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THE STOCHASTIC HEAT EQUATION WITH MULTIPLICATIVE
LÉVY NOISE: EXISTENCE, MOMENTS, AND INTERMITTENCY

QUENTIN BERGER, CARSTEN CHONG, AND HUBERT LACOIN

Abstract. We study the stochastic heat equation (SHE) ∂tu = 1
2 ∆u + βuξ driven by a multi-

plicative Lévy noise ξ with positive jumps and amplitude β > 0, in arbitrary dimension d ≥ 1.
We prove the existence of solutions under an optimal condition if d = 1, 2 and a close-to-optimal
condition if d ≥ 3. Under an assumption that is general enough to include stable noises, we further
prove that the solution is unique. By establishing tight moment bounds on the multiple Lévy
integrals arising in the chaos decomposition of u, we further show that the solution has finite pth
moments for p > 0 whenever the noise does. Finally, for any p > 0, we derive upper and lower
bounds on the moment Lyapunov exponents of order p of the solution, which are asymptotically
sharp in the limit as β → 0. One of our most striking findings is that the solution to the SHE
exhibits a property called strong intermittency (which implies moment intermittency of all orders
p > 1 and pathwise mass concentration of the solution), for any non-trivial Lévy measure, at any
disorder intensity β > 0, in any dimension d ≥ 1.
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1. Introduction

We consider the stochastic partial differential equation
∂tu = 1

2∆u+ βuξ , u(0, ·) = u0, (1.1)
where ξ is a space-time Lévy noise, β > 0 is an intensity parameter and u0 is some initial condition.
In most parts of the paper, we assume that ξ is spectrally positive (i.e., only has positive jumps)
without a Gaussian part; extensions to the general case will be discussed in Section 3.3 below.
The equation (1.1) is usually referred to as the stochastic heat equation (SHE) with multiplicative
noise or the parabolic Anderson model (PAM); see [17, 28] for early works on the subject and
[30, 34, 63, 69, 70, 71] for a selection of more recent contributions in the case where ξ is Gaussian.
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We opt for the SHE denomination since the expression parabolic Anderson model is also often used
in the literature to designate the equation

∂tu = 1
2∆u+ βuV, (1.2)

where the multiplicative noise term V does not depend on time (see [60, 62] for examples of
continuous models and [52, 54, 72] for lattice models). In this case, Equation (1.2) is the real-valued
analogue of the Schrödinger equation associated with the Anderson Hamiltonian H = 1

2∆u+ βV .
A lattice version of this Schrödinger equation appears in one of the original papers concerning
Anderson localization [6, Equation (1)]; see also [54, Equation (0.2)]. The study of the localization
properties of H (which bears some connection to (1.2)) has been and remains an important area
of research in physics. We refer the reader to the reviews [80, 90] and the references therein.

Compared to (1.2), Equation (1.1) corresponds to a related but different problem: the diffusion
of particles in a random medium that varies at small time scales. This equation has been widely
studied in the literature, firstly and mostly in the case where ξ is a space-time Gaussian white
noise [17]. In this case, the equation can be related, via the Cole–Hopf transform, to the KPZ
equation, a model for the progression of growth fronts that has attracted a lot of attention in the
literature; see [5, 19, 61, 68] and the two review papers [45, 86]. Furthermore, in the case of a
Dirac initial condition, the solution to (1.1) has been used to describe the scaling limit of a one-
dimensional directed polymer in a random environment [3, 4], called the continuum directed polymer
model. With Lévy noise, the existence of solutions to (1.1) has only been proved under some
additional integrability assumptions on the Lévy measure; see [13, 36, 89] as well as Sections 1.2
and 1.3 below for a more detailed review. Recently, [14] further showed that directed polymers
in certain heavy-tailed environments have scaling limits that, as we shall show below, agree with
solutions to (1.1) with α-stable ξ, providing a physical motivation for studying the SHE with Lévy
noise.

Another central point of interest in past studies of the SHE is the phenomenon of localiza-
tion of solutions, or intermittency [28, 54, 96]. One striking manisfestation is the appearance of
sharp peaks at large times t in the random field (u(t, x))x∈Rd , where u is the solution to (1.1)
with initial condition u0 ≡ 1. These peaks result from mass concentration of u(t, ·) on a fraction
of space that decreases exponentially in t. A common way to quantify this concentration prop-
erty (see Section 1.4 for more details) is to prove that for some p < p′, the ratio of moments
E[u(t, x)p′ ]/E[u(t, x)p] grows exponentially in time, and to compute the growth rate. For the SHE
with Gaussian noise, this type of moment intermittency was studied in depth by, for example,
[17, 30, 33, 47, 69]. We also refer to [70, 71] for a path-by-path analysis of the intermittency peaks.
For the SHE with Lévy noise, the issue of moment intermittency was investigated only much more
recently in [38]. In [39], it was further proved that unusually large peaks (on a logarithmic scale)
already appear in the solution to the SHE with an additive Lévy noise.

Before we describe our main results in Section 2, we provide a detailed technical introduction
to Equation (1.1), which aims at being as self-contained as possible.

1.1. Lévy noise with positive jumps. Given a measure λ on (0,∞) that satisfies λ([1,∞)) <∞
and

∫
(0,1) z

2 λ(dz) < ∞, we provide a constructive definition of a pure-jump Lévy noise with
intensity λ. General Lévy noises, with a Gaussian part or with negative jumps, will be considered
in Section 3.3. Let ω be a Poisson point process on R×Rd×(0,∞) with intensity ν := dt⊗dx⊗λ(dz).
The law of ω is denoted by P. For convenience, we sometimes split ω into two processes ω< and
ω≥ that correspond to the restriction of ω to R×Rd× (0, 1) and R×Rd× [1,∞), respectively. We
let P< and P≥ denote the associated probabilities, so that P = P< ⊗ P≥. For a ∈ (0, 1], consider
the measure

ξaω :=
∑

(t,x,z)∈ω
z1{z≥a}δ(t,x) − κaL , (1.3)
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where L is the Lebesgue measure on R× Rd and κa =
∫

[a,1) z λ(dz). We also set

ξaω< :=
∑

(t,x,z)∈ω
z1{z∈[a,1)}δ(t,x) − κaL and ξω≥ :=

∑
(t,x,z)∈ω

z1{z≥1}δ(t,x) . (1.4)

Under the assumption
∫

(0,1) z
2 λ(dz) < ∞, the measure ξaω converges a.s., in the local Sobolev

space H−sloc (R × Rd) for any s > (1 + d)/2, towards a limit ξω ∈ H−sloc (R × Rd) (this is a standard
result, we refer to [13, Appendix A] for a proof of this exact statement). For k ≥ 1 and u ∈ R, the
Sobolev space Hu(Rk) is the Hilbert space of all Schwartz distributions ϕ ∈ S ′(Rk) for which

‖ϕ‖Hu(Rk) :=
(∫

Rk
(1 + |ξ|2)u|ϕ̂(ξ)|2 dξ

) 1
2
<∞,

where ϕ̂ denotes the Fourier transform of ϕ. When ϕ ∈ C∞c (Rk) (i.e., ϕ is smooth and compactly
supported), then ϕ̂ is defined by ϕ̂(ξ) :=

∫
Rk e

iξ·xϕ(x) dx. The local Sobolev space Hu
loc(Rk) is then

defined by
Hu

loc(Rk) :=
{
ϕ ∈ S ′(Rk) : ∀ρ ∈ C∞c (Rk), ρϕ ∈ Hu(Rk)

}
,

equipped with the topology induced by the family of seminorms {ϕ 7→ ‖ρϕ‖Hu(Rk) : ρ ∈ C∞c (Rk)}.
The random distribution ξω is called a Lévy (space-time white) noise with intensity or Lévy mea-
sure λ. In the the case where λ(dx) = αx−(1+α) dx for some α ∈ (0, 2), ξω is referred to as an
α-stable noise. We refer the reader to [7] and [46] for more background on Lévy noises. In the
remainder, we let F := (Ft)t≥0 be the completed natural filtration associated with ξω, that is,

Ft := σ
(
ω ∩ ([0, t]× Rd × (0,∞))

)
. (1.5)

Remark 1.1. Note that the Poisson process ω is measurable with respect to σ(ξω). Hence the
solution u to (1.1) that we construct in this paper (which is defined in terms of ω) is a function of
the noise ξ. Our choice to index by ω instead of ξ is only for convenience because many quantities in
our proofs are easier to express in terms of ω than in terms of ξ; in particular, this is not because
we need an extension of the probability space in our construction. We mention this explicitly
because there are martingale constructions which are similar to the one used in this paper and
that do require an extension of the probability space: this is, for instance, the case in Kahane’s
construction of Gaussian multiplicative chaos associated with a kernel of σ-positive type (see [66]
for the seminal paper or [88, Section 2.1] for a review).

1.2. Mild solutions to SHE. A random field (u(t, x))t>0, x∈Rd is called a mild solution to the
SHE (1.1) with initial condition u0 if for all t > 0 and x ∈ Rd,

u(t, x) =
∫
Rd
ρ(t, x− y)u0(dy) + β

∫ t

0

∫
Rd
ρ(t− s, x− y)u(s, y) ξ(ds, dy) a.s. (1.6)

The statement includes the requirement that the integrals be well-defined and finite. In (1.6),

ρ(t, x) := (2πt)−
d
2 e−

‖x‖2
2t

is the d-dimensional heat kernel and ‖·‖ denotes the Euclidean norm on Rd.

Remark 1.2. If
∫

(0,1) z λ(dz) =∞, the noise ξ does not have a locally finite total variation. In this
case, the stochastic integral on the right-hand side of (1.6) cannot be defined as a path-by-path
Lebesgue integral (i.e., an integral with respect to a random measure defined on [0, t] × Rd) and
must be interpreted in Itô’s sense.

In [89], it was shown that (1.1) has a unique mild solution if the Lévy measure λ satisfies

∃ q ∈ (1, 1 + 2
d) :

∫
(0,∞)

zq λ(dz) <∞ . (1.7)
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While this condition covers many examples, it is not fully satisfying, in particular because it rules
out α-stable noises for all α ∈ (0, 2). Subsequent papers that considered the case of α-stable noise
(e.g., [9, 13, 36, 37]) neither established uniqueness nor the finiteness of moments of the solution
to (1.1). At this point, let us also mention [81, 83], who investigated an SHE with stable noise but
with a non-Lipschitz nonlinearity.

1.3. The truncation approach to SHE. Prior to this article, the most general existence condi-
tion for the solution to the SHE (1.1) was obtained, for a Lévy noise with positive jumps, in [13],
but using a (possibly) weaker notion of solution than (1.6). The approach in [13] consists in solving
the equation

∂tu
a = 1

2∆ua + βuaξaω , ua(0, ·) = u0, (1.8)
with ξaω from (1.3) and then taking the limit of ua as a ↓ 0.

Remark 1.3. In [13], it is not proved that the obtained limit satisfies (1.6). In fact, the main focus
of [13] is not the SHE, but rather constructing a continuum path measure on Rd: the continuum
directed polymer in Lévy noise. This is further discussed in Section 3.1 below.

In order to review the results of [13], let us start by introducing some important notations and
quantities. For 0 < s < t <∞, x, y ∈ Rd, let Xk(s, t) := {(t1, . . . , tk) ∈ Rk : s < t1 < · · · < tk < t}
denote the k-dimensional simplex delimited by s and t and define, for t ∈ Xk(s, t) and x ∈ (Rd)k,

ρs,x;t,y(t,x) =
k+1∏
i=1

ρ(∆ti,∆xi) , (1.9)

where
∆ti := ti − ti−1 and ∆xi := xi − xi−1 , (1.10)

with the convention that t0 := s, x0 := x and tk+1 := t, xk+1 := y. Given a > 0 we let |ξaω| and
ξa,+ω denote the total variation and the positive part of ξaω (considered as a measure), that is,

|ξaω| = ξaω + 2κaL and ξa,+ω = ξaω + κaL. (1.11)
We define the point-to-point partition function associated with (1.8) and truncated Lévy noise ξaω
as

Zω,aβ (s, x; t, y) := ρ(t− s, y − x) +
∞∑
k=1

βk
∫
Xk(s,t)×(Rd)k

ρs,x;t,y(t,x)
k∏
i=1

ξaω(dti, dxi), (1.12)

under the assumption that the sum of integrals is absolutely convergent, that is,
∞∑
k=0

βk
∫
Xk(s,t)×(Rd)k

ρs,x;t,y(t,x)
k∏
i=1
|ξaω|(dti,dxi) <∞. (1.13)

It is proved in [13, Prop. 2.5 and 2.6] that (1.13) holds if and only if∫
[1,∞)

(log z)
d
2 λ(dz) <∞. (1.14)

The case where x = 0 and s = 0 is of particular interest to us, hence we introduce the notational
convention

Zω,aβ (x; t, y) := Zω,aβ (0, x; t, y), Zω,aβ (t, x) := Zω,aβ (0, 0; t, x), (1.15)
which applies similarly to other quantities such as Xk(t) := Xk(0, t) and ρt,x(t,x) := ρ0,0;t,x(t,x).
When the condition (1.14) holds, Zω,aβ (·, ·) is a mild solution solution to the SHE with noise ξaω
and initial condition δ0. Indeed, from (1.13), the integrals are absolutely convergent, so (1.12) can
be rewritten as

Zω,aβ (t, x) = ρ(t, x) + β

∫ t

0

∫
Rd
ρ(t− s, x− y)Zω,aβ (s, y) ξaω(ds, dy) . (1.16)
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In the same manner, Zω,aβ (y; ·, ·) is a mild solution to the SHE with initial condition δy and noise ξaω,
and given some uniformly bounded u0 : Rd → [0,∞), the random field ua defined by

ua(t, x) :=
∫
Rd
u0(y)Zω,aβ (y; t, x) dy (1.17)

is a mild solution to the SHE with initial condition u0 and noise ξaω; see [13, Prop. 2.19].

Remark 1.4. Note that by translation invariance, we have(
Zω,aβ (s, x; t, y)

)
y∈Rd

(d)=
(
Zω,aβ (t− s, y − x)

)
y∈Rd

(d)=
(
e
− ‖x−y‖

2+‖y‖2
2(t−s) Zω,aβ (t− s, y)

)
y∈Rd

. (1.18)

For this reason, we present most results only for the case s = 0 and x = 0, without loss of generality.

The next step is to investigate existence and “relevance” of the limit Zω,aβ (t, x) as a ↓ 0. If
(1.14) holds, integrating the “Lebesgue part” of ξaω (see [13, Prop. 2.15] for details), we obtain the
alternative expression

Zω,aβ (t, x) = e−βκat
(
ρ(t, x) +

∞∑
k=1

βk
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξa,+ω (dti,dxi)
)
, (1.19)

which entails the positivity of Zω,aβ (t, x). Still under (1.14), considering the reverse filtration
G := (Ga)a∈(0,1) defined by

Ga := σ(ξaω) = σ(ω ∩ (R× Rd × [a,∞))), (1.20)
one can observe that for almost every realization of ω≥, (Zω,aβ (t, x))a∈(0,1] is a non-negative càdlàg
time-reversed P<-martingale with respect to G (cf. [13, Lemma 3.5]) and thus admits a limit as
a ↓ 0. To determine whether lima→0Zω,aβ (t, x) is a good candidate for being a solution to (1.6),
a first step is to determine whether this limit is degenerate or not. The answer depends on the
intensity measure λ and the following result summarizes the main findings of [13, Thm. 2.7 &
Prop. 2.10–2.15].

Theorem A. Assume that λ satisfies the condition in (1.14).
(i) If, in addition, 

∫
(0,1)

z2 λ(dz) <∞ if d = 1,

∃ p ∈
(
1, 1 + 2

d

)
:
∫

(0,1)
zp λ(dz) <∞ if d ≥ 2,

(1.21)

then for every 0 < s < t <∞ and x, y ∈ Rd, we have
Zωβ (s, x; t, y) := lim

a→0
Zω,aβ (s, x; t, y) > 0 P-a.s. (1.22)

Moreover, the convergence holds in L1(P<) for P≥-a.e. realization of ω≥, that is,

lim
a→0

E<
[∣∣∣Zωβ (s, x; t, y)−Zω,aβ (s, x; t, y)

∣∣∣] = 0 P≥-a.s.

(ii) If, on the other hand, we have

∫
(0,1)

z2 λ(dz) =∞ if d = 1,∫
(0,1)

z2|log z|λ(dz) =∞ if d = 2,∫
(0,1)

z1+ 2
d λ(dz) =∞ if d ≥ 3,

(1.23)

then P-a.s., we have lima→0Zω,aβ (s, x; t, y) = 0.
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One can also consider a free-end (or point-to-line) version of the partition function with truncated
Lévy noise, given by

Zω,aβ (s, x; t, ∗) :=
∫
Rd
Zω,aβ (s, x; t, y) dy. (1.24)

Theorem A applies to Zω,aβ (s, x; t, ∗) mutatis mutandis. Following the convention (1.15), we use
the notations Zωβ (s, x; t, ∗), Zωβ (x; t, ∗) and Zωβ (t, ∗) for the limits we obtain as a tends to zero
(as a consequence of the reverse martingale property). Furthermore, under the assumptions of
Theorem 2.1, [13, Prop. 2.20] showed that lima→0 u

a(t, x) exists a.s. for ua defined in (1.17),
without proving that the limit is a solution to (1.6). Since moments of the measure λ play an
important role in our assumptions, we introduce a notation for partial moments of the measure λ
by setting

µa,b(p) :=
∫

[a,b)
zp λ(dz) , (1.25)

for 0 ≤ a ≤ b ≤ ∞. We simply write µ := µ1,∞(1) for the first moment restricted to [1,∞).

Remark 1.5. In the case of a finite mean µ, given t > 0 and x ∈ R, the convergence of both
Zω,aβ (t, x) and Zω,aβ (t, ∗) as a→ 0 also holds in L1(P).

If µ <∞, it is convenient to consider the normalized partition functions, defined as
Z̄ω,aβ (t, x) := e−βµtZω,aβ (t, x), Z̄ω,aβ (t, ∗) := e−βµtZω,aβ (t, ∗). (1.26)

In the same manner, we can center the noise by setting
ξ̄aω := ξaω − µL, (1.27)

which has the effect that integrals with respect to ξ̄aω have mean zero. Note that we have

Z̄ω,aβ (t, x) = ρ(t, x) +
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξ̄aω(dti, dxi) (1.28)

and a similar identity for Z̄ω,aβ (t, ∗).

1.4. Intermittency and related notions. Consider a random field (v(t, x))t>0,x∈Rd where d ≥ 0;
when d = 0 this means that (v(t))t>0 is a stochastic process only indexed by t. Assuming that the
moment Lyapunov exponents

γ(p) = γ(v, p) := lim
t→∞

1
t

logE
[
|v(t, x)|p

]
(1.29)

exist on the extended real line for all p ∈ (0,∞) and are independent of x ∈ Rd, we let
I = I(v) := {p ≥ 0 : γ(v, p) <∞}, (1.30)

with the convention γ(0) = 0. Further assuming |γ(1)| < ∞ in the following, we define the
normalized moment Lyapunov exponents of v by

γ̄(p) := γ(p)− p γ(1). (1.31)
Clearly, γ̄(1) = 0. Following the terminology of [28, 54, 96], if p > 1 and |γ(1)| < ∞, we say
that v exhibits (moment) intermittency of order p if γ̄(p) ∈ (0,∞). We say that v exhibits full
intermittency if v is intermittent of all orders p ∈ (1,∞) ∩ I.

Let us also introduce some new terminology when we consider moments of order p ∈ (0, 1):
we say that v exhibits strong intermittency (in analogy with “very strong disorder” used in the
directed polymer context, see the discussion below) if γ̄(p) ∈ (−∞, 0) for some p ∈ (0, 1). As
p 7→ γ̄(p) is convex on I (cf. Proposition 2.9 (i) below), strong intermittency implies γ̄(p) < 0
for all p ∈ (0, 1) but also that γ̄(p) > 0 for all p > 1. Thus, strong intermittency implies full
intermittency. As Section 3.2 below reveals, strong intermittency, plus some ergodic properties in
x, yields a geometric characterization of intermittency: we have a mass concentration of the paths
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of v at large times, characterized by the appearance of exponentially large peaks on islands covering
only an exponentially small fraction of space (a more quantitative study of this phenomenon was
undertaken in [70, 71], and we also refer to [53] for a similar work concerning the parabolic Anderson
model on Zd).

Intermittency for the SHE. Let us first discuss the known intermittency result in a semi-discrete
setting (this is the setup where the most is known). For the SHE on Zd with either a Gaussian or
a finite-variance Lévy noise, the results of [1, 2, 28] and [16] show that

• if d = 1, 2, then strong intermittency holds for every β > 0;
• if d ≥ 3, then strong intermittency holds if and only if β > β̄c for some β̄c > 0.

For the SHE on R driven by a multiplicative Gaussian white noise ξ, the analysis of intermittency
has a long history: if ξ has variance β2 and u0 ≡ 1, the authors of [17] derived the formula

γ(p) = γ(u, p) = p(p2 − 1)
24 β4 (1.32)

for p ∈ N and proved it for p = 2. Later, a proof of (1.32) was given in [30] and [78] for all integers
p ∈ N and all real numbers p ≥ 2, respectively. The formula (1.32) for all p > 0 (and in particular,
strong intermittency) was only established recently in [47, 56] using integrable probability methods.
For d ≥ 2, there is no notion of solution to the SHE with a Gaussian space-time white noise (cf.
Section 3.3). For the SHE on Rd driven by a Gaussian noise that is white in time and colored
in space with, say, a compactly supported correlation function, one has a similar picture to the
discrete-space setting: strong intermittency always holds if d = 1, 2 and only for large β if d ≥ 3;
see [32, 75]. The situation may be different if the noise has long-range spatial correlation, as shown
in [32, 51, 75].

For the solution to the Lévy-driven SHE, under the assumption (1.7), [38] established intermit-
tency of order p in the following cases: for all p ∈ (1, 3) if d = 1; for p close enough to (but smaller
than) 1 + 2

d if d ≥ 2; for any fixed p ∈ (1, 1 + 2
d) in any dimension d ≥ 2 if β > βp,d for some

βp,d > 0. Whether strong intermittency (or full intermittency in dimensions d ≥ 2) holds in the
Lévy case or not, has been an open problem so far.

Very strong disorder for the directed polymer model. To complete the former discussion, let us
mention some results that have been proved for the directed polymer in a random environment
(DPRE), whose partition function formally corresponds to the solution to an SHE in discrete
space and time. In the context of the directed polymer model, the notion equivalent to strong
intermittency is that of very strong disorder (see for instance [4, 27, 74]). For cultural reasons
(DPRE is a statistical mechanics model), very strong disorder is a property of the free energy, that
is, of the asymptotic behavior of E[logZβ(N, ∗)], rather than a property of the moments of order
p ∈ (0, 1) of the partition function; but this is not relevant for the present discussion. Very strong
disorder has been proved to hold for directed polymers in a various settings:

• When d = 1 [43] and d = 2 [74] for any β > 0;
• When d ≥ 3, if the environment has a power-law distribution with exponent α ∈ (1, 1 + 2

d ],
for any β > 0, in [93] (this roughly corresponds to α-stable noise in the SHE context).

The method used in [74] does not rely much on the discrete nature on the model and has been
adapted to prove analogous results when either space or time are continuous: Let us mention the
case of the SHE on Zd with Gaussian white noise [16], the SHE on Rd with a Gaussian noise
which is white in time but colored in space [75, Theorem 1.2], or directed polymers in a Poisson
environment [40, Remark 3.4.3] (the partition function of which corresponds to that of the SHE
with a spatially convoluted Lévy noise). In fact, the techniques can also be adapted to the SHE
with Lévy noise, and the content of Section 9.2 in the present paper is strongly inspired by the
proofs in [74] (for d = 1) and [93] (for the case of heavy-tailed noise).
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On the other hand there are other situations where the directed polymer model does not display
very strong disorder:

• When d ≥ 3, if the environment has bounded second moment and β is small [22, 64];
• When d ≥ 3, if the environment has a power-law distribution with exponent α > 1 + 2

d and
β is sufficiently small [93].

In both cases, it has been shown that the directed polymer displays weak disorder, a property
which implies but goes beyond the absence of very strong disorder. Weak disorder implies, for
instance, that the sample paths drawn from the polymer measure have diffusive behavior [44].

For this reason, the question of whether strong intermittency holds for the SHE with Lévy
space-time white noise is particularly intriguing when d ≥ 3 and β is small.

2. Main results

Our main results can be summarized as follows:
• Firstly, we considerably reduce the gap conditions (1.21) and (1.23) leave regarding the non-

degeneracy of Zωβ (t, x) if d ≥ 2. We obtain, in Theorem 2.1 and Proposition 2.2, a necessary and
sufficient condition in dimension d = 2 and a close-to-optimal condition in dimensions d ≥ 3. We
further prove the Lp-convergence of Zω,aβ (t, x) to Zωβ (t, x) for all p ∈ (1, 1 + 2

d) as soon as the
noise ξω has a finite pth moment (i.e., µ1,∞(p) <∞).
• Secondly, in Theorem 2.5, we show that the limit Zωβ (t, x), when non-degenerate, is indeed a

mild solution to the SHE with initial condition δ0. Theorem 2.7 further establishes the uniqueness
of solutions under conditions that are general enough to include the case of α-stable noise.
• Thirdly, after establishing the existence of the moment Lyapunov exponents of Zωβ (t, ∗) and

Zωβ (t, x) in Proposition 2.8, we show our most striking result in Theorem 2.10: the solution to the
SHE with a multiplicative Lévy noise and δ0-initial condition exhibits strong intermittency—and
thus, in particular, full intermittency—for any non-trivial environment with finite expectation, that
is, for any β > 0, in any dimension d ≥ 1, for any non-trivial intensity measure λ with µ <∞. In
Theorems 2.11 and 2.12, we further complement this result by deriving sharp asymptotic estimates
on the moment Lyapunov exponents as β tends to 0.

The proof of the aforementioned results relies on two main methodological achievements:
• By combining decoupling inequalities with an iterative partition of Xk(t)× (0,∞)k (the inte-

gration domain of (t, z)), we establish, in Propositions 6.1 and 6.3, sharp moment bounds of order
p > 1 on the multiple Lévy integrals that arise in the series representation (1.28) of Z̄ω,aβ (t, x).
From these, we will then derive the upper bounds for p > 1 and, by convexity, the lower bounds
for p < 1 in Theorems 2.11 and 2.12. The proof of Theorems 2.1, 2.5 and 2.7 will also rely on
(variants of) these moment bounds.
• By combining a change-of-measure technique with a coarse-graining approach, summarized

in Lemma 9.1, we obtain moment upper bounds of order p ∈ (0, 1) for Zωβ (t, ∗) which are then
used to show Theorem 2.10 as well as the lower bounds in Theorems 2.11 and 2.12. Moreover, we
apply a simpler version of this method to prove Proposition 2.2. While the coarse-graining and
change-of-measure approach is derived from that used in [74], which itself was inspired from earlier
work on disordered pinning [50, 58, 91], its implementation to prove Proposition 9.5 (which is the
most important part of the proof of Theorem 2.10) and Proposition 2.2 relies on important novel
ideas, which we discuss in more details at the beginning of Section 9).

2.1. Optimal conditions for the non-degeneracy of Zωβ (t, x). When d ≥ 2, Theorem A
displays a gap between the sufficient condition (1.21) and the necessary condition (1.23) for the
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non-degeneracy of Zωβ (s, x; t, y). Our first result reduces this gap when d ≥ 3 and identifies the
necessary and sufficient condition in dimension d = 2. Our new sufficient condition reads as follows:

∫
(0,1)

z2 λ(dz) <∞ if d = 1 ,∫
(0,1)

z1+ 2
d |log z|λ(dz) <∞ if d ≥ 2 .

(2.1)

For later reference, we also included the case d = 1, which is identical to (1.21).
Theorem 2.1 (Non-degeneracy). Let d ≥ 1 and assume that (1.14) and (2.1) hold. Then, for any
t and x, we have

Zωβ (t, x) := lim
a→0
Zω,aβ (t, x) > 0 P-a.s. (2.2)

In addition, for any p ∈ [1, 1 + 2
d), we have

lim
a→0

E<
[∣∣∣Zω,aβ (t, x)−Zωβ (t, x)

∣∣∣p] = 0 P≥-a.s. (2.3)

If furthermore µ1,∞(p) <∞, then

lim
a→0

E
[∣∣∣Zω,aβ (t, x)−Zωβ (t, x)

∣∣∣p] = 0. (2.4)

The same convergence results hold for the free-end partition function Zωβ (t, ∗).

Together with (1.23), this shows that (2.1) is necessary and sufficient for the non-degeneracy of
Zωβ (t, x) and Zωβ (t, ∗) in dimension d = 2. If d ≥ 3, the following result improves upon the necessary
condition in (1.23).
Proposition 2.2 (Degeneracy). Suppose that (1.14) holds and that d ≥ 3. If for some ε > 0, we
have that ∫

(0,e−e)

z1+ 2
d |log z|

(log|log z|)5+ 4
d

+ε
λ(dz) =∞ , (2.5)

then for all t > 0 and x ∈ Rd, we have lima→0Zω,aβ (t, x) = lima→0Zω,aβ (t, ∗) = 0 P-a.s.

