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DEFORMATION CONES OF GRAPH ASSOCIAHEDRA AND NESTOHEDRA

ARNAU PADROL, VINCENT PILAUD, AND GERMAIN POULLOT

Abstract. We give the facet description of the deformation cones of graph associahedra and

nestohedra, generalizing the classical parametrization of the family of deformed permutahedra
by the cone of submodular functions. When the underlying building set is made of intervals,

this yields in particular to the construction of kinematic nestohedra generalizing the kinematic

associahedra that recently appeared in the theory of scattering amplitudes.
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Introduction

A deformation of a polytope P is a polytope obtained from P by gliding its facets orthog-
onally to their normal vectors without passing a vertex. Equivalently, it is a polytope whose
normal fan coarsens the normal fan of P , or said differently, a Minkowski summand of a di-
late of P [She63, Mey74]. The deformations of P form a polyhedral cone under dilation and
Minkowski addition, called the deformation cone of P [Pos09]. The interior of the deformation
cone of P , called the type cone [McM73], contains those polytopes with the same normal fan as P .
When P is a rational polytope, it has an associated toric variety [CLS11], and the type cone (here
known as the numerically effective cone, or shortly nef cone) encodes its embeddings into projective
space [CLS11, Sect. 6.3]. Fundamental examples of deformations of polytopes are the deformed per-
mutahedra (a.k.a. generalized permutahedra or polymatroids) studied in [Edm70, Pos09, PRW08],
which are classically parametrized by submodular functions. Among the most famous deformed
permutahedra are the classical associahedra as constructed in [SS93, Lod04] (or even in [HL07]).
Associahedra appear in several mathematical contexts, from their original definition in topol-
ogy [Sta63] to some recent appearances in the theory of scattering amplitudes in mathematical
physics [AHBHY18].

This paper focusses on some specific deformed permutahedra generalizing the associahedra,
namely the graph associahedra and nestohedra. Graph associahedra were defined by M. Carr
and S. Devadoss [CD06] in connection to C. De Concini and C. Procesi’s wonderful arrange-
ments [DCP95]. For a given graph G, the G-associahedron Asso(G) is a simple polytope whose
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Figure 1. Some classical families of polytopes as graph associahedra. Illustration from [MP17].

combinatorial structure encodes the connected induced subgraphs of G and their nested structure.
More precisely, the G-associahedron is a polytopal realization of the nested complex of G, defined
as the simplicial complex of all collections of tubes (connected induced subgraphs) of G which are
pairwise compatible (either nested, or disjoint and non-adjacent). As illustrated in Figure 1, the
graph associahedra of certain special families of graphs coincide with well-known families of poly-
topes: complete graph associahedra are permutahedra, path associahedra are classical associahe-
dra, cycle associahedra are cyclohedra, and star associahedra are stellohedra. Graph associahedra
were extended to nestohedra, which are simple polytopes realizing the nested complex of arbitrary
building sets [Pos09, FS05]. Graph associahedra and nestohedra have been constructed in differ-
ent ways: by successive truncations of faces of the standard simplex [CD06], as Minkowski sums
of faces of the standard simplex [Pos09, FS05], or from their normal fans by exhibiting explicit
inequality descriptions [Dev09, Zel06]. For a given building set, the resulting polytopes all have
the same normal fan, called a nested fan, whose rays are given by the characteristic vectors of the
building blocks, and whose cones are given by the nested sets.

In this paper, we describe all realizations of the nested fans by studying the deformation cone
of the G-associahedron for any graph G (Section 2) and of the nestohedron of any building set
(Section 3). Our main contribution is a non-redundant facet description of these deformation cones,
characterizing which of the wall-crossing inequalities are irreplaceable (Theorems 2.9 and 3.23).
This requires a characterization of the pairs of exchangeable rays of the nested fan (Propositions 2.4
and 3.10), which was surprisingly missing for arbitrary building sets (Remark 3.17).

Our characterization enables to count the facets of the deformation cone and thus to deter-
mine when the deformation cone is simplicial. It turns out that the deformation cone of the
G-associahedron is simplicial if and only if G is a disjoint union of paths (i.e. the G-associahedron
is a Cartesian product of classical associahedra). In contrast, there is much more freedom for
nestohedra of arbitrary building sets, and we show that the deformation cone of the nestohedron
is always simplicial for an interval building set, that is a building set whose blocks are some in-
tervals of [n] (Proposition 3.28). As advocated in [PPPP19], the simpliciality of the deformation
cone leads to an elegant description of all deformations of the polytope in the so-called kinematic
space [AHBHY18]. Generalizing the kinematic associahedra of [AHBHY18], we thus define the
kinematic nestohedra of arbitrary interval building sets (Proposition 3.32).
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1. Geometric preliminaries

We first briefly recall basic notions of polytopes and fans, and the definition of the type cone
of [McM73], following the presentation of [PPPP19].

1.1. Fans and polytopes. A (polyhedral) cone is the positive span of finitely many vectors or
equivalently, the intersection of finitely many closed linear half-spaces. The faces of a cone are its
intersections with its supporting hyperplanes. The rays (resp. facets) are the faces of dimension 1
(resp. codimension 1). A cone is simplicial if its rays are linearly independent. A (polyhedral)
fan F is a set of cones such that any face of a cone of F belongs to F , and any two cones of F
intersect along a face of both. A fan is essential if the intersection of its cones is the origin,
complete if the union of its cones covers Rn, and simplicial if all its cones are simplicial. In a
simplicial fan, we say that two maximal cones are adjacent if they share a facet, and that two rays
are exchangeable if they belong to two adjacent cones but not to their common facet. We will say
that the fan realizes the simplicial complex consisting of the subsets of rays spanning cones.

A polytope is the convex hull of finitely many points or equivalently, a bounded intersection
of finitely many closed affine half-spaces. The faces of a polytope are its intersections with its
supporting hyperplanes. The vertices (resp. edges, resp. facets) are the faces of dimension 0
(resp. dimension 1, resp. codimension 1).

The normal cone of a face F of a polytope P is the cone generated by the normal vectors of
the facets of P containing F . Said differently, it is the cone of vectors c such that the linear
form x 7→ 〈 c | x 〉 on P is maximized by all points of the face F . The normal fan of P is the set
of normal cones of all its faces.

1.2. Type cone. Fix an essential complete simplicial fan F in Rn. Let G be the N × n-matrix
whose rows are (representative vectors of) the rays of F . For any height vector h ∈ RN , we define
the polytope Ph := {x ∈ Rn | Gx ≤ h} . The following classical statement characterizes the height
vectors h for which the fan F is the normal fan of this polytope Ph.

Proposition 1.1 ([GKZ08, CFZ02]). Let F be an essential complete simplicial fan in Rn. Then the
following are equivalent for any height vector h ∈ RN :

(1) The fan F is the normal fan of the polytope Ph := {x ∈ Rn | Gx ≤ h}.
(2) For any two adjacent maximal cones R≥0R and R≥0R′ of F with R r {r} = R′ r {r′},

we have
∑

s∈R∪R′ αR,R′(s)hs > 0, where
∑

s∈R∪R′ αR,R′(s) s = 0 is the unique linear

dependence among the rays of R ∪R′ such that αR,R′(r) + αR,R′(r
′) = 2.

Following [McM73], we define the type cone of F as the cone TC(F) of polytopal realizations
of F . Based on Proposition 1.1 it can be parametrized as

TC(F) :=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}
=
{
h ∈ RN

∣∣∣ ∑
s∈R∪R′

αR,R′(s)hs > 0
for any adjacent maximal
cones R≥0R and R≥0R′ of F

}
.

Note that TC(F) is an open polyhedral cone (dilations preserve normal fans) and contains a
lineality subspace of dimension n (translations preserve normal fans). Its closure TC(F) consists
of all polytopes whose normal fan coarsens F , and is called the deformation cone. Its faces are
the deformation cones of the coarsenings of F . Having into account the lineality, we will say that
the type cone is simplicial when it has precisely N − n facets.

When the type cone is simplicial, it naturally defines alternative polytopal realizations of the
fan F in the non-negative orthant parametrized by non-negative vectors, akin to the realizations
of the kinematic associahedra introduced in [AHBHY18]. See [PPPP19, Sec. 1.4] for details.

Proposition 1.2 ([PPPP19]). Assume that the type cone TC(F) is simplicial and let K be the
(N − n) × N -matrix whose rows are the inner normal vectors of the facets of TC(F). Then, for

any positive vector p ∈ RN−n>0 , the polytope Rp :=
{
z ∈ RN

∣∣Kz = p and z ≥ 0
}

is a realization

of the fan F . Moreover, the polytopes Rp for p ∈ RN−n>0 describe all polytopal realizations of F
(up to translation).
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2. Type cones of graphical nested fans

In this section, we study graphical nested fans, postponing the study of arbitrary nested fans to
Section 3. While the graphical case is significantly simpler than the general case, some proof ideas
presented here will be transported to Section 3. This section is thus useful both to the readers
only interested in the graphical case and as a prototype for the general case.

2.1. Graphical nested complex and graphical nested fan. We start with the definitions and prop-
erties of the nested complex of a graph, using material from [CD06, Pos09, FS05, Zel06, MP17].

Graphical nested complex. Let G be a graph with vertex set V . A tube of G is a non-empty subset
of vertices of G whose induced subgraph is connected. The set of tubes of G is denoted by BG. The
(inclusion) maximal tubes of G are its connected components κ(G). Two tubes t, t′ of G are com-
patible if they are either nested (i.e. t ⊆ t′ or t′ ⊆ t), or disjoint and non-adjacent (i.e. t ∪ t′ /∈ BG).
Note that any connected component of G is compatible with any other tube of G. A tubing on G
is a set T of pairwise compatible tubes of G containing all connected components κ(G). Examples
are illustrated in Figure 2. The nested complex of G is the simplicial complex N (G) whose faces
are Tr κ(G) for all tubings T on G. If Tr {t} = T′r {t′} for two maximal tubings T and T′ and
two tubes t and t′, we say that T and T′ are adjacent and that t and t′ are exchangeable.

