly improve the fire model performance in those regions
(Thonicke et al., 2010).

Data availability. The LPJ-GUESS dynamic vegetation model is
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