While there is still a small gap between (2.1) and (2.5) if d ≥ 3, we believe that (2.1) is necessary
and sufficient for non-degeneracy.
Remark 2.3. There is a small abuse of language when we say that we establish an almost necessary
and sufficient condition for existence of solutions to the SHE, since Proposition 2.2 does not a priori
exclude the existence of solutions that are not given by limits of solutions with truncated noise.
Remark 2.4. Besides replacing (1.21) by the weaker condition (1.23) and the inclusion of Lp-
convergence, Theorem 2.1 contains a third important improvement. Contrary to Theorem A,
the proof of (2.3), which is sufficient to establish non-triviality of the limit, does not rely on the
positivity of Zω,aβ (t, x) and can thus be directly adapted to the case of signed noise, an observation
that we will further elaborate on in Section 3.3. On the other-hand, our proof of Proposition 2.2
strongly relies on having only positive jumps.
2.2. Existence and uniqueness of solutions to SHE. Our next result shows that the point-
to-point partition function Zωβ (t, x) solves the SHE with Lévy noise ξω and initial condition δ0.

Theorem 2.5 (Existence). Suppose that (1.14) and (2.1) hold.
(i) The point-to-point partition function Zωβ (t, x) is a mild solution to the SHE (1.6) with

initial condition δ0, that is, for every (t, x) ∈ (0,∞) × Rd, the stochastic integral below is
well defined and the following identity holds a.s.:

Zωβ (t, x) = ρ(t, x) + β

∫ t

0

∫
Rd
ρ(t− s, x− y)Zωβ (y, s) ξω(ds, dy) . (2.6)
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(ii) If u0 is a locally finite signed measure on Rd such that

lim sup
r→∞

r−2 log
(
|u0|([−r, r]d)

)
<

1
2T (2.7)

for some T > 0, then

v(t, x) :=
∫
Rd
Zωβ (y; t, x)u0(dy) (2.8)

is well defined and finite for all (t, x) ∈ [0, T ]×Rd and is a solution to the SHE (1.6) with
initial condition u0, on [0, T ]× Rd.

Remark 2.6. The proof presented in this paper actually implies that

Zωβ (t, x) = ρ(t, x) +
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξω(dti, dxi), (2.9)

where the right-hand side is well defined as a convergent sum of iterated stochastic integrals (see
Section 4.3 for the corresponding framework).

Under the stronger condition (1.21), we prove that the solution found above is unique.

Theorem 2.7 (Uniqueness). We assume that λ satisfies (1.14) and (2.1) and that u0 and T
satisfy (2.7). We let (v(t, x))t∈[0,T ], x∈Rd be the solution to the SHE defined in (2.8). Then there
exists θ > 1 such that for all p ∈ (1, 1 + 2

d), t ∈ (0, T ] and x ∈ Rd, we have
E<
[
|v(t, x)|p

]
<∞ P≥-a.s.,∫

(0,t)×Rd
ρ(θ(t− s), x)pE<

[
|v(s, x)|p

]
ds dx <∞ P≥-a.s.

(2.10)

Furthermore, if λ satisfies (1.21), v is the unique—up to modifications—predictable random field
that is a mild solution to the SHE (1.6) and satisfies (2.10).

2.3. Lyapunov exponents and intermittency. Having established the finiteness of moments in
Theorem 2.1, we now investigate the growth rate of these moments as t→∞ and their dependence
on β. Our first task is to establish the existence of the (moment) Lyapunov exponents.

Proposition 2.8. Assume that (1.14) and (2.1) hold.
(i) If p ∈ (0, 1 + 2

d) and µ1,∞(p) <∞, then the moment Lyapunov exponent

γβ(p) := γ(Zωβ (t, ∗), p) = lim
t→∞

1
t

logE
[
Zωβ (t, ∗)p

]
(2.11)

exists and is finite.
(ii) The exponents γβ(p) also capture the growth of the point-to-point partition function, in the

sense that
lim
t→∞

1
t

logE
[
Zωβ (t, 0)p

]
= γβ(p) . (2.12)

By [38, Theorem 3.1], we have E[Zωβ (t, ∗)1+2/d] = E[Zωβ (t, 0)1+2/d] = ∞ for any t > 0 and non-
trivial λ. We also have E[Zωβ (t, ∗)p] = ∞ if µ1,∞(p) = ∞. Hence, γβ(p) is well defined (possibly
infinite) for every p ≥ 0. Letting

pmax = pmax(λ) := sup
{
p ∈ [0, 1 + 2

d) : µ1,∞(p) <∞
}
, (2.13)

we obtain from the above observation that the set
Iλ := I(Zωβ (t, ∗)) = {p ≥ 0 : γβ(p) <∞} (2.14)

is either [0, pmax) or [0, pmax], the latter occurring if pmax < 1 + 2
d and µ1,∞(pmax) <∞.
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The next result lists a few (partly classical) qualitative properties of γβ(p). If µ <∞ (in which
case 1 ∈ Iλ), we write

γ̄β(p) := γ̄(Zωβ (t, ∗), p) = γβ(p)− pγβ(1) = γβ(p)− pµ = γ(Z̄ωβ (t, ∗), p).
Note that by Jensen’s inequality, we have γ̄β(p) ≥ 0 for p > 1 and γ̄β(p) ≤ 0 for p < 1.

Proposition 2.9. Under the assumptions of Proposition 2.8, we have the following:
(i) The map p 7→ γβ(p) is convex on Iλ.
(ii) If µ <∞ and p ∈ Iλ, the map β 7→ γ̄β(p) is non-decreasing if p ≥ 1 and non-increasing if

p ∈ (0, 1].
(iii) If pmax > 1, then p 7→ γβ(p)/p is strictly increasing on {p ∈ Iλ : γβ(p)− pγβ(1) > 0}.

Our next goal is to understand under what conditions we have strong intermittency. Based on
the results reviewed in Section 1.4, one may conjecture that the solution to the SHE on Rd driven
by a Lévy noise (that is white in time and space) exhibits a similar behavior: strong intermittency
in dimensions d = 1, 2 and strong intermittency only for large β if d ≥ 3. This turns out to be a
fallacy: the SHE with a non-trivial Lévy noise always exhibits strong intermittency, irrespective
of β, λ, d or p.

Theorem 2.10 (Strong intermittency). Let d ≥ 1. If λ 6≡ 0, µ <∞ and β > 0, we have γ̄β(p) < 0
for p ∈ (0, 1) and γ̄β(p) > 0 for p ∈ Iλ ∩ (1,∞).

To shed more light on this peculiar result, we further investigate the detailed behavior of γ̄β(p)
in the small β limit. Let us start with the case of light-tailed noise at infinity.

Theorem 2.11 (Light-tailed noise). Assume that (2.1) holds.
(i) If d = 1 and µ1,∞(2) < ∞, then for every p ∈ Iλ \ {1}, there exists Cp ∈ (0,∞) such that

for every β ∈ (0, 1], we have
(Cp)−1β4 ≤ |γ̄β(p)| ≤ Cpβ4. (2.15)

In the special case p = 2, we have γ̄β(2) = 1
4µ0,∞(2)2β4.

(ii) If d ≥ 2 and µ1,∞(1 + 2
d) <∞, then for every p ∈

(
0, 1 + 2

d

)
\ {1}, we have

lim
β→0

log | log |γ̄β(p)||
| log β| = 1 + 2

d . (2.16)

If d = 1 and d = 2, these results match the asymptotics for the free energy of the directed
polymer in a random environment (see [84] for d = 1 and [11] for d = 2). In dimensions d ≥ 3,
however, one has in the directed polymer setting that γ̄β(p) = 0 for sufficiently small β, see [22]
and [93, Prop. 4.1]. Note that (2.16) implies that |γ̄β(p)| vanishes very fast as β goes to zero. As
a consequence, there is not a lot of margin to play with to prove that |γ̄β(p)| > 0 when β is small,
and the proof indeed relies on a fine tuning of parameters. The behavior of γ̄β(p) is different if
λ displays an heavier tail at infinity. In this case, γ̄β(p) rather has a power-law behavior close to
β = 0. Let us introduce

νp := 1− d
2(p− 1). (2.17)

Theorem 2.12 (Heavy-tailed noise). Assume that (2.1) holds and that µ <∞.
(i) If µ1,∞(q) <∞ for some q ∈ (1,min(2, 1 + 2

d)), then for every p ∈ (0, q] \ {1}, there exists
Cp,q ∈ (0,∞) such that for every β ∈ (0, 1],

|γ̄β(p)| ≤ Cp,qβ
q
νq , (2.18)

which implies

lim inf
β→0

log|γ̄β(p)|
log β ≥ q

νq
. (2.19)
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(ii) If µ1,∞(q) =∞ for some q ∈ (1,min(2, 1 + 2
d)), then for every p ∈ (0, q) \ {1},

lim sup
β→0

log|γ̄β(p)|
log β ≤ q

νq
. (2.20)

In particular, if

lim
z→∞

log λ([z,∞))
log z = −α (2.21)

for some 1 < α < min(2, 1 + 2
d) (which includes the α-stable case), then for all p ∈ (0, α) \ {1}

lim
β→0

log|γ̄β(p)|
log β = α

να
. (2.22)

2.4. Overview of the rest of the paper. The remainder of the paper is organized as follows.
In Section 3, we discuss some extensions of our results and some related conjectures concerning
geometric localization. Section 4 introduces a few important tools that are needed throughout the
paper. In Section 5, we prove all basic properties concerning the moment Lyapunov exponents, that
is, Propositions 2.8 and 2.9. Section 6 is devoted to proving our first main technical achievement:
Propositions 6.1 and 6.3, which contain upper estimates on moments of order p > 1 of Zωβ (t, x). In
Section 7, we then use these moment bounds to derive Theorem 2.1 and the first halves of Theorems
2.11 and 2.12. The existence and uniqueness of solutions (i.e., Theorems 2.5 and 2.7) are addressed
in Section 8. Finally, Section 9 gathers the proofs that rely on a coarse-graining/change-of-measure
approach summarized in Lemma 9.1. In particular, we show the remaining halves of Theorems
2.11 and 2.12 as well as Proposition 2.2. The Appendix contains proofs of some of the results
introduced in Section 4.

3. Extensions and consequences of our results

3.1. Continuum directed polymer model. As mentioned in Remark 1.3, the main purpose of
introducing Zω,aβ (t, ∗) in [13] is not to study the SHE but rather to define a random probability
measure on the space of continuous functions

C0([0, T ]) := {θ : [0, T ]→ Rd : θ continuous and θ(0) = 0},

called the continuum directed polymer in a Lévy environment. For T > 0 the directed polymer in
the truncated environment ξaω is the probability measure Qω,a

T,β on C0([0, T ]) defined via the integral
of bounded Borel measurable functions as follows:

Qω,a
T,β(f) = e−βκat

Zω,aβ (T, ∗)

(
Q
[
f((Bt)t∈[0,T ])

]
+
∞∑
k=1

βk
∫
Xk(T )×(Rd)k

ρ(t,x, f)
k∏
i=1

ξa,+ω (dti,dxi)
)
, (3.1)

where ρ(t,x, f) := Q[f((Bt)t∈[0,T ]) | ∀i ∈ JkK : Bti = xi] and JkK := {1, . . . , k}. Here, Q denotes
the distribution of a standard d-dimensional Brownian motion and, with some light abuse of
notation, Q[· | ∀i ∈ JkK : Bti = xi] is the law of the concatenation of Brownian bridges obtained
by conditioning a Brownian motion on the null event {∀i ∈ JkK : Bti = xi}. The main result in
[13] is to prove that Qω,a

T,β converges in distribution to a limit Qω
T,β under the assumptions (1.14)

and (1.21). By the findings of the present paper, we can replace the assumption (1.21) by (2.1) in
the results of [13].

Theorem 3.1. If the measure λ satisfies (1.14) and (2.1), then there exists a measure Qω
T,β on

C0([0, T ]) such that almost surely, for every bounded continuous function f in C0([0, T ]), we have

lim
a→0

Qω,a
T,β(f) = Qω

T,β(f). (3.2)
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Proof. The convergence of Qω,a
T,β(f) for a fixed f is a consequence of Theorem 2.1. Indeed, Qω,a

T,β(f)
can be written as a quotient Zω,aβ (T, f)/Zω,aβ (T, ∗). Theorem 2.1 asserts that the denominator
converges to a positive limit and the martingale argument below (1.20) entails the almost-sure
convergence of Zω,aβ (T, f). The fact that convergence holds simultaneously for all continuous
bounded functions is a consequence of tightness. The proof given in [13, Section 4.8] shows that
the family of non-normalized measures {Zω,aβ (T, ∗) × Qω,a

T,β : a ∈ (0, 1]} is tight, with no other
assumption than (1.14). The tightness of {Qω,a

T,β : a ∈ (0, 1]} then follows from the almost-sure
positivity of Zω,aβ (T, ∗); cf. (2.2). �

3.2. Geometric localization of the solution to the SHE.

The case u0 ≡ 1. The intermittency result given in Theorem 2.10 (especially the part concerning
strong intermittency) has direct implications on the distribution of mass for the solution to (1.6)
with initial condition u0 ≡ 1. To illustrate this, let us present an argument from [17, §2.4], adapted
to the case of non-integer moments—the argument in [17, §2.4] is about mass concentration for
the square of the solution.

If µ <∞ and (2.1) holds, then the solution to (1.6) with u0 ≡ 1 is given by

U(t, x) :=
∫
Rd
Zωβ (y; t, x) dy.

Let us define the normalized solution Ū(t, x) := e−µtU(t, x). By symmetry, we have that Ū(t, x) (d)=
Z̄ωβ (t, ∗) for any fixed x. For a fixed value of t, let us assume that the field Ū(t, x)x∈Rd is ergodic
(in the case of a Gaussian noise, this was proved in [31]): we then get

lim
R→∞

∫
‖x‖≤R Ū(t, x) dx

σdRd
= E

[
Z̄ωβ (t, ∗)

]
= 1 , (3.3)

where σd = πd/2Γ(d2 + 1) is the volume of the unit ball in Rd. On the other hand, if p ∈ (0, 1) and
γ̄β(p) < 0 (which is ensured by Theorem 2.10), then for any α ∈ (0, γ̄β(p)

p−1 ) we have

lim
R→∞

∫
‖x‖≤R Ū(t, x)1{Ū(t,x)≤eαt} dx

σdRd
= E

[
Z̄ωβ (t, ∗)1{Z̄ω

β
(t,∗)≤eαt}

]
≤ e(1−p)αtE[Z̄ωβ (t, ∗)p] ≤ e[(1−p)α+γ̄β(p)]t,

(3.4)

where the last inequality relies on super-multiplicativity, see Lemma 5.1 below. Setting δ :=
α(p− 1)− γ̄β(p) > 0 and combining (3.3) and (3.4), we obtain

lim
R→∞

∫
‖x‖≤R Ū(t, x)1{Ū(t,x)≥eαt} dx∫

‖x‖≤R Ū(t, x) dx
≥ 1− e−δt . (3.5)

Note that we also have

lim
R→∞

∫
‖x‖≤R 1{Ū(t,x)≥eαt} dx

σdRd
= P

(
Z̄ωβ (t, ∗) ≥ eαt

)
≤ e−αt , (3.6)

thanks to Markov’s inequality. Hence, the two identities (3.5) and (3.6) show that in the large t
limit, the mass of the solution concentrates on a very small portion of space.

The case u0 = δ0. Although this is much more difficult to prove rigorously, we believe that inter-
mittency in Theorem 2.10 also has implications on the localization of the solution Zω,aβ (t, x) to the
SHE with δ0 initial condition. Let us consider the probability measure on Rd given by

Pωβ,t(dx) =
Zω,aβ (t, x)
Zω,aβ (t, ∗) dx.
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When β = 0, Pωβ,t is simply ρ(t, x) dx. In this case, for large t, its mass is roughly homogeneously
spread out on the centered Euclidean ball of radius t1/2. By contrast, if β > 0, the large time
behavior of Pωβ,t(dx) is conjectured to be different: the mass of Pωβ,t should typically be concentrated
on a set of bounded volume (the volume here should not depend on t).

Conjecture 1. Given ε > 0 and β > 0, there exist two constants k = k(ε, β) ∈ N and R =
R(ε, β) > 0 such that for all t ≥ 0,

P
(
∃z1, z2, . . . , zk ∈ Rd : Pωβ,t

( k⋃
i=1

B(zi, R)
)
≥ 1− ε

)
≥ 1− ε,

where B(z,R) := {x ∈ Rd : ‖x− z‖ < R}.

A weaker version of the above conjecture is that localization holds in Cesàro mean, that is, for
ε > 0 and β > 0 fixed, there exist two constants k = k(ε, β) ∈ N and R = R(ε, β) > 0 such that

lim inf
T→∞

1
T

∫ T

0
max

z1,...,zk∈Rd
Pωβ,t

( k⋃
i=1

B(zi, R)
)

dt ≥ 1− ε. (3.7)

In fact, such statements have been rigorously proved for a discrete analogue of the SHE: the
partition function of the discrete polymer in Zd. In this setup, the link between very strong
disorder and localization in the Cesàro sense was first explored in [26, 42]. More recently, in [10],
it was shown that for directed polymers, very strong disorder implies (3.7); the result was extended
to continuous space and discrete time in [8]. The approach in [8, 10] is to prove that the measure
1
T

∫ T
0 Pωβ,t dt converges to a limiting object, using a specific topology (introduced in [82]) on the

space of finite measures on Rd. The corresponding localization result has also been shown for
a continuum directed polymer model (and SHE) with spatially convoluted Gaussian white noise
in [23], using a Gaussian multiplicative chaos approach.

While many details of the proofs presented in [8, 10] use the discrete nature of the polymer
model, the general ideas the proof is based on do not seem to rely on it. For this reason, we believe
that while there are technical challenges to be overcome, these proofs could in principle be adapted
to the continuum case, to show that (3.7) holds whenever γ̄β(p) < 0 for p ∈ (0, 1) and hence, by
Theorem 2.10, for any β > 0 as soon as µ <∞.

Remark 3.2. Note that the localization result in [10] holds for every β in dimensions 1 and 2 but
only for β above a certain threshold in dimensions d ≥ 3. This is because for the directed polymer,
the analogue of our Theorem 2.10 does not hold. Quite the contrary, if d ≥ 3 and β is small, the
end-point distribution of the directed polymer satisfies the central limit theorem [22, 44, 64].

Remark 3.3. The above discussion gives a justification of Conjecture 1 in the case when µ < ∞
(which implies that Zωβ (t, ∗) has a finite expectation). As a general rule, an environment with
heavier tail is expected to only increase geometric localization (cf. [92]).

Remark 3.4. When d = 1, known results concerning the distribution of Zωβ (t, x) in the case of
Gaussian white noise [5] strongly suggest that, in fact, only one big ball (that is, k = 1) is
sufficient to capture most of the mass of Pωβ,t. For a proof of a result of this kind in the discrete
polymer setup (with a special boundary condition), we refer to [41]. In dimension d ≥ 2, whether
one or finitely many balls are needed is a challenging open problem, even at the heuristic level,
see [10, Section 9, (1)].

3.3. The case of more general noise. In general, a Lévy white noise ξ (on R×Rd) is a random
distribution in

⋂
s>(1+d)/2H

−s
loc (R× Rd) that can be decomposed as follows:

ξ = ξ1 − ξ2 + α1ξ3 + α2L (3.8)
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where ξ1 and ξ2 are two independent Lévy noises with respective jump intensities λ1 and λ2, ξ3 is a
standard Gaussian space-time white noise that is independent of ξ1 and ξ2, and α1 ≥ 0 and α2 ∈ R
are constants. In our exposition so far, we have chosen to focus on the case ξ2 ≡ 0 and α1 = α2 = 0.
The constant α2 is irrelevant for any discussion of (1.1) as it only adds a multiplicative exponential
in t to the solution.

Adding a Gaussian part in dimension 1 does not pose a problem for solving (1.1); see [35].
Given that γ(p) in (1.32) exhibits the same behavior in β as γβ(p) in (2.15), we believe that
both Theorem 2.11 and 2.12 remain valid when Gaussian noise is added. If d ≥ 2, the SHE
with multiplicative Gaussian white noise is known to be degenerate in the following sense. If ξ(ε)

denotes the noise obtained by space convolution of ξ with a smooth kernel θε := ε−dθ(ε−1·), then
the solution of

∂tu
(ε) = 1

2∆u(ε) + βξ(ε)u(ε), uε(0, ·) = δ0

satisfies limε→0 u
(ε)(t, ·) = 0 (not only pointwise but also in L1(Rd) for any fixed t > 0). In the

past years, important progress has been made to obtain convergence of the solutions to non-trivial
(non-Gaussian) limits for d = 2 when β is sent to zero (in a specific critical window) jointly with
ε, see [24, 59] and the recent breakthrough [25].

One can also consider a noise ξ = ξ1 − ξ2 that includes negative jumps. In this case, one can
approximate ξ by ξa = ξa1 − ξa2 . Then the criterion (1.14) applied to both jump intensities λ1
and λ2 still implies the convergence of the integrals in (1.13), and many of the proofs presented in
this paper can be applied verbatim. Note that when negative jumps are present in the noise, the
solution is not necessarily positive. In particular, in this case, Zωβ (t, x) does not correspond to the
partition function of a polymer model.

Applying the proofs presented below, Theorems 2.1, 2.5 and 2.7 remain valid when signed noise
is considered, and the same holds true for the upper bounds of E[|Zωβ (t, 0)|p] for p > 1. In fact, this
translates into half of the inequalities (the upper bounds) proved in Theorems 2.11 and 2.12. On
the other hand, our proof of Proposition 2.8 and the upper bounds on E

[
|Zωβ (t, 0)|p

]
for p ∈ (0, 1)

rely in a crucial manner on the positivity of Zωβ (t, 0), and thus break down when allowing for
negative jumps. Note that the upper bounds on fractional moments of the partition function are
required for the other half of the inequalities (the lower bounds) in Theorems 2.11 and 2.12, and
in particular, for Theorem 2.10. We believe nonetheless that intermittency occurs in the following
sense.

Conjecture 2. If ξ = ξ1 − ξ2 is a signed Lévy white noise as above, with jump intensities that
satisfy (2.1) and

∫∞
0 zp0 (λ1 + λ2)(dz) for some p0 < min(2, 1 + 2

d), then

γβ(p) := lim
t→∞

1
t

logE[|Zωβ (t, 0)|p]

is well defined for p ∈ [0, p0] and p 7→ γβ(p)/p is an increasing function of p on the interval [1, p0].

4. Preliminary tools

4.1. Size-biased measure. If µ <∞, note that Z̄ω,aβ (t, ∗) is non-negative by (1.19) and satisfies
E[Z̄ω,aβ (t, ∗)] = 1. We can therefore define a new measure P̃aβ,t for the environment by

P̃aβ,t(ω ∈ A) := E
[
Z̄ω,aβ (t, ∗)1A

]
, (4.1)

which is referred to as the size-biased measure. Note that when (Z̄ω,aβ (t, ∗))a∈(0,1) is uniformly
integrable, then using martingale convergence, we can also consider P̃0

β,t whose density with respect
to P is given by Z̄ωβ (t, ∗).
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Lemma 3.7 in [13] gives a useful representation of the size-biased measure P̃aβ,t: the distribution
of ω under P̃aβ,t is obtained by adding to ω an independent Poisson process on the trajectory of
a Brownian motion. More precisely, we let ω′ be a Poisson point process on R × (0,∞) with
intensity dt ⊗ βz λ(dz) and we denote its law by P′β. Furthermore, let (Bt)t∈[0,∞) be a standard
d-dimensional Brownian motion starting from 0 that is independent of both ω and ω′ and denote
its distribution by Q. For a ∈ [0, 1], we then define

ω̃(ω′, B) :=
{

(τ,Bτ , ζ) : (τ, ζ) ∈ ω′
}
,

ω̃a,t(ω′, B) :=
{

(τ,Bτ , ζ) : (τ, ζ) ∈ ω′, τ ∈ [0, t] , ζ ≥ a
}
,

which corresponds to putting the Poisson process ω′ on the trajectory of B, with some restrictions
on τ and ζ in the second case. When a = 0, the dependence in a is sometimes omitted.

Lemma 4.1. If µ < ∞, then for any β, t > 0 and a ∈ (0, 1] and for any measurable bounded
function g, we have

Ẽaβ,t[g(ω)] = E⊗ E′β ⊗Q[ĝa,t(ω, ω′, B)], (4.2)

where ĝa,t(ω, ω′, B) := g(ω ∪ ω̃a,t(ω′, B)). If (Z̄ω,aβ (t, ∗))a∈(0,1) is uniformly integrable, then (4.2) is
also satisfied for a = 0.

If a > 0, this was shown in [13, Lemma 3.7]. For a = 0, the result can be deduced from the
case a > 0 by observing that E[Z̄ωβ (t, ∗) | Ga] = Z̄ω,aβ (t, ∗) for any a ∈ (0, 1], which is why (4.2)
with a = 0 is true for any bounded Ga-measurable g. The monotone class theorem yields (4.2) for
general g. Note that by Theorem 2.1, (Z̄ω,aβ (t, ∗))a∈(0,1) is uniformly integrable as soon as (2.1)
holds.

Remark 4.2. Let us make a quick comment about notation. In (4.2) as well as in the rest of the
paper, we denote the expectation with respect to a measure P, possibly with decorations, by E
with the same decorations. For example, we write Ẽaβ,t and E′β for expectation with respect to P̃aβ,t
and P′β, respectively.

4.2. Decoupling inequalities. In the proofs below, we shall occasionally make use of moment
decoupling inequalities for multiple Poisson integrals. The results that we review in this section are
based on [67], where discrete-time decoupling techniques from [48, 73] are extended to continuous
time. We also refer the reader to these references for further literature (and history) on the subject.
Let N ≥ 1 be an integer, let X := (0,∞) × Rd × (0,∞), with generic point w := (t, x, z), and for
concreteness let M = Mω be the compensated Poisson random measure Mω(dw) = (δω − ν)(dw)
(recall that ν := dt ⊗ dx ⊗ λ(dz)). Furthermore, suppose that f : XN → R is measurable and
tetrahedral, that is,

f((t1, x1, z1), . . . , (tN , xN , zN )) = 0 unless t1 < · · · < tN .

In that case, subject to integrability conditions on f , the multiple integral∫
XN

f(w)M(dw1) · · ·M(dwN ) :=
∫
X

(
· · ·
(∫

X
f(w)M(dw1)

)
· · ·
)
M(dwN ) ,

with w = (w1, . . . , wN ), can be defined as an iterated Itô integral (recall Remark 1.2). The general
definition of Itô integrals used in this paper is detailed in Section 4.3. We let (ωi)Ni=1 denote i.i.d.
copies of our environment ω and we use the notations P⊗N and E⊗N for the associated probability
and expectation, respectively. The following theorem is proved in Appendix A.



STOCHASTIC HEAT EQUATION WITH LÉVY NOISE 17

Theorem 4.3. There exists a universal constant C > 0 such that for every 1 < p ≤ 2, for any
integer N ≥ 1 and any measurable and tetrahedral function f : XN → R satisfying∫

XN
|f(w)|p ν(dw1) · · · ν(dwN ) <∞ , (4.3)

the stochastic integrals below are well defined and have finite moments of order p satisfying(
p− 1
C

)N
E⊗N

[∣∣∣∣∣
∫
XN

f(w)Mω1(dw1) · · · MωN (dwN )
∣∣∣∣∣
p]

≤ E
[∣∣∣∣∣
∫
XN

f(w)Mω(dw1) · · · Mω(dwN )
∣∣∣∣∣
p]

≤
(

C

p− 1

)N
E⊗N

[∣∣∣∣∣
∫
XN

f(w)Mω1(dw1) · · · MωN (dwN )
∣∣∣∣∣
p]
.

(4.4)

4.3. Stochastic integration in the absence of moments. Because Zωβ (t, x) does not possess
any finite moments in general, the proof of Theorem 2.5 has to make use of a stochastic integration
theory that does not assume existence of any moments a priori. For the reader’s convenience, let
us give a brief review of this L0-theory, which was developed by [20] in its most general form (see
also [37, Appendix A] for a summary). Let M = Mω denote either the Poisson measure δω or its
compensated version δω − ν.

A predictable step process H is of the form H =
∑r
i=1 ai1Ai , where r ∈ N, ai ∈ R, and for

each i we have Ai ∈ P ⊗ B(Rd × (0,∞)) (where P is the usual predictable σ-field) and Ai ⊆
Ω × (0, T ) × [−N,N ]d × (a,∞) for some T,N, a > 0. Then, the integral of the predictable step
process H =

∑r
i=1 ai1Ai is canonically defined as∫

X
H(w)M(dw) :=

r∑
i=1

aiM(Ai) .

Denoting by S the collection of predictable step processes, we can extend the integral to a larger
subset of predictable processes by using the metric induced by

‖K‖M,p := sup
H∈S,|H|≤|K|

∥∥∥∥∥
∫
X
H(w)M(dw)

∥∥∥∥∥
Lp

, (4.5)

defined for P⊗B(Rd×(0,∞))-measurable processes K, where we have used the notation ‖X‖Lp :=
E[|X|p]1/p and ‖X‖L0 := E[1 ∧ |X|]. Such a process K is called Lp-integrable with respect to M if
there exists a sequence (Hn)n∈N ⊆ S such that limn→∞‖K −Hn‖M,p = 0. The stochastic integral
of K with respect to M is then defined as the Lp-limit of

∫
XHn(w)M(dw), which exists and does

not depend on the choice of (Hn)n∈N. If p = 0, we simply say that K is integrable with respect to
M . According to [20, (2.8)], K is Lp-integrable with respect to M if and only if‖K‖M,p <∞ if p > 0,

lim
u→0
‖uK‖M,0 = 0 if p = 0. (4.6)

Furthermore, by [37, Lemma A.2],
• if 1 ≤ p <∞ and Mω = δω − ν, there are c = cp > 0 and C = Cp > 0 such that

c‖K‖M,p ≤ E
[(∫

X
K(w)2 δω(dw)

) p
2
] 1
p

≤ C‖K‖M,p; (4.7)
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• if 0 < p ≤ 1 and Mω = δω, then

‖K‖pM,p ≤
∫
X
E[|K(w)|p] ν(dw).