Figure 2. Some incompatible tubes (left and middle), and a maximal tubing (right).

Graphical nested fan and graph associahedron. Let (ev)v∈V be the canonical basis of RV . We
consider the subspace H :=

{
x ∈ RV

∣∣ ∑
v∈K xv = 0 for all K ∈ κ(G)

}
and let π : RV → H denote

the orthogonal projection onto H. The g-vector of a tube t ofG is the projection g(t) :=π
(∑

v∈t ev
)

of the characteristic vector of t. We set g(T) := {g(t) | t ∈ T} for a tubing T on G. Note that by
definition, g(∅) = 0 and g(K) = 0 for all connected components K ∈ κ(G). The vectors g(t)
with t ∈ BG support a complete simplicial fan realization of the nested complex. See Figure 3.

Theorem 2.1 ([CD06, Pos09, FS05, Zel06]). For any graph G, the set of cones

F(G) := {R≥0 g(T) | T tubing on G}
is a complete simplicial fan of H, called the nested fan of G, realizing the nested complex N (G).

Figure 3. Two graphical nested fans. As the fans are 3-dimensional, we intersect them with the
sphere and stereographically project them from the direction (−1,−1,−1).
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The following statement is proved in [CD06, Dev09, Pos09, FS05, Zel06]. For a subset U ⊆ V ,
denote by 4U := conv {eu | u ∈ U} the face of the standard simplex 4V corresponding to U .

Theorem 2.2 ([CD06, Dev09, Pos09, FS05, Zel06]). For any graph G, the nested fan F(G) is the
normal fan of the graph associahedron Asso(G). It can be constructed as

(i) the intersection of H with the hyperplanes 〈 g(t) | x 〉 ≤ −3|t| for all tubes t ∈ BG [Dev09],
(ii) the Minkowski sum

∑
t∈BG4t of the faces of the standard simplex given by all tubes of G [Pos09].

Example 2.3. For instance,

(i) the complete graph associahedron is the classical permutahedron, see e.g. [Zie98, Hoh12],
(ii) the path associahedron is the classical associahedron of [SS93, Lod04].

2.2. Exchangeable tubes and g-vector dependences. The next statement follows from [MP17, Zel06].

Proposition 2.4. Let t, t′ be two tubes of G. Then

(i) The tubes t and t′ are exchangeable in F(G) if and only if t′ has a unique neighbor v in tr t′

and t has a unique neighbor v′ in t′ r t.
(ii) For any adjacent maximal tubings T,T′ on G with Tr{t} = T′r{t′}, both T and T′ contain

the tube t ∪ t′ and the connected components of t ∩ t′.
(iii) The linear dependence between the g-vectors of T ∪ T′ is given by

g(t) + g(t′) = g(t ∪ t′) +
∑

s∈κ(t∩t′)

g(s).

In particular, it only depends on the exchanged tubes t and t′, not on the tubings T and T′.

Proof. Points (i) and (ii) were proved in [MP17]. Point (iii) follows from the fact that∑
v∈t

ev +
∑
v∈t′

ev =
∑
v∈t∪t′

ev +
∑
v∈t∩t′

ev =
∑
v∈t∪t′

ev +
∑

s∈κ(t∩t′)

∑
v∈s

ev. �

For instance, the two tubes on the left of Figure 2 are exchangeable, while the two tubes on the
middle of Figure 2 are not.

2.3. Type cone of graphical nested fans. As a direct consequence of Proposition 2.4, we obtain
the following (possibly redundant) description of the type cone of the graphical nested fan F(G).

Corollary 2.5. For any graph G, the type cone of the nested fan F(G) is given by

TC(F(G)) =

{
h ∈ RBG

∣∣∣∣ hK = 0 for any connected component K ∈ κ(G) and
ht + ht′ > ht∪t′ +

∑
s∈κ(t∩t′) hs for any exchangeable tubes t, t′

}
.

We denote by f t for t ∈ BG the canonical basis of RBG and by

n(t, t′) :=f t + f t′ − f t∪t′ −
∑

s∈κ(t∩t′)

f s

the inner normal vector of the inequality of the type cone TC(F(G)) corresponding to an ex-
changeable pair {t, t′} of tubes of G. Thus h ∈ TC(F(G)) if and only if 〈n(t, t′) | h 〉 > 0 for all
exchangeable tubes t, t′ ∈ BG.

Example 2.6. For instance,

(i) for the complete graph Kn, the type cone TC(F(Kn)) is formed by all strict submodular
functions, i.e. functions h : 2[n] → R such that h∅ = 0 = h[n] and hA + hB > hA∩B + hA∪B
for any A,B ⊆ [n]. The inequalities hUr{v} + hUr{v′} > hU + hUr{v,v′} for v, v′ ∈ V
and {v, v′} ⊆ U ⊆ V clearly imply all submodular inequalities. The closure of the type
cone TC(F(Kn)) is the set of deformed permutahedra (or generalized permutahedra) studied
by A. Postnikov in [Pos09] and E.-M. Feichtner and B. Sturmfels in [FS05].

(ii) for the path Pn, the type cone TC(F(Pn)) is formed by the functions h : {[i, j] | 1 ≤ i ≤ j ≤ n} 7→ R
such that h[1,n] = 0 = h{i} for all i ∈ [n] and h[i,j]+h[k,`] > h[i,`]+h[k,j] for all 1 ≤ i ≤ j ≤ n
and 1 ≤ k ≤ ` ≤ n such that i < k, j < ` and k ≤ j + 1 (where h[k,j] = 0 if k = j + 1).
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Example 2.7. Consider the graphical nested fans illustrated in Figure 3. The type cone of the
left fan lives in R13, has a linearity space of dimension 3 and 19 facet-defining inequalities (given
below). In particular, it is not simplicial. Note that as in Figure 3, we express the g-vectors in
the basis given by the maximal tubing containing the first three tubes below.

tubes

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
0
1
−1

] [
1
−1
1

] [
1
−1
0

] [
1
0
−1

] [
−1
1
0

] [
−1
0
1

] [
−1
0
0

] [
0
−1
1

] [
0
−1
0

] [
0
0
−1

]
facet 0 0 0 0 0 0 0 0 0 0 1 −1 1

defining 0 0 0 0 0 1 0 0 0 1 0 −1 0
inequalities −1 1 0 −1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 −1 1 0 0 0 0 1 −1
−1 1 −1 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 −1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 −1 1 0 0 0 0
0 0 −1 0 1 0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 0 0 0 0 −1 1 0
0 0 1 0 0 0 0 0 −1 1 0 0 0
0 0 1 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 1 0 0
1 0 0 0 0 0 −1 0 0 0 0 0 1
1 0 0 0 −1 0 0 0 0 0 1 0 0
1 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 1 0 0 −1
0 0 0 1 0 1 −1 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0 0 0 0 0

The type cone of the right fan lives in R11, has a linearity space of dimension 3 and 12 facet-defining
inequalities (given below). In particular, it is not simplicial. Note that as in Figure 3, we express
the g-vectors in the basis given by the maximal tubing containing the first three tubes below.

tubes

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
1

] [
−1
0
0

] [
0
−1
1

] [
0
−1
0

] [
0
0
−1

]
facet −1 1 −1 1 0 0 0 0 0 0 0

defining 1 −1 0 0 0 1 0 0 0 0 0
inequalities 0 1 −1 0 0 −1 1 0 0 0 0

1 0 0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 1 0 −1 0 0
0 0 0 1 −1 0 0 0 −1 1 0
0 0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 1 0 0 1 0 −1 0
0 0 1 0 0 0 −1 1 0 0 0
0 0 1 −1 1 0 0 0 0 0 0
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Example 2.8. We can exploit Corollary 2.5 to show that certain height functions belong to the
type cone of F(G) and recover some classical constructions of the graph associahedron.

(i) Consider the height function h ∈ RBG given by ht := − 3|t|. Then for any exchangeable
tubes t and t′, we have

〈n(t, t′) | h 〉 = −3|t| − 3|t
′| + 3|t∪t

′| +
∑

s∈κ(t∩t′)

3|s| ≥ −2 · 3|t∪t
′|−1 + 3|t∪t

′| > 0.

Therefore, the height function h belongs to the type cone TC(F(G)). The corresponding
polytope Ph :=

{
x ∈ RV

∣∣ 〈 g(t) | x 〉 ≤ ht for t ∈ BG
}

is the graph associahedron con-
structed by S. Devadoss’s in [Dev09].

(ii) Consider the height function h ∈ RBG given by ht := − |
{
s ∈ BG

∣∣ s ⊆ t
}
|. Then for any

exchangeable tubes t and t′, we have

〈n(t, t′) | h 〉 = |
{
s ∈ BG

∣∣ s 6⊆ t and s 6⊆ t′ but s ⊆ t ∪ t′
}
| > 0

since t ∪ t′ fulfills the conditions on s. Therefore, the height function h belongs to the type
cone TC(F(G)). The corresponding polytope Ph :=

{
x ∈ RV

∣∣ 〈 g(t) | x 〉 ≤ ht for t ∈ BG
}

is the graph associahedron constructed by A. Postnikov’s in [Pos09].

Note that many inequalities of Corollary 2.5 are redundant. In the remaining of this section,
we describe the facet-defining inequalities of the type cone of the graphical nested fans. We say
that an exchangeable pair {t, t′} of tubes of G is

• extremal if its corresponding inequality in Corollary 2.5 defines a facet of TC(F(G)),
• maximal if tr {v} = t′ r {v′} for some neighbor v of t′ and some neighbor v′ of t.

We can now state our main result on graphical nested complexes.

Theorem 2.9. An exchangeable pair is extremal if and only if it is maximal.