In particular, the Lp-theory, p ≥ 1, for δω − ν encompasses the Lp- and L2-integrals considered
in [89] and [94]. Even in the case when δω − ν has a finite first moment (i.e., is a martingale
measure), the L0-theory is more general since, for example, it does not require the integrands have
finite moments.

Let us end this section with a simple integrability criterion that we need in the proof of Theo-
rem 2.5. Its proof can be found in the appendix.

Lemma 4.4. Suppose that for P≥-a.e. realization of ω≥, the process (ω<, t, x) 7→ K(ω< ∪ω≥, t, x)
is Lp(P<)-integrable with respect to ξω< for some p > 0. Then K is L0(P)-integrable with respect
to ξω<.

4.4. A technical lemma. The following technical result will be used repeatedly in the paper. Its
proof comes from a straightforward calculation and can be found in [13, Lemma A.3].

Lemma 4.5. For any t > 0, k ≥ 0 and ζ1, . . . , ζk+1 > 0,∫
Xk(t)

k+1∏
i=1

(∆ti)ζi−1 dti = t
∑k+1

i=1 ζi−1
∏k+1
i=1 Γ(ζi)

Γ(
∑k+1
i=1 ζi)

,

where ∆ti := ti − ti−1 as defined in (1.10), with the convention t0 = 0 and tk+1 = t.

5. Qualitative properties of Lyapunov exponents

In this section, we prove the statements made in Section 2.3 concerning existence and basic
properties of moment Lyapunov exponents (Propositions 2.8 and 2.9), assuming that Theorem 2.1
as well as the bounds in Propositions 6.1 and 6.3 below are true. These are proved independently
in Sections 6 and 7, respectively.

5.1. Existence of Lyapunov exponents. The existence of γβ(p) readily follows from sub-/
supermultiplicative properties of the moments of the partition function.

Lemma 5.1. Under assumption (1.14), for every a ∈ (0, 1], s, t > 0 and p ∈ [0, 1 + 2
d), we have

E[Zω,aβ (t+ s, ∗)p] ≤ E[Zω,aβ (s, ∗)p]E[Zω,aβ (t, ∗)p] if p ≥ 1, (5.1)
E[Zω,aβ (t+ s, ∗)p] ≥ E[Zω,aβ (s, ∗)p]E[Zω,aβ (t, ∗)p] if p ≤ 1. (5.2)

Proof. The statement being trivial if µ1,∞(p) =∞, we can assume µ1,∞(p) <∞ for the remainder
of the proof. Let Pω,aβ,t denote the (random) probability measure on Rd whose density with respect
to the Lebesgue measure is given by Zω,aβ (t, x)/Zω,aβ (t, ∗) and X denote an Rd-valued random
variable with distribution Pω,aβ,t . Recalling the definition (1.24) of Zω,aβ (s, x; t, ∗) and using the
Markov property for Brownian motion, we have

Zω,aβ (s+ t, ∗) =
∫
Rd
Zω,aβ (s, x)Zω,aβ (s, x; s+ t, ∗) dx

= Zω,aβ (s, ∗)
∫
Rd
Zω,aβ (s, x; s+ t, ∗)Pω,aβ,s (dx)

= Zω,aβ (s, ∗)Eω,aβ,s

[
Zω,aβ (s,X; s+ t, ∗)

]
.

For p ≥ 1, we get by Jensen’s inequality that

Zω,aβ (s+ t, ∗)p ≤ Zω,aβ (s, ∗)pEω,aβ,s

[
Zω,aβ (s,X; s+ t, ∗)p

]
,
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and the inequality goes in the other direction if p ∈ (0, 1). Now, recalling (1.5) and (1.18), we have

E
[
Zω,aβ (s, ∗)pEω,aβ,s

[
Zω,aβ (s,X; s+ t, ∗)p

] ∣∣∣ Fs] = Zω,aβ (s, ∗)pEω,aβ,s

[
E
[
Zω,aβ (s,X; s+ t, ∗)p

∣∣∣ Fs]]
= Zω,aβ (s, ∗)p E

[
Zω,aβ (t, ∗)p

]
.

Altogether, we have proven that for p ≥ 1,

E
[
Zω,aβ (s+ t, ∗)p

∣∣∣ Fs] ≤ Zω,aβ (s, ∗)p E
[
Zω,aβ (t, ∗)p

]
,

which yields (5.1).Repeating the same computation with reversed inequalities when p ∈ (0, 1), we
obtain (5.2). �

Proof of Proposition 2.8. As a consequence of (2.4) in Theorem 2.1, we have

lim
a→0

E
[
Zω,aβ (t, ∗)p

]
= E

[
Zωβ (t, ∗)p

]
.

Therefore, the previous lemma remains valid for Zωβ (t, ∗) instead of Zω,aβ (t, ∗). An immediate
consequence is that the limit in (2.11) exists by the continuous version of Fekete’s subadditive
(or superadditive) lemma. It remains to check that γβ(p) is finite when (2.1) is satisfied and
µ1,∞(p) <∞. When p ∈ [1, 1 + 2

d), γβ(p) <∞ follows from

γβ(p) = lim
n→∞

1
n

logE
[
Zωβ (n, ∗)p

]
≤ lim

n→∞
1
n

logE
[
Zωβ (1, ∗)p

]n
= logE

[
Zωβ (1, ∗)p

]
, (5.3)

and the finiteness of E[Zωβ (1, ∗)p], see Theorem 2.1.
For p ∈ (0, 1), we prove γβ(p) > −∞ and γβ(p) <∞ separately. For the first part, let γ<β (p) be

the moment Lyapunov exponents that one obtains after replacing ω by ω<. Thus, by an obvious
comparison and convexity (see Proposition 2.9, applied to λ<(dz) = 1(0,1)(z)λ(dz)), it follows that

γβ(p) ≥ γ<β (p) ≥
γ<β (1)− (1− θ)γ<β (1 + 1

d)
θ

> −∞,

where θ ∈ (0, 1) is such that 1 = θp+ (1− θ)(1 + 1
d). Note that γ<β (1) = 0 and that γ<β (1 + 1

d) <∞
thanks to (5.3).

In order to show that γβ(p) <∞ when p ∈ (0,∞) and µ1,∞(p) <∞, we use Jensen’s inequality
for E< so that for every a ∈ [0, 1),

E
[
Zω,aβ (t, ∗)p

]
≤ E

[
Zω≥β (t, ∗)p

]
.

To bound the right-hand side, we use the following simple inequality, which will be used extensively
in the remainder of the paper: given κ ∈ (0, 1) and any countable collection of non-negative
numbers (ai)i∈I , we have (∑

i∈I
ai

)κ
≤
∑
i∈I

aκi . (5.4)

We will refer to (5.4), which can be proved by induction (using the fact that (a+ b)κ ≤ aκ + bκ),
as the subadditivity property; note that it obviously extends to stochastic integrals with respect to
discrete measures.

Moreover, note that we have

ρ(t, x)p = tνp−1ϑ(p)ρ( tp , x), (5.5)

where νp = 1− d
2(p− 1) was defined in (2.17) and ϑ(p) := (2π)νp−1p−

d
2 . Thus, using (5.4) for the

first step, (5.5) and the fact that ρ is a density for the second step, and Lemma 4.5 for the last
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step, we derive

E
[
Zω≥β (t, ∗)p

]
≤
∞∑
k=0

(βpµ1,∞(p))k
∫
Xk(t)×(Rd)k

k∏
i=1

ρ(∆ti,∆xi)p dti dxi

=
∞∑
k=0

(βpϑ(p)µ1,∞(p))k
∫
Xk(t)

k∏
i=1

(∆ti)νp−1 dti =
∞∑
k=0

(βpϑ(p)µ1,∞(p)Γ(νp)tνp)k

Γ(νpk + 1) .

Using Stirling’s formula for the gamma function (or the estimate (7.13) below), one can check that
the right-hand side grows exponentially in t: as a consequence, we have γβ(p) <∞. This ends the
proof of part (i) of the proposition.

For part (ii), we are going to prove the upper and lower bounds in (2.12) separately. Using
Jensen’s inequality for the first inequality and the translation invariance (1.18) for the last identity,
we have, for p > 1,

E
[
Zωβ (t, ∗)p

]
≤
∫
Rd
ρ(t, x)E

[(
ρ(t, x)−1Zωβ (t, x)

)p]
dx = E

[(
ρ(t, 0)−1Zωβ (t, 0)

)p]
. (5.6)

Since ρ(t, 0)−1 is of order td/2, after taking logarithm, dividing by t and taking the limit as t→∞,
we obtain

lim inf
t→∞

1
t

logE
[
Zωβ (t, 0)p

]
≥ γβ(p). (5.7)

The same proof yields for p ∈ (0, 1) that

lim sup
t→∞

1
t

logE
[
Zωβ (t, 0)p

]
≤ γβ(p). (5.8)

Let us now prove the complementary bound, first in the case p > 1. We introduce the probability
measure P̄ωβ,t with Lebesgue density Zωβ (t, x)ρ(1, x)/

∫
Rd Zωβ (t, x)ρ(1, x) dx. Then we have

Zωβ (t+ 1, 0) =
∫
Rd
Zωβ (t, x)ρ(1, x)Zωβ (t, x; t+ 1, 0)ρ(1, x)−1 dx

=
(∫

Rd
Zωβ (t, x)ρ(1, x) dx

)
Ēωβ,t

[
Zωβ (t,X; t+ 1, 0)ρ(1, X)−1

]
.

Proceeding as in the proof of Lemma 5.1 and using the translation invariance (1.18), we obtain for
p > 1

E
[
Zωβ (t+ 1, 0)p

]
≤ E

[( ∫
Rd
Zωβ (t, x)ρ(1, x) dx

)p]
E
[
Zωβ (1, 0)pρ(1, 0)−p

]
. (5.9)

In particular, we have

E
[
Zωβ (t+ 1, 0)p

]
≤ (2π)−

pd
2 E
[
Zωβ (t, ∗)p

]
E
[
Zωβ (1, 0)pρ(1, 0)−p

]
,

which implies, for p > 1,
lim sup
t→∞

1
t
E
[
Zωβ (t+ 1, 0)p

]
≤ γβ(p) .

When p ∈ (0, 1), repeating the proof of (5.9), but using concavity instead of convexity, we obtain

E
[
Zωβ (t+ 1, 0)p

]
≥ E

[( ∫
Rd
Zωβ (t, x)ρ(1, x) dx

)p]
E
[
Zωβ (1, 0)pρ(1, 0)−p

]
. (5.10)

Now setting Cz := z + [0, 1)d, we have

Zωβ (t, ∗) =
∑
z∈Zd

∫
Cz
Zωβ (t, x) dx ≤

∑
z∈Zd

(
max
x∈Cz

ρ(t, x)
)
Yz(t) (5.11)

with Yz(t) :=
∫
Cz Z

ω
β (t, x)ρ(t, x)−1 dx.
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Note that the variables Yz are identically distributed by (1.18), which together with (5.4) implies

E
[
Zωβ (t, ∗)p

]
≤
( ∑
z∈Zd

max
x∈Cz

ρ(t, x)p
)
E[Y0(t)p] ≤ Ct

d
2 (1−p)E[Y0(t)p] (5.12)

for t > 1. Moreover, also for t > 1,∫
Rd
Zωβ (t, x)ρ(1, x) dx ≥

(
min
x∈C0

ρ(1, x)ρ(t, x)
)
Y0(t) ≥ (2π)−dt−

d
2Y0(t) . (5.13)

Therefore, combining (5.10) with (5.12) and (5.13), we obtain that

E
[
Zωβ (t+ 1, 0)p

]
≥ C ′t−

d
2E
[
Zωβ (t, ∗)p

]
.

This allows us to conclude that, for p ∈ (0, 1),

lim inf
t→∞

1
t

logE
[
Zωβ (t+ 1, 0)p

]
≥ γβ(p). �

5.2. Monotonicity and convexity properties. To show the monotonicity in β of the Lyapunov
exponents, we prove a more general result linking monotonicity and convexity. Its proof is inspired
by an analogous result proved in the discrete setup [44, Lemma 3.3]. Recall the definition of the
renormalized partition function (1.26).

Lemma 5.2. Assume that µ1,∞(q) <∞ for some q ∈ [1, 1 + 2
d) and let ϕ : [0,∞)→ R be a convex

function that satisfies
sup
u≥1
|ϕ(u)|u−q <∞ .

Then β 7→ E[ϕ(Z̄ω,aβ (t, 0))] is a non-decreasing function, for any a > 0.

Proof of Proposition 2.9. As a consequence of Lemma 5.2, if µ1,∞(p) <∞ for some p ∈ [1, 1 + 2
d),

then β 7→ E[Z̄ω,aβ (t, 0)p] is non-decreasing if p > 1 and non-increasing if p ∈ (0, 1) (apply Lemma 5.2
to the convex function x 7→ −xp). Letting a → 0, we obtain the same results for E[Z̄ωβ (t, 0)p]
because of (2.4). Since we have

γ̄β(p) = lim
t→∞

1
t

logE[Z̄ωβ (t, 0)p] ,

this completes the proof of (ii) in Proposition 2.9. Both (i) and (iii) are standard: The convexity
of p 7→ γβ(p) follows from that of p 7→ logE[Xp], valid for an arbitrary non-negative random
variable X by Hölder’s inequality; (iii) is a direct consequence of convexity since for 1 < p < p′ we
have γ̄β(p) ≤ p−1

p′−1 γ̄β(p′), recalling that γ̄β(1) = 0 by definition. �

Proof of Lemma 5.2. Since ϕ is convex, there exists a and b such that ϕ(u) + au+ b ≥ 0 for every
u ≥ 0. Hence, replacing ϕ(u) by ϕ(u) + au + b, we can assume that ϕ is non-negative, since
E[Z̄ω,aβ (t, 0)] = ρ(t, 0) does not depend on β. We may also assume without loss of generality that ϕ
is differentiable on [0,∞) and that ϕ′ is bounded. Indeed, if this is not the case, we can find a
sequence ϕn ↑ ϕ that has these properties and then use monotone convergence.

Recalling the notation (1.11) and setting κ̄a = κa + µ, we have, similarly to (1.19),

Z̄ω,aβ (t, 0) = e−βκ̄at
∞∑
k=0

βk
∫
Xk(t)×(Rd)k

ρt,0(t,x)
k∏
i=1

ξa,+ω (dti, dxi).
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Taking the derivative with respect to β, we obtain, after an index shift for the first term,

∂βZ̄ω,aβ (t, 0) = e−βκ̄at
∞∑
k=0

βk
(

(k + 1)
∫
Xk+1(t)×(Rd)k+1

ρt,0(t,x)
k+1∏
i=1

ξa,+ω (dti,dxi)

− κ̄at
∫
Xk(t)×(Rd)k

ρt,0(t,x)
k∏
i=1

ξa,+ω (dti,dxi)
)
.

(5.14)

The first term in the sum can be viewed as the sum of k + 1 integrals where the variables of
integration are (t1, . . . , ti, s, ti+1, . . . , tk) ∈ Xk+1(t) and (x1, . . . , xi, y, xi+1, . . . , xk) for i = 0, . . . , k.
Recombining the terms, we arrive at the identity (recall the convention t0 := 0 and tk+1 := t)

(k + 1)
∫
Xk+1(t)×(Rd)k+1

ρt,0(t,x)
k∏
i=1

ξa,+ω (dti, dxi)

=
∫
Xk(t)×(Rd)k

(∫
(0,t)×Rd

ρt,0(t,x)ρ(s, y | t,x) ξa,+ω (ds, dy)
)

k∏
i=1

ξa,+ω (dti,dxi),

where

ρ(s, y | t,x) := ρ(s− ti−1, y − xi−1)ρ(ti − s, xi − y)
ρ(ti − ti−1, xi − xi−1) if s ∈ (ti−1, ti)

and ρ(ti, y | t,x) := 0 for all i = 1, . . . , k. As
∫
Rd ρ(s, y | t,x) dy = 1, the second term in (5.14)

corresponds to a centering of the noise ξa,+ω (ds, dy), and we have

∂βZ̄ω,aβ (t, 0)

= e−βκ̄at
∞∑
k=0

βk
∫
Xk(t)×(Rd)k

(∫
(0,t)×Rd

ρt,0(t,x)ρ(s, y | t,x) ξ̄aω(ds, dy)
)

k∏
i=1

ξa,+ω (dti,dxi).
(5.15)

Note that we have

|∂βZ̄ω,aβ (t, 0)|

≤ e−βκ̄at
∞∑
k=0

βk
∫
Xk(t)×(Rd)k

(∫
(0,t)×Rd

ρt,0(t,x)ρ(s, y | t,x) |ξ̄aω|(ds, dy)
)

k∏
i=1

ξa,+ω (dti,dxi) ,

where |ξ̄aω| = ξ̄aω + 2κ̄aL. Since we have reduced to the case where ϕ′ is bounded, the expression
above implies (cf. [13, Prop. 2.5]) that for any β0 > 0,

E
[

sup
β∈[0,β0]

∣∣∣∂βZ̄ω,aβ (t, 0)ϕ′(Z̄ω,aβ (t, 0))
∣∣∣] <∞. (5.16)

This allows to interchange derivative and expectation and by (5.15), we obtain that

∂βE
[
ϕ
(
Z̄ω,aβ (t, 0)

)]
= E

[
∂βZ̄ω,aβ (t, 0)ϕ′

(
Z̄ω,aβ (t, 0)

)]
= e−βκ̄at

∞∑
k=0

βkE
[ ∫

Xk(t)×(Rd)k
Uωk (t,x)ρt,0(t,x)

k∏
i=1

ξa,+ω (dti, dxi)
]
,

(5.17)

where we have set

Uωk (t,x) :=
(∫

[(0,t)\{ti}ki=1]×Rd
ρ(s, y | t,x) ξ̄aω(ds, dy)

)
ϕ′
(
Z̄ω,aβ (t, 0)

)
.
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Given (t,x, z) ∈ Xk(t) × (Rd)k × (0,∞)k, we let ω ∪ (t,x, z) be the point process obtained by
adding the k points (ti, xi, zi)1≤i≤k to ω. By Mecke’s multivariate equation (see [77, Thm. 4.4]),
we have

E
[ ∫

Xk(t)×(Rd)k
Uωk (t,x)ρt,0(t,x)

k∏
i=1

ξa,+ω (dti,dxi)
]

= E
[ ∫

Xk(t)×(Rd)k×(0,∞)k
Uωk (t,x)ρt,0(t,x)

k∏
i=1

zi1[a,∞)(zi) δω(dti,dxi,dzi)
]

=
∫
Xk(t)×(Rd)k×(0,∞)k

E
[
U
ω∪(t,x,z)
k (t,x)

]
ρt,0(t,x)

k∏
i=1

zi1[a,∞)(zi) dti dxi λ(dzi).

(5.18)

If k, t, x and z are fixed, the functionals

ω 7→ ϕ′
(
Z̄ω∪(t,x,z),a
β (t, 0)

)
and ω 7→

∫
[(0,t)\{ti}ki=1]×Rd

ρ(s, y | t,x) ξ̄aω(ds, dy)

are non-decreasing for the inclusion order. Thus we can apply the FKG inequality for Poisson
point processes (see [65, Lemma 2.1]) and obtain that

E
[
U
ω∪(t,x,z)
k (t,x)

]
≥ E

[ ∫
[(0,t)\{ti}ki=1]×Rd

ρ(s, y | t,x) ξ̄aω(ds, dy)
]
E
[
ϕ′(Z̄ω∪(t,x,z),a

β (t, 0))
]

= 0.

Combining this with (5.17) and (5.18), we conclude that ∂βE
[
ϕ
(
Z̄ω,aβ (t, 0)

)]
≥ 0. �

6. Moments of order p > 1

The goal of this section is to formulate and prove Propositions 6.1 and 6.3 below, which form
the core of all moment upper bounds for p > 1 in this paper.

6.1. The statements. Recall that νp := 1− d
2(p− 1) and let Z̄ω,0β (t, x) := Z̄ωβ (t, x).

6.1.1. The case of dimension d = 1. We start with d = 1, where the statement is easier to state
(and easier to prove).

Proposition 6.1. Assume that d = 1 and that (2.1) holds.
(i) If µ1,∞(2) <∞, then for any a ∈ [0, 1),

E
[
ρ(t, x)−2Z̄ω,aβ (t, x)2

]
=
∞∑
k=0

(
β2µa,∞(2)

√
t

2

)k √
π

Γ((k + 1)/2)

= 1 + β2µa,∞(2)
√
πt exp

(
1
4β

4µa,∞(2)2t
)
Φ
(
β2µa,∞(2)

√
t
2

)
,

(6.1)

where Φ is the standard normal distribution function.
(ii) There exists a constant C ∈ (0,∞) such that if µ1,∞(p) <∞ for some p ∈ (1, 2), then for

any value of η ∈ (0, 1], a ∈ [0, 1) and t, β > 0,

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤
√

2Γ(νp)
1
p

∞∑
k1,k2=0

(
Cβ

p− 1

)k1+k2(
µ0,η(2)t

1
2
) k1

2 (µη,∞(p)tνp)
k2
p

Γ(νp(k2 + 1))
1
p

. (6.2)
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(iii) There exists a constant C ∈ (0,∞) such that if µ1,∞(p) <∞ for some p ∈ (2, 3), then for
any value of a ∈ [0, 1) and t, β > 0,

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p

≤ π
1
4 Γ(νp)

1
p

∞∑
k2=0

(
Cβµ0,∞(2)

1
2 Γ(νp)

1
p t

1
4
)k2

Γ(k2+1
2 )

1
2

( ∞∑
`=0

(
C ′βµ0,∞(p)

1
p t

νp
p Γ(νp)

1
p
)`

Γ(νp(`+ 1))
1
p

)k2+1

.

(6.3)

Remark 6.2. The formula (6.1) is rather straightforward to prove. Starting from (1.28) and using
that ξ̄aω is centered, the second moment is given by

E
[
ρ(t, x)−2Z̄ω,aβ (t, x)2

]
= 1 +

∞∑
k=1

(β2µa,∞(2))k
∫
Xk(t)×(Rd)k

ρ(t, x)−2
k+1∏
i=1

ρ(∆ti,∆xi)2 dti dxi ,

with the notation (1.10) for ∆ti and ∆xi. Integrating over x1, . . . , xk ∈ Rd, we get

E
[
ρ(t, x)−2Z̄ω,aβ (t, x)2

]
= 1 +

∞∑
k=1

(β2µa,∞(2))k(2
√
πt)

∫
Xk(t)

k+1∏
i=1

1
2
√
π∆ti

dti ,

which gives the first equality in (6.1) by Lemma 4.5. The second equality follows from the formula∑∞
k=0 x

k/Γ((k + 1)/2) = π−1/2 + 2xex2Φ(
√

2x). Let us also mention that this formula coincides
with the one we obtain if Z̄ω,aβ (t, x) in (6.1) is replaced by the solution to the SHE (1.1) with a
space-time Gaussian noise with variance µa,∞(2) (and u0 = δ0); cf. [30, Eq. (2.31)].

6.1.2. The case of dimension d ≥ 2. For the statement with d ≥ 2, we need to introduce a few
auxiliary quantities. With the usual convention t0 := 0 and tk+1 := t and ∆ti := ti − ti−1, we
define Λ(0, t, p) := 1 and

Λ(k, t, p) := t1−νp
∫
Xk(t)

(∆tk+1)νp−1
k∏
i=1

Gp(∆ti) dti (6.4)

for k ≥ 1, where

Gp(s) :=
{
s

1
3νp−1 if t ≤ 1,
sνp−1 if t ≥ 1.

(6.5)

Also, we let

ζ1(η, p, t) :=
(
8µlog

0,η

(
1 + 2

d

)
(1 + log+ t)

) p
1+2/d

, ζ2(η, p) := µlog
0,η

(
1 + 2

d

)
+ µη,∞(p), (6.6)

where we have set log+ t := log(t ∨ 1) and

µlog
0,η

(
1 + 2

d

)
:=
∫

(0,η)
z1+ 2

d (3|log z|+ 1)λ(dz)

Note that both ζ1(η, p, t) and ζ2(η, p) are finite if (2.1) holds and µ1,∞(p) <∞.

Proposition 6.3. Assume that d ≥ 2 and that (2.1) holds. There exists a constant C ∈ (0,∞)
that only depends on d such that if µ1,∞(p) <∞ for p ∈ (1, 1 + 2

d), then for any value of η ∈ (0, 1],
a ∈ [0, 1) and t, β > 0, we have

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤

∞∑
k1,k2=0

(
Cβ

p− 1

)k1+k2

ζ1(η, p, t)
k1
p ζ2(η, p)

k2
p Λ(k2, t, p)

1
p . (6.7)

Remark 6.4. In our proofs of Propositions 6.1 and 6.3, we keep track of the dependence in p. The
reason for this is that in the proof of Theorem 2.11—more precisely in the proof of (2.16)—we
need to apply (6.7) for p that depends of β. The only important point we need to make sure is
that our estimates remain uniform for p in an interval around 1 + 2

d .
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6.1.3. Finiteness of the moments. An almost immediate consequence of the proposition is the
following uniform moment bound.

Corollary 6.5. If (2.1) holds and µ1,∞(p) < ∞ for some p ∈ (1, 1 + 2
d), then for any β and T

there exists C(β, p, T ) such that

sup
a∈[0,1)

sup
(t,x)∈(0,T ]×Rd

E
[(
ρ(t, x)−1Z̄ω,aβ (t, x)

)p] 1
p
< C(β, p, T ).

Proof. First let us note that the bounds in Propositions 6.1 and 6.3 already are uniform in a and x,
so we only need to check uniformity in t.

Let us start with the case d = 1. The statement for p = 2 is obvious from (6.1). If p ∈ (1, 2),
by reorganizing (6.2), we obtain that for every t ∈ [0, T ],

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤ C ′

( ∞∑
k1=0

(
Cpβµ0,η(2)

1
2T

1
4
)k1
)( ∞∑

k2=0

(
Cpβµη,∞(p)

1
pT

νp
p

)k2
Γ(νp)

1
p

Γ(νp(k2 + 1))
1
p

)
,

where Cp = C/(p− 1). The first sum is finite if one chooses η such that Cβµ0,η(2)1/2T 1/4 < 1
2 and

the second one is always finite since Γ(νp(k2 + 1)) grows super-exponentially. If p ∈ (2, 3), we have
from (6.3) that for every t ∈ [0, T ],

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤ Cp

∞∑
k2=0

(
CpβT

1
4
)k2

Γ(k2+1
2 )

1
2

( ∞∑
`=0

(
C ′pβT

νp
p
)`

Γ(νp(`+ 1))

)k2+1

.

Since Γ(νp(`+ 1)) and Γ(k2+1
2 ) both grow super-exponentially, the two sums are finite.