Proof. We treat separately the two implications:

Extremal ⇒ maximal. Consider an exchangeable pair {t, t′} of tubes of G. By Proposition 2.4,
t′ has a unique neighbor v in t r t′ and t has a unique neighbor v′ in t′ r t. Therefore, t r t′

and t′ r t are both connected. Assume that {t, t′} is not maximal, for instance that tr t′ 6= {v},
and let w 6= v be a non-disconnecting node of t r t′. By Proposition 2.4, t̃ := t r {w} and t′ are
exchangeable, and t̃′ := (t ∪ t′) r {w} and t are exchangeable as well. Moreover, we have

n(̃t, t′) + n(t, t̃′) =
(
f t̃ + f t′ − f t̃∪t′ −

∑
s∈κ(̃t∩t′)

f s

)
+
(
f t + f t̃′ − f t∪t̃′ −

∑
s∈κ(t∩t̃′)

f s

)
= f t + f t′ − f t∪t′ −

∑
s∈κ(t∩t′)

f s = n(t, t′),

as t̃ ∪ t′ = t̃′, t̃ ∩ t′ = t ∩ t′, t ∪ t̃′ = t ∪ t′ and κ(t ∩ t̃′) = κ(̃t) = t̃. Therefore n(t, t′) defines
a redundant inequality and {t, t′} is not an extremal exchangeable pair. The proof is symmetric
if t′ r t 6= {v′}.
Maximal ⇒ extremal. Let {t, t′} be a maximal exchangeable pair. To prove that {t, t′} is extremal,
we will construct a vector w ∈ RBG such that 〈n(t, t′) | w 〉 < 0, but 〈n(̃t, t̃′) | w 〉 > 0 for any
other maximal exchangeable pair {t̃, t̃′}. This will show that the inequality induced by {t, t′} is
not redundant.

Define α(t, t′) := {s ∈ BG | s 6⊆ t and s 6⊆ t′ but s ⊆ t ∪ t′}. Note that α(t, t′) is non-empty since
it contains t ∪ t′. Define three vectors x,y, z ∈ RBG by

xs := − |
{
r ∈ BGr α(t, t′)

∣∣ r ⊆ s
}
|,

ys := − |
{
r ∈ α(t, t′)

∣∣ r ⊆ s
}
|,

zs :=

{
−1 if t ⊆ s or t′ ⊆ s,

0 otherwise,

for each tube s ∈ BG.
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We will prove below that their scalar products with n(̃t, t̃′) for any maximal exchangeable pair
{t̃, t̃′} satisfy the following inequalities

〈n(̃t, t̃′) | x 〉 〈n(̃t, t̃′) | y 〉 〈n(̃t, t̃′) | z 〉
if {t, t′} = {t̃, t̃′} = 0 = |α(t, t′)| = −1

if α(̃t, t̃′) 6⊆ α(t, t′) ≥ 1 ≥ 0 ≥ −1

otherwise = 0 ≥ 1 ≥ 0

It immediately follows from this table that the vector w :=x+δy+εz fulfills the desired properties
for any δ, ε such that 0 < δ · |α(t, t′)| < ε < 1.

To prove the inequalities of the table, observe that for any maximal exchangeable pair {t̃, t̃′},
• 〈n(̃t, t̃′) | x 〉 = |α(̃t, t̃′) r α(t, t′)|,
• 〈n(̃t, t̃′) | y 〉 = |α(̃t, t̃′) ∩ α(t, t′)|,
• 〈n(̃t, t̃′) | z 〉 ≥ −1 since z t̃ = −1 or z t̃′ = −1 implies z t̃∪t̃′ = −1,
• 〈n(̃t, t̃′) | z 〉 ≥ 0 when {t, t′} 6= {t̃, t̃′} but α(̃t, t̃′) ⊆ α(t, t′). Indeed α(̃t, t̃′) ⊆ α(t, t′) im-

plies t̃∪t̃′ ⊆ t∪t′. If t ⊆ t̃, then t ⊆ t̃ ( t̃∪t̃′ ⊆ t∪t′, which implies that t = t̃ by maximality
of t in t ∪ t′. Similarly, t′ ⊆ t̃ implies t′ = t̃. Hence, if z t̃ = −1, then by definition t ⊆ t̃
or t′ ⊆ t̃, which implies that t̃ ∈ {t, t′}. Similarly z t̃′ = −1 implies t̃′ ∈ {t, t′}. Hence,
z t̃ = −1 = z t̃′ implies t̃ = t̃′ (impossible since t̃ and t̃′ are exchangeable) or {t, t′} = {t̃, t̃′}
(contradicting our assumption). Therefore, at most one of z t̃ and z t̃′ equals to −1, and if
exactly one does, then z t̃∪t̃′ = −1. We conclude that 〈n(̃t, t̃′) | z 〉 ≥ 0. �

The following statement reformulates Theorem 2.9.

Corollary 2.10. The extremal exchangeable pairs for the nested fan of G are precisely the pairs of
tubes sr {v′} and sr {v} for any tube s ∈ BG and distinct non-disconnecting vertices v, v′ of s.

We derive from Theorem 2.9 and Corollary 2.10 the irredundant facet description of the type
cone TC(F(G)).

Corollary 2.11. For any graph G, the type cone of the nested fan F(G) is given by the following
irredundant facet description

TC(F(G)) =

h ∈ RBG
∣∣∣∣∣∣

hK = 0 for any connected component K ∈ κ(G), and
hsr{v′} + hsr{v} > hs + hsr{v,v′} for any tube s ∈ BG
and distinct non-disconnecting vertices v, v′ ∈ s

 .

Example 2.12. For instance,

(i) for the complete graphKn, all the inequalities hUr{v}+hUr{v′} > hU+hUr{v,v′} for v, v′ ∈ V
and {v, v′} ⊆ U ⊆ V are facet defining inequalities of TC(F(Kn)).

(ii) for the path Pn, only the inequalities h[i,j−1] +h[i+1,j] > h[i,j] +h[i+1,j−1] for 1 ≤ i < j ≤ n
are facet defining inequalities of TC(F(Pn)) (where h∅ = 0 by convention).

We derive from Corollary 2.10 the number of facets of the type cone TC(F(G)). For a tube t
of G, we denote by nd(t) the number of non-disconnecting vertices of t. In other words, nd(t) is
the number of tubes covered by t in the inclusion poset of all tubes of G.

Corollary 2.13. The type cone TC(F(G)) has
∑

s∈BG

(
nd(s)
2

)
facets.

The formula of Corollary 2.13 can be made more explicit for specific families of graph associa-
hedra discussed in the introduction and illustrated in Figure 1.

Proposition 2.14. The number of facets of the type cone TC(F(G)) is:

• 2n−2
(
n
2

)
for the permutahedron (complete graph associahedron),

•
(
n
2

)
for the associahedron (path associahedron),

• 3
(
n
2

)
− n for the cyclohedron (cycle associahedron),

• n− 1 + 2n−3
(
n−1
2

)
for the stellohedron (star associahedron).
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Proof. For the permutahedron, choose any two vertices v, v′, and complete them into a tube by
selecting any subset of the n − 2 remaining vertices. For the associahedron, choose any two ver-
tices v, v′, and complete them into a tube by taking the path between them. For the cyclohedron,
choose the two vertices v, v′, and complete them into a tube by taking either all the cycle, or one
of the two paths between v and v′ (this gives three options in general, but only two when v, v′

are neighbors). For the stellohedron, choose either v as the center of the star and v′ as one of the
n− 1 leaves, or v and v′ as leaves of the star and complete them into a tube by taking the center
and any subset of the n− 3 remaining leaves. �

To conclude on graphical nested fans, we characterize the graphs G whose nested fan has a
simplicial type cone.

Proposition 2.15. The type cone TC(F(G)) is simplicial if and only if G is a disjoint union of paths.

Proof. Observe first that the graphical nested fan F(G) has N = |BG| − |κ(G)| rays and dimen-
sion n = |V | − |κ(G)|. Moreover, any tube t with |t| ≥ 2 has two non-disconnecting vertices when
it is a path, and at least three non-disconnecting vertices otherwise (the leaves of an arbitrary
spanning tree of t, or any vertex if it is a cycle). Therefore, each tube of BG which is not a
singleton contributes to at least one extremal exchangeable pair. We conclude that the number of
extremal exchangeable pairs is at least

|BG| − |V | = (|BG| − |κ(G)|)− (|V | − |κ(G)|) = N − n,

with equality if and only if all tubes of G are paths, i.e. if and only if G is a collection of paths.
Hence, TC(F(G)) is simplicial if and only if G is a disjoint union of paths. �

As already observed in [PPPP19], combining Propositions 1.2 and 2.15 unables to recover all
kinematic associahedra of [AHBHY18, Sect. 3.2].

Proposition 2.16. For any p ∈ R([n]
2 ), the polytope defined by

Rp(n) :=
{
z ∈ R{[i,j] | 1≤i≤j≤n}

∣∣ z[i,j−1] + z[i+1,j] − z[i,j] + z[i+1,j−1] = p[i,j] for 1 ≤ i < j ≤ n
}

is an associahedron whose normal fan is F(Pn). Moreover, the polytopes Rp(n) for p ∈ RB?

>0

describe all polytopal realizations of F(Pn) (up to translations).

3. Type cones of arbitrary nested fans

In this section, we describe the type cones of arbitrary nested fans. We follow the same scheme
as in Section 2, even if the general situation is significantly more intricate (Remarks 3.11 and 3.16
highlight some of the complications of the general case).

3.1. Nested complex and nested fan. We first recall the definitions of arbitrary building sets,
nested complexes, nested fans and nestohedra, following [Pos09, FS05, Zel06, Pil17].

Building sets. A building set B on a ground set V is a set of non-empty subsets of V such that

• if B,B′ ∈ B and B ∩B′ 6= ∅, then B ∪B′ ∈ B, and
• B contains all singletons {v} for v ∈ V .