When d ≥ 2, since ζ1 is monotone in t, we have, in the same manner,

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤

( ∞∑
k1=0

(
Cpβζ1(η, p, T )

1
p

)k1
)( ∞∑

k2=0

(
Cpβζ2(η, p)

1
p

)k2
Λ(k2, t, p)

1
p

)
(6.8)

for t ≤ T . The first sum is finite provided that η is chosen sufficiently small. Considering the
second term, we have

Λ(k2, t, p) ≤ t1−νp(t ∨ 1)
2
3νpk2

∫
Xk2 (t)

(∆tk2+1)νp−1
k2∏
i=1

(∆ti)
1
3νp−1 dti

= (t ∨ 1)
2
3νpk2t

1
3νpk2

Γ(1
3νp)

k2Γ(νp)
Γ(1

3νp(k2 + 3))
,

where we used Lemma 4.5 for the last identity. As a result, assuming that T ≥ 1, we obtain that
for every t ∈ [0, T ],(

Cpβζ2(η, p)
1
p

)k2
Λ(k2, t, p)

1
p ≤

(
Cpβζ2(η, p)

1
pΓ(1

3νp)
1
pT

νp
p

)k2 Γ(νp)
1
p

Γ(1
3νp(k2 + 3))

1
p

,

and since Γ(νp[(k2/3) + 1]) grows super-exponentially, the sum over k2 in (6.8) is finite. �

6.2. Bounding moments in the chaos expansion: the first term. From now on, we focus
on the case x = 0, which yields no loss of generality by (1.18). Also, in both Propositions 6.1
and 6.3 above, the case a = 0 can be deduced from the case a > 0 using Fatou’s lemma: in the
following, we can always assume that a > 0. Starting from the chaos decomposition (1.28), we can
use Minkowski’s inequality to get

E
[
ρ(t, 0)−pZ̄ω,aβ (t, 0)p

] 1
p ≤

∞∑
k=0

βkE [|Wa,k(t)|p]
1
p , (6.9)
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where

Wa,0(t) := 1, Wa,k(t) :=
∫
Xk(t)×(Rd)k

ρt,0(t,x)
ρ(t, 0)

k∏
i=1

ξ̄aω(dti,dxi) for k ≥ 1. (6.10)

The estimates for E[|Wa,k(t)|p] are intricate, so let us spend some time on the case k = 1 to
illustrate the intuition behind our proof. In what follows, we write

X (k)
t := Xk(t)× (0,∞)k, X

(k)
t := Xk(t)× (Rd)k, X(k)

t := Xk(t)× (Rd)k × (0,∞)k. (6.11)

We drop the superscript k when k = 1. For simplicity, let us consider the expansion of the free-end
partition function. Because the integrals in (6.9) are martingales in t for the filtration (1.5), we
can apply the Burkholder–Davis–Gundy (BDG) inequality and obtain

E
[(∫

(0,t)×Rd
ρ(s, x) ξ̄aω(ds, dx)

)p]
≤ Cp E

[(∫
(0,t)×Rd×[a,∞)

(ρ(s, x)z)2 δω(ds, dx,dz)
) p

2
]
. (6.12)

Since we are tracking the dependence in p, it is worth noting that it is possible to take Cp = (4p)p ≤
64 if p ≤ 2; see [49, Chapter VII, Theorem 92]. In order to bound the right-hand side uniformly
in a, we replace [a,∞) by (0,∞). Let us further restrict ourselves to the case d ≥ 3 for simplicity
(note that in particular p < 2). By Jensen’s inequality and the subadditivity property (5.4), we
have, for θ ∈ [p, 2],

E
[( ∫

Xt
ρ(s, x)2z2 δω(ds, dx,dz)

) p
2
]
≤ E

[( ∫
Xt
ρ(s, x)2z2 δω(ds, dx,dz)

) θ
2
] p
θ

≤
(∫

Xt
ρ(s, x)θzθ dsdxλ(dz)

) p
θ

= ϑ(θ)
p
θ

(∫
Xt
sνθ−1zθ ds λ(dz)

) p
θ

,

(6.13)

recalling also (5.5) and νθ = 1 − d
2(θ − 1) for the last line. On the right-hand side, we see that

when θ increases, the integrability in z around 0 improves but the one in s worsens, forcing us to
chose νθ > 0 (i.e., θ < 1 + 2

d) to obtain a finite integral. As a consequence, we need to assume
µ0,∞(θ) <∞ for some θ ∈ [p, 1 + 2

d). If this holds, then, in fact, the same estimate can be applied
iteratively in order to obtain bounds for any of the multiple integrals in (6.9). Let us remark that
this is essentially the assumption (and the method) used in [89] to obtain existence, uniqueness
and moments for the solution to (2.6).

Clearly, µ0,∞(θ) < ∞ does not hold, for any θ > 0, if ξω is an α-stable noise with α ∈ (1, 2);
recall that we assume µ1,∞(p) < ∞ for some p > 1. In that case, at least when k = 1, it is easy
to do better than (6.13). The key point is to first separate z ≥ 1 and z < 1 and then, for z < 1,
further whether z ≤ sd/2 or z > sd/2. For z ≥ 1, we can simply apply (6.13) with θ = p, that is,

E
[( ∫

Xt
ρ(s, x)2z21{z≥1} δω(ds, dx, dz)

) p
2
]
≤ ϑ(θ)µ1,∞(p)ν−1

p tνp .

For z ≤ 1, we first consider the contribution coming from z ≤ sd/2. By Jensen’s inequality, we can
take the exponent p

2 outside the expectation on the right-hand side of (6.12), which leads to the
bound

E
[ ∫

Xt
1{z≤sd/2∧1}ρ(s, x)2z2 δω(ds, dx,dz)

] p
2

=
(∫

Xt
1{z≤sd/2∧1}ρ(s, x)2z2 ds dxλ(dz)

) p
2

.
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Since d ≥ 3, we have, integrating first with respect to x (recall (5.5)), then with respect to s and
finally with respect to z,∫

Xt
1{z≤sd/2∧1}ρ(s, x)2z2 dsdxλ(dz) =

∫
Xt

z21{z≤sd/2∧1}

(4πs)
d
2

ds λ(dz) ≤ 1
(d2 − 1)(4π)

d
2
µ0,1

(
1 + 2

d

)
.

For the contribution to the integral coming from z > sd/2, applying (6.13) with θ = p, we get that
it is smaller than

ϑ(p)
∫
Xt

1{z>sd/2,z<1}s
νp−1zp ds λ(dz) = ϑ(p)

νp

∫
(0,1)

z1+ 2
d λ(dz) = ϑ(p)

νp
µ0,1

(
1 + 2

d

)
,

where we have first integrated with respect to s, using that νp = 1 − d
2(p − 1) > 0 for p < 1 + 2

d ,
and then with respect to z. Altogether, we have shown the following bound.

Lemma 6.6. In dimension d ≥ 3, there exists a constant C (which may depend on d but not on p)
such that for all p ∈ (1, 1 + 2

d),

E
[( ∫

(0,t)×Rd
ρ(s, x) ξ̄aω(ds, dx)

)p]
≤ C

νp

[
µ0,1

(
1 + 2

d

) p
2 + µ0,1

(
1 + 2

d

)
+ µ1,∞(p)tνp

]
.

In other words, the single integral has a finite pth moment for some p ∈ (1, 1+ 2
d) if the intensity

measure satisfies µ0,1(1 + 2
d) + µ1,∞(p) <∞. In fact, this condition is necessary and sufficient by

[87, Theorem 3.3], so Lemma 6.6 is optimal for single integrals.

6.3. Decoupling and partitioning: Key tools in proving Propositions 6.1 and 6.3.

6.3.1. Decoupling. When k ≥ 2, there is no direct analogue of (6.12) since we cannot apply the
BDG inequality for the k-fold iterated integral. The first step of our proof is to use the decoupling
inequalities from Section 4.2 in order to obtain, instead of Wa,k(t), multiple Poisson integrals with
respect to k independent copies of the original noise. An important advantage of the decoupled
integral is that we can change the order of integration without losing the martingale property.
Using Theorem 4.3 with the tetrahedral function f(t,x, z) := ρ(t, 0)−1ρt,0(t,x)

∏k
i=1 zi1{zi≥a}

(the reader can check that (4.3) is satisfied whenever µ1,∞(p) <∞), we have

E[|Wa,k(t)|p] ≤
(

C

p− 1

)k
E⊗k[|Va,k(t)|p] , (6.14)

where

Va,k(t) :=
∫
X

(k)
t

ρt,0(t,x)
ρ(t, 0)

k∏
i=1

ξ̄aωi(dti,dxi)

=
∫
X(k)
t

ρt,0(t,x)
ρ(t, 0)

k∏
i=1

zi1{zi≥a} (δωi − ν)(dti, dxi, dzi)
(6.15)

and ωi, for i = 1, . . . , k, are i.i.d. copies of ω. For simplicity, and with a small abuse of notation,
we write P, P⊗k, E and E⊗k in the remainder of the proof.

6.3.2. Partitioning and integrating over space. As in Section 6.2, we want to estimate the pth
moment of the right-hand side of (6.15) using a combination of the BDG inequality, Jensen’s
inequality and subadditivity and then integrate over space. Because we want to use an intermediate
exponent as in (6.13) that depends on the value of t and z, a first task is to decompose Va,k(t) by
considering a (non-random) partition Pk of the parameter space X (k)

t . For each element P ∈ Pk

of our partition, we will further determine a partition J1(P)∪J2(P) of JkK and first integrate with
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respect to (ti, zi) with i ∈ J1(P) and then with respect to (ti, zi) with i ∈ J2(P). We let k1 and k2
denote the respective cardinalities of J1 = J1(P) and J2 = J2(P).

When J ⊆ JkK, we use the following notation:
∆J ti := ti − ti(J,−1) and ∆Jxi := xi − xi(J,−1) (6.16)

where x0 = xk+1 = 0, t0 = 0 and tk+1 = t as usual and where for i ∈ J ∪ {k + 1} we denote the
predecessor of i in J ∪ {0, k+ 1} by i(J,−1) . As a result of our partitioning procedure, we obtain
the following estimate:

Lemma 6.7. Given p ∈ (1, 2 ∧ (1 + 2
d)) and θ ∈ (p, 2], we have for all a ∈ (0, 1],

E
[∣∣Va,k(t)∣∣p] 1

p ≤ Ck
∑
P∈Pk

t
1−νp
p

(∫
X (k2)
t

(∫
X (k1)
t

1P(t, z)
k+1∏
i=1

(∆ti)νθ−1 ∏
i∈J1

zθi dti λ(dzi)
) p
θ

×
∏

i∈J2∪{k+1}
(∆J2ti)(νp−1)+ p

θ
(1−νθ) ∏

i∈J2

zpi dti λ(dzi)
) 1
p

.

(6.17)

Proof. For P ∈ Pk, let us define

Va,k(t,P) :=
∫
X(k)
t

1P(t, z)ρt,0(t,x)
ρ(t, 0)

k∏
i=1

zi1{zi≥a} (δωi − ν)(dti,dxi, dzi) . (6.18)

Then, by (6.15) and Minkowski’s inequality, we have that

E
[∣∣Va,k(t)∣∣p] 1

p ≤
∑
P∈Pk

E
[∣∣Va,k(t,P)

∣∣p] 1
p
.

Because the ωi’s are independent, we can, similarly to (A.4) in the appendix, permute the integrals
in (6.15) and integrate with respect to the indices in J1 first and J2 afterwards. In conjunction with
the BDG inequality, subadditivity (recall p ≤ 2) and Jensen’s inequality (applied in the fashion as
in (6.13)), we obtain

E[|Va,k(t,P)|p]

≤ Ck2

∫
X(k2)
t

E
[∣∣∣∣ ∫

X(k1)
t

1P(t, z)ρt,0(t,x)
ρ(t, 0)

∏
i∈J1

zi1{zi≥a} (δωi − ν)(dti, dxi, dzi)
∣∣∣∣p
]

×
∏
i∈J2

zpi 1{zi≥a} dti dxi λ(dzi)

≤ Ck
∫
X(k2)
t

(∫
X(k1)
t

1P(t, z)ρt,0(t,x)θ

ρ(t, 0)θ
∏
i∈J1

zθi dti dxi λ(dzi)
) p
θ ∏
i∈J2

zpi dti dxi λ(dzi).

(6.19)

Remark 6.8. In the above integrals and for the remainder of the proof, with a small abuse of
notation, the coordinates of elements of X(k1)

t are indexed by J1 instead of Jk1K (and similarly for
J2). With this convention, X(k)

t is a strict subset of X(k1)
t × X(k2)

t , but this is not a problem since
the indicator function 1P restricts the integral to a subset of X(k)

t .

The next step is to carry out integration with respect to x1, . . . , xk explicitly. First of all, notice
that for any m ≥ 1 and any p > 1, we have for every t ∈ Xm(s)∫

(Rd)m
ρs,y(t,x)p

m∏
i=1

dxi = ϑ(p)mρ(s, y)ps1−νp
m+1∏
i=1

(∆ti)νp−1 . (6.20)

This can be proved by induction on m after checking the case m = 1 by hand, using (5.5); we
leave the details to the reader.
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We then successively apply (6.20) with p = θ to the segments of J1 (i.e., maximal sets of
consecutive indices in J1). Recalling the notation (6.16), we get∫

(Rd)k1
ρt,0(t,x)θ

∏
i∈J1

dxi = ϑ(θ)k1
k+1∏
i=1

(∆ti)νθ−1 ∏
j∈J2∪{k+1}

(∆J2tj)1−νθρ(∆J2tj ,∆J2xj)θ . (6.21)

Applying (6.20) in the case y = 0, we also get∫
(Rd)k2

∏
j∈J2∪{k+1}

ρ(∆J2tj ,∆J2xj)p
∏
i∈J2

dxi = ϑ(p)k2ρ(t, 0)pt1−νp
∏

j∈J2∪{k+1}
(∆J2tj)νp−1 . (6.22)

We conclude the proof of Lemma 6.7 by inserting (6.21) and (6.22) in (6.19). �

6.4. The proof of Proposition 6.1. The second moment was computed in Remark 6.2. In order
to prove (6.2), we only need to separate small and large values of z. We consider a partition Pk

indexed by the subsets J ⊆ JkK and we define

P(J) := {(t, z) ∈ X (k)
t : zi < η for all i ∈ J and zi ≥ η for all i ∈ JkK \ J} (6.23)

as well as J1 := J and J2 := JkK \ J . Applying Lemma 6.7 with θ = 2 and noting that ν2 = 1
2 and

νp = 1− 1
2(p− 1) in dimension d = 1, we obtain

E
[∣∣Va,k(t)∣∣p] 1

p ≤ Ck
∑
J⊆JkK

t
1−νp
p µ0,η(2)

k1
2 µη,∞(p)

k2
p

×
(∫

(0,t)k2

(∫
(0,t)k1

1{t1<···<tk}
k+1∏
i=1

(∆ti)−
1
2
∏
i∈J1

dti

) p
2 ∏
i∈J2∪{k+1}

(∆J2ti)
2−p

4
∏
i∈J2

dti

) 1
p

.

(6.24)

Integrating successively over the segments of J1 and writing ∆J2(i) = i− i(J,−1) for the distance
between i ∈ J2 ∪ {k+ 1} and the previous index in J2 (recall (6.16)), we get from Lemma 4.5 that∫

(0,t)k1
1Xk(t)(t)

k+1∏
i=1

(∆ti)−
1
2
∏
i∈J1

dti = 1Xk2 (t)((ti)i∈J2)
∏

i∈J2∪{k+1}
(∆J2ti)

1
2 ∆J2 (i)−1 Γ(1

2)∆J2 (i)

Γ(1
2∆J2(i))

.

(6.25)
Now, if we bound (∆J2ti)(∆J2 (i)−1)/2 ≤ t(∆J2 (i)−1)/2 and Γ(1

2`) ≥
1
2
√
π for any ` ≥ 1, we get that∫

(0,t)k1
1Xk(t)(t)

k+1∏
i=1

(∆ti)−
1
2
∏
i∈J1

dti ≤ 1Xk2 (t)((ti)i∈J2)2k2+1(πt)
1
2k1

∏
i∈J2∪{k+1}

(∆J2ti)−
1
2 .

Going back to (6.24) and taking the factor [(∆J2ti)−1/2]p/2 over to the outer integral, we compute∫
(0,t)k2

1Xk2 (t)((ti)i∈J2)
∏

i∈J2∪{k+1}
(∆J2ti)

1−p
2
∏
i∈J2

dti = tνpk2+νp−1 Γ(νp)k2+1

Γ(νp(k2 + 1)) , (6.26)

thanks again to Lemma 4.5. We therefore conclude that

E
[∣∣Va,k(t)∣∣p] 1

p ≤
∑
J⊆JkK

(√
πtµ0,η(2)

) k1
2
(
2
p
2µη,∞(p)tνpΓ(νp)

) k2
p

√
2Γ(νp)

1
p

Γ(νp(k2 + 1))
1
p

≤ (2C)k max
k1+k2=k

(√
πtµ0,η(2)

) k1
2
(
2
p
2µη,∞(p)tνpΓ(νp)

) k2
p

√
2Γ(νp)

1
p

Γ(νp(k2 + 1))
1
p

.

(6.27)

Absorbing πk1/4 and (2p/2Γ(νp))k2/p, which is uniformly bounded in p ∈ [1, 2], into the constant C
and replacing the maximum by a sum, we derive (6.2) from (6.9), (6.14) and (6.27).



30 QUENTIN BERGER, CARSTEN CHONG, AND HUBERT LACOIN

If p ∈ (2, 3), the subadditivity argument in (6.19) does not apply. Instead, we shall use a variant
of the BDG estimate (6.12) that only contains the intensity measure ν := dt⊗ dx⊗ λ(dz) instead
of δω. For any p ≥ 2, there exists a constant C ′p ∈ (0,∞) such that for all P ⊗ B(Rd × (0,∞))-
measurable process K = K(ω,w) = K(ω, t, x, z),

E
[∣∣∣∣ ∫

X
K(w) (δω − ν)(dw)

∣∣∣∣p
]
≤ C ′p

{
E
[( ∫

X
K(w)2 ν(dw)

) p
2
]

+ E
[ ∫

X
|K(w)|p ν(dw)

]}
, (6.28)

where C ′p = (2p−1p(p− 1)(p/(p− 1))p)p/2 ∨ 2(p/(p− 1))p(2p + 1 + p) ≤ 729 when p ∈ [2, 3]; see [85,
Theorem 1 (b)] (and its proof for the value of C ′p). We also refer to [79] for a survey of various
versions and proofs (and names) of this inequality. Let us define

W̃a,0(t, x) := ρ(t, x), W̃a,k(t, x) :=
∫
X

(k)
t

ρt,x(t,x)
k∏
i=1

ξ̄aω(dti,dxi) for k ≥ 1,

so that in particular Wa,k(t) = W̃a,k(t, 0)/ρ(t, 0). With this definition, applying (6.28), we have

E
[
|W̃a,k(t, x)|p

] 1
p = E

[∣∣∣∣ ∫
Xt
ρ(t− tk, 0− xk)W̃a,k−1(tk, xk) ξ̄aω(dtk,dxk)

∣∣∣∣p
] 1
p

≤ C ′
{
E
[(
µ0,∞(2)

∫
Xt

(ρ(t− tk, xk)W̃a,k−1(tk, xk))2 dtk dxk
) p

2
] 1
p

+
(
µ0,∞(p)

∫
Xt
ρ(t− tk, xk)pE[|W̃a,k−1(tk, xk)|p] dtk dxk

) 1
p

}
.

Thus, applying Minkowski’s integral inequality, we get

E
[
|W̃a,k(t, x)|p

] 1
p ≤ C ′

{
µ0,∞(2)

1
2

(∫
Xt
ρ(t− tk, xk)2E[|W̃a,k−1(tk, xk)|p]

2
p dtk dxk

) 1
2

+ µ0,∞(p)
1
p

(∫
Xt
ρ(t− tk, xk)pE[|W̃a,k−1(tk, xk)|p] dtk dxk

) 1
p

}
.

Repeating this estimate and recalling (6.9), we get

E
[
Z̄ω,aβ (t, 0)p

] 1
p ≤ ρ(t, 0) +

∞∑
k=1

(C ′β)k
∑

θ∈{2,p}k
µ0,∞(p)

k1
p µ0,∞(2)

k2
2 ‖ρt,0(t,x)‖θ,t, (6.29)

where k1 is the number of p’s and k2 the number of 2’s in θ, and where we have defined

‖f‖θ,t :=
(∫

Xt

(
· · ·
(∫

Xt

(∫
Xt
f(t,x)θ1 dt1 dx1

) θ2
θ1

dt2 dx2

) θ3
θ2
· · ·
) θk
θk−1 dtk dxk

) 1
θk

for f : ((0,∞)× Rd)k → [0,∞) and θ = (θ1, . . . , θk) ∈ [1,∞)k.
Now in order to conclude, we want to replace ‖ρt,0(t,x)‖θ,t by an integral which is analogous

to that found in the on the right-hand side of (6.19). To do so, we use the following identity, valid
for any positive function f and any measures µ1 and µ2:(∫

Ω1

(∫
Ω2
f(w1, w2)2 µ2(dw2)

) p
2
µ1(dw1)

) 1
p

≤
(∫

Ω2

(∫
Ω1
f(w1, w2)p µ1(dw1)

) 2
p

µ2(dw2)
) 1

2

.
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This inequality is a special case of [73, Lemma 3.3.1]. Now, letting J1 denote the set of indices for
which θi = p and J2 those for which θi = 2, we apply the above inequality iteratively to take all
the integrals with respect to J1 inside. We obtain (recall Remark 6.8)

‖ρt,0(t,x)‖θ,t ≤
(∫

X
(k2)
t

(∫
X

(k1)
t

1Xk(t)(t)ρt,0(t,x)p
∏
i∈J1

dti dxi
) 2
p ∏
i∈J2

dti dxi
) 1

2
. (6.30)

Now we can first integrate with respect to the xi’s using (6.21) and (6.22) (with p instead of θ and
2 instead of p). Recalling that ν2 = 1

2 , we obtain

‖ρt,0(t,x)‖θ,t ≤ ϑ(p)
k1
p ϑ(2)

k2
2 ρ(t, 0)

× t
1
4

(∫
(0,t)k2

(∫
(0,1)k1

1Xk(t)(t)
k+1∏
i=1

(∆ti)νp−1 ∏
i∈J1

dti
) 2
p ∏
i∈J2∪{k+1}

(∆J2ti)
2
p

(1−νp)− 1
2
∏
i∈J2

dti
) 1

2
.

Using Lemma 4.5 to integrate first with respect to (ti)i∈J1 , we get as in (6.25)∫
(0,1)k1

1Xk(t)(t)
k+1∏
i=1

(∆ti)νp−1 ∏
i∈J1

dti = 1Xk2 (t)((ti)i∈J2)
∏

i∈J2∪{k+1}

(∆J2ti)νp∆J2 (i)−1Γ(νp)∆J2 (i)

Γ(νp∆J2(i))

≤ 1Xk2 (t)((ti)i∈J2)Γ(νp)k+1tνpk1

∏
i∈J2∪{k+1}(∆J2ti)νp−1∏
i∈J2∪{k+1} Γ(νp∆J2(i)) ,

(6.31)

because (∆J2ti)νp∆J2 (i)−1 ≤ tνp(∆J2 (i)−1)(∆J2ti)νp−1. Pulling (∆J2ti)νp−1 to the outer integral, we
evaluate ∫

(0,t)k2
1Xk2 (t)((ti)i∈J2)

∏
i∈J2∪{k+1}

(∆J2ti)−
1
2
∏
i∈J2

dti = t
k2
2 −

1
2

Γ(1
2)k2+1

Γ(k2+1
2 )

,

using once more Lemma 4.5. Altogether, bounding ϑ(p), ϑ(2) ≤ 1, we obtain that

‖ρt,0(t,x)‖θ,t ≤ ρ(t, 0)t
νp
p
k1+ 1

4k2 Γ(νp)
1
p

(k+1)
π

1
4 (k2+1)

Γ(k2+1
2 )

1
2
∏
i∈J2∪{k+1} Γ(νp∆J2(i))

1
p

.

Going back to (6.29), bounding ϑ(p), ϑ(2) ≤ 1 and expressing everything in terms of J2 and
k2 = |J2|, we get that E[ρ(t, 0)−pZ̄ω,aβ (t, 0)p]1/p is bounded by

π
1
4 Γ(νp)

1
p

∞∑
k=0

∑
J2⊆JkK

(
C ′βµ0,∞(p)

1
p t

νp
p Γ(νp)

1
p
)k1(C ′βµ0,∞(2)

1
2 Γ(νp)

1
pπ

1
4 t

1
4
)k2

Γ(k2+1
2 )

1
2
∏
i∈J2∪{k+1} Γ(νp∆J2(i))

1
p

= π
1
4 Γ(νp)

1
p

∞∑
k=0

k∑
k2=0

(
C ′βµ0,∞(2)

1
2 Γ(νp)

1
pπ

1
4 t

1
4
)k2

Γ(k2+1
2 )

1
2

×
∑

`1,...,`k2+1≥1
`1+···+`k2+1=k+1

k2+1∏
i=1

(
C ′βµ0,∞(p)

1
p t

νp
p Γ(νp)

1
p
)`i−1

Γ(νp`i)
1
p

,

where we have used a change of variable and the fact that `1 + · · · + `k2+1 = k + 1 implies that
k1 =

∑k2+1
i=1 (`i − 1). Exchanging the first two sums and factorizing the last one yields (6.3). �
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6.5. Intermezzo: d ≥ 2 under stronger moment conditions. The method we have used for
d = 1 can further be used to prove boundedness of moments under the more restrictive assumption
given in (1.21). We illustrate this by Proposition 6.9 below whose proof can be achieved by
replicating that of (6.2). This quantitative estimate is sufficient to prove the upper bound parts
of Theorem 2.12 and similar ideas could in principle be used to prove Theorem 2.5 under the
more restrictive assumption (1.21). The more involved method used in the proof of Proposition
6.3 below, however, is necessary to bridge the gap between the conditions (1.21) and (1.23); recall
that the latter is optimal in dimension 2 and very close to optimal when d ≥ 3.

Proposition 6.9. There exists a constant C ∈ (0,∞) that only depends on d such that if d ≥ 2,
µ0,1(q) < ∞ and µ1,∞(p) < ∞ for some 1 < p ≤ q < 1 + 2

d , we have, for all a ∈ [0, 1], η ∈ (0, 1]
and β, t > 0,

E
[
ρ(t, x)−pZ̄ω,aβ (t, x)p

] 1
p ≤

∞∑
k1,k2=0

(
CΓ(νq)β
p− 1

)k1+k2

(µ0,η(q)tνq)
k1
q

(Γ(νp)µη,∞(p)tνp)
k2
p Γ(νp)

1
p

Γ(νp(k2 + 1))
1
p

.

Proof. Let us give a very short guideline for the proof: we use the same partition Pk as in (6.23)
and apply Lemma 6.7 with θ = q. The proof is identical to that of Proposition 6.1 (ii) except that
(6.25) has to be replaced by (6.31), which together with the bound Γ(νq∆J2(i)) ≥ 1

2 gives∫
(0,t)k1

1Xk(t)(t)
k+1∏
i=1

(∆ti)νq−1 ∏
i∈J1

dti ≤ 1Xk2 (t)((ti)i∈J2) 2k2+1Γ(νq)ktνqk1
∏

i∈J2∪{k+1}
(∆J2ti)νq−1 . �

6.6. The proof of Proposition 6.3. We use the same idea as for the proof of Proposition 6.1.
We will consider a partition Pk (defined below) of the parameter space X (k)

t : each element P ∈ Pk

induces a partition of JkK into two sets J1 and J2 and we are going to use Lemma 6.7 with θ = 1+ 2
d

(and hence νθ = 0). The main technical part of this section will then be to bound

U(P, t) := t1−νp
∫
X (k2)
t

(∫
X (k1)
t

1P(t, z)
k+1∏
i=1

(∆ti)−1 ∏
i∈J1

z
1+ 2

d
i dti λ(dzi)

) p
1+2/d

×
∏

j∈J2∪{k+1}
(∆J2tj)

p
1+2/d+νp−1 ∏

i∈J2

zpi dti λ(dzi) .
(6.32)

The following is the main technical estimate of this section.

Proposition 6.10. Recall (6.4) and (6.6). With the choice Pk defined in Section 6.6.1 below (see
in particular (6.37)), we have for every P ∈ Pk, η ∈ (0, 1] and t > 0 that

U(P, t) ≤ ζ1(η, p, t)k1ζ2(η, p)k2Λ(k2, t, p), (6.33)

where k1 := |J1| and k2 := |J2|.

Proposition 6.3 follows immediately from Proposition 6.10.

Proof of Proposition 6.3. Using Lemma 6.7, combined with (6.14) and (6.15), we obtain that

E[Wa,k(t)p]
1
p ≤

(
C

p− 1

)k
|Pk| max

P∈Pk
U(P, t)

1
p

≤ 2
( 9C
p− 1

)k
max

k1+k2=k

(
ζ1(η, p, t)k1ζ2(η, p)k2Λ(k2, t, p)

) 1
p
,

(6.34)

where we have used that |Pk| ≤ 2× 9k (see below). Replacing the max by a sum yields (6.7). �
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6.6.1. Constructing the partition Pk. The construction of Pk when d ≥ 2 is considerably more
involved, as it no longer suffices to only differentiate between zi ≥ η and zi < η as we did for
d = 1. Recall that in Section 6.2, in order to obtain optimal bounds, we had to split the integral
according to how zi and ∆td/2i compare to each other. A problem arises when trying to generalize
this method to k ≥ 2: On the right-hand side of (6.32), the value of ∆ti plays the same role as
∆ti+1, which is the reason why we cannot break down the k-fold integral into 2k parts as we did
in the proof of Proposition 6.1.

We now describe our solution to this problem. To give the idea behind our partition and its
link to the bound (6.33), recall from (6.32) that we first integrate with respect to the variables
with indices in J1 and then with respect to those with indices in J2. Loosely speaking, indices in
J1 correspond to values of zi that are small compared to (∆ti)d/6 and (∆ti+1)d/6; this gives rise
to a factor ζ1(η, p, t)k1 that can be explained by the calculations in (6.40)–(6.41) below. Note that
after integrating with respect to such an index, one may have to update the set of parameters
since for the next step one has to compare zi with time increments formed between the remaining
variables. These may differ from ∆ti and ∆ti+1, which explains why the partition has to be defined
iteratively.

Each element of our partition P ∈ Pk is encoded by a finite sequence (Lj , Ij−, I
j
+, D

j)mj=1 of
partitions of Jk + 1K; the length m of the sequence is a variable. With some abuse of notation,
we identify P with this sequence. We also use the notation Ij := Ij− ∪ I

j
+. Not every sequence is

admissible, so let us present the rules for constructing the set of admissible sequences:
• First we partition Jk+ 1K into three sets L1, I1

+, and I1
−, imposing that k+ 1 ∈ I1, and we

define D1 := ∅.
• The procedure is then iterative. Assume that m ≥ j and that one has constructed the
sets of the first j steps. We let i(+1, j) denote the successor of i and i(−1, j) denote the
predecessor of i in Lj ∪ Ij− ∪ I

j
+, that is,

i(+1, j) := min{` ∈ Lj ∪ Ij− ∪ I
j
+ : ` ≥ i+ 1} ,

i(−1, j) := max{` ∈ Lj ∪ Ij− ∪ I
j
+ : ` ≤ i− 1} ,

(6.35)

with the convention max ∅ = 0; we only use the notation i(+1, j) if the set over which the
minimum is taken is non-empty. Unless

Lj× := {i ∈ JkK : i ∈ Lj and i(+1, j) ∈ Ij−} = ∅ , (6.36)

we need to add extra terms corresponding to j+1 to our sequence, which will be described
in the next point. This procedure is repeated until at some stage j, (6.36) is satisfied. We
then define m = j and our sequence is complete.
• When Lj× 6= ∅, the next sets (Lj+1, Ij+1

− , Ij+1
+ , Dj+1) are only partially determined by

(Lj , Ij−, I
j
+, D

j): while we prescribe the choice Dj+1 := Dj ∪ Lj×, there is some liberty for
choosing the sets Lj+1, Ij+1

− and Ij+1
+ . We set

Ij× := {i(+1, j) : i ∈ Lj×}

and consider an arbitrary partition {I(j+1)
− , I

(j+1)
+ , L(j+1)} of Ij× subject to only one con-

straint: if k + 1 ∈ Ij×, then k + 1 ∈ I(j+1)
− ∪ I(j+1)

+ (this is to guarantee that k + 1 ∈ Ij for
all j). We then define Lj+1, Ij+1

− and Ij+1
+ as follows:

Lj+1 := (Lj \ Lj×) ∪ L(j+1),

Ij+1
− := (Ij− \ I

j
×) ∪ I(j+1)

− ,

Ij+1
+ := Ij+ ∪ I

(j+1)
+ .
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Given an element in Pk, we further define
J1 := Dm ∪ {i ∈ Lm : i(+1,m) ∈ Lm} and J2 := JkK \ J1.

An example of an admissible sequence of partitions as well as the associated sets J1 and J2 are
shown in Figure 1.

− − − + − +

− + − +

− + +

+ +

J1 J1J2 J2

Notation:
→ Lj

− → Ij−
+ → Ij+

→ Dj

Figure 1. Example of an admissible sequence of partitions of Jk + 1K with k = 11. The successive
partitions (Lj , Ij−, I

j
+, D

j)1≤j≤m (with m = 4) are represented from top to bottom. Each curved arrow
represents an element of Ij× and points from an index in Lj× to an index in Ij×. The symbol repre-
sents indices that can be chosen to belong to L(j+1) ( ), I(j+1)

− (− ) or I(j+1)
+ (+ ). In the proof of

Proposition 6.10 we first integrate with respect to variables with indices in J1, proceeding in the order
L1
×, L

2
×, . . . , L

m−1
× , {i ∈ Lm : i(+1,m) ∈ Lm}, and afterwards integrate with respect to variables with

indices in J2.

Let us now determine, or rather bound from above, the cardinality of Pk, that is, the number
of admissible sequences that can be constructed according to the above rules. Note that we have
2× 3k possibilities for choosing L1, I1

+ and I1
−. Afterwards, at each step, one has to assign one out

of three labels I(j+1)
− , I(j+1)

+ or L(j+1) to each element in Ij×. Since |Ij×| = |Lj×| and the Lj×’s are
disjoint by construction, there are at most k choices to be made, hence at most 3k possibilities.
We therefore have |Pk| ≤ 2× 9k.

Next, let us explain how each sequence in Pk is associated to a subset P ⊆ X (k)
t . With the

convention (L(1), I
(1)
− , I

(1)
+ ) := (L1, I1

−, I
1
+), we define

1P(t, z) :=
m∏
j=1

( ∏
i∈I(j)
−

1{zi≥(∆jti)d/6∧η, zi(−1,j)<(∆jti)d/6∧η}
∏
i∈I(j)

+

1{zi∧zi(−1,j)≥(∆jti)d/6∧η}

×
∏

i∈L(j)

1{zi<(∆jti)d/6∧η}

)
,

(6.37)

where ∆jti := ti − ti(−1,j) (recall (6.35)) and zk+1 :=∞ by convention.
It is easy to verify that (6.37) induces a partition of X (k)

t indexed by Pk: Indeed, for any
fixed (t, z) ∈ X (k)

t , the values of zi and ∆ti uniquely determine (L1, I1
−, I

1
+) = (L(1), I

(1)
− , I

(1)
+ ).

Assuming that (Lj , Ij−, I
j
+) has been identified up to some j ≥ 1, we can check whether (6.36) is

satisfied. If so, we set m = j and we are done. Otherwise, we again use the values of zi and ∆ti to
find (L(j+1), I

(j+1)
− , I

(j+1)
+ ), from which we can then determine (Lj+1, Ij+1

− , Ij+1
+ ). Therefore, every

(t, z) is contained in some P ∈ Pk. The uniqueness of P is straightforward.

6.6.2. Proof of Proposition 6.10. Recall the formula (6.32) of U(P, t). The proof is divided into
two parts: first we integrate with respect to variables with indices in J1 and then with respect to
those with indices in J2.
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Step 1. Integrating with respect to indices in J1. Our first task is to prove that, roughly speaking,
the integral with respect to each zi and ti with indices i ∈ J1 yields at most a factor ζ1(η, p, t)k1 .
More precisely, we prove that

U(P, t) ≤ ζ1(η, p, t)k1U2(P, t), (6.38)

where

U2(P, t) := t1−νp
∫
X (k2)
t

1P ′ (∆J2tk+1)νp−1 ∏
i∈J2

(∆J2ti)νp−1zpi (3|log zi|+ 1)1{zi<η} dti λ(dzi)

and

1P ′ :=
∏

i∈I(m)
−

1{zi≥(∆J2 ti)d/6∧η}
∏

i∈I(m)
+

1{zi∧zi(−1,J2)≥(∆J2 ti)d/6∧η}
∏

i∈L(m)∩J2

1{zi<(∆J2 ti)d/6∧η}
(6.39)

represents constraints on the values of ∆J2ti and zi that are inherited from P for i ∈ J2. Note
that compared to (6.37), we only have j = m and we have replaced ∆mti by ∆J2ti. This makes no
difference when i ∈ I(m)

− or i ∈ I(m)
+ since i(−1,m) ∈ J2 in both cases; for i ∈ L(m), the constraint

is implied by P since ∆J2ti ≥ ∆mti.
First, let us reduce to the case where m = 0, that is, L1

× = ∅, : the idea is to integrate with
respect to variables with indices in L1

×, then with respect to those with indices in L2
×, etc. One

may refer to Figure 1 to understand how this procedure goes on. We start with integration with
respect to zi and ti when i ∈ L1

×. In this case, we have zi < [∆ti ∧∆ti+1]d/6 ∧ η. To treat these
indices, note that by symmetry,∫ t

0
s−1(t− s)−11{z<[s∧(t−s)]d/6} ds ≤ 2

∫ t/2

0
s−1(t− s)−11{z<sd/6} ds ≤ 4t−1 log

(
1
2 tz
− 6
d

)
, (6.40)

where for the last bound we used that t − s ≥ t/2. From now on, we assume η ≤ 1. Then, if
z ∈ (0, η), using also that 6/d ≤ 3, we have∫ t

0
s−1(t− s)−11{z<[s∧(t−s)]d/6} ds ≤ 8t−1(3|log z|+ 1)(1 + log+ t) .

Recalling the definition (6.6) of ζ1(η, p, t), we end up with∫ t

0

∫
(0,η)

s−1(t− s)−11{z<[s∧t−s]d/6}z
1+ 2

d ds λ(dz) ≤ t−1ζ1(η, p, t)
1+2/d
p . (6.41)

So if i ∈ L1
×, using the trivial fact that ∆2ti := ti+1 − ti−1 ≤ t, we have∫ ti+1

ti−1

∫
(0,∞)

(∆ti∆ti+1)−1z
1+ 2

d
i 1P(t, z) dti λ(dzi) ≤ ζ1(η, p, t)

1+2/d
p (∆2ti)−11P(i)(t(i), z(i)), (6.42)

where t(i) and z(i) denote the vectors t and z with the ith coordinate omitted and P(i) is obtained
from P by ignoring all the constraints that involve either zi or ti. Thus, at the cost of a multi-
plicative factor ζ1(η, p, t)(1+2/d)/p one can, for each i ∈ L1

×, simplify the integrals with respect to
λ(dzi) dti. After relabeling the indices, we can then iterate this process, making use of the iterative
construction of P. As a result, we are left to prove (6.38) in the case where L1

× = ∅. Since m = 1
in this case, we drop the superscript 1 from the notation.

Under the assumption L1
× = ∅, we have J1 = {i ∈ L : i+1 ∈ L}. We may treat different segments

of J1 separately. Let us assume, for instance, that Ji, i+`−1K ⊆ J1, where Ji, jK := {i, i+1, . . . , j}.
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In the same spirit as (6.40)–(6.42), we have that∫ ti+1

ti−1
(∆ti∆ti+1)−11P(t, z) dti

≤
8(1 + log+ t)

∆2ti
(1 + 3|log(zi ∧ zi+1)|)1P(i)(t(i), z(i))1{zi∨zi+1<(∆2ti)6/d∧η}.

Iterating this and noticing that |log(zi ∧ zi+1)| = |log zi| ∨ |log zi+1| since zi, zi+1 < η ≤ 1, we get∫
X`(ti−1,ti+`)

∏̀
j=0

(∆ti+j)−11P(t, z) dti · · · dti+`−1 ≤
(8(1 + log+ t))`

ti+` − ti−1
×

∏`
j=0(3|log zi+j |+ 1)

minj∈J`K(3|log zi+j |+ 1) .

The second denominator can be ignored since it is larger than 1. If one then integrates with respect
to zi, . . . , zi+`−1 (recall (6.39) and the remark afterwards), one obtains

∫
X`(ti−1,ti+`)×(0,∞)`

(∏̀
j=0

(∆ti+j)−1
)

1P(t, z)
`−1∏
j=0

z
1+ 2

d
i+j dti+j λ(dzi+j)

≤ 1P ′
ζ1(η, p, t)

1+2/d
p

`

ti+` − ti−1
(3|log zi+`|+ 1).

This completes integration with respect to (ti, zi) for i ∈ J1 (note that i + ` − 1 ∈ J1 implies
i+ ` ∈ L and hence zi+` < η). Recalling (6.32) and bounding (3| log z|+ 1)p/(1+2/d) ≤ 3| log z|+ 1,
we obtain (6.38).

Step 1. Integrating with respect to indices in J2. To complete the proof, we need to show that

U2(P, t) ≤ ζ2(η, p)k2Λ(k2, t, p). (6.43)

To simplify notation, let us assume that J2 = JkK and hence k2 = k (again, this simply amounts
to relabeling the vertices). Recalling the definition (6.6) of ζ2(η, p), the bound (6.43) follows once
we have shown that if (t, z) ∈ P ′, then

(∆tk+1)νp−1
k∏
i=1

(∆ti)νp−1zpi ≤ Gp(t)
k∏
i=1

(
zpi 1{zi≥η} + z

1+ 2
d

i 1{zi<η}
)
, (6.44)

where, recalling the definition (6.5) of Gp(s), we set

Gp(t) :=
{

(∆tk+1)νp−1∏
i∈JkKGp(∆ti) if k /∈ L,

(∆tk)νp−1∏
i∈Jk+1K\{k}Gp(∆ti) if k ∈ L.

Note that in both cases, t1−νp times the integral of Gp(t) over the simplex Xk(t) is equal to Λ(k, t, p)
as defined in (6.4) (in the second case one simply needs to exchange the role of ∆tk and ∆tk+1).

The reason why (6.44) is needed is that, on the left-hand side of (6.44), the exponent p makes zpi
a priori not integrable near zero. But since νp− 1 > −1, there is some margin for the integrability
of (∆ti)νp−1: the idea is to use the constraints in P ′ to “transfer” a part of the exponent of ∆ti
onto that of zi or zi−1 or both.

To this end, we shall use the equivalence

(∆t)
d
6 ≤ z ⇐⇒ (∆t)

νp
3 ≤ z1+ 2

d
−p (6.45)

in two cases: (i) if i ∈ I− ∪ I+ and zi < η, with z = zi and ∆t = ∆ti; (ii) if i ∈ L (hence zi < η),
with z = zi and ∆t = ∆ti+1. The reader can check that for (t, z) ∈ P ′, the left-hand side of (6.45)
is satisfied in these two cases. Notice now that if i ∈ L, then necessarily we have i+1 ∈ I+: indeed,
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i + 1 cannot be in I− since L1
× = ∅ and it cannot be in L, either, since i ∈ J2 by assumption.

Therefore, we obtain

(∆tk+1)νp−1
k∏
i=1

(∆ti)νp−1zpi ≤
∏
i∈I−

(∆ti)νp−1− νp3 1{zi<η}
∏
i∈I+

(∆ti)νp−1− νp3 (1{zi<η}+1{i−1∈L})

×
∏
i∈L

(∆ti)νp−1
k∏
i=1

(
zpi 1{zi≥η} + z

1+ 2
d

i 1{zi<η}
)
.

(6.46)

The bound (6.44) now follows from the estimate∏
i∈I−

(∆ti)νp−1− νp3 1{zi<η}
∏
i∈I+

(∆ti)νp−1− νp3 (1{zi<η}+1{i−1∈L})
∏
i∈L

(∆ti)νp−1 ≤ Gp(t), (6.47)

which is a consequence of the following three observations concerning the exponent of ∆ti on the
left-hand side of (6.47):

• It is larger than or equal to νp
3 − 1 (which we use if ∆ti ≤ 1).

• It is equal to νp − 1 if ∆ti ≥ 1 > η (as can be checked from the definition (6.39) of P ′).
• It is equal to νp − 1 if i = k and k ∈ L or if i = k + 1 and k /∈ L (this follows from the
convention zk+1 =∞).

This completes the proof of (6.43), which, together with (6.38), implies (6.33). �

7. Proof of Theorem 2.1 and upper bounds in Theorems 2.11 and 2.12

7.1. Proof of Theorem 2.1. First let us note that the results for the free-end partition func-
tion follows from those for the point-to-point version and Jensen’s inequality, as observed in (5.6).
The Lp-convergence (2.4) for p > 1 is a direct consequence of Corollary 6.5 and the fact that
(Zω,aβ (t, x))a∈(0,1] is a time-reversed martingale for the filtration G defined in (1.20). The conver-
gence in L1 when µ <∞ cannot be obtained in this manner but can be recovered by a truncation
argument. More precisely, we consider the partition function Zω,[a,b)β (t, x) obtained by replacing ω
by ω ∩ (R×Rd× [0, b)) (see [13, Equation (2.40) and below]) and reproduce the argument used in
[13, Prop. 4.6 and 4.7] but with a moment of order p ∈ (1, 1 + 2

d) ∩ (1, 2] instead of 2.
Let us move to the proof of (2.3). Recall that ω< and ω≥ denote the set of points in ω with

third coordinate in (0, 1) and [1,∞), respectively. Consider the reduced partition function

Zω<,aβ (t, x) = ρ(t, x) +
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξaω<(dti,dxi).

It is easy to obtain that

Zω,aβ (t, x) = Zω<,aβ (t, x) +
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

Zω<,aβ,t,x (t,x)
k∏
i=1

ξaω≥(dti, dxi), (7.1)

where we have defined

Zω<,aβ,t,x (t,x) :=
k+1∏
i=1
Zω<,aβ (ti−1, xi−1; ti, xi) ,

with the convention x0 := 0, xk+1 := x, t0 := 0, tk+1 := t. As a consequence, using Minkowski’s
inequality, the identity (1.18) and Corollary 6.5, we have for any p ∈ (1, 1 + 2

d),

E<
[
Zω,aβ (t, x)p

] 1
p

≤ C(β, p, t)ρ(t, x) +
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

k+1∏
i=1

E<
[
Zω<,aβ (∆ti,∆xi)p

] 1
p

k∏
i=1

ξaω≥(dti, dxi).
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Using Corollary 6.5 again, we obtain

E<
[
Zω<,aβ (∆ti,∆xi)p

] 1
p ≤ C(β, p, t)ρ(∆ti,∆ti)

for every a ∈ (0, 1). Setting β′ := βC(β, p, t), we conclude that

E<
[
Zω,aβ (t, x)p

] 1
p ≤ C(β, p, t)Zω≥β′ (t, x) <∞ (7.2)

for every a ∈ (0, 1). As Zω,aβ (t, x) is a reversed martingale in a under P<, this shows (2.3). For the
proof of the positivity statement in (2.2), we refer to [13, Section 4.7]. �

7.2. Proof of Theorem 2.11 (first half: upper bounds). In this section, we prove all upper
bounds on |γ̄β(p)|. By convexity and the fact that γ̄β(1) = 0, we have for q ∈ (0, 1) and p ∈ (1, 1+ 2

d)
that

q − 1
p− 1 γ̄β(p) ≤ γ̄β(q) ≤ 0. (7.3)

Hence it is sufficient to prove only an upper bound on γ̄β(p) for p ∈ (1, 1 + 2
d). Furthermore, by

Proposition 2.8 (ii), we can consider the point-to-point partition function in our computations.

7.2.1. Dimension d = 1. If d = 1 and p = 2, the first part of Proposition 6.1 immediately yields

γ̄β(2) = lim
t→∞

1
t

logE
[
ρ(t, x)−2Z̄ωβ (t, x)2

]
= β4µ0,∞(2)2

4 .

The result for other values of p ∈ (1, 2) follows by convexity, which gives 0 ≤ γ̄β(p) ≤ (p− 1)γ̄β(2).
If p ∈ (2, 3), we use the bound (6.3) for some t = t(β). Indeed, by sub-additivity of logE[Z̄ωβ (t, ∗)p]

(see Lemma 5.1), we get that

γ̄β(p) = lim
t→∞

1
t

logE
[
Z̄ωβ (t, ∗)p

]
= inf

t>0

1
t

logE
[
Z̄ωβ (t, ∗)p

]
.

Using (5.6), we therefore get that for any p > 1 and any t > 0,

γ̄β(p) ≤ 1
t

logE
[
ρ(t, 0)−pZ̄ωβ (t, 0)p

]
. (7.4)

If t = t(β) = cpβ
−4 with a sufficiently small constant cp, the bound (6.3) gives that

E
[
ρ(t, 0)−pZ̄ωβ (t, 0)p

]
≤ Cp

∞∑
k2=0

(Cpβt
1
4 )k2

Γ(k2+1
2 )

1
2

( ∞∑
`=0

(C ′pβt
νp
p )`

Γ(νp(`+ 1))
1
p

)k2+1

≤ 2Cp
∞∑
k2=0

(2Cpβt
1
4 )k2

Γ(k2+1
2 )

1
2
≤ 4Cp .

Indeed, since 1
pνp <

1
4 for p ∈ (2, 3), we can choose cp sufficiently small so that both the internal

sum over ` and the sum over k2 in the second line are bounded by 2. Altogether, thanks to (7.4),
we get γ̄β(p) ≤ C ′′pβ4 with C ′′p = c−1

p log 4Cp.

7.2.2. Dimension d ≥ 2. If d ≥ 2, we are going to use Proposition 6.3 with η = 1 and drop
the dependence in η in the notation. Our first task is to replace the functions ζ1(p, t), ζ2(p) and
Λ(k2, t, p) in (6.7) by something more tractable. First, we let C1 and C2 be constants, which only
depend on the measure λ and are chosen to be larger than 1, such that for every p ∈ [1 + 1

d , 1 + 2
d)

and t ≥ e, we have (
C

p− 1

)k
ζ1(p, t)

k1
p ζ2(p)

k2
p ≤

(
C1(log t)

1
1+2/d

)k1
Ck2

2 , (7.5)
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where C is the constant in (6.7). For Λ(k2, t, p), we use the following lemma, which we prove
afterwards.

Lemma 7.1. For any k ≥ 0, p ∈ (1, 1 + 2
d), t ≥ 1 and α ∈ (0, 1),

Λ(k, t, p) ≤ (k + 1)2(4ν−1
p α−νp)keαt.

Using Proposition 6.3, (7.5) and Lemma 7.1 (and the trivial bound (k + 1)2/q ≤ (k + 1)2), we
have for any α > 0 and q ∈ (1, 1 + 2

d)

E
[
ρ(t, 0)−qZ̄ωβ (t, 0)q

] 1
q ≤ e

α
q
t
∞∑
k1=0

(C1β(log t)
1

1+2/d )k1
∞∑
k2=0

(k2 + 1)2
(

4
1
qC2βν

− 1
q

q α
− νq

q

)k2

. (7.6)

Now, for sufficiently small β we choose q ∈ (1 + 1
d , 1 + 2

d), α ∈ (0, 1), t ≥ e in the following way
(the dependence in β may sometimes be omitted in the computations below, for readability):

q(β) := 1 + 2
d
− 8e

d
(2C2β)1+ 2

d , α(β) := (4(2C2β)qν−1
q )

1
νq and t(β) := e(2C1β)−(1− 2

d
)
. (7.7)

Note that with this choice we have νq = 4e(2C2β)1+ 2
d and thus

α = (2C2β)−
2
d exp

(
− 1

4e(2C2β)1+ 2
d

)
, (7.8)

C1β(log t)
1

1+2/d = 1
2 and 4

1
qC2βν

− 1
q

q α
− νq

q = 1
2 , (7.9)

so that the sums in k1 and k2 in (7.6) are respectively equal to 2 and 12. We end up with

E
[
ρ(t, 0)−qZ̄ωβ (t, 0)q

] 1
q ≤ 24 e

α
q
t
. (7.10)

For a fixed p ∈ (1, 1 + 2
d), we can now deduce the upper bound in (2.16) from (7.10). We

consider β sufficiently small so that q = q(β) ≥ p. Using first (7.4) and then Jensen’s inequality,
we get

γ̄β(p) ≤ 1
t

logE
[
ρ(t, 0)−pZ̄ωβ (t, 0)p

]
≤ p

t
logE

[
ρ(t, 0)−qZ̄ωβ (t, 0)q

] 1
q ≤ p log 24

t
+ pα

q
. (7.11)

Using (7.8) and replacing t by its value (7.7) yield the upper bound in (2.16) since p/q ≤ 1. Let
us finally comment on our choice (7.7). The parameters α and t have been chosen so that (7.9),
hence (7.10), holds. The value of q = q(β) is chosen so that α, seen as a function of q for fixed β,
is minimized. This completes the proof of the upper bounds in (2.15) and (2.16). �

The lower bounds in (2.15) and (2.16) will be shown after Proposition 9.5.

Proof of Lemma 7.1. Recall the definitions (6.4) and (6.5) of Λ(k, t, p) and Gp(s). For fixed j ∈ JkK,
using a symmetry argument, we have that
∫
Xk(t)

1{∆tk+1= max
i∈Jk+1K

∆ti}(∆tk+1)νp−1
k∏
i=1

Gp(∆ti) dti

=
∫
Xk(t)

1{∆tj= max
i∈Jk+1K

∆ti}(∆tj)
νp−1 ∏

i∈Jk+1K\{j}
Gp(∆ti) dti

≥
∫
Xk(t)

1{∆tj= max
i∈Jk+1K

∆ti}(∆tk+1)νp−1 ∏
i∈JkK

Gp(∆ti) dti ,
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where we have used that (∆tk+1)νp−1Gp(∆tj) ≤ (∆tj)νp−1Gp(∆tk+1) if ∆tk+1 ≤ ∆tj for the second
step. As a consequence, again by a symmetry argument, we have

Λ(k, t, p) ≤ (k + 1) t1−νp
∫
Xk(t)

1{∆tk+1= max
i∈Jk+1K

∆ti}(∆tk+1)νp−1
k∏
i=1

Gp(∆ti) dti .

Together with the inequality maxi∈Jk+1K ∆ti ≥ t/(k + 1), this implies

Λ(k, t, p) ≤ (k + 1)2−νp
∫
Xk(t)

k∏
i=1

Gp(∆ti) dti.

We can conclude our proof by observing that∫
Xk(t)

k∏
i=1

Gp(∆ti) dti ≤ eαt
(∫ ∞

0
Gp(s)e−αs ds

)k
and ∫ ∞

0
Gp(s)e−αs ds ≤

∫ 1

0
s

1
3νp−1 ds+

∫ ∞
0

sνp−1e−ανp ds = 3ν−1
p + Γ(νp)α−νp ≤ 4ν−1

p α−νp ,

where the last step is valid because νp ∈ (0, 1) and α ∈ (0, 1). �

7.3. Proof of Theorem 2.12 (first half: upper bounds). Again, by (7.3) it suffices to
prove (2.18) for p > 1. Moreover, (2.19) follows immediately from (2.18).

If d ≥ 2, the arguments from Section 7.2 remain valid if we let q be equal to the value corre-
sponding to our assumption µ1,∞(q) <∞ (we consider C1 and C2 such that (7.5) is valid for this
value of q) but retain the choice in (7.7) for α and t. The conclusion (7.11) is still valid for any
p ∈ (1, q], and because α(β) = C3β

q/νq , (2.18) follows.
If d = 1, it suffices by convexity to treat the case when p = q. By (6.2) (with η = 1) and our

assumptions, there are constants C1 and C2, which may depend on q, such that

E
[
ρ(t, x)−qZ̄ωβ (t, x)q

] 1
q ≤

∞∑
k1=0

(C1βt
1
4 )k1

∞∑
k2=0

(C2βt
νq
q )k2

Γ(νq(k2 + 1))
1
q

. (7.12)

Let us choose t = t(β) := (2C1)4β−4 so that the first sum is equal to 2.
For the second sum, consider the three-parameter function F (γ)

α,δ (x) =
∑∞
m=0 x

m/Γ(αm+ δ)γ . A
precise asymptotic of F (γ)

α,δ is given in [55, Theorem 1], from which one gets that there is K(γ)
α,δ > 0

such that for all x ≥ 0,

F
(γ)
α,δ (x) ≤ K(γ)

α,δe
2γx

1
αγ
. (7.13)

Thanks to this estimate, the second sum in (7.12) is bounded by C3(1+βcq) exp(1
q (C2β)q/νq t) with

cq = (q − 1)( 1
νq
− 4

q ) < 0. In view of (7.4), we obtain that

γ̄β(q) ≤ q log(2C3(1 + βcq))
t(β) + C2β

q
νq ≤ C4β

4 log(1 + β−1) + C2β
q
νq .

Recalling that q/νq < 4 if p < 2, this gives the upper bound in (2.18). Finally, the lower bound in
(2.22) is an immediate consequence of (2.19) since our assumption limz→∞ log λ([z,∞))/ log z = α
implies that µ1,∞(q) <∞ for all q < α. �

The second half of Theorem 2.12 will be shown after Proposition 9.5.
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8. Existence and uniqueness of solutions to the SHE

This section is devoted to the proof of Theorems 2.5 and 2.7. The existence part, that is, The-
orem 2.5 is detailed in the Sections 8.1–8.4. Theorem 2.7, is addressed afterwards: in Section 8.5,
we verify that the solution defined in Theorem 2.5 satisfies the condition (2.10), while uniqueness
is shown in Section 8.6.

8.1. Overview of the proof of Theorem 2.5. For the ease of exposition, we first present the
case where the initial condition u0 is the Dirac function δ0. By (1.16), we have

Zω,aβ (t, x) = ρ(t, x) + β

∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξaω<(ds, dy)

+ β

∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξω≥(ds, dy).
(8.1)

We want to let a tend to 0 and conclude that

Zωβ (t, x) = ρ(t, x) + β

∫
(0,t)×Rd

ρ(t− s, x− y)Zωβ (s, y) ξω<(ds, dy)

+ β

∫
(0,t)×Rd

ρ(t− s, x− y)Zωβ (s, y) ξω≥(ds, dy).
(8.2)

We have to prove that the two integrals in the on the right-hand side are well defined in Itô’s and
Lebesgue’s sense, respectively (cf. Remark 1.2), that they are finite and that they are the limit of
the integrals displayed in (8.1). For this last point, setting

Ia1 (t, x) :=
∫

(0,t)×Rd
ρ(t− s, x− y)(Zω,aβ (s, y)−Zωβ (s, y)) ξaω<(ds, dy),

Ia2 (t, x) :=
∫

(0,t)×Rd
ρ(t− s, x− y)Zωβ (s, y) ξ[0,a)

ω< (ds, dy),

Ia3 (t, x) :=
∫

(0,t)×Rd
ρ(t− s, x− y)(Zω,aβ (s, y)−Zωβ (s, y)) ξω≥(ds, dy),

with ξ
[a,b)
ω := ξaω − ξbω (and ξ0

ω := ξω), we need to prove that for all (t, x) and j = 1, 2, 3, the
following convergence holds in probability:

lim
a→0

Iaj (t, x) = 0. (8.3)

The finiteness and convergence of these integrals are proved in Section 8.2 and Section 8.3, respec-
tively. The case of general initial condition is discussed in Section 8.4.

8.2. Finiteness of stochastic integrals. We first introduce a technical statement that is a direct
consequence of Corollary 6.5.

Lemma 8.1. Assuming (1.14) and (2.1), for all p ∈ (1, 1 + 2
d), T > 0, x ∈ Rd and β > 0, there

exist positive constants β′ = β′(β, p, T ) and C = C(β, p, T ) such that for every t ∈ [0, T ],

E<
[

sup
a∈(0,1)

Zω,aβ (t, x)p
] 1
p

≤ CZω≥β′ (t, x) P≥-a.s.