We denote by κ(B) the set of connected components of B, defined as the (inclusion) maximal
elements of B. We denote by ε(B) the set of elementary blocks of B, defined as the blocks B ∈ B
such that |B| > 1, and B = B′ ∪B′′ implies B′ ∩B′′ = ∅ for any B′, B′′ ∈ Br {B}. For instance,
consider the building set B◦ on [9] defined by

B◦ := {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 123, 456, 789, 1234, 1235, 1456, 2456, 12345, 12456, 123456}

(since all labels have a single digit, we can abuse notation and write 123 for {1, 2, 3}). Its connected
components are κ(B◦) = {123456, 789}, and its elementary blocks are ε(B◦) = {14, 25, 123, 456, 789},
which are represented in Figure 4 (left).
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1 2 3

654

987

1 2 3

654

987

1 2 3

654

987

1 2 3

654

987

Figure 4. The elementary blocks of a building set B◦ (left), two adjacent maximal B◦-nested sets
(middle), and the corresponding frame (right).

Remark 3.1. If B ∈ B is elementary, then the maximal blocks of B strictly contained in B are
disjoint. Conversely, if there exist two disjoint maximal blocks M,N ∈ B strictly contained
in B ∈ B, then B is elementary. Otherwise, there would be B′, B′′ ∈ Br{B} such that B = B′∪B′′
and B′ ∩B′′ 6= ∅. By maximality, M and N are not strict subsets of B′ and B′′, hence M and N
intersect both B′ and B′′. Since M ∩ B′ 6= ∅, we have M ∪ B′ ∈ B. As M ⊆ M ∪ B′ ⊆ B,
we obtain again by maximality of M that M = M ∪ B′ or M ∪ B′ = B. In the former case, we
have ∅ 6= B′ ∩ N ⊆ M ∩ N contradicting our assumption on M and N . In the latter case, we
have N ⊆ B′ rM contradicting the maximality of N .

Example 3.2. For a graph G with vertex set V , the set BG of all tubes of G is a graphical building
set. The blocks of κ(BG) are the vertex sets of the connected components κ(G) of G, and the
blocks of ε(BG) are the edges of G.

Remark 3.3. Note that not all building sets are graphical building sets. It was in fact proved
in [Zel06, Prop. 7.3] that a building set is graphical if and only if for any B ∈ B and C ⊂ B,
if B ∪

⋃
C ∈ B, then there is C ∈ C such that B ∪ C ∈ B. However, arbitrary building sets

can be interpreted using hypergraphs [Ber89] instead of graphs. More precisely, a hypergraph H
on V defines a building set BH on V given by all non-empty subsets of V which induce connected
subhypergraphs of H (a path in H is a sequence of vertices where any two consecutive ones belong
to a common hyperedge of H). Conversely, a building set B on V is the building set of various
hypergraphs on V , all containing the hypergraph with hyperedge set ε(B). See [DP11] for details.

Nested complex. Given a building set B, a B-nested set N is a subset of B such that

• for any B,B′ ∈ N , either B ⊆ B′ or B′ ⊆ B or B ∩B′ = ∅,
• for any k ≥ 2 pairwise disjoint B1, . . . , Bk ∈ N , the union B1 ∪ · · · ∪Bk is not in B, and
• N contains κ(B).

These are the original conditions that appeared for instance in [Pos09]. In this paper, we prefer
to use the following convenient reformulation, similar to that of [Zel06]: N ⊆ B is a B-nested set
if and only if κ(B) ⊆ N and the union

⋃
X of any subset X ⊆ N does not belong to B r X .

It is known that all inclusion maximal nested sets have |V | blocks. The B-nested complex is the
simplicial complex N (B) whose faces are N r κ(B) for all B-nested sets N . It is a simplicial
sphere of dimension |V | − |κ(B)|. Note that it is convenient to include κ(B) in all B-nested sets as
in [Pos09] for certain combinatorial manipulations, but to remove κ(B) from all B-nested sets as
in [Zel06] when defining the B-nested complex. If N r{B} = N ′r{B′} for two maximal B-nested
sets N and N ′ and two building blocks B and B′, we say that N and N ′ are adjacent and that B
and B′ are exchangeable.

For instance, Figure 4 (middle) represents the two adjacent maximal B◦-nested sets

N◦ := {3, 4, 5, 7, 8, 14, 789, 12345, 123456} and N ′◦ := {3, 4, 5, 7, 8, 25, 789, 12345, 123456}.

Example 3.4. For a graph G, a set of tubes of BG is nested if and only if its tubes are pairwise
compatible in the sense of Section 2.1 (either nested or non-adjacent). The BG-nested complex is
thus the nested complex of G introduced in Section 2.1. Note that, in contrast to the graphical
nested complexes, not all nested complexes are flag (i.e. clique complexes of their graphs).
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For a B-nested set N and B ∈ N , we call root of B in N the set r(B,N ) :=B r
⋃
C C where

the union runs over C ∈ N such that C ( B. The B-nested set N is maximal if and only if
all r(B,N ) are singletons for B ∈ N . In that case, we abuse notation writing r(B,N ) for the
only element of this singleton. For instance, in the maximal B◦-nested sets N◦ and N ′◦ represented
in Figure 4 (middle), we have r(14,N◦) = 1 = r(12345,N ′◦) and r(12345,N◦) = 2 = r(25,N ′◦).

Nested fan and nestohedron. We still denote by (ev)v∈V the canonical basis of RV . We consider the
subspace H :=

{
x ∈ RV

∣∣ ∑
v∈B xv = 0 for all B ∈ κ(B)

}
and let π : RV → H denote the orthogo-

nal projection onto H. The g-vector of a building bloc B of B is the projection g(B) :=π
(∑

v∈B ev
)

of the characteristic vector of B. We set g(N ) := {g(B) | B ∈ N} for a B-nested set N . Note that
by definition, g(K) = 0 for all connected components K ∈ κ(B). The vectors g(B) with B ∈ B
support a complete simplicial fan realization of the nested complex. See Figure 5.

Theorem 3.5 ([Pos09, FS05, Zel06]). For any building set B, the set of cones

F(B) := {R≥0 g(N ) | N nested set of B}

is a complete simplicial fan of H, called the nested fan of B, which realizes the nested complex N (B).

Figure 5. Two nested fans. As the fans are 3-dimensional, we intersect them with the sphere
and stereographically project them from the direction (−1,−1,−1).

Again, the B-nested fan is always the normal fan of a polytope, as shown in [Pos09, FS05, Zel06].
We still denote by 4U := conv {eu | u ∈ U} the face of the standard simplex 4V corresponding
to a subset U of V .

Theorem 3.6 ([Pos09, FS05, Zel06]). For any building set B, the nested fan F(B) is the normal
fan of the nestohedron Nest(B). It can be constructed as

(i) the intersection of H with the hyperplanes 〈 g(B) | x 〉 ≤ −3|B| for all B ∈ B [Dev09, Pil17],
(ii) the Minkowski sum

∑
B∈B4B of the faces of the standard simplex given by all blocks of B [Pos09].

Restrictions and contractions. Following [Zel06], we describe a structural decomposition of links
in nested complexes. For any U ⊆ V , define

• the restriction of B to U as the building set B|U := {B ∈ B | B ⊆ U},
• the contraction of U in B as the building set B/U := {C ⊆ V r U | C ∈ B or C ∪ U ∈ B}.

Proposition 3.7 ([Zel06, Prop. 3.2]). For U ∈ Brκ(B), the link {C ⊆ B r {U} | C ∪ {U} ∈ N (B)}
is isomorphic to the Cartesian product N (B|U )×N (B/U ).
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In particular, two building blocks B and B′ in U (resp. in V rU) are exchangeable in N (B) if
and only if they are exchangeable in N (B|U ) (resp. in N (B/U )).

Slightly abusing notation when B is clear from the context, we define the connected compo-
nents of U as κ(U) :=κ(B|U ). For instance, for the building set B◦ whose elementary blocks are
represented in Figure 4 (left) and U = {1, 2, 4, 5, 7, 8}, we have B◦|U = {1, 2, 4, 5, 7, 8, 14, 25} so
that κ(U) = {14, 25, 7, 8}. Note that the definition of building sets implies that

• for any U ⊆ V , the connected components κ(U) define a partition of U ,
• for any U,U ′ ⊆ V such that U ∩ U ′ = ∅ and there is no B ∈ B with B ⊆ U t U ′

and U ∩B 6= ∅ 6= U ′ ∩B, we have κ(U t U ′) = κ(U) t κ(U ′).

3.2. Exchangeable building blocks and exchange frames. We now provide an analogue of Proposi-
tion 2.4 characterizing the exchangeable blocks for arbitrary building sets. The situation is however
much more technical, as highlighted in Remarks 3.11 and 3.16. We start with two useful lemmas.

Lemma 3.8. For any B-nested set N and any block B ∈ B r κ(B), the set
{
C ∈ N

∣∣ B ( C
}

admits a unique (inclusion) minimal element M . Moreover, if B /∈ N , then M is also the unique
(inclusion) maximal element of

{
C ∈ N

∣∣ r(C,N ) ∩B 6= ∅
}

.

Proof. Let X :=
{
C ∈ N

∣∣ B ( C
}

and Y :=
{
C ∈ N

∣∣ r(C,N )∩B 6= ∅
}

. Note first that neither X
not Y are empty since ∅ 6= B /∈ κ(B). Since all elements of X contain B and N is a B-nested set,
X forms a chain by inclusion, and thus admits unique inclusion minimal element M . Moreover,
any building block in Y intersects B so that

⋃
Y = B ∪

⋃
Y is in B. Hence, Y admits a unique

maximal element M ′ :=
⋃
Y. By definition, B ⊆M ′. If B /∈ N , then B 6= M ′ since M ′ ∈ Y ⊆ N .

Hence, M ′ ∈ X . Moreover, for any C ∈ N such that C ( M ′, we have C ∩ r(M ′,N ) = ∅ so
that B 6⊆ C and C /∈ X . We conclude that M ′ = M . �

Lemma 3.9. If N and N ′ are two adjacent maximal B-nested sets with N r{B} = N r{B′}, then
{C ∈ N | B ( C} = {C ′ ∈ N ′ | B′ ( C ′}.

Proof. Assume for instance that there is C ∈ N ∩ N ′ such that B ( C but B′ 6⊆ C. We then
claim that N ∪N ′ would be a B-nested set, contradicting the maximality of N and N ′. Consider
a subset X of N ∪N ′ whose union

⋃
X is in B. If B /∈ X , then X ⊆ N ′, hence

⋃
X is in X as N ′

is a B-nested set. Similarly, if B′ /∈ X , then
⋃
X is in X . Assume now that both B and B′ belong

to X . Define Y := {C} ∪ X r {B}. Note that Y ⊆ N ′ since B /∈ Y. Moreover,
⋃
Y = C ∪

⋃
X

belongs to B since C and
⋃
X both belong to B and intersect B. Hence,

⋃
Y is in Y since N ′

is a B-nested set. Note that
⋃
Y 6= C since B′ 6⊆ C and B′ ∈ Y. Therefore

⋃
Y is in X , and

thus
⋃
X =

⋃
Y is in X . �

For two adjacent maximal B-nested sets N and N ′ with N r {B} = N r {B′}, we say that

• the unique minimal element P of
{
C ∈ N

∣∣ B ( C
}

=
{
C ′ ∈ N ′

∣∣ B′ ( C ′
}

is the parent,
• the vertices v := r(P,N ′) and v′ := r(P,N ) are the pivots, and
• the triple (B,B′, P ) is the frame

of the exchange between N and N ′. Note that the parent is well-defined by Lemmas 3.8 and 3.9.
We call an exchange frame a triple (B,B′, P ) which is the frame of an exchange between two
adjacent maximal B-nested sets. For instance, for the two adjacent maximal B◦-nested sets N◦
and N ′◦ represented in Figure 4 (middle), we have B = 14, B′ = 25, P = 12345, v = 1 and v′ = 2.
The corresponding exchange frame is illustrated in Figure 4 (right).

We are now ready to characterize the pairs of exchangeable building blocks for arbitrary building
sets. For three blocks B,C, P ∈ B, we abbreviate the conditions B∩C 6= ∅ and C ⊆ P but C 6⊆ B
into the short notation B ` C ⊆ P . The following statement generalizes Proposition 2.4 (i).

Proposition 3.10. Two blocks B,B′ ∈ B are exchangeable in F(B) if and only if there exist a
block P ∈ B, and some vertices v ∈ B rB′ and v′ ∈ B′ rB such that

• B ( P and B′ ( P , and
• v′ ∈ C for any B ` C ⊆ P while v ∈ C ′ for any B′ ` C ′ ⊆ P .
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Proof. Assume first that B and B′ are exchangeable. Let N and N ′ be two adjacent maximal
B-nested sets such that N r {B} = N r {B′}. Let P be the parent and v, v′ be the pivots of this
exchange. Note that v ∈ B (by Lemma 3.8) but v /∈ B′ (by definition, since B′ ∈ N ′ and B′ ( P ).
Similarly, v′ ∈ B′ r B. Consider now a building block C such that B ` C ⊆ P . By definition,
B ( B ∪C ⊆ P and B ∪C ∈ B. If B ∪C = P , then v′ = r(P,N ) belongs to B ∪C and thus to C.
If B∪C 6= P , then P is the inclusion minimal element of {D ∈ N | B ∪ C ( D}. Since B∪C /∈ N
by minimality of P in {D ∈ N | B ( D}, we obtain by Lemma 3.8 that v′ = r(P,N ) belongs
to B ∪ C and thus to C. Similarly, v ∈ C ′ for any B′ ` C ′ ⊆ P .

Conversely, consider B,B′ ∈ B so that there is P ∈ B, v ∈ B r B′ and v′ ∈ B′ rB satisfying
the conditions of Proposition 3.10. Let U :=P r {v, v′}, and M denote an arbitrary maximal
B|U -nested set. Let N :=M ∪ {B} and N ′ :=M ∪ {B′}. Consider a subset X of N whose
union

⋃
X is in B. If B /∈ X , then X ⊆ M, hence

⋃
X is in X since M is a B|U -nested set.

If B ∈ X , since B∩
⋃
X 6= ∅ and

⋃
X ⊆ P but v′ /∈

⋃
X , the conditions of Proposition 3.10 ensure

that
⋃
X ⊆ B, so that

⋃
X = B is in X . Hence, N is a B|P -nested set. It is moreover maximal

since |N | = |M ∪ {B,P}| = |M|+ 2 = |U |+ 2 = |P |. By symmetry, N ′ is a maximal B|P -nested
set. Since N r {B} = N ′ r {B′}, we obtain that B and B′ are exchangeable in N (B|P ), hence
in N (B) by Proposition 3.7. The parent of this exchange is P and the pivots are v and v′. �

Remark 3.11. For the graphical nested fans, Proposition 2.4 (i) ensures that if B and B′ are
exchangeable, then B ∪ B′ is always a block and is the only possible parent (note however that
B and B′ are not necessarily exchangeable when B ∪ B′ is a block). In contrast to the graphical
case, for a general building set,

• the same exchangeable blocks may admit several possible parents and pivots,
• the set of parents does not necessarily admit a unique (inclusion) minimal element,
• B ∪B′ is not always a block when B and B′ are exchangeable. In other words, B and B′

can be exchangeable even if {B,B′} ∪ κ(B) is a B-nested set.

For instance, in the building set B◦ of Figure 4 (left), the blocks B = 14 and B′ = 25 are simulta-
neously compatible and exchangeable. They are exchangeable with parent 12345 and pivots (1, 2)
or with parent 12456 and pivots (4, 5).

Remark 3.12. Observe also that it follows from the definitions that

• it suffices to check the condition of Proposition 3.10 for C and C ′ elementary blocks of B,
• if B and B′ are exchangeable, then B 6⊆ B′ and B′ 6⊆ B,
• if (B,B′, P ) is an exchange frame and B ∪B′ ⊆ P ′ ⊆ P , then (B,B′, P ′) is also an ex-

change frame (using the same pivots),
• if B and B′ are exchangeable and B ∪ B′ is a block (in particular if B ∩ B′ 6= ∅),

then (B,B′, B ∪B′) is an exchange frame.

We now apply Proposition 3.10 to identify some exchange frames that will play an important
role in the description of the type cone of the B-nested fan.

Proposition 3.13. If B,B′, P ∈ B are such that B and B′ are two distinct blocks of B strictly
contained in P and inclusion maximal inside P , then (B,B′, P ) is an exchange frame.

Proof. Consider C ∈ B such that B ` C ⊆ P . Since B ∩C 6= ∅, we have B ∪C ∈ B. Since C ⊆ P
and C 6⊆ B, we have B ( B ∪ C ⊆ P . By maximality of B in P , we obtain that B ∪ C = P .
Hence, B ` C ⊆ P implies B′rB ⊆ C and similarly B′ ` C ′ ⊆ P implies BrB′ ⊆ C ′. Therefore,
choosing any v ∈ B r B′ and v′ ∈ B′ r B, we obtain that B,B′, P, v, v′ satisfy the conditions of
Proposition 3.10, and thus (B,B′, P ) is an exchange frame. �

We call maximal exchange frames the exchange frames defined by Proposition 3.13. For P ∈ B,
we will denote by µ(P ) the maximal blocks of B strictly contained in P .

3.3. g-vector dependences. We now describe the exchange relations in the B-nested fan F(B). We
first need to observe that certain building blocks are forced to belong to any two adjacent maximal
nested sets with a given frame, generalizing Proposition 2.4 (ii).
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Proposition 3.14. For two adjacent maximal B-nested sets N and N ′ with N r {B} = N ′ r {B′}
and parent P , all connected components of κ(B ∩B′) and of κ

(
P r (B ∪B′)) belong to N ∩N ′.

Proof. Even if we discuss separately the elements of κ(B ∩B′) from that of κ(P r (B ∪B′)), the
reader will see a lot of similarities in the arguments below.

We first consider K ∈ κ(B ∩ B′) and prove that N ∪ {K} is a B-nested set, which proves
that K ∈ N by maximality of N . Indeed, let us consider a subset X of N ∪{K} whose union

⋃
X

is in B, and prove that
⋃
X is in X . We assume that K ∈ X , since otherwise X ⊆ N so

that
⋃
X is in X as N is a B-nested set. Assume now that B ∈ X and define Y :=X r {K}.

Since K ⊆ B ∈ X , we have
⋃
Y =

⋃
X in B, thus in Y ⊂ X since Y ⊆ N and N is a B-nested

set. It remains to consider the case when X ⊆ (N ∩ N ′) ∪ {K}. Assume now that
⋃
X 6⊆ B

and define Y := {B} ∪ X r {K}. Since K ⊆ B, we have
⋃
Y = B ∪

⋃
X which belongs to B

since B and
⋃
X both belong to B and intersect K. Hence,

⋃
Y is in Y since Y ⊆ N and N is

a B-nested set. Note that
⋃
Y 6= B by our assumption that

⋃
X 6⊆ B. Therefore,

⋃
Y is in X ,

and thus
⋃
X =

⋃
Y is in X . By symmetry, we obtain that

⋃
X is in X if

⋃
X 6⊆ B′. Assume

finally that
⋃
X ⊆ B ∩B′. Then all the elements of X are in B ∩B′. Since K ∈ X is a connected

component of B ∩B′ and
⋃
X is in B, this implies that

⋃
X = K ∈ X .