Proof. By Doob’s maximal inequality, it is sufficient to bound E<[Zω,aβ (t, x)p]1/p uniformly in a, t
and x. With the conventions that tk+1 := t, xk+1 := x and the term corresponding to k = 0 is
equal to Zω<,aβ (t, x), we have that

Zω,aβ (t, x) =
∞∑
k=0

βk
∫
Xk(t)×(Rd)k

k+1∏
i=1
Zω<,aβ (ti−1, xi−1; ti, xi)

k∏
j−1

ξω≥(dtj ,dxj). (8.4)
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Averaging with respect to ω< and using the Minkowski inequality, translation invariance and
Corollary 6.5 (we let C0 = C0(β, p, T ) denote the constant obtained from Corollary 6.5), we obtain
the desired bound as follows:

E<
[
Zω,aβ (t, x)p

] 1
p ≤

∞∑
k=0

βk
∫
Xk(t)×(Rd)k

k+1∏
i=1

E<
[
Zω<,aβ (∆ti,∆xi)p

] 1
p

k∏
j−1

ξω≥(dtj , dxj)

≤ C0

∞∑
k=0

[C0β]k
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
j=1

ξω≥(dtj ,dxj) = C0Z
ω≥
C0β

(t, x). �

Remark 8.2. In this section and the next, the dependence in β, p and T of the constant do not
have a major importance: most of the time, they are omitted in computations.

We now proceed to showing that the integrals in (8.2) are well defined and finite. The integral
Ia3 is a Lebesgue integral. Because of (2.2), it clearly suffices to show that∫

(0,t)×Rd
ρ(t− s, x− y) sup

a∈(0,1)
Zω,aβ (s, y) ξω≥(ds, dy) <∞. (8.5)

In fact, we are going to show that the Lp(P<)-norm of the quantity in (8.5) is finite P≥-a.s. Using
Minkowski’s integral inequality and Lemma 8.1, we have

E<

[( ∫
(0,t)×Rd

ρ(t− s, x− y) sup
a∈(0,1)

Zω,aβ (s, y) ξω≥(ds, dy)
)p] 1

p

≤
∫

(0,t)×Rd
ρ(t− s, x− y)E<

[
sup

a∈(0,1)
Zω,aβ (s, y)p

] 1
p

ξω≥(ds, dy)

≤ C
∫

(0,t)×Rd
ρ(t− s, x− y)Zω≥β′ (s, y) ξω≥(ds, dy).

(8.6)

By (8.1), applied with a = 1, the integral in the last line is equal to (Zω≥β′ (t, x)− ρ(t, x))/β′, which
is finite and therefore proves (8.5).

Let us now deal with Ia1 and Ia2 . We show that for P≥-a.e. realization of ω≥, the process
(ω<, s, y) 7→ ρ(t − s, x − y)Zω<∪ω≥β (s, y) is Lp(P<)-integrable with respect to ξω< , in the sense
described in Section 4.3. Thanks to Lemma 4.4, this implies that (ω, s, y) 7→ ρ(t−s, x−y)Zωβ (s, y)
is L0(P)-integrable with respect to ξω< . To this end, according to (4.6) and (4.7), we only need to
prove that for some p ∈ (1, 1 + 2

d), we have

E<

[( ∫
(0,t)×Rd×(0,1)

ρ(t− s, x− y)2Zωβ (s, y)2z2 δω<(ds, dy,dz)
) p

2
]
<∞. (8.7)

Using Fatou’s Lemma for the inner integral, we can replace Zωβ (s, y) by Zω,aβ (s, y) and add a
restriction 1{z≥a} provided that the bound we prove is uniform in a. Now using the BDG inequality
in the reverse direction, we obtain that

E<

[( ∫
(0,t)×Rd×(0,1)

ρ(t− s, x− y)2Zω,aβ (s, y)2z21{z≥a} δω<(ds, dy,dz)
) p

2
]

≤ C E<

[∣∣∣∣ ∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξaω<(ds, dy)
∣∣∣∣p
]
.

(8.8)
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Now using (8.1) and the Minkowski inequality, we have

βE<

[∣∣∣∣ ∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξaω<(ds, dy)
∣∣∣∣p
] 1
p

≤ ρ(t, x) + E<
[
Zω,aβ (t, x)p

] 1
p + β E<

[( ∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξω≥(ds, dy)
)p] 1

p

.

(8.9)

We conclude by observing that all summands on the right-hand side are uniformly bounded in
a: we use Lemma 8.1 for the second one, while the third one has been controlled in the previous
paragraph (see (8.6)). �

8.3. Convergence of stochastic integrals. We give the proof of (8.3) in this section. The
convergence of Ia3 follows from (8.5) and dominated convergence. The convergence of Ia2 follows
from dominated convergence for stochastic integrals. The main piece of work consists in proving
the convergence of Ia1 . We define

Ja,b1 (t, x) :=
∫

(0,t)×Rd
ρ(t− s, x− y)(Zω,aβ (s, y)−Zωβ (s, y)) ξ[a,b)

ω< (ds, dy) ,

Ja,b2 (t, x) :=
∫

(0,t)×Rd
ρ(t− s, x− y)

(
Zω,aβ (s, y)−Zωβ (s, y)

)
ξbω<(ds, dy) ,

and we prove that the following holds in P≥-probability:

lim
b→0

sup
a∈(0,1)

E<
[
|Ja,b1 (t, x)|

]
= 0 and lim

a→0
E<
[
|Ja,b2 (t, x)|

]
= 0.

Convergence of Ja,b2 (t, x). By Jensen’s inequality, it suffices to prove that E<[|Ja,b2 (t, x)|p]→ 0 for
some p ∈ (1,min(2, 1 + 2

d)). By the BDG inequality, we can further reduce this to proving

lim
a→0

E<

[( ∫
(0,t)×Rd×[b,1)

ρ(t− s, x− y)2(Zω,aβ (s, y)−Zωβ (s, y))2z2 δω<(ds, dy,dz)
) p

2
]

= 0. (8.10)

By subadditivity (5.4), for a < b this quantity is smaller than

E<

[ ∫
(0,t)×Rd×[b,1)

ρ(t− s, x− y)p|Zω,aβ (s, y)−Zωβ (s, y)|pzp δω<(ds, dy,dz)
]

= µb,1(p)
∫

(0,t)×Rd
ρ(t− s, x− y)pE<

[
|Zω,aβ (s, y)−Zωβ (s, y)|p

]
dsdy.

As the integrand tends to zero thanks to (2.3), by dominated convergence we will get that the last
integral converges to 0 for P≥-a.s. if we show that for P≥-a.e. realization of ω≥,∫

(0,t)×Rd
ρ(t− s, x− y)pE<

[
sup

a∈(0,1)
Zω,aβ (s, y)p

]
dsdy <∞ . (8.11)

To this end, we use Lemma 8.1 to bound the left-hand side of (8.11) by a constant times∫
(0,t)×Rd

ρ(t− s, x− y)pZω≥β′ (s, y)p ds dy

≤
( ∞∑
k=0

(β′)k
∫
Xk(t)×(Rd)k

(∫
(tk,t)×Rd

ρ(t− s, x− y)pρ(s− tk, y − xk)p dsdy
) 1
p

×
k∏
i=1

ρ(∆ti,∆xi) ξω≥(dti,dxi)
)p
,

(8.12)
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where the last inequality follows from Minkowski’s inequality (for the Lp-norm of the measure
ρ(t− s, x− y)p dsdy). Recalling (5.5) and using Lemma 4.5, one has∫

(tk,t)×Rd
ρ(t− s, x− y)pρ(s− tk, y − xk)p dsdy = ϑ(p)2 Γ(νp)2

Γ(2νp)
(t− tk)2νp−1ρ

(1
p(t− tk), x− xk

)
= ϑ(p) Γ(νp)2

Γ(2νp)
(t− tk)νpρ(t− tk, x− xk)p. (8.13)

Therefore, the right-hand side of (8.12) is further bounded by ϑ(p)Γ(νp)2Γ(2νp)−1tνp times( ∞∑
k=0

(β′)k
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξω≥(dti,dxi)
)p

= Zω≥β′ (t, x)p, (8.14)

which is finite. This concludes the proof of (8.10). �

Convergence of Ja,b1 (t, x). Using Jensen’s inequality, we need to show that for some p ∈ (1, 1 + 2
d),

lim
b→0

sup
a∈(0,1)

E<

[∣∣∣∣ ∫
(0,t)×Rd

ρ(t− s, x− y)Zω,aβ (s, y) ξ[a,b)
ω< (ds, dy)

∣∣∣∣p
]

= 0,

lim
b→0

sup
a∈(0,1)

E<

[∣∣∣∣ ∫
(0,t)×Rd

ρ(t− s, x− y)Zωβ (s, y) ξ[a,b)
ω< (ds, dy)

∣∣∣∣p
]

= 0.
(8.15)

For the second line, we apply the BDG inequality and realize that

sup
a∈(0,1)

E<

[∣∣∣∣ ∫
(0,t)×Rd

ρ(t− s, x− y)Zωβ (s, y) ξ[a,b)
ω< (ds, dy)

∣∣∣∣p
]

≤ C E<

[( ∫
(0,t)×Rd×[0,b)

ρ(t− s, x− y)2Zωβ (s, y)2z2 δω<(ds, dy,dz)
) p

2
]
.

Thanks to (8.7), this converges to 0 as b → 0, by dominated convergence. Concerning the first
line in (8.15), we rely on the proof of Propositions 6.1 and 6.3 but with a small variation. Let us
define a modified partition function by

Yω,a,bβ (s, x; t, y) :=
∞∑
k=1

βk−1
∫
Xk(s,t)×(Rd)k

ρs,x;t,y(t,x)
(
k−1∏
i=1

ξaω(dti, dxi)
)
ξ[a,b)
ω (dtk,dxk)

and Yω,a,bβ (t, x) := Yω,a,bβ (0, 0; t, x). The reader can check that the E<[(· · · )]-term in the first line
of (8.15) is simply E<[|Yω,a,bβ (t, x)|p]. In analogy with (7.1), we have

Yω,a,bβ (t, x) = Yω<,a,bβ (t, x)

+
∞∑
k=1

βk
∫
Xk(t)×(Rd)k

Yω<,a,bβ (tk, xk; t, x)
k∏
i=1
Zω<,aβ (ti−1, xi−1; ti, xi) ξω≥(dti,dxi).

Applying Minkowski’s inequality, we get

E<
[
|Yω,a,bβ (t, x)|p

] 1
p ≤ E<

[
Yω<,a,bβ (t, x)p

] 1
p +

∞∑
k=1

βk
∫
Xk(t)×(Rd)k

E<
[
|Yω<,a,bβ (∆tk+1,∆xk+1)|p

] 1
p

×
k∏
i=1

E<
[
Zω<,aβ (∆ti,∆xi)p

] 1
p
ξω≥(dti, dxi).
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We then need the following estimate, which comes from a small adaptation of the proofs of Propo-
sitions 6.1 and 6.3 and Corollary 6.5. The proof of this lemma is postponed to the end of the
section.

Lemma 8.3. Assume that λ([1,∞)) = 0. Given β, T > 0, and p ∈ (1, 1+ 2
d) there exists a function

δ(b) = δβ,p,T (b) such that limb→0 δ(b) = 0 and

sup
t∈(0,T ]

sup
x∈Rd

sup
a∈(0,1]

E
[
ρ(t, x)−p|Yω,a,bβ (t, x)|p

] 1
p ≤ δ(b).

By Corollary 6.5 and Lemma 8.3, we obtain a constant C0 = C0(β, p, T ) such that

E<
[
|Yω,a,bβ (t, x)|p

] 1
p ≤ δ(b)

(
ρ(t, x) +

∞∑
k=1

(C0β)k
∫
Xk(t)×(Rd)k

ρt,x(t,x)
k∏
i=1

ξω≥(dti, dxi)
)

= δ(b)Zω≥β′ (t, x) ,

with β′ := C0β. Since Z
ω≥
β′ (t, x) is P≥-a.s. finite, this shows the first line of (8.15). Thus, the proof

of the convergence to zero of Ja,b1 (t, x) is complete. �

Proof of Lemma 8.3. The proof is considerably easier for d = 1, so we only provide details in the
case d ≥ 2. We follow exactly the plan of the proof of Proposition 6.3 up to Equation (6.15).
Because of the restriction on the last iteration of the integral over the noise, the quantity we need
to bound is not E[|Va,k(t)p|] but rather E[|V b

a,k(t)|p] where

V b
a,k(t) :=

∫
X(k)
t

ρt,0(t,x)
ρ(t, 0) 1{zk<b}

k∏
i=1

zi1{zi≥a} (δωi − ν)(dti, dxi, dzi).

To conclude, we only need to slightly improve the bounds in further computations. The reader can
check that the proof of Lemma 6.7 yields the inequality (6.17) for V b

k (t) with an additional 1{zk<b}
in each of the integrals on the right-hand side. Let U(P, t, b) denote the corresponding integrals in
the case θ = 1 + 2

d , cf. (6.32). Adapting the proof of Proposition 6.10, we want to prove that

U(P, t, b) ≤ ε(b, η)ζ1(η, p, t)k1ζ2(η, p)k2Λ(k2, t, p) (8.16)

for some ε(b, η) that converges to 0 as b→ 0 for any fixed η ∈ (0, 1). Because of (8.16), the factor
ε(b, η) appears on the right-hand side of (6.34) so that, provided that η has been chosen sufficiently
small, we obtain that for every t ∈ [0, T ], x ∈ Rd and a ∈ (0, b),

E
[
ρ(t, x)−pYω,a,bβ (t, x)p

]
≤ β−1ε(b, η)C(β, p, T )

with the constant C(β, p, T ) of Corollary 6.5. This is exactly the desired result. Note that the
factor β−1 comes from the fact that in the definition of Yω,a,bβ (t, x), we have βk−1 instead of βk.

To prove (8.16), we follow the proof of Proposition 6.10 and realize that we can improve the upper
bound by a factor of (µlog

0,b(1 + 2
d)/µlog

0,η(1 + 2
d))p/(1+2/d) if k ∈ J1 and a factor of µlog

0,b(1 + 2
d)/ζ2(η, p)

if k ∈ J2 so that (8.16) is valid for

ε(b, η) :=
(
µlog

0,b(1 + 2
d)

µlog
0,η(1 + 2

d)

) p
1+2/d

∨
µlog

0,b(1 + 2
d)

ζ2(η, p) . �
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8.4. General initial condition. Using translation invariance, we have already shown that the
point-to-point partition function Zωβ (y; t, x) is a solution to (1.6) with u0 = δy, for all y ∈ Rd.
The fact that v as defined in (2.8) is a mild solution to the SHE with initial condition u0 follows
immediately by integrating (2.6) on both sides with respect to u0, provided that integrals can be
permuted in the following manner:∫

Rd

(∫
(0,t)×Rd

ρ(t− s, x− y′)Zωβ (y; s, y′) ξω(ds, dy′)
)
u0(dy)

=
∫

(0,t)×Rd
ρ(t− s, x− y′)

(∫
Rd
Zωβ (y; s, y′)u0(dy)

)
ξω(ds, dy′).

Writing ξω = ξω< + ξω≥ , we can use the ordinary Fubini theorem for the ξω≥-integral and a
stochastic version of Fubini’s theorem [37, Theorem A.3] for the integration with respect to ξω< .
Both cases require some integrability properties, which we are going to show by recycling the
estimates from Section 8.2.

Concerning the integral with respect to ξω≥ , we simply need to check integrability in the
Lebesgue sense, that is,∫

Rd

∫
(0,t)×Rd

ρ(t− s, x− y′)Zωβ (y; s, y′) ξω≥(ds, dy′) |u0|(dy) <∞ P≥-a.s.

By Minkowski’s integral inequality and Lemma 8.1, for p ∈ (1, 1 + 2
d), the Lp(P<)-norm of the

left-hand side is bounded by a constant times∫
Rd

∫
(0,t)×Rd

ρ(t− s, x− y′)Zω≥β′ (y; s, y′) ξω≥(ds, dy′) |u0|(dy)

= (β′)−1
(∫

Rd
Zω≥β′ (y; t, x)|u0|(dy)−

∫
Rd
ρ(t, x− y) |u0|(dy)

)
,

where the equality follows from (8.1) with a = 1. The second integral on the right-hand side is
finite as a consequence of our assumption (2.7). The first one is finite by [13, Prop. 2.21].

For the integral with respect to ξω< , according to [37, Theorem A.3], changing the order of
integration is permitted if we have

∫
Rd

E<

[( ∫
(0,t)×Rd×(0,1)

ρ(t− s, x− y′)2Zωβ (y; s, y′)2z2 δω<(ds, dy′, dz)
) p

2
] 1
p

|u0|(dy) <∞.

Using (8.8) and (8.9), together with Lemma 8.1 and (8.6), we can bound the quantity above by a
constant times∫

Rd

(
ρ(t, x− y) + Zω≥β′ (y; t, x) +

∫
(0,t)×Rd

ρ(t− s, x− y′)Zω≥β′ (y; s, y′) ξω≥(ds, dy′)
)
|u0|(dy),

The integrability of each of the three terms has already been shown above. �

8.5. Integrability property of the solution. Let us show that the solution v defined in Equa-
tion (2.8) satisfies the integrability condition (2.10). The important part is to show that whenever
u0 satisfies (2.7) for a given T > 0, then for any p ∈ (1, 1 + 2

d), we have∫
(0,T )×Rd

ρ(θ(T − t), x)pE<

[∣∣∣∣ ∫
Rd
Zωβ (y; t, x)u0(dy)

∣∣∣∣p
]

dt dx <∞. (8.17)

In our proof of (8.17), we will check along the way that the expectation term, which equals
E<[|v(t, x)|p], is finite for any t and x, proving the first line of (2.10). By (2.7), we can find ε > 0
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such that
2T lim sup

r→∞
r−2 log

(
|u0|([−r, r]d))

)
< 1− 2ε . (8.18)

We also let θ := (1− ε)−1. In the following proof, the parameters p ∈ (1, 1 + 2
d), T , β and λ and ε

are all fixed, and the constants appearing in the inequalities may depend on them.
Using Minkowski’s inequality first and Lemma 8.1 afterwards, we have for any t ∈ [0, T ],

E<

[∣∣∣∣ ∫
Rd
Zωβ (y; t, x)u0(dy)

∣∣∣∣p
] 1
p

≤
∫
Rd

E<
[
Zωβ (y; t, x)p

] 1
p |u0|(dy) ≤ C

∫
Rd
Zω≥β′ (y; t, x) |u0|(dy) .

The a.s. finiteness of the right-hand side for fixed x and t is a consequence of [13, Prop. 2.19].
Using the inequality above, to prove (8.17), we now need to show that P≥-a.s.,∫

(0,T )×Rd
ρ(θ(T − t), x)p

(∫
Rd
Zω≥β′ (y; t, x) |u0|(dy)

)p
dtdx <∞. (8.19)

We do so by comparing Zω≥β′ (y; t, x) with a variable with finite pth moment. For a small ε > 0, we
introduce the quantity

T := sup
k≥1

sup
y∈Rd

sup
(ti,xi,zi)ki=1⊆ω≥:
0<t1<···<tk<T

[
k∑
i=1

log zi − ε
k∑
i=2

‖xi − xi−1‖2

2(ti − ti−1) − ε
(‖y‖2

2T + ‖x1 − y‖2

2t1

)]
. (8.20)

Note that optimizing over y leads to the simpler expression

T = sup
k≥1

sup
(ti,xi,zi)ki=1⊆ω≥:
0<t1<···<tk<T

[
k∑
i=1

log zi − ε
k∑
i=2

‖xi − xi−1‖2

2(ti − ti−1) −
ε‖x1‖2

2(T + t1)

]
. (8.21)

The following lemma is an easy consequence of [13, Lemma 4.17].

Lemma 8.4. For any T > 0 and ε > 0, T is finite P≥-a.s.

Proof. By [13, Lemma 4.17], we have (with the convention x0 = 0 and t0 = 0)

sup
k≥1

sup
(ti,xi,zi)ki=1⊆ω≥:
0<t1<···<tk<2T

k∑
i=1

(
log zi − ε

‖xi − xi−1‖2

2(ti − ti−1)

)
<∞.

Taking a further restriction (namely t1 > T ) and shifting time by −T , we obtain by translation
invariance that

sup
k≥1

sup
(ti,xi,zi)ki=1⊆ω≥:
0<t1<···<tk<T

[
k∑
i=1

(log zi)− ε
k∑
i=2

‖xi − xi−1‖2

2(ti − ti−1) − ε
‖x1‖2

2(t1 + T )

)]
<∞. �

As a consequence of Lemma 8.4, we have for every x, y ∈ Rd and t ∈ [0, T ] that

Zω≥β′ (y; t, x) ≤ eT + ε‖y‖2
2T

∞∑
k=0

(β′)k
∫
X(k)
t

ρy;t,x(t,x)
k+1∏
i=1

e
ε
‖∆xi‖

2
2∆ti

k∏
j=1

δω≥(dtj ,dxj ,dzj), (8.22)

with the convention that x0 = y. Because

ρ(t, x)eη
‖x‖2

2t = θ
d
2
η ρ(θηt, x) with θη = (1− η)−1 (8.23)
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and θ = (1− ε)−1, we have Zω≥β′ (y; t, x) ≤ eT + ε‖y‖2
2T Ẑω≥β′ (y; t, x), where

Ẑω≥β′ (y; t, x) :=
∞∑
k=0

(θ
d
2β′)k

∫
X(k)
t

ρy;θt,x(θt,x)
k∏
j=1

δω≥(dtj , dxj , dzj) . (8.24)

Setting û0(dy) := e
ε‖y‖2

2T |u0|(dy), we can reduce the proof of (8.19) to showing∫
(0,T )×Rd

ρ(θ(T − t), x)p
(∫

Rd
Ẑω≥β′ (y; t, x)û0(dy)

)p
dt dx <∞. (8.25)

We take the expectation and apply Minkowski’s inequality twice to get

E
[ ∫

(0,T )×Rd
ρ(θ(T − t), y)p

(∫
Rd
Ẑω≥β′ (y; t, x)û0(dy)

)p
dt dy

]

≤
∫

(0,T )×Rd
ρ(θ(T − t), y)p

(∫
Rd

E
[
Ẑω≥β′ (y; t, x)p

] 1
p
û0(dy)

)p
dtdx

≤
(∫

Rd

(∫
(0,T )×Rd

ρ(θ(T − s), y)pE
[
Ẑω≥β′ (y; t, x)p

]
dt dx

) 1
p

û0(dy)
)p
.

(8.26)

Observe now that Ẑω≥β′ (y; t, x) is a (non-normalized) point-to-point partition function correspond-
ing to a Poisson environment with intensity measure λ([1,∞))δθd/2β′ and a time-rescaling by θ.
Therefore, by Corollary 6.5,

E[Ẑω≥β′ (y; t, x)p] ≤ Cρ(θt, x− y)p, (8.27)

for a constant C that depends on all parameters but not on y, t and x. Hence, the 1
pth power

of (8.26) is bounded by a constant times∫
Rd

(∫
(0,T )×Rd

ρ(θ(T − t), x)pρ(θt, x− y)p dt dx
) 1
p

û0(dy) ≤ C ′
∫
Rd
T νpe−

‖y‖2
2θT û0(dy) ,

where the inner integral has been computed exactly, as in (8.13). The above integral is finite
thanks to our choice of ε and θ in (8.18). Thus, (8.25) holds and the proof is complete. �

8.6. Uniqueness of solutions to the SHE. We assume in this section that λ satisfies (1.21)
and prove uniqueness among solutions satisfying (2.10). By the fact that the condition (2.10) is
stable under linear combinations, it is sufficient to show that any solution to (1.6) with u0 ≡ 0 is
equal to zero. Consider v that satisfies (2.10) and is such that for every t ∈ (0, T ] and x ∈ Rd,

v(t, x) = β

∫ t

0

∫
Rd
ρ(t− s, x− y)v(s, y) ξω(ds, dy) .

Applying this identity to v(s, y) in the integrand and repeating this, we obtain that for any k ≥ 1,

v(t, x) = βk
∫
X (k)
t

ρt1,x1;t,x(t(1),x(1))v(t1, x1)
k∏
i=1

ξω(dti,dxi), (8.28)

where t(1) and x(1) are obtained from t and x, respectively, by removing the first component.
Fixing x ∈ Rd and t ∈ (0, T ), we are going to prove that v(t, x) = 0 by showing that the right-hand
side in (8.28) is summable in k. More precisely, we set

U(t, x) :=
∞∑
k=0

βk
∫
X (k)
t

ρt1,x1;t,x(t(1),x(1))v(t1, x1)
k∏
i=1

ξω(dti,dxi) ,
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the term for k = 0 being simply v(t, x). We fix p ∈ (1, 1 + 2
d) for which µ0,1(p) <∞ (when d = 1

we fix p = 2) and we are going to prove that

E<
[∣∣U(t, x)

∣∣p] <∞ P≥-a.s. (8.29)

Separating ω< and ω≥ in ξω, we have that

U(t, x) =
∞∑
k=0

βk
∫
X (k)
t

V(t1, x1)
k+1∏
i=2
Zω<β (ti−1, xi−1; ti, xi)

k∏
i=1

ξω≥(dti, dxi), (8.30)

where

V(t, x) :=
∞∑
k=0

βk
∫
X (k)
t

ρt1,x1;t,x(t(1),x(1))v(t1, x1)
k∏
i=1

ξω<(dti,dxi) (8.31)

and the terms for k = 0 in (8.30) and (8.31) are V(t, x) and v(t, x) respectively. By Corollary 6.5
and translation invariance, there exists β′ > 0 such that

E<
[
|U(t, x)|p

] 1
p

≤ E<
[
|V(t, x)|p

] 1
p +

∞∑
k=1

(β′)k
∫
X (k)
t

E<
[
|V(t1, x1)|p

] 1
p
k+1∏
i=2

ρ(∆ti,∆xi)
k∏
i=1

ξω≥(dti,dxi).
(8.32)

To prove (8.29), we bound each of the two summands in (8.32) separately.
Let us start with E<[|V(t, x)|p]1/p. Using the triangle inequality and iterating the BDG inequality

and the subadditivity property (5.4) for each term (as done in (A.1), for example), we obtain

E<
[
|V(t, x)|p

] 1
p ≤

∞∑
k=0

(Cpβµ0,1(p)
1
p )k
(∫
X (k)
t

ρt1,x1;t,x(t(1),x(1))pE<
[
|v(t1, x1)|p

] k∏
i=1

dti dxi

) 1
p

.

Then, applying (6.20) and Lemma 4.5 with the trivial inequality t− t1 ≤ t, we get that

E<
[
|V(t, x)|p

] 1
p ≤ E<

[
|v(t, x)|p

] 1
p

+
∞∑
k=1

[
Cpβ(µ0,1(p)Γ(νp)tνp)

1
p

]k
Γ(kνp)

1
p

(∫
(0,t)×Rd

ρ(t− t1, x− x1)pE<
[
|v(t1, x1)|p

]
dt1 dx1

) 1
p

.

(8.33)

Since the sum in k in finite, the two conditions in our assumption (2.10) implies the P≥-a.s.
finiteness of the right-hand side of (8.33).

To show that the series in (8.32) is finite, we apply a similar trick to (8.22) and replace the zi’s
coming from the atoms of ω≥ by one. More precisely, we set

T (t, x) := sup
k≥1

sup
(ti,xi,zi)ki=1⊆ω≥:

0<t1<···<tk<t

[
k∑
i=1

(log zi)− η
k+1∑
i=2

‖xi − xi−1‖2

2∆ti

]
, (8.34)

with the convention that tk+1 = t and xk+1 = x. The value of η > 0 in (8.34) is chosen such that
θ = (1− η 3p−1

2 )−1, with the same θ as in the assumption (2.10). By the translation invariance and
symmetry properties of ω≥, [13, Lemma 4.17] guaranties that T (t, x) <∞, P≥-a.s. Defining

Ẑω≥β′ (s, y; t, x) :=
∞∑
k=0

(β′)k
∫
X(k)
t

ρs,y;t,x(t,x)
k+1∏
i=1

e
η
‖∆xi‖

2
2∆ti

k∏
j=1

δω(dtj , dxj dzj) , (8.35)
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we find that the series in (8.32) is smaller than the following integral (we have replaced t1, x1, z1
by s, y, z):

β′eT (t,x)
∫

(0,t)×Rd×[1,∞)
Ẑω≥β′ (s, y; t, x)E<

[
|V(s, y)|p

] 1
p
δω≥(ds, dy,dz). (8.36)

Note that the integral in (8.36) is a sum and that all terms are finite almost surely by (8.33) and
(8.27). In order to show that the integral in (8.36) is finite, we proceed in several steps. The first
one is to replace Ẑω≥β′ (s, y; t, x) by ρ(t− s, x− y)eη‖x−y‖2/(t−s). This is the purpose of the following
lemma whose short proof is postponed to the end of the section.

Lemma 8.5. Let

Θ(t, x) :=
{

(s, y) ∈ (0, t)× Rd : Ẑω≥β′ (s, y; t, x) ≥ ρ(t− s, x− y)eη
‖x−y‖2
(t−s)

}
,

ω̄≥ :=
{

(s, y) ∈ (0, t)× Rd : ∃z ≥ 1, (s, y, z) ∈ ω
}
.

(8.37)

Then we have # (Θ(t, x) ∩ ω̄≥) <∞ P≥-a.s.