We now consider K ∈ κ(P r (B ∪ B′)) and prove that N ∪ {K} is a B-nested set, which
proves that K ∈ N by maximality of N . Indeed, let us consider a subset X of N ∪ {K}
whose union

⋃
X is in B, and prove that

⋃
X is in X . We assume that K ∈ X , since other-

wise X ⊆ N so that
⋃
X is in X as N is a B-nested set. Assume now that

⋃
X 6⊆ P and

define Y := {P} ∪ X r {K}. Since K ⊆ P , we have
⋃
Y = P ∪

⋃
X which belongs to B since P

and
⋃
X both belong to B and intersect K. Hence,

⋃
Y is in Y since Y ⊆ N and N is a

B-nested set. Note that
⋃
Y 6= P by our assumption that

⋃
X 6⊆ P . Therefore,

⋃
Y is in X ,

and thus
⋃
X =

⋃
Y is in X . Assume now that

⋃
X ⊆ P r (B ∪B′). Then all elements of X

are in P r (B ∩ B′). Since K is a connected component of P r (B ∩ B′) and
⋃
X is in B, this

implies that
⋃
X = K ∈ X . Assume finally that

⋃
X is contained in P and intersects B or B′.

If B′ ∩
⋃
X 6= ∅, then B′ `

⋃
X ⊆ P , thus v := r(P,N ) ∈

⋃
X by Proposition 3.10. Hence in

both cases B ∩
⋃
X 6= ∅, thus B `

⋃
X ⊆ P , and thus v′ := r(P,N ) ∈

⋃
X by Proposition 3.10.

Therefore, there is C ∈ X r {K} ⊆ N containing v′. Since v′ = r(P,N ), we obtain that P ⊆ C,
and hence P = C because C ⊆

⋃
X ⊆ P . Thus K ⊆ C and

⋃
X =

⋃
Y where Y :=X r {K}.

Hence,
⋃
Y is in Y since Y ⊆ N and N is a B-nested set. We conclude that

⋃
X =

⋃
Y is in X .

We obtained that all blocks of κ(B ∩ B′) and of κ
(
P r (B ∪ B′)) belong to N , and thus also

to N ′ by symmetry. �

We are now ready to describe the exchange relations in the B-nested fan. The main message here
is that these relations only depend on the frames of the exchanges, generalizing Proposition 2.4 (iii).

Proposition 3.15. For two adjacent maximal B-nested sets N and N ′ with N r {B} = N ′ r {B′}
and parent P , the unique (up to rescaling) linear dependence between the g-vectors of N ∪N ′ is

(1) g(B) + g(B′) +
∑

K∈κ(Pr(B∪B′))

g(K) = g(P ) +
∑

K∈κ(B∩B′)

g(K).

In particular, the g-vector dependence only depends on the exchange frame (B,B′, P ).

Proof. Equation (1) is a valid linear dependence since it holds at the level of characteristic vectors,
and g(C) :=π

(∑
v∈C ev

)
where π is the orthogonal projection from RV to H. Since all building

blocks involved in Equation (1) belong to N ∪ N ′ by Proposition 3.14, we conclude that Equa-
tion (1) is the unique (up to rescaling) linear dependence between the g-vectors of N ∪N ′. �

Remark 3.16. For the graphical nested fans studied in Section 2.2, the parent of the exchange of B
and B′ is always B ∪B′ and we recover the g-vector relation of Proposition 2.4 (iii). In contrast
to the graphical case, for an arbitrary building set,

• the sum on the left of Equation (1) is empty only when P = B ∪B′,
• Equation (1) depends on the exchange frame (B,B′, P ), not only on the exchangeable

building blocks B and B′.
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For instance, the g-vector relation of the exchange between the two adjacent maximal B◦-nested
sets N◦ and N ′◦ represented in Figure 4 (middle) is g14 + g25 + g3 = g12345. Another g-vector
relation for the same exchangeable blocks B = 14 and B′ = 25 is g14 + g25 + g6 = g12456.

Remark 3.17. The g-vector dependences were already studied in [Zel06]. Namely, our Propo-
sition 3.14 and Equation (1) are essentially Proposition 4.5 and Equation (6.6) of [Zel06]. Our
versions are however more precise since we obtained in Proposition 3.10 a complete characterization
of the exchangeable building blocks of B, which was surprisingly missing in the literature.

Note that while the g-vector dependence only depends on the exchange frame, different frames
may lead to the same g-vector dependence. In the next two statements, we describe which of
the maximal exchange frames lead to the same g-vector dependence. Remember that we denote
by µ(P ) the maximal blocks of B strictly contained in a block P ∈ B.

Proposition 3.18. For an elementary block P ∈ ε(B), all exchange frames (B,B′, P ) for B 6= B′

in µ(P ) lead to the same g-vector dependence
∑
B∈µ(P ) g(B) = g(P ).

Proof. Observe first that (B,B′, P ) is indeed an exchange frame by Proposition 3.13. We thus
apply Proposition 3.15 to describe the corresponding g-vector dependence. Observe first that
the sum on the right of Equation (1) is empty because B ∩ B′ = ∅ by Remark 3.1 since P is
elementary and B,B′ ∈ µ(P ). The result thus follows from the observation that κ(P r(B∪B′)) =
µ(P ) r {B,B′} which we prove next.

Let us consider K ∈ κ(P r (B ∪B′)) and prove that K ∈ µ(P ) r {B,B′}. Consider L ∈ B
such that K ⊆ L ( P . If L ∩B 6= ∅, then L ∪B ∈ B and B ( L ∪B ⊆ P , so that L ∪B = P by
maximality of B, contradicting the elementarity of P . Hence, L ⊆ P r (B ∪ B′), so that K = L
by maximality of K in P r (B ∪B′). We conclude that K ∈ µ(P ) r {B,B′}.

Conversely, let us consider C ∈ µ(P ) r {B,B′} and prove that C ∈ κ(P r (B ∪ B′)). Since P
is elementary and B,B′, C ∈ µ(P ), the block C is disjoint from B and B′ by Remark 3.1. Hence,
C ⊆ P r (B ∪B′) and thus C ∈ κ(P r (B ∪B′)) by maximality of C. �

Proposition 3.19. If (B1, B
′
1, P ) and (B2, B

′
2, P ) are two distinct maximal exchange frames with

the same g-vector dependence, then P is elementary.

Proof. Since the exchange relations given by Equation (1) for the exchange frames (B1, B
′
1, P )

and (B2, B
′
2, P ) coincide, B2 and B′2 belong to {B1, B

′
1} ∪ κ(P r (B1 ∪ B′1)). Since (B1, B

′
1, P )

and (B2, B
′
2, P ) are distinct exchange frames, we can assume for instance that B2 does not belong

to {B1, B
′
1}. Hence, B2 belongs to κ(P r (B1 ∪ B′1)), thus B1 ∩ B2 = ∅, and therefore P is

elementary by Remark 3.1 since it contains two disjoint maximal blocks. �

3.4. Type cone of nested fans. As a consequence of Proposition 3.15, we obtain the following
redundant description of the type cone of the nested fan F(B).

Corollary 3.20. For any building set B, the type cone of the nested fan F(B) is given by

TC(F(B)) =

{
h ∈ RBG

∣∣∣∣ hB = 0 for B ∈ κ(B) and for any exchange frame (B,B′, P )
hB + hB′ +

∑
K∈κ(Pr(B∪B′)) hK > hP +

∑
K∈κ(B∩B′) hK

}
.

We denote by fB for B ∈ B the canonical basis of RB and by

n(B,B′, P ) :=
(
fB + fB′ +

∑
K∈κ(Pr(B∪B′))

fK

)
−
(
fP +

∑
K∈κ(B∩B′)

fK

)
the inner normal vector of the inequality of the type cone TC(F(B)) corresponding to an exchange
frame (B,B′, P ) of B. Thus h ∈ TC(F(B)) if and only iff 〈n(B,B′, P ) | h 〉 > 0 for all exchange
frames (B,B′, P ) of B.

Example 3.21. Consider the nested fans illustrated in Figure 5. The type cone of the left fan
lives in R8, has a linearity space of dimension 3 and 5 facet-defining inequalities (given below). In
particular, it is simplicial. Note that as in Figure 3, we express the g-vectors in the basis given by
the maximal tubing containing the first three tubes below.
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blocks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
1

] [
0
−1
1

] [
0
0
−1

]
facet 1 −1 0 0 1 0 0 0

defining 0 0 0 0 1 −1 1 0
inequalities 1 0 0 −1 0 0 1 1

0 1 −1 0 −1 1 0 0
−1 0 1 1 0 0 −1 0

The type cone of the right fan lives in R8, has a linearity space of dimension 3 and 7 facet-defining
inequalities (given below). In particular, it is not simplicial.

blocks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
−1
1
0

] [
−1
0
0

] [
0
−1
1

] [
0
0
−1

]
facet 1 −1 0 0 1 0 0 0

defining 0 1 −1 0 0 0 1 0
inequalities 1 0 0 −1 0 0 1 1

0 0 0 0 1 −1 1 1
−1 0 1 1 0 0 −1 0
0 0 1 0 −1 1 −1 0
0 0 0 1 0 1 −1 −1

Example 3.22. We can exploit Corollary 3.20 to show that certain height functions belong to
the type cone of F(B) and recover some classical constructions of the nestohedron, generalizing
Example 2.8.

(i) Consider the height function h ∈ RB given by hB := − 3|B|. Then for any exchange
frame (B,B′, P ) of B, we have

〈n(B,B′) | h 〉 = −3|B| − 3|B
′| −

∑
K∈κ(Pr(B∪B′))

3|K| + 3|P | +
∑

K∈κ(B∩B′)

3|K|

≥ −2 · 3|B∪B
′|−1 − 3|Pr(B∪B′))| + 3|P | > 0.

Therefore, the height function h belongs to the type cone TC(F(B)). The corresponding
polytope Ph :=

{
x ∈ RV

∣∣ 〈 g(B) | x 〉 ≤ hB for B ∈ B
}

was constructed in [Pil17], general-
izing the graph associahedra of [Dev09].

(ii) Consider the height function h ∈ RB given by hB := − |
{
C ∈ B

∣∣ C ⊆ B
}
|. Then for any

exchange frame (B,B′, P ) of B, we have

〈n(B,B′, P ) | h 〉 = | {C ∈ B | C 6⊆ B, C 6⊆ B′ and C 6⊆ P r (B ∪B′) but C ⊆ P} | > 0

since P fulfills the conditions on C. Therefore, the height function h belongs to the type
cone TC(F(B)). The corresponding polytope Ph :=

{
x ∈ RV

∣∣ 〈 g(B) | x 〉 ≤ hB for B ∈ B
}

is the nestohedron constructed by A. Postnikov’s in [Pos09].