As a consequence of Lemma 8.5, the integral in (8.36) is finite if∫
(0,t)×Rd×[1,∞)

N(s, y) δω≥(ds, dy,dz) <∞ (8.38)

where

N(s, y) := E<
[
|V(s, y)|p

] 1
p
ρ(t− s, x− y)eη

‖x−y‖2
(t−s) .

By [77, Prop. 12.1], (8.38) holds if we can show that∫
(0,t)×Rd

E<
[
|V(s, y)|p

] 1
p
ρ(t− s, x− y)e

η‖x−y‖2
(t−s) ds dy <∞ . (8.39)

To this end, we use the bound (8.33) for E<[|Vωβ (s, y)|p]1/p and check that the integrals correspond-
ing to each of the two summands on the right-hand side of (8.33) are finite. In the first case, we
must show that ∫

(0,t)×Rd
E<
[∣∣v(s, y)

∣∣p] 1
p
ρ(t− s, x− y)eη

‖x−y‖2
(t−s) ds dy <∞ . (8.40)

Applying Jensen’s inequality for the finite measure e−η‖x−y‖2/2(t−s) ds dy, we can bound the quan-
tity above by (∫

(0,t)×Rd
E<
[∣∣v(s, y)

∣∣p]ρ(t− s, x− y)peη(3p−1) ‖x−y‖
2

2(t−s) ds dy
) 1
p

. (8.41)

Recalling (8.23) and the relation θ = (1 − η 3p−1
2 )−1, the finiteness of (8.41) follows from our

assumption (2.10).
For the second summand on the right-hand side of (8.33), we have to show that

∫
(0,t)×Rd

e
η
‖x−y‖2
(t−s) ρ(t− s, x− y)

(∫
(0,s)×Rd

ρ(s− r, y− v)pE<
[
|v(r, v)|p

]
dr dv

) 1
p

ds dy <∞ . (8.42)

Using the same trick as in (8.41), we see that it is sufficient to prove the finiteness of∫
(0,t)×Rd

∫
(0,s)×Rd

e
−η(3p−1) ‖x−y‖

2
2(t−s) ρ(t− s, x− y)pρ(s− r, y − v)pE<

[
|v(r, v)|p

]
dr dv dsdy .
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Now, by (8.23) and thanks to our choice of η, we can replace e−η(3p−1)‖x−y‖2/2(t−s)ρ(t−s, x−y)p by
a constant times ρ(θ(t−s), x−y)p and bound ρ(s−r, y−v)p by a constant times ρ(θ(s−r), y−v)p.
Then, using (5.5) as in(8.13), we have∫

(r,t)×Rd
ρ(θ(t− s), x− y)pρ(θ(s− r), y − v)p dsdy ≤ C ′η,p(t− r)νpρ(θ(t− r), x− v)p .

Hence, the finiteness of (8.42) is also consequence of (2.10), which finally concludes the proof. �

Proof of Lemma 8.5. By Markov’s inequality and (8.27), we have for any given s, y ∈ (0, t)× Rd,

P≥
[
Ẑω≥β′ (s, y; t, x) ≥ ρ(t− s, x− y)eη

‖x−y‖2
(t−s)

]
≤ C

( ρ( t−s1−η , x− y
)

ρ(t− s, x− y)e
−η ‖x−y‖

2
(t−s)

)p
= C ′e

−ηp ‖x−y‖
2

2(t−s) ,

using (8.23) for the last inequality. Hence, we have

E≥
[
# (Θ(t, x) ∩ ω̄≥)

]
≤ C ′

∫
(0,t)×Rd×[1,∞)

e
−ηp ‖x−y‖

2
2(t−s) ds dy λ(dz)

= Cpλ([1,∞))
∫

(0,t)
(t− s)

d
2 ds <∞. �

9. Moments of order p ∈ (0, 1) and lower bounds in Theorems 2.11 and 2.12

This section is dedicated to estimating fractional moments of Zωβ (t, ∗). More precisely, we focus
on E[Zωβ (t, ∗)1/2] to simplify notation, but the method would be equally efficient to directly estimate
E[Zωβ (t, ∗)p] for p ∈ (0, 1). The estimates obtained in this section allow us to complete the proof
of Theorems 2.11 and 2.12, since by convexity and the fact that γ̄β(1) = 0 and γ̄β(0) = 0, we have

γ̄β(p) ≤ 2pγ̄β(1
2) for p ∈ (0, 1

2),
γ̄β(p) ≤ 2(1− p)γ̄β(1

2) for p ∈ (1
2 , 1),

γ̄β(p) ≥ −2(p− 1)γ̄β(1
2) for p > 1.

(9.1)

We also prove Proposition 2.2 in Section 9.4, partially using ideas developed in Sections 9.1–9.3.
In Section 9.1, we introduce a method that combines a coarse-graining and a change-of-measure

argument, which allows to obtain upper bounds that decay exponentially in t (this is crucial for
the proof of Theorems 2.11 and 2.12). This approach originates in the study of the discrete pinning
model [50, 58]: in its refined form, which first appeared in [91], it can be used in a continuum
setup such as the SHE. Note that the method found many implementations in the last decade,
such as for disordered pinning [12, 57], directed polymers and variants [11, 16, 74, 75], the random
walk pinning model [15, 21], large deviations of random walks in a random environment [95],
self-avoiding walks in a random environment [76], and anomalous path detection in a random
environment [29].

The achievement of the method (presented in Lemma 9.1) is to reduce the problem of estimating
moments to that of showing that the original measure P significantly differs (in total variation)
from an alternative measure where the environment has been modified along a Brownian trajectory
(the size-biased measure). This last statement is proved in Sections 9.2 (for d = 1 or heavy-tailed
noises) and 9.3 (for d ≥ 2 and light-tailed noises). While Lemma 9.1 is quite general and can
be adapted to various settings, the proof that the original and the tilted measures differ in total
variation heavily depends on context.

The proof presented in Section 9.2 for d = 1 relies on ideas found in [74, Section 3]: in essence,
we discriminate between the original and the tilted environments by looking at the average in a
box of length T and wdith

√
T . The proof for heavy-tailed environments, also found in Section 9.2,

relies on a similar idea to that found in [93, Section 2].
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On the other hand, the approach taken in Section 9.3 and Section 9.4 are completely new and
have no discrete analogue. We show that what makes the tilted measure different from the original
one is the presence of clusters of points that are very close to one another. It requires a fine analysis
to identify exactly what the characteristics of these clusters are.

9.1. A general coarse-graining lemma. For notational simplicity, we set Zωβ,t := Z̄ωβ (t, ∗) in
the remainder of this section. Our coarse-graining approach reduces the problem of bounding
fractional moments of Zωβ,t to identifying a single event that is unlikely under the original measure
P but becomes likely under the size-biased measure P̃0

β,t; recall Section 4.1 and notation therein.
We say that a measurable event A for the point process ω has time range [0, T ) if 1A(ω) is a

function of ω ∩ ([0, T )×Rd × (0,∞)). Moreover, defining ω̂ = ω̂(ω, ω′, B) := ω ∪ ω̃(ω′, B), we will
use, for a generic real-valued function f defined on the set of environments, the abbreviation

f̂(ω, ω′, B) := f ◦ ω̂(ω, ω′, B). (9.2)

Also, recall that Qx is the law of a d-dimensional standard Brownian motion starting from x.

Lemma 9.1. Assume that µ < ∞. There exists a constant K ∈ (0,∞), which only depends on
the dimension d, with the following property: For any β > 0 and T > 0, if there exists an event A
with time range [0, T ) satisfying both

P(ω ∈ A) ≤ e−K , (H1)
max

x∈[0,
√
T )d

P⊗ P′β ⊗Qx(ω̂ /∈ A) ≤ e−K , (H2)

then for all m ≥ 1 we have
E
[
(Zωβ,mT )

1
2
]
≤ 2−m , (9.3)

and as a consequence γ̄β(1
2) ≤ −(log 2)T−1.

Below, we are going to apply Lemma 9.1 to events of the type

A := {ω : f(ω)− E[f(ω)] > h} or A := {ω : f(ω) > h} (9.4)

where f is a function that only depends on ω ∩ ([0, T ) ∩ Rd × (0,∞)) and h ∈ R is a threshold to
be chosen appropriately. More precisely, we consider functions f of the form

f(ω) =
∫
X(k)
T

Υ(t,x, z)
k∏
i=1

δω(dti, dxi, dzi), (9.5)

where k is a positive integer and Υ is a non-negative function on X(k)
T (recall the notation (6.11)).

Given f as above, we define

f ′(ω′, B) =
∫
X (k)
T

Υ(t, (Bti)ki=1, z)
k∏
i=1

δω′(dti,dzi). (9.6)

In other words, f ′ is the total contribution of the additional terms in f̂ that are obtained by
considering (only) the atoms on the added “environment spine” (ω′, B) (recall (9.2)). Then, for f
of the form (9.5), since Υ is non-negative, we have

f̂(ω, ω′, B) ≥ f(ω) + f ′(ω′, B). (9.7)

In this setting, verifying (H1) and (H2) boils down to first and second moment computations for
f and f ′.

Corollary 9.2. Assume that f is as in (9.5) and satisfies one of the two following conditions:
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(C1) For all x ∈ [0,
√
T )d, we have that

E′β ⊗Qx[f ′(ω′, B)]2 ≥ 4eK
{

Var(f(ω)) + VarP′
β
⊗Qx

(f ′(ω′, B))
}

;

(C2) The function Υ is integer-valued, we have E[f(ω)] ≤ e−K and

∀x ∈ [0,
√
T )d : E′β ⊗Qx[f ′(ω′, B)]2 ≥ eKVarP′

β
⊗Qx

(f ′(ω′, B)).

In both cases, also assume that the variances on the right-hand side are finite. Then (H1) and (H2)
are satisfied and γβ(1

2) ≤ −(log 2)T−1.

Proof. If (C1) is satisfied, define

m := E[f(ω)] and σ :=
√

Var(f(ω)) + VarP′
β
⊗Qx

(f ′(ω′, B))

and consider the event
A := {ω : f(ω) > m+ e

K
2 σ}.

We can apply Chebyshev’s inequality, using that σ2 ≥ Var(f(ω)), to check the validity of (H1).
For (H2), we observe that as a consequence of (9.7), we have

{ω̂ /∈ A} ⊆ {f(ω) + f ′(ω′, B) ≤ m+ e
K
2 σ}.

Using Chebyshev’s inequality, we deduce that

P⊗ P′β ⊗Qx(ω̂ /∈ A) ≤
Var(f(ω)) + VarP′

β
⊗Qx

(f ′(ω′, B))(
e
K
2 σ − E′β ⊗Qx[f ′(ω′, B)]

)2 ≤ e−K .

If (C2) is satisfied, we set
A := {ω : f(ω) ≥ 1} = {ω : f(ω) > 0} .

We then deduce (H1) from Markov’s inequality applied to f(ω) and (H2) from Chebychev’s in-
equality applied to f ′(ω′, B). �

Remark 9.3. We will use the assumption (C1) for d = 1 in the light-tailed case and the assump-
tion (C2) in all heavy-tailed cases and for d ≥ 2. These two assumptions correspond to two different
ways of distinguishing between the original measure and the size-biased one. In Assumption (C1),
f is increased under the size-biased measure by an amount f ′ that, on average, exceeds the typical
fluctuation (measured as Var(f(ω))) under the original measure. Assumption (C2) implies that
there are patterns in ω that appear with large probability under the size-biased measure and are
most likely absent under the original one.

Proof of Lemma 9.1. Let us assume that T and A satisfy (H1) and (H2). We divide Rd into cubes
of side length

√
T : define

Cj = C(T )
j := j

√
T + [0,

√
T )d, j ∈ Zd .

Given j = (j1, . . . , jm) ∈ (Zd)m, we define the function χj : C([0,mT ])→ R by
χj(ϕ) := 1{∀i ∈ JmK : ϕ(iT ) ∈ Cji}.

In other words, χj(ϕ) is the indicator that the function ϕ passes through a prescribed sequence
of cubes of diameter

√
T at times iT , where i ∈ JmK. If ϕ = (Bt)t∈[0,mT ] is a Brownian motion,

the unique value of j such that χj(B) = 1 corresponds to a coarse-grained trajectory (or skeleton)
of B on time scale T . Now, recalling that we have set Zωβ,t = Z̄ωβ (t, ∗) and recalling the notation
from Section 4.1, we have

Zωβ,mT =
∫

(Rd)m

M∏
i=1
Z̄ωβ ((i− 1)T, xi−1; iT, xi) dxi . (9.8)
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This can be checked directly from the definition if Zωβ,mT and Z̄ωβ ((i−1)T, xi−1; iT, xi) are replaced
by Z̄ω,aβ (mT, ∗) and Z̄ω,aβ ((i− 1)T, xi−1; iT, xi), respectively. The case a = 0 then follows from the
L1-convergence in Theorem 2.1. We therefore get

Zωβ,mT =
∑

j∈(Zd)m
Zωβ,mT (χj) , Zωβ,mT (χj) :=

∫
(Rd)m

M∏
i=1
Z̄ωβ ((i− 1)T, xi−1; iT, xi)1{xi∈Cji} dxi.

As a consequence, by subadditivity (5.4), we have

E
[
(ZωmT )

1
2
]
≤

∑
j∈(Zd)m

E
[
ZωmT (χj)

1
2
]
.

Our aim is to obtain a good bound on E[(Zωβ,mT (χj))1/2]. This is where we introduce a change-of-
measure procedure. We use the Cauchy–Schwarz inequality as follows:

E
[
(Zωβ,mT (χj))

1
2
]2
≤ E

[
Gj(ω)−1

]
E
[
Gj(ω)Zωβ,mT (χj)

]
, (9.9)

for some non-negative function Gj(ω) that penalizes the ω’s that contribute most to E[Zωβ,mT (χj)].
This procedure is referred to as a change of measure since E[Gj(ω)Zωβ,mT (χj)] corresponds to the
expectation of Zωβ,mT (χj) under a new measure whose density with respect to the original one is
given by Gj(ω). We now construct Gj with a product structure in order to gain a constant factor
per coarse-grained step of the trajectory. For K > 0, a fixed constant to be determined below, we
define (with j0 := 0)

g(ω) := exp(−K 1A(ω)), gi,j(ω) := g ◦ θ((i−1)T,j
√
T )(ω), Gj(ω) :=

m∏
i=1

gi,ji−1(ω), (9.10)

where θ(t,x) is the space-time shift operator acting on point collections in R×Rd× (0,∞), that is,
θ(t,x)(ω) = {(s− t, y − x, z) : (s, y, z) ∈ ω}.

Because A has time range T , for given j, the variables (gi,ji−1(ω))mi=1 are independent and identi-
cally distributed under P, so that, by (H1),

E[Gj(ω)−1] = (1 + (eK − 1)P(A))m ≤ 2m.
We then derive from (9.9) that

E
[
(Zωβ,mT )

1
2
]
≤ 2

m
2

∑
j∈(Zd)m

√
E
[
Gj(ω)Zωβ,mT (χj)

]
. (9.11)

Using the size-biased representation of Lemma 4.1 and recalling the notation (9.2), we obtain that

E
[
Gj(ω)Zωβ,mT (χj)

]
= E⊗ E′β ⊗Q

[
Ĝj(ω, ω′, B)χj(B)

]
.

Letting B(i)
t := B(i−1)T+t − ji−1

√
T , using the stationarity of ω and ω′ and the fact that A has

time-range T , we have

E⊗ E′β ⊗Q
[
Ĝj(ω, ω′, B)χj(B)

]
= E⊗ E′β ⊗Q

[
m∏
i=1

ĝi,ji−1(ω, ω′, B(i))1{B(i)
T ∈Cji−ji−1}

]

= Q
[
m∏
i=1

E⊗ E′β
[
ĝi,ji−1(ω, ω′, B(i))1{B(i)

T ∈Cji−ji−1}

]]

= Q
[
m∏
i=1

E⊗ E′β
[
ĝ(ω, ω′, B(i))1{B(i)

T ∈Cji−ji−1}

]]
.
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Conditionally on (Bt)t∈[0,(i−1)T ], (B(i)
t )t≥0 is a Brownian motion starting from B(i−1)T − ji−1

√
T ,

which belongs to C0. Thus, using the Brownian motion’s Markov property iteratively (starting
with i = m), we obtain that

E⊗ E′β ⊗Q
[
Ĝj(ω, ω′, B)χj(B)

]
≤

m∏
i=1

max
x∈C0

E⊗ E′β ⊗Qx

[
ĝ(ω, ω′, B)1{BT∈Cji−ji−1}

]
.

Reindexing the sums yields

∑
j∈(Zd)m

√
E
[
Gj(ω)Zωβ,mT (χj)

]
≤
(∑
j∈Zd

max
x∈C0

√
E⊗ E′β ⊗Qx

[
ĝ(ω, ω′, B)1{BT∈Cj}

])m
. (9.12)

Hence, it remains to show that the sum on the right-hand side is small. Given an integer N , since
g ≤ 1, we have∑

j∈Zd
max
x∈C0

√
E⊗ E′β ⊗Qx

[
ĝ(ω, ω′, B)1{BT∈Cj}

]
≤

∑
‖j‖∞≥N

max
x∈C0

√
Qx[BT ∈ Cj ] + (2N)d max

x∈C0

√
E⊗ E′β ⊗Qx

[
ĝ(ω, ω′, B)

]
.

(9.13)

We then choose N to be the smallest integer such that the first sum is smaller than (4
√

2)−1; note
it depends on d but not on T . For the second term, recalling the definition (9.10) of g and using
assumption (H2) for the last inequality, we have

E⊗ E′β ⊗Qx[ĝ(ω, ω′, B)] = e−K + (1− e−K)P⊗ P′β ⊗Qx(ω̂ /∈ A) ≤ 2e−K . (9.14)

Finally, combining (9.11)–(9.14), we obtain that

E
[
(Zωβ,mT )

1
2
]
≤ 2

m
2

(
1

4
√

2
+ (2N)d

√
2e−K

)m
= 2−m ,

where the last inequality holds by choosing K = 2[(3 + d) log 2 + d logN ]. �

9.2. One-body estimates. We now present a simple choice for f that yields the desired bounds
on the Lyapunov exponents both in dimension d = 1 and in any dimension d ≥ 2 for heavy-tailed
environments. This gives the second half of Theorem 2.11 (i) and of Theorem 2.12, that is, the
lower bounds on |γβ(p)|. More precisely, we prove the following.

Proposition 9.4. Assume that µ <∞.
(i) In dimension d = 1, we have

lim sup
β→0+

β−4γ̄β(1
2) < 0. (9.15)

(ii) In any dimension d ≥ 1, if for some α < 1+ 2
d , we have lim infA→∞Aαλ([A,∞)) > 0, then

lim sup
β→0+

β−
α
να γ̄β(1

2) < 0. (9.16)

If we only assume lim supA→∞Aαλ([A,∞)) > 0, then

lim inf
β→0+

β−
α
να γ̄β(1

2) < 0. (9.17)

Proof. The proofs of (i) and (ii) slightly differ but have the same starting point, that is, the same
function f (to which we will apply Corollary 9.2), up to a choice of parameter.
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Preparing the setup. We start by fixing R > 1 such that(
(2π)−

1
2

∫
[−R,R−1]

e−
u2
2 du

)d
≥ 1− 1

64 e
−K . (9.18)

where K is the constant from Lemma 9.1. Given T > 0 and 0 < a < b ≤ ∞, we then consider the
functional

f(ω) :=
∫
X(1)
T

1{‖x‖∞≤R
√
T ,z∈[a,b)} δω(dt, dx,dz), (9.19)

which is Poisson distributed with
E[f(ω)] = Var(f(ω)) = λ([a, b))(2R

√
T )dT. (9.20)

Using the formalism of the previous subsection, we further have

f ′(ω′, B) =
∫

(0,T )×(0,∞)
1{‖Bt‖∞≤R

√
T ,z∈[a,b)} δω′(dt, dz).

To estimate the expectation and variance of f ′, we define

f̄(ω′) :=
∫

(0,T )×(0,∞)
1{z∈[a,b)} δω′(dt, dz).

Note that we have f ′(ω′, B) ≤ f̄(ω′) and, recalling that ω′ has intensity measure βz dt λ(dz), also

E′β[f̄(ω′)] = βµa,b(1)T, E′β[f̄(ω′)2] = βµa,b(1)T + (βµa,b(1)T )2. (9.21)

The condition (9.18) guarantees that for any x ∈ [0,
√
T )d and t ∈ (0, T ]

Qx

(
‖Bt‖∞ ≤ R

√
T
)
≥ 1− 1

64 e
−K ,

so that we have

E′β ⊗Qx[f ′(ω′, B)] ≥
(

1− 1
64 e

−K
)
βµa,b(1)T ≥ 1√

2
βµa,b(1)T . (9.22)

We also have, combining (9.21) and the first inequality of (9.22),

VarP′
β
⊗Qx

(f ′(ω′, B)) ≤ E′β[f̄(ω′)2]− E′β ⊗Qx[f ′(ω′, B)]2 ≤ βµa,b(1)T + e−K

32 (βµa,b(1)T )2. (9.23)

We are now ready to apply these estimates to specific cases.
Proof of (i). We first choose a and b such that λ([a, b)) > 0 (in a way that does not depend on T
or β) and then we let

T = T (β) := 210R2e2Kλ([a, b))2

β4µa,b(1)4 .

With this choice and for β sufficiently small, the second term on the right-hand side of (9.23)
dominates: using (9.22) for the second inequality, we get

VarP′
β
⊗Qx

(f ′(ω′, B)) ≤ e−K

16 (βµa,b(1)T )2 ≤ e−K

8 E′β ⊗Qx[f ′(ω′, B)]2.

Now the reader can check that with our definition of T , we have (recall (9.20))

Var(f(ω)) = 2Rλ([a, b))T
3
2 = e−K

16 (βµa,b(1)T )2 ≤ e−K

8 E′β ⊗Qx[f ′(ω′, B)]2.

Therefore, condition (C1) in Corollary 9.2 is indeed satisfied for small β, and we thus have

lim sup
β→0+

β−4γ̄β(1
2) ≤ − (log 2)µa,b(1)4

210R2e2Kλ([a, b))2 .
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Proof of (ii). We let ` > 0 denote the limit superior/inferior of A−αλ([A,∞)). We choose

A = A(β) := M β
− d+2

2−d(α−1) , (9.24)
where M = M(K,R, `) is a large constant that depends on K, R and `. For the remainder of the
proof, we assume that β is such that we have, for the value of A specified above,

λ([A,∞)) ≥ `A−α

2 . (9.25)

(We assume that β is sufficiently small if the assumption is about the limit inferior, and we take
β along a well-chosen subsequence tending to 0 if the assumption is about the limit superior.) We
are going to use Corollary 9.2 for the function (9.19), with the choices a = A, b =∞ and

T :=
[
e−K(2R)−dλ([A,∞))−1

] 2
2+d

. (9.26)

With our choice of A and our tail assumption, we have

T ≤
[
e−K(2R)−d 2

`
Mα

] 2
2+d

β−
α
να .

Therefore, once we show that (C2) is satisfied, Corollary 9.2 yields the desired bound on γ̄β(1
2).

For the expectation of f , by (9.20), our choice for T directly yields

E[f(ω)] = (2R)dλ([A,∞))T 1+ d
2 = e−K .

To check the condition on the variance of f ′, in view of (9.22) and (9.23), it is sufficient to have

βµA,∞(1)T ≥ 4eK .
To this end, we bound µA,∞(1) ≥ Aλ([A,∞)) and use the definition (9.26) of T to get that
βµA,∞(1)T is bounded below by a constant (that depends on K,R) times βAλ([A,∞))d/(2+d).
By (9.25) and the definition of A in (9.24), the latter can be made large by choosing M =
M(K,R, `) sufficiently large. �

9.3. Multi-body estimates. The aim of this section is to prove the following.

Proposition 9.5. Suppose that d ≥ 2 and µ <∞. Then

lim sup
β→0

log|log|γ̄β(1
2)||

|log β| ≤ 1 + 2
d . (9.27)

With Propositions 9.4 and 9.5 at hand, we can complete the proof of Theorems 2.11 and 2.12.
Recall that the first half of the proof was given in Sections 7.2 and 7.3, respectively.

Proof of Theorems 2.11 and 2.12 (second half). By (9.1), the lower bounds in (2.15) and (2.16)
directly follow from (9.15) and (9.27). Next, (2.20) follows from (9.17) since µ1,∞(q) =∞ implies
that lim supA→∞Aαλ([A,∞)) > 0 for every α > q. Finally, the upper bound in (2.22) follows from
(2.20) because (2.21) implies µ1,∞(q) =∞ for all q > α. �

Proof of Proposition 9.5. In Section 9.2, counting the number of atoms in ω with size in a certain
range was sufficient to determine the correct order of magnitude (in β) of γ̄β(1

2) (and hence of
γ̄β(p) for other values of p). If d ≥ 2 and if λ is light-tailed, in order to obtain optimal estimates,
we must consider certain clusters of atoms. Furthermore, the size of these point configurations,
which we denote by k, must be taken large. We shall obtain our result (9.27) by proving that for
any fixed k ≥ 3, we have

lim sup
β→0

log|log|γ̄β(1
2)||

|log β| ≤ (1 + 2
d) k

k − 2 .
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This will be achieved again by using Corollary 9.2. We need to introduce a few parameters for the
functional f used in this proof. First, we fix 0 < a < b <∞ such that λ([a, b)) > 0 as well as two
parameters 0 < κ < κ′ satisfying

κ ∈
(1
k
,

1
k − 1

)
and (k − 2)κ′ + κ < 1. (9.28)

Furthermore, we let R = R(k, d) be such that(
(2π)−

1
2

∫
[−
√

2R,
√

2(R−1)]
e−

u2
2 du

)d(
(2π)−

1
2

∫
[−R,R]

e−
u2
2 du

)d(k−1)

≥ 1− e−K

8 , (9.29)

where K is the constant from Lemma 9.1. With this choice of R, we have, for any T > 0 and
t ∈ Xk(T ) such that t1 ≤ T

2 ,

inf
x∈[0,

√
T )d

Qx

(
‖Bt1‖∞ ≤ R

√
T , ∀i ∈ J2, kK : ‖∆Bti‖∞ ≤ R

√
∆ti

)
≥ 1− e−K

8 . (9.30)

Finally, for some small ε ∈ (0, 1) (independent of β and to be chosen later), we set

T := exp
(
ε
− 4+d

4(k−2)β−(1+ 2
d

) k
k−2

)
. (9.31)

Using the notation vI :=
∏
i∈I vi for I ⊆ JkK, we consider the multi-body functional

f(ω) =
∫
X(k)
T

1{∀i∈JkK: zi∈[a,b)}1{t1≤T2 , ∀i∈J2,k−1K: ∆ti∈[T−κ′ ,T−κ], ∆tJ2,kK≤εβ2k/dT−1}

× 1{‖x1‖∞≤R
√
T , ∀i∈J2,kK: ‖∆xi‖∞≤R

√
∆ti}

k∏
i=1

δω(dti, dxi, dzi).
(9.32)

This function f counts clusters of atoms that are so close to each other (in time) that the benefit
of visiting all of them, which is

∏k
i=2 ziρ(∆ti,∆xi) or roughly (∆tJ2,kK)−d/2, outweighs the cost

of visiting the first atom of the group, which is of order T−d/2 in the bulk of the box. Limiting
the possible range for ∆ti is convenient in the computations and our particular choice for this
limitation is largely ad hoc. If

εβ
2k
d T−1+(k−2)κ′ ≤ T−κ, (9.33)

then the conditions on the ti’s in the first line of (9.32) imply ∆tk ≤ T−κ. With our choice (9.31)
for T and (9.28), the condition (9.33) is satisfied for any β < 1.

Let us now check that condition (C2) in Corollary 9.2 is satisfied. We start with the condition
on E[f(ω)]. Integrating over the xi’s and t1, making the change of variable si = ∆ti+1 and using
that we have ∆tk ≤ T−κ, we get

E[f(ω)] = T 1+ d
2

2
[
(2R)dλ([a, b))

]k ∫
[T−κ′ ,T−κ]k−2×[0,T−κ]

1{sJk−1K≤εβ2k/dT−1}

k−1∏
i=1

s
d
2
i dsi. (9.34)

Next, we integrate with respect to sk−1 and use (9.33) to obtain

T 1+ d
2

∫
[T−κ′ ,T−κ]k−2×[0,T−κ]

1{sk−1≤εβ2k/dT−1/sJk−2K}

k−1∏
i=1

s
d
2
i dsi

= ε1+ d
2β(1+ 2

d
)k

1 + d
2

∫
[T−κ′ ,T−κ]k−2

k−2∏
i=1

s−1
i dsi = ε1+ d

2β(1+ 2
d

)k[(κ′ − κ) log T ]k−2

d+ 2 .

(9.35)

Therefore, by (9.31), there exists a constant C = C(R, λ, a, b, κ, κ′, k, d) such that

E[f(ω)] = Cε1+ d
2β(1+ 2

d
)k(log T )k−2 = Cε

d
4 .
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Hence, choosing ε ≤ (CeK)−4/d fulfills the assumption on E[f(ω)] in (C2); let us stress that ε must
satisfy a second condition which will be specified later in the proof.

Let us now estimate the expectation and variance of f ′(ω′, B) (recall the definition (9.6)). We
consider an alternative function

f̄(ω′) :=
∫

([0,T ]×[a,b))k
1{t1≤T2 , ∀i∈J2,k−1K: ∆ti∈[T−κ′ ,T−κ], ∆tJ2,kK≤εβ2k/dT−1}

k∏
i=1

δω′(dti,dzi) (9.36)

that does not include any restriction for B. Using (9.30), we obtain, similarly to (9.22) and (9.23),
that for any x ∈ [0,

√
T )d

E′β ⊗Qx[f ′(ω′, B)] ≥
(

1− e−K

8

)
E′β[f̄(ω′)] ≥ 1√

2
E′β[f̄(ω′)],

VarP′
β
⊗Qx

(f ′(ω′, B)) ≤ VarP′
β
(f̄(ω′)) + e−K

4 E′β[f̄(ω′)]2 .

(9.37)

We can thus conclude that the variance bound in (C2) is satisfied if

VarP′
β
(f̄(ω′)) ≤ e−K

4 E′β[f̄(ω′)]2. (9.38)

Proceeding as in (9.34)–(9.35) and recalling that ω′ has intensity measure βz dt λ(dz), we have

E′β[f̄(ω′)] = (βµa,b(1))kT2

∫
[T−κ′ ,T−κ]k−2×[0,T−κ]

1{sJk−1K≤εβ2k/dT−1}

k−1∏
i=1

dsi

= ε

2µa,b(1)kβ(1+ 2
d

)k
∫

[T−κ′ ,T−κ]k−2

k−2∏
i=1

s−1
i dsi

= C ′εβ(1+ 2
d

)k(log T )k−2 = C ′ε−
d
4 ,

(9.39)

with C ′ = C ′(λ, a, b, κ, κ′, k, d), and where we have used the value (9.31) of T for the last identity.
In order to compute the second moment of f̄(ω′), we expand the integral in (9.36) by writing

k∏
i=1

δω′(dti, dzi) =
∑
I⊆JkK

∏
i∈I

(
δω′(dti, dzi)− βzi dti λ(dzi)

) ∏
j∈Ic

βzj dtj λ(dzj), (9.40)

where Ic := JkK\I. We let fI denote the integral corresponding to the term I. Since f∅ = E′β[f̄(ω′)],
we have

VarP′
β
(f̄(ω′)) =

∑
I,J⊆JkK: I,J 6=∅

E′β[fI(ω′)fJ(ω′)]. (9.41)

The terms in the sum above are equal to zero if I and J do not have the same cardinality. If
|I| = |J |, then E′β[fI(ω′)fJ(ω′)] is obtained by matching the values of (ti)i∈I to that of (ti)i∈J in
the integral before averaging. More precisely, we have

E′β[fI(ω′)fJ(ω′)]

= (βµa,b(1))2k−|I|
∫

[0,T ]2k−|I|

(
1Q
(
(t(1)
i )ki=1

) ∏
j∈Ic

dt(1)
j

)(
1Q
(
(t(2)
i )ki=1

) ∏
j∈Jc

dt(2)
j

)∏
i∈I

dti,

where Q is the subset of [0, T ]k induced by the indicator function in (9.36), and the vectors t(1)

and t(2) are completed by setting

t
(1)
i = t

(2)
σ(i) = ti for i ∈ I , (9.42)

with σ being the unique increasing bijection from I to J . In particular, we have
E′β[fJkK(ω′)2] = E′β[f̄(ω′)]. (9.43)
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When |I| = |J | = ` ∈ Jk − 1K, we are going to show that∫
[0,T ]2k−|I|

(
1Q
(
(t(1)
i )ki=1

) ∏
j∈Ic

dt(1)
j

)(
1Q
(
(t(2)
i )ki=1

) ∏
j∈Jc

dt(2)
j

)∏
i∈I

dti ≤ T 1−(2k−`−1)κ. (9.44)

So combining (9.43) with (9.44), we obtain that

VarP′
β
(f̄(ω′)) ≤ E′β[f̄(ω′)] +

k−1∑
`=1

(
k

`

)2

(βµa,b(1))2k−`T 1−(2k−`−1)κ ≤ E′β[f̄(ω′)] + 1,

where the last inequality is valid for sufficiently small β, because 1 − (2k − ` − 1)κ ≤ 0 thanks
to (9.28). For this reason, (9.38) is satisfied if E′β[f̄(ω′)] ≥ 8eK , which according to (9.39) holds
true provided that ε is chosen small enough.

To complete the proof, let us show how (9.44) is obtained: the key is to integrate in the cor-
rect order the different variables. We construct a graph GI,J with 2k − ` vertices where each
vertex is identified with one of the variables (ti)i∈I , (t(1)

i )i∈Ic , (t(2)
i )i∈Jc . We start with two (ini-

tially disconnected) paths of k vertices labeled (t(1)
i )ki=1 and (t(2)

i )ki=1, respectively, the edges being
{t(r)i , t

(r)
i+1} for i ∈ Jk−1K. Then we glue the two paths together by identifying the vertices (t(1)

i )i∈I
with (t(2)

i )i∈J according to (9.42); any double edge that might have been created is replaced by
a single edge. As I 6= ∅, the graph we obtain is connected. Now we consider an enumeration
v1, v2, v3, . . . , v2k−` of the vertices of GI,J such that for every j ∈ J2k − `− 1K, the subgraph G(j)

I,J

of GI,J induced by vj+1, . . . , v2k−` is connected. One way of finding such an enumeration is, for
example, to construct a spanning tree TI,J of GI,J and then, after v1, . . . , vj have been determined
for some j ∈ {0, . . . , 2k− `− 1}, to take any leaf of TI,J \ {v1, . . . , vj} as vj+1. We refer to Figure 2
for one example of GI,J together with a permitted and a forbidden enumeration according to the
rule we just introduced.

Having fixed such an enumeration, in order to obtain (9.44), we integrate v1, . . . , v2k−` in this
order. Note that if vj = t

(r)
i for some j ∈ J2k− `− 1K, r ∈ {1, 2} and i ∈ Ic, then, by construction,

{t(r)i−1, t
(r)
i+1} ∩ {vj+1, . . . , v2k−`} 6= ∅;

indeed, if both t(r)i−1 and t(r)i+1 had been picked before, then vj = t
(r)
i would be an isolated vertex in

G
(j−1)
I,J because i ∈ Ic. In the same manner, if vj = ti for some j ∈ J2k − `− 1K and i ∈ I, then

{t(1)
i−1, t

(1)
i+1, t

(2)
σ(i)−1, t

(2)
σ(i)+1} ∩ {vj+1, . . . , v2k−`} 6= ∅.

As a result, for each j ∈ J2k−`−1K, the range when we integrate with respect to the variable vj and
the values of the variables vj+1, . . . , v2k−` are fixed is included in an interval of length T−κ: Indeed,
by (9.33), the indicator function 1Q in the integral implies that ∆t(r)i ≤ T−κ for all i ∈ J2, kK and
r ∈ {1, 2}. We no longer have constraints only for the last variable v2k−`, which yields a factor
of T . �

9.4. Proof of Proposition 2.2. First, notice that it suffices to consider the free-end partition
function. Since (Zω,aβ (t, x))a∈(0,1]

(d)= (e−‖x‖2/(2t)Zω,aβ (t, 0))a∈(0,1], the a.s. positivity of the limit
when a → 0 does not depend on x. Hence the result in the point-to-point case follows from the
free-end case by Fatou’s Lemma. Although this is not essential to the reasoning, it is practical
for our computations to assume that

∫
(0,1) z

1+2/d λ(dz) < ∞. If this assumption is violated, then
the result has already been proved in [13, Proposition 2.10]. We also assume that µ < ∞: the
general case follows from a truncation procedure, see the end of Section 5 in [13]. For notational
simplicity, we actually assume that µ = 0 (i.e., that λ has support in (0, 1)).
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Figure 2. (a) The graph GI,J with k = 8, I = {1, 3, 6, 7} and J = {2, 3, 6, 7} and a spanning tree TI,J
(thick edges); (b) a permitted enumeration of GI,J based on TI,J ; (c) a forbidden enumeration of GI,J
based on TI,J . Integration in the forbidden order only yields a suboptimal bound: once v1, . . . , v4 have
been integrated (i.e., removed from the graph), we obtain two disconnected components, so if integration
is continued, v6 becomes isolated and contributes a factor T when integrated (similarly, both v11 and v12
become isolated when v1, . . . , v10 have been integrated: each of them contributes a factor of T .

While the proof does not rely on Lemma 9.1, it partially builds on the same idea, which is to show
that the size-biased measure transforms an atypical event under the original probability measure
into a typical one. Let us summarize this in a lemma that is similar in spirit to Corollary 9.2.
Recall (1.20) and the notation Zω,aβ,t := Z̄ω,aβ (t, ∗).

Lemma 9.6. Let us assume that there exists a sequence of integer-valued functions (fn)n∈N of the
form (9.5) (with Υ integer-valued and with T replaced by t) with the following properties:

(i) For every n, fn is Ga-measurable for some a = an > 0.
(ii) Using the notation (9.6), we have that

lim
n→∞

E[fn(ω)] = 0 and lim
n→∞

VarP′
β
⊗Q(f ′n(ω′, B))

E′β ⊗Q[f ′n(ω′, B)]2 = 0. (9.45)

Then we have
lim
a→0

E
[
(Zω,aβ,t )

1
2
]

= 0.

Proof. Consider ε > 0 and let n be sufficiently large such that both quantities in (9.45) are smaller
than ε. Furthermore, let a = an be such that fn is Ga-measurable. Defining K := log ε and
G(ω) := exp(−K1{fn(ω)≥1}), we have by the Cauchy–Schwarz inequality,

E
[
(Zω,aβ,t )

1
2
]
≤ E

[
G(ω)−1

] 1
2E
[
G(ω)Zω,aβ,t

] 1
2
.

Clearly, by Markov’s inequality,

E[G(ω)−1] ≤ 1 + eKP(fn(ω) ≥ 1) ≤ 2 .
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Using Lemma 4.1 and the fact that fn is Ga-measurable, we further have (recall the notation (9.2))

E[G(ω)Zω,aβ,t ] = E⊗ E′β ⊗Q
[
Ĝa,t(ω, ω′, B)

]
.

As fn is integer-valued, the inequality (9.7) implies that

Ĝa,t(ω, ω′, B) ≤ e−K + 1{f̂n(ω,ω′,B)=0} ≤ e
−K + 1{f ′(ω′,B)=0},

which, by an application of the Chebychev inequality, results in

E⊗ E′β ⊗Q
[
Ĝa,t(ω, ω′, B)

]
≤ e−K + P′β ⊗Q(f ′n(ω′, B) ≤ 0) ≤ e−K + ε = 2ε.

Because a 7→ (Zω,aβ,t )1/2 is a supermartingale, we obtain that

lim sup
a′→0

E
[
(Zω,a

′

β,t )
1
2
]
≤ E

[
(Zω,aβ,t )

1
2
]
≤ 2
√
ε,

which finishes the proof since ε is arbitrary. �

Before we specify the sequence of functions fn, we need to introduce a few parameters. We let
kn := 1 + bn1/3c and we set for n ≥ 1

Mn :=
n∏
i=1

ki−1(ki−1 + 1
2)

(ki−1 + 1)(ki−1 − 1
2)

and bn := e−Mn .

Let us stress that since we have
Mn+1
Mn

= 1 + 1
2k2

n

+O(k−3
n )

we have logMn ∼ 3
2 n

1/3 ∼ 3
2kn as n → ∞. Now, as the quantity | log z|/(log|log z|)5+4/d+ε is of

order Mn(logMn)−(5+4/d+ε) on the interval [bn+1, bn), the assumption (2.5) is equivalent to
∞∑
n=1

Mn

(logMn)5+ 4
d

+ε

∫
[bn+1,bn)

z1+ 2
d λ(dz) =∞ . (9.46)

Then, using that logMn ∼ c n1/3 and in particular that M1/kn
n ≤ C for some constant C > 0, we

get that

lim sup
n→∞

k
−2(1+ 2

d
)− ε2

n M
1− 1

kn
n

∫
[bn+1,bn)

z1+ 2
d λ(dz) =∞ , (9.47)

because k−3− ε2
n is summable. Considering a subsequence if necessary, we assume from now on,

without loss of generality, that (9.47) holds with a limit instead of a lim sup. We set

Vn := M
1− 1

kn
n

∫
[bn+1,bn)

z1+ 2
d λ(dz) , (9.48)

so that limn→+∞ k
−2(1+ 2

d
)− ε2

n Vn =∞. We let δ = δε be sufficiently small so that
d− 2δ
d+ 2

(
2(1 + 2

d) + ε
2

)
> 2 , (9.49)

and we set

Rn := V δ/d
n and ηn := 1−

[
(2π)−

1
2

∫
[−Rn,Rn]

e−
u2
2 du

]dkn
. (9.50)

One can easily check that limn→∞Rn =∞ and also limn→∞ ηn = 0 (using that Vn ≥ k2(1+2/d)
n ).
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We are now ready to introduce fn. As in the proof of Proposition 9.5, we want to count clusters
of kn atoms that are beneficial to visit; note that here we have kn →∞. More precisely, assuming
without loss of generality that t = 1, we define

fn(ω) :=
∫
X(kn)

1

1
{(∆tJknK)−d/2zJknK≥An, ∀i∈J2,knK: ∆ti∈[b2θ

′
n/d

n ,b
2θn/d
n ]}

× 1{∀i∈JknK: ‖∆xi‖∞≤Rn
√

∆ti, zi∈[bn+1,bn)}

kn∏
i=1

δω(dti, dxi, dzi) ,
(9.51)

where we have used the shorthand notation

An := V
d
d+2 (1+δ)kn
n , θn := 2kn + 1

2kn − 1 and θ′n := kn
kn − 1 . (9.52)

Note that fn is Gbn+1-measurable. The restriction on the range for xi and the requirement that
(∆tJknK)−d/2zJknK be large are important features of f . The remaining constraints are ad hoc and
mainly serve the purpose to lighten the computations. If zi and ti satisfy the constraints above,
then recalling the definition of θ′n, we have

t
d
2
1 ≤ A

−1
n (∆tJ2,knK)−

d
2 zJknK ≤ A−1

n exp(Mn[(kn − 1)θ′n − kn]) = A−1
n . (9.53)

Since limn→∞An =∞ (recall that limn→∞ Vn =∞) and knb2θn/dn ≤ kn exp(−2
dMn) goes to 0, we

have A−1
n + (kn − 1)b2θn/dn ≤ 1 for sufficiently large n, and hence{(

∆tJknK
)− d2 zJknK ≥ An, ∀i ∈ J2, knK : ∆ti ∈ [b2θ′n/dn , b2θn/dn ]

}
=⇒ tkn ≤ 1.

Consequently, integrating first with respect to the xi’s, making a change of variables si = ∆ti and
then integrating only with respect to skn , we have

E[fn(ω)] = (2Rn)dkn
∫

[b2θ
′
n/d

n ,b
2θn/d
n ]kn−1×[0,1]×[bn+1,bn)kn

1{(sJknK)d/2≤A−1
n zJknK}

kn∏
i=1

s
d
2
i dsi λ(dzi)

= 2
d+ 2(2Rn)dknA−(1+ 2

d
)

n

∫
[b2θ
′
n/d

n ,b
2θn/d
n ]kn−1×[bn+1,bn)kn

kn−1∏
j=1

s−1
j dsj

kn∏
i=1

z
1+ 2

d
i λ(dzi)

= 2
d+ 22dknV −knn

(2(θ′n − θn)
d

Mn

)kn−1(∫
[bn+1,bn)

z1+ 2
d λ(dz)

)kn
,

(9.54)

where we have used the definition of Rn and An in the last line. Using the definition of Vn, together
with the fact that θ′n − θn ≤ 1

2(kn−1)2 , we get that

E[fn(ω)] ≤ 21+d

d+ 2

( 2d

d(kn − 1)2

)kn−1
.

Since kn →∞, this shows the first condition in (9.45).
To check the second condition in (9.45), we compute the expectation and variance of

f̄n(ω′) :=
∫
Xkn (1)×[bn+1,bn)kn

1
{(∆tJknK)−d/2zJknK≥A, ∀i∈J2,knK: ∆ti∈[b2θ

′
n/d

n ,b
2θn/d
n ]}

kn∏
i=1

δω′(dti,dzi). (9.55)

Recalling the notation (9.50) of ηn, we have Q(∀i ∈ JknK : ‖∆Bti‖∞ ≤ R
√

∆ti) = 1 − ηn . Hence,
repeating the computations that led to (9.37) in the previous section, we obtain

E′β ⊗Q[f ′n(ω′, B)] = (1− ηn)E′β[f̄n(ω′)],
VarP′

β
⊗Q[f ′n(ω′, B)] ≤ VarP′

β
(f̄n(ω′)) + 2ηnE′β[f̄n(ω′)]2.
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Since ηn tends to zero, the reader can check that the second condition in (9.45) follows from the
following claims:

lim
n→∞

E′β[f̄n(ω′)] =∞,

VarP′
β
(f̄n(ω′)) ≤ 2E′β[f̄n(ω′)] for sufficiently large n.

(9.56)

The first property in (9.56) follows from direct calculation. We have

E′β[f̄n(ω′)] =
∫

[b2θ
′
n/d

n ,b2θn/d]kn−1×[0,1]×[bn+1,bn)kn
1{(sJknK)d/2≤A−1

n zJknK}

kn∏
i=1

dsi βzi λ(dzi)

= βknA
− 2
d

n

(2(θ′n − θn)Mn

d

)kn−1(∫
[bn+1,bn)

z1+ 2
d λ(dz)

)kn
= d

2(θ′n − θn)
(2β
d

(θ′n − θn)V
d−2δ
d+2
n

)kn
,

(9.57)

where the computation is similar to (9.54). Now, since θ′n−θn ∼ 1
2k
−2
n and k−2(1+2/d)−ε/2

n Vn →∞,
we have from our choice (9.49) for δ that (θ′n− θn)V (d−2δ)/(d+2)

n →∞, which leads to the first part
of (9.56).

As in the previous section, to compute the second moment of f̄n(ω′), we can use (9.40) to write
VarP′

β
(f̄n(ω′)) in the form (9.41). As seen before, only sets with |I| = |J | contribute, and the term

corresponding to I = J = JknK is simply E′β[f̄n(ω′)]. If |I| = |J | = ` ∈ Jkn − 1K, then

E′β[fI(ω′)fJ(ω′)] = β2kn−`
∫

((0,1)×[bn+1,bn))2kn−`

(
1R
(
(t(1)
i )kni=1, (z

(1)
i )kni=1

) ∏
j∈Ic

z
(1)
i dt(1)

j λ(dz(1)
i )

)

×
(

1R
(
(t(2)
i )kni=1, (z

(2)
i )kni=1

) ∏
j∈Jc

z
(2)
i dt(2)

j λ(dz(2)
i )

)∏
i∈I

zi dti λ(dzi),

where R is the subset of ((0, 1)× [bn+1, bn))kn induced by the indicator function in (9.55) and for
i ∈ I, we used the notation

t
(1)
i = t

(2)
σ(i) = ti and z

(1)
i = z

(2)
σ(i) = zi .

Next, we relax the constraints imposed by R by only keeping ∆t(r)i ≤ b
2θn/d
n . Then we proceed as

in the proof of (9.44): by choosing an optimal order, we obtain that integration over each time
variable produces a factor of at most b2θn/dn , except for the last integration, which produces a factor
of one. Thus,

E′β[fI(ω′)fJ(ω′)] ≤ β2kn−` b
2θn
d

(2kn−`−1)
n

(∫
[bn+1,bn)

z λ(dz)
)2kn−`

≤ β2kn−` exp
(2
d

[
(2kn − `)Mn+1 − (2kn − `− 1)θnMn

])
µ0,1(1 + 2

d)2kn−`,

where in the second line we simply used the fact that∫
[bn+1,bn)

z λ(dz) ≤ (bn+1)−
2
dµ0,1(1 + 2

d) ,

together with the definition of bn and bn+1. Recalling the definition of θn and of Mn, we have
Mn+1 = kn

kn+1Mnθn, so that

(2kn − `)Mn+1 − (2kn − `− 1)θnMn = Mnθnkn

[2kn − `
kn + 1 −

2kn − `− 1
kn

]
≤ 0
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for any ` ≤ kn − 1. We therefore end up with

VarP′
β
(f̄n(ω′)) ≤ E′β[f̄n(ω′)] +

kn−1∑
`=1

(
kn
`

)2

β2kn−`µ0,1(1 + 2
d)2kn−` ≤ E′β[f̄n(ω′)] + C ′(d, λ, β)kn .

Recalling (9.57), we have that for any constant C > 0 the expectation E′β[f̄n(ω′)] is larger than
Ckn for sufficiently large n. This proves the second claim in (9.56) and concludes the proof. �

Appendix A. Technical results

A.1. Proof of Theorem 4.3. The result is contained in [67], but only implicitly, so we give a
short proof. Let us first check that (4.3) ensures that all integrals in (4.4) are well defined and
finite. Applying the BDG inequality and using the subadditivity (5.4) of the function x 7→ xp/2

for x > 0 iteratively, we deduce that

E
[∣∣∣∣∫

XN
f(w)Mω(dw1) · · · Mω(dwN )

∣∣∣∣p
]

≤ CpE
[(∫

X

(∫
XN−1

f(w)Mω(dw1) · · · Mω(dwN−1)
)2

δω(dwN )
)p/2]

≤ CpE
[∫

X

∣∣∣∣∫
XN−1

f(w)Mω(dw1) · · · Mω(dwN−1)
∣∣∣∣p δω(dwN )

]

= Cp

∫
X
E
[∣∣∣∣∫

XN−1
f(w)Mω(dw1) · · · Mω(dwN−1)

∣∣∣∣p
]
ν(dwN )

≤ · · · ≤ CNp
∫
XN
|f(w)|p ν(dw1) · · · ν(dwN ) <∞.

(A.1)

These inequalities remain unchanged if ω is replaced by ω1, . . . , ωN and E is replaced by E⊗N .
Now we move to the proof of (4.4), for which we shall prove the second inequality. To obtain the

reverse inequality it is sufficient follow the same proof and observe that all estimates are two-sided
(i.e., one can always substitute “≥” for “≤” if one also replaces 1/C by C). We now consider a
state space on which ω is jointly defined with our i.i.d. copies ω1, . . . , ωN (and ω is independent of
(ω1, . . . , ωN )). We let P̄ := P ⊗ P⊗N denote the associated probability. In analogy with (1.5), we
consider a filtration (F̄t)t≥0 on this state space defined by

F̄t := Ft ⊗F (1)
t ⊗ · · · ⊗ F

(N)
t , F (i)

t := σ
(
ω ∩ ([0, t] ∩ Rd × (0,∞))

)
, i = 1, . . . , N.

Our result follows from applying the following inequality, valid for i = 1, . . . , N , iteratively:

Ē
[ ∫

XN
f(w)Mω(dw1) · · ·Mω(dwi)Mωi+1(dwi+1) . . .MωN (dwN )

]
≤ C

1− p Ē
[ ∫

XN
f(w)Mω(dw1) · · ·Mω(dwi−1)Mωi(dwi) · · ·MωN (dwN )

]
.

(A.2)

Let us first spend some time on the first step i = N . By elementary properties of Itô integrals,
the processes (Xt)t≥0 and (Yt)t≥0 defined by

Xt :=
∫
XN

f(w)1(0,t](tN )Mω(dw1) · · ·Mω(dwN ),

Yt :=
∫
XN

f(w)1(0,t](tN )Mω(dw1) · · ·Mω(dwN−1)MωN (dwN )
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are martingales with respect to (F̄t)t≥0, whose quadratic variation processes are given by

[X]t =
∫
X

(∫
XN−1

f(w)1(0,t](tN )Mω(dw1) · · ·Mω(dwN−1)
)2

δω(dwN ),

[Y ]t =
∫
X

(∫
XN−1

f(w)1(0,t](tN )Mω(dw1) · · ·Mω(dwN−1)
)2

δωN (dwN ),

respectively. Since ω and ωN are Poisson random measures with the same (F̄t)t≥0-intensity mea-
sures (namely dt ⊗ dx ⊗ λ(dz)), the jump measures associated to [X] and [Y ] have the same
predictable compensator in (F̄t)t≥0. As a result, X and Y are weakly tangential martingales in the
sense of [67, Section 3]. Thus, by [67, Thm. 4.1] and Doob’s inequality, there is Cp > 0 such that

Ē[|X∞|p] ≤ Ē
[

sup
t≥0
|Xt|p

]
≤ CpĒ

[
sup
t≥0
|Yt|p

]
≤ Cp

(
p

p− 1

)p
Ē[|Y∞|p]. (A.3)

The reader can check that for the implicit constant Cp from [67, Thm. 4.2], one may take Cp :=
(24p2)p[2× 3p/2(2p/2+1 + 14× 3p/2(28× 3p/2)p/2)]. The expression in brackets comes from the last
equation in [67, p. 38] (with ϕ(x) = |x|p/2 and c = (14× 3p/2)−1), while the computation in [67, p.
39], combined with the BDG inequality as in [49, Ch. VII, Thm. 92], entails an additional factor of
(24p2)p. Most importantly, Cp is bounded uniformly in p ∈ (1, 2], so that there exists a universal
constant C such that for p ∈ (1, 2],

Ē[|X∞|p] ≤
(

C

p− 1

)
Ē[|Y∞|p],

which concludes the proof of (A.2) for i = N .
In order to iterate and prove (A.2) for i ≤ N − 1, we wish to interchange Mω(dw1) · · ·Mω(dwi)

with Mωi+1(dwi+1) · · ·MωN (dwN ), that is, we want to write∫
XN

f(w)Mω(dw1) · · ·Mω(dwi)Mωi+1(dwi+1) · · ·MωN (dwN )

=
∫
Xi

(∫
XN−i

f(w)Mωi+1(dwi+1) · · ·MωN (dwN )
)
Mω(dw1) · · ·Mω(dwi).

(A.4)

Even though the integral on the right-hand side is anticipative when considering the filtration
(F̄t)t≥0, we can recover an integral in Itô’s sense by constructing the inner integrals∫

XN−i
f(w)Mωi+1(dwi+1) · · ·MωN (dwN )

using the filtration (F̄t)t≥0 and the outer integrals using the filtration F̄ (i) defined by

F̄ (i)
t := Ft ⊗F (1)

t ⊗ · · · ⊗ F
(i)
t ⊗F (i+1)

∞ ⊗ · · · ⊗ F (N)
∞ .

Note that the inner integrals are F̄ (i)
0 -measurable. With this convention, we can justify (A.4) as

follows: It certainly holds if f is a step function, that is, if f only assumes finitely many values (in
that case, the integrals are simply finite sums). For general f , take a sequence of step functions
(fn)n∈N such that |fn| ≤ |f | for all n and fn → f pointwise as n → ∞. Equation (A.4) holds for
fn, and arguing similarly to (A.1) and using dominated convergence, we have that

lim
n→∞

Ē
[∣∣∣∣∣
∫
XN

(f − fn)(w)Mω(dw1) · · ·Mω(dwi)Mωi+1(dwi+1) · · ·MωN (dwN )
∣∣∣∣∣
p]

= 0,

lim
n→∞

Ē
[∣∣∣∣∣
∫
Xi

(∫
XN−i

(f − fn)(w)Mωi+1(dwi+1) · · ·MωN (dwN )
)
Mω(dw1) · · ·Mω(dwi)

∣∣∣∣∣
p]

= 0,
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proving (A.4). The fact that we are able to interpret the latter integral in Itô’s sense is crucial for
the BDG inequality, which was needed in (A.1), to apply. Once (A.4) is established, we can prove
(A.2) by considering the weakly tangential martingales (for the filtration (F̄ (i)

t )t≥0)

X
(i)
t :=

∫
Xi

(∫
XN−i

f(w)1(0,t](ti)Mωi+1(dwi+1) · · ·MωN (dwN )
)
Mω(dw1) · · ·Mω(dwi),

Y
(i)
t :=

∫
Xi

(∫
XN−i

f(w)1(0,t](ti)Mωi+1(dwi+1) · · ·MωN (dwN )
)
Mω(dw1) · · ·Mω(dwi−1)Mωi(dwi),

applying the same estimate as in (A.3) and re-arranging the integrals similarly to (A.4).

A.2. Proof of Lemma 4.4. For A, u, ε > 0 and H ∈ S that satisfies |H| ≤ u|K|, we have that

P
(∣∣∣∣∣
∫
X
H(ω, t, x) ξω<(dt, dx)

∣∣∣∣∣ > ε

)
≤ P≥

(
Au‖K‖ξω< ,p;P< > ε

)

+ P
(∣∣∣∣∣
∫
X
H(ω, t, x) ξω<(dt,dx)

∣∣∣∣∣ > uA‖K‖ξω< ,p;P<

)
.

The second probability is bounded by

E≥

[
1

upAp‖K‖pξω< ,p;P<
E<

[∣∣∣∣∫
X
H(ω, t, x) ξω<(dt, dx)

∣∣∣∣p]
]
≤ A−p.

Therefore, using dominated convergence for the first term, we get

lim
u→0

sup
H∈S,|H|≤u|K|

P
(∣∣∣∣∣
∫
X
H(ω, t, x) ξω<(dt, dx)

∣∣∣∣∣ > ε

)
≤ lim

u→0
E≥[1{Au‖K‖ξω<,p;P<>ε}] +A−p ≤ A−p.

Sending A→∞ shows that the left-hand side is 0, which is obviously equivalent to ‖uK‖ξ<,0 → 0
as u→ 0. Therefore, K is integrable with respect to ξω< by (4.6). �
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