Note that many inequalities of Corollary 3.20 are redundant. In the remaining of this section, we
describe the facet-defining inequalities of TC(F(B)). We say that an exchange frame (B,B′, P ) is

• extremal if its corresponding inequality in Corollary 3.20 defines a facet of TC(F(B)),
• maximal if B and B′ are both maximal building blocks in P as in Proposition 3.13.
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We can now state our main result on nested complexes, generalizing Theorem 2.9.

Theorem 3.23. An exchange frame is extremal if and only if it is maximal.

Proof. We treat separately the two implications:

Extremal ⇒ maximal. Consider an exchange frame (B,B′, P ) of B, and fix pivot vertices v, v′

satisfying the conditions of Proposition 3.10. We assume that this frame is not maximal, and
prove that it is not extremal by showing that the normal vector n(B,B′, P ) of the corresponding
inequality of the type cone TC(F(B)) is a positive linear combination of normal vectors of some
other exchange frames. By symmetry, we can assume that there is M ∈ B such that B (M ( P
and we can assume that M is maximal for this property. We decompose the proof into two cases,
depending on whether B′ ⊆M or B′ 6⊆M .

Case 1: B′ ⊆M . Observe first that:

• (B,B′,M) is an exchange frame, since (B,B′, P ) is an exchange frame andB ∪B′ ⊆M ⊆ P ,
• (M,W,P ) is an exchange frame for any connected component W of Pr(B∪B′) containing

a vertex w ∈ PrM . Indeed, we just check the conditions of Proposition 3.10 for v ∈MrW
and w ∈W rM :

– for any M ` C ⊆ P , we have w ∈ P rM ⊆ C by maximality of M .
– for any W ` C ′ ⊆ P , we have C ′ ⊆ P and C ′ 6⊆W , hence C ′ ∩ (B ∪B′) 6= ∅ since W

is a connected component of P r (B∪B′). Assume for instance that C ′∩B 6= ∅ (the
proof for C ′ ∩B′ 6= ∅ is symmetric). Since C ′ ∩W 6= ∅, we obtain that B ` C ′ ⊆ P
and thus v′ ∈ C ′ by Proposition 3.10. We therefore obtain that B′ ` C ′ ⊆ P and
thus v ∈ C ′ by Proposition 3.10 again.

We claim that these two exchange frames enable us to write

n(B,B′, P ) = n(B,B′,M) + n(M,W,P ).

Proving this identity amounts to check that

(2) κ(P r (B ∪B′)) t κ(M ∩W ) = κ(M r (B ∪B′)) t κ(P r (M ∪W )) t {W}.
For this, we distinguish two subcases, depending on whether or not M and W intersect.

Subcase 1.1: M ∩W = ∅. See Figure 6 (left). First, we claim that either C ∩M = ∅ or C ⊆ M
for any C ∈ B with C ⊆ P r (B ∪B′). Indeed, if C ∩M 6= ∅, then C ∩W = ∅ since M ∩W = ∅
and W is a connected component of P r (B ∪ B′). Hence C ∪M ∈ B and B ( C ∪M ( P , and
thus C ⊆M by maximality of M . We therefore obtain that

κ(P r (B ∪B′)) = κ(M r (B ∪B′)) t κ(P r (M ∪W )) t {W}.
This shows Equation (2) since M ∩W = ∅.

Subcase 1.2: M ∩W 6= ∅. See Figure 6 (middle). AsM∪W ∈ B andB ( B∪W ⊆ P andW 6⊆M ,
we have P = M ∪W by maximality of M . Since W ∈ κ(P r (B ∪B′)), we have

κ(P r (B ∪B′)) = κ(P r (B ∪B′ ∪W )) t {W} = κ(M r (B ∪B′ ∪W )) t {W}
Moreover, by maximality of W , we obtain that there is no block of B contained in M r (B ∪B′)
and meeting both M ∩W and M r (B ∪B′ ∪W ). Hence

κ(M ∩W ) t κ(M r (B ∪B′ ∪W )) = κ(M r (B ∪B′)).
Combining these two identities proves Equation (2) since P = M ∪W .

Case 2: B′ 6⊆M . See Figure 6 (right). Observe that:

• (M,B′, P ) is an exchange frame. Indeed, we just check the conditions of Proposition 3.10
for v ∈M rB′ and an arbitrary w ∈ B′ rM :

– for any M ` C ⊆ P , we have w ∈ P rM ⊆ C by maximality of M .
– for any B′ ` C ′ ⊆ P , we have v ∈ C ′ by Proposition 3.10.

• (B,W,M) is an exchange frame for the connected component W of M ∩B′ containing v′.
Indeed, we just check the conditions of Proposition 3.10 for v ∈ B rW and v′ ∈W rB:
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P

M

B

B′

W

?v

?v′

?w

P = M ∪W

M

B

B′

W

?v

?v′

?w

P = M ∪B′

M

B

B′
W

?v

?v′
?w

Case 1.1 Case 1.2 Case 2

Figure 6. Illustrations for the case analysis of the proof of Theorem 3.23.

– for any B ` C ⊆M , we have B ` C ⊆ P and thus v′ ∈ C by Proposition 3.10.
– for any W ` C ′ ⊆M , we have B′ ` C ′ ⊆ P and thus v ∈ C ′ by Proposition 3.10.

We claim that these two exchange frames enable to write

n(B,B′, P ) = n(M,B′, P ) + n(B,W,M).

Proving this identity amounts to check that

(3) κ(Pr(B∪B′))tκ(M∩B′)tκ(B∩W ) = κ(B∩B′)tκ(Pr(M∪B′))tκ(Mr(B∪W ))t{W}.

To prove this, we observe that:

• Since W contains v′, Proposition 3.10 ensures that there is no block of B contained in M ∩
B′ and meeting both B and B′ r (B ∪W ). Since W ∈ κ(M ∩B′), we thus obtain

κ(M ∩B′) = κ((M ∩B′) r (B ∪W )) t κ(B ∩B′ rW ) t {W}.

• As W ∈ κ(M ∩B′), there is no block of B contained in B ∩B′ and meeting both B ∩W
and B ∩B′ rW , hence

κ(B ∩W ) t κ(B ∩B′ rW ) = κ(B ∩B′).

• There is no block of B contained in M r (B ∪ W ) and meeting both M r (B ∪ B′)
and (M∩B′)r(B∪W ) (such a block C would satisfy B′ ` C ⊆ P and v /∈ C, contradicting
Proposition 3.10). Hence

κ(M r (B ∪B′)) t κ((M ∩B′) r (B ∪W )) = κ(M r (B ∪W )).

Combining these three identities proves (3) since P = M ∪B′ by maximality of M .

Maximal ⇒ extremal. Let (B,B′, P ) be a maximal exchange frame. To prove that (B,B′, P ) is ex-

tremal, we will construct a vector w ∈ RB such that 〈n(B,B′, P ) | w 〉 < 0, but 〈n(B̃, B̃′, P̃ ) | w 〉 > 0

for any maximal exchange frame (B̃, B̃′, P̃ ) with n(B,B′, P ) 6= n(B̃, B̃′, P̃ ). This will show that
the inequality induced by (B,B′, P ) is not redundant. Remember from Propositions 3.18 and 3.19

that, as (B,B′, P ) and (B̃, B̃′, P̃ ) are maximal exchange frames, n(B,B′, P ) 6= n(B̃, B̃′, P̃ ) if and

only if P 6= P̃ , or P = P̃ is not an elementary block.
Define α(B,B′, P ) := {C ∈ B | C 6⊆ B, C 6⊆ B′ and C 6⊆ P r (B ∪B′) but C ⊆ P}. Define three

vectors x,y, z ∈ RB by

xC := − |
{
D ∈ B r α(B,B′, P )

∣∣ D ⊆ C}|,
yC := − |

{
D ∈ α(B,B′, P )

∣∣ D ⊆ C}|,
zC :=

{
−1 if B ⊆ C or B′ ⊆ C,
0 otherwise,

for each bock C ∈ B.
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We will prove below that their scalar products with n(B̃, B̃′, P̃ ) for any maximal exchange

frame (B̃, B̃′, P̃ ) satisfy the following inequalities

〈n(B̃, B̃′, P̃ ) | x 〉 〈n(B̃, B̃′, P̃ ) | y 〉 〈n(B̃, B̃′, P̃ ) | z 〉
if n(B,B′, P ) = n(B̃, B̃′, P̃ ) = 0 = |α(B,B′, P )| = −1

if α(B̃, B̃′, P̃ ) 6⊆ α(B,B′, P ) ≥ 1 ≥ 0 ≥ −1

otherwise ≥ 0 ≥ 1 ≥ 0

It immediately follows from this table that the vector w :=x+δy+εz fulfills the desired properties
for any δ, ε such that 0 < δ · |α(B,B′, P )| < ε < 1.

The equalities of the table are immediate. To prove the inequalities, observe that for any
maximal exchange frame (B̃, B̃′, P̃ ),

• 〈n(B̃, B̃′, P̃ ) | x 〉 ≥ |α(B̃, B̃′, P̃ ) r α(B,B′, P )|,
• 〈n(B̃, B̃′, P̃ ) | y 〉 ≥ |α(B̃, B̃′, P̃ ) ∩ α(B,B′, P )|,
• 〈n(B̃, B̃′, P̃ ) | z 〉 ≥ −1. Indeed, observe that zP̃ = −1 as soon as zK̃ = −1 for some

K̃ ∈ {B̃, B̃′} t κ(P̃ r (B̃ ∪ B̃′)). This already implies that 〈n(B̃, B̃′, P̃ ) | z 〉 ≥ −1 except

if zK̃ = zK̃′ = zK̃′′ = −1 for three distinct K̃, K̃ ′, K̃ ′′ ∈ {B̃, B̃′} t κ(P̃ r (B̃ ∪ B̃′)). But

since B̃ and B̃′ are the only intersecting blocks among {B̃, B̃′}tκ(P̃ r (B̃∪ B̃′)), the only

option (up to permutation) is that K̃ = B̃ and K̃ ′ = B̃′ both contain B (resp. B′), K ′′ con-

tains B′ (resp. B), while none of the other blocks of {B̃, B̃′}tκ(P̃r(B̃∪B̃′)) meets B ∪B′.
This implies that zP̃ = −1 = zL for some L ∈ κ(B̃∩B̃′), and thus 〈n(B̃, B̃′, P̃ ) | z 〉 ≥ −1.

• 〈n(B̃, B̃′, P̃ ) | z 〉 ≥ 0 when n(B,B′, P ) 6= n(B̃, B̃′, P̃ ) but α(B̃, B̃′, P̃ ) ⊆ α(B,B′, P ). In-

deed, α(B̃, B̃′, P̃ ) ⊆ α(B,B′, P ) implies that P̃ ⊆ P . Let K̃ ∈ {B̃, B̃′} t κ(P̃ r (B̃ ∪ B̃′)).
If B ⊆ K̃, then B ⊆ K̃ ( P̃ ⊆ P which implies that B = K̃ and P = P̃ by maximality
of B in P . Similarly, B′ ⊆ K̃ implies B′ = K̃ and P = P̃ . Hence, if zK̃ = −1, then by

definition B ⊆ K̃ or B′ ⊆ K̃, which implies that K̃ ∈ {B,B′}. Hence, if K̃ 6= K̃ ′ are two

distinct blocks of {B̃, B̃′} t κ(P̃ r (B̃ ∪ B̃′)) such that zK̃ = −1 = zK̃′ , then (B,B′, P ) =

(K̃, K̃ ′, P̃ ) and moreover either {B,B′} = {K̃, K̃ ′}, or K̃ ∩ K̃ ′ = ∅, so that P is ele-
mentary by Remark 3.1 since it has two disjoint maximal blocks. In both cases, we ob-
tain n(B,B′, P ) = n(B̃, B̃′, P̃ ) by Proposition 3.19, contradicting our assumption. There-

fore, at most one of zK̃ for K̃ ∈ {B̃, B̃′} t κ(P̃ r (B̃ ∪ B̃′)) equals to −1, and if exactly

one does, then zP̃ = −1. We conclude that 〈n(B̃, B̃′, P̃ ) | z 〉 ≥ 0. �

We derive from Theorem 3.23 the facet description of the type cone TC(F(B)). Remember that
we denote by µ(P ) the maximal blocks of B strictly contained in a block P ∈ B.

Corollary 3.24. The inequalities

•
∑
B∈µ(P ) hB > hP for any elementary block P of B,

• hB + hB′ +
∑
K∈κ(Pr(B∪B′)) hK > hP +

∑
K∈κ(B∩B′) hK for any block P of B neither

singleton nor elementary, and any two blocks B 6= B′ in µ(P ),

provide an irredundant facet description of the type cone TC(F(B)).

Corollary 3.25. The number of facets of the the type cone TC(F(B)) is

|ε(B)|+
∑
P

(
µ(P )

2

)
where the sum runs over all blocks P of B which are neither singletons nor elementary blocks.

Proposition 3.26. The type cone TC(F(B)) is simplicial if and only if all blocks of B with at least
three distinct maximal strict subblocks are elementary.

Proof. Recall that the nested fan F(B) has dimension |V |−|κ(B)| and has |B|−|κ(B)| rays. Hence,
the type cone TC(F(B)) is simplicial if and only if it has |B| − |V | facets. The statement thus
immediately follows from Corollary 3.25. �
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Figure 7. Four interval nested fans. The bottom left one is the Pitman-Stanley fan, the bottom
right one is the sylvester fan. As the fans are 3-dimensional, we intersect them with the sphere
and stereographically project them from the direction (−1,−1,−1).

3.5. Interval building sets. An interval building set is a building set on [n] := {1, . . . , n} whose
blocks are some intervals. We call interval nested fan and interval nestohedron the nested fan and
nestohedron of an interval building set. Examples are illustrated in Figure 7.

Example 3.27. There are two particularly relevant examples of interval nestohedra:

• the classical associahedron of [SS93, Lod04] for the building set with all intervals of [n],
• the Pitman-Stanley polytope of [SP02] for the building set with all singletons {i} and all

intervals [i] for i ∈ [n].

Note that, by definition, any interval nested fan coarsens the associahedron nested fan.

Proposition 3.28. For any interval building set B, the type cone TC(F(B)) is simplicial.

Proof. Assume that B has a non-elementary block [i, j], with at least three distinct maximal strict
subblocks [a, b], [c, d] and [e, f ]. Since [a, b], [c, d] and [e, f ] are pairwise non nested, we can assume
up to permutation that a < c < e and b < d < f . Since [i, j] is not elementary, [a, b] ∩ [c, d] 6= ∅
and thus [a, b] ∪ [c, d] = [a, d] is a block of B. This contradicts the maximality of [a, b] since
[a, b] ( [a, d] ( [i, j] as b < d < f ≤ j. �

Remark 3.29. Note that there are building sets B for which the type cone TC(F(B)) is simplicial,
but which are not (isomorphic to) interval building sets. See e.g. Figure 5 (left).

We now translate the facet description of Corollary 3.24 to the specific case of interval build-
ing sets. We need a few additional notations. Consider an interval building set B on [n].
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For 1 ≤ i < j ≤ n, define

`(i, j) := min {k ∈ [i+ 1, j] | [k, j] ∈ B} and r(i, j) := max {k ∈ [i, j − 1] | [i, k] ∈ B} .
Note that `(i, j) and r(i, j) are well-defined since B contain all singletons. Observe that [i, r(i, j)]
and [`(i, j), j] are maximal strict subblocs of [i, j]. Therefore,

• if [i, j] ∈ B is elementary, then we have r(i, j) < `(i, j) and the maximal strict sub-
blocks of [i, j] are the intervals [sk−1(i, j), sk(i, j) − 1] for k ∈ [p] where the sequence
s0(i, j) < s1(i, j) < · · · < sp(i, j) is defined by the boundary conditions s0(i, j) := i and
s1(i, j) = r(i, j) + 1 and sp(i, j) := j + 1, and the induction sk(i, j) := r(sk−1(i, j), j+1)+1.

• if [i, j] ∈ B is not elementary, we have `(i, j) ≤ r(i, j) so that

[i, r(i, j)] ∪ [`(i, j), j] = [i, j] and [i, r(i, j)] ∩ [`(i, j), j] = [`(i, j), r(i, j)].

Thus [i, r(i, j)] and [`(i, j), j] are the only maximal strict subblocks of [i, j]. Moreover,
the connected components of [i, r(i, j)] ∩ [`(i, j), j] = [`(i, j), r(i, j)] are the intervals
[tk−1(i, j), tk(i, j)− 1] for k ∈ [q] where the sequence t0(i, j) < t1(i, j) < · · · < tq(i, j) is
defined by the boundary conditions t0(i, j) := `(i, j) and tq(i, j) := r(i, j) + 1, and the in-
duction tk(i, j) := r(tk−1(i, j), r(i, j) + 1) + 1.

Using these notations, the following statement is just a translation of Corollary 3.24.

Proposition 3.30. Consider an interval building set B on [n] and let B? :=Br{{i} | i ∈ [n]} denote
the blocks which are not singletons. Then the inequalities

•
∑
k∈[p] h[sk−1(i,j),sk(i,j)−1] > h[i,j] for all [i, j] ∈ B? with r(i, j) < `(i, j),

• h[i,r(i,j)]+h[`(i,j),j] > h[i,j]+
∑
k∈[q] h[tk−1(i,j),tk(i,j)−1] for all [i, j] ∈ B? with `(i, j) ≤ r(i, j),

provide an irredundant facet description of the type cone TC(F(B)).

Example 3.31. For instance

• for the building set containing all intervals of [n], we have `(i, j) = i+1 and r(i, j) = j−1, so
that the facet defining inequalities of the type cone are h[i,j−1]+h[i+1,j] > h[i,j]+h[i+1,j−1]
for all 1 ≤ i < j ≤ n (with the convention that h[i+1,j−1] = 0 for i+ 1 = j),

• for the building set containing all singletons {i} and all intervals [i] for i ∈ [n], we have
r(1, j) = j − 1 < j = `(1, j), so that the facet defining inequalities of the type cone
are h[j−1] + h{j} > h[j] for all 1 < j ≤ n.

We finally combine Propositions 1.2 and 3.30 to define kinematic nestohedra for interval building
sets, similar to the constructions of [AHBHY18, BMDM+18, PPPP19] for associahedra, cluster
associahedra and gentle associahedra.

Proposition 3.32. Consider an interval building set B on [n] and let B? :=Br{{i} | i ∈ [n]} denote
the blocks which are not singletons. Then for any p ∈ RB?

>0, the polytope Rp(B) ⊆ RB defined as

the intersection of the positive orthant
{
z ∈ RB

∣∣ z ≥ 0
}

with the hyperplanes

• zK = 0 for K ∈ κ(B),
•
∑
k∈[p] z[sk−1(i,j),sk(i,j)−1] − z[i,j] = p[i,j] for [i, j] ∈ B? with r(i, j) < `(i, j),

• z[i,r(i,j)]+z[`(i,j),j]−z[i,j]−
∑
k∈[q] z[tk−1(i,j),tk(i,j)−1] = p[i,j] for [i, j] ∈ B? with `(i, j) ≤ r(i, j),

is a nestohedron whose normal fan is the nested fan F(B). Moreover, the polytopes Rp(B) for

p ∈ RB?

>0 describe all polytopal realizations of F(B) (up to translations).
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(Arnau Padrol) Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Université, Paris
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