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We study the stochastic heat equation (SHE) ∂tu = 1 2 ∆u + βuξ driven by a multiplicative Lévy noise ξ with positive jumps and amplitude β > 0, in arbitrary dimension d ≥ 1. We prove the existence of solutions under an optimal condition if d = 1, 2 and a close-to-optimal condition if d ≥ 3. Under an assumption that is general enough to include stable noises, we further prove that the solution is unique. By establishing tight moment bounds on the multiple Lévy integrals arising in the chaos decomposition of u, we further show that the solution has finite pth moments for p > 0 whenever the noise does. Finally, for any p > 0, we derive upper and lower bounds on the moment Lyapunov exponents of order p of the solution, which are asymptotically sharp in the limit as β → 0. One of our most striking findings is that the solution to the SHE exhibits a property called strong intermittency (which implies moment intermittency of all orders p > 1 and pathwise mass concentration of the solution), for any non-trivial Lévy measure, at any disorder intensity β > 0, in any dimension d ≥ 1.

Introduction

We consider the stochastic partial differential equation

∂ t u = 1 2 ∆u + βuξ , u(0, •) = u 0 , (1.1)
where ξ is a space-time Lévy noise, β > 0 is an intensity parameter and u 0 is some initial condition.

In most parts of the paper, we assume that ξ is spectrally positive (i.e., only has positive jumps) without a Gaussian part; extensions to the general case will be discussed in Section 3.3 below. The equation (1.1) is usually referred to as the stochastic heat equation (SHE) with multiplicative noise or the parabolic Anderson model (PAM); see [START_REF] Bertini | The Stochastic Heat Equation: Feynman-Kac formula and intermittence[END_REF][START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] for early works on the subject and [START_REF] Chen | Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions[END_REF][START_REF] Chen | Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise[END_REF][START_REF] Hu | Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency[END_REF][START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF][START_REF] Khoshnevisan | Intermittency and multifractality: a case study via parabolic stochastic PDEs[END_REF][START_REF] Khoshnevisan | A macroscopic multifractal analysis of parabolic stochastic PDEs[END_REF] for a selection of more recent contributions in the case where ξ is Gaussian.

We opt for the SHE denomination since the expression parabolic Anderson model is also often used in the literature to designate the equation

∂ t u = 1 2 ∆u + βuV, (1.2)
where the multiplicative noise term V does not depend on time (see [START_REF] Gu | Moments of 2D parabolic Anderson model[END_REF][START_REF] Hairer | A simple construction of the continuum parabolic Anderson model on R 2[END_REF] for examples of continuous models and [START_REF] Gärtner | Moment asymptotics for the continuous parabolic Anderson model[END_REF][START_REF] Gärtner | Parabolic problems for the Anderson model. I. Intermittency and related topics[END_REF][START_REF] König | The parabolic Anderson model[END_REF] for lattice models). In this case, Equation (1.2) is the real-valued analogue of the Schrödinger equation associated with the Anderson Hamiltonian H = 1 2 ∆u + βV . A lattice version of this Schrödinger equation appears in one of the original papers concerning Anderson localization [6, Equation [START_REF] Ahn | Nonstationary Anderson model with a Lévy random potential[END_REF]]; see also [START_REF] Gärtner | Parabolic problems for the Anderson model. I. Intermittency and related topics[END_REF]Equation (0.2)]. The study of the localization properties of H (which bears some connection to (1.2)) has been and remains an important area of research in physics. We refer the reader to the reviews [START_REF] Martinelli | Introduction to the mathematical theory of Anderson localization[END_REF][START_REF] Stolz | An introduction to the mathematics of Anderson localization[END_REF] and the references therein.

Compared to (1.2), Equation (1.1) corresponds to a related but different problem: the diffusion of particles in a random medium that varies at small time scales. This equation has been widely studied in the literature, firstly and mostly in the case where ξ is a space-time Gaussian white noise [START_REF] Bertini | The Stochastic Heat Equation: Feynman-Kac formula and intermittence[END_REF]. In this case, the equation can be related, via the Cole-Hopf transform, to the KPZ equation, a model for the progression of growth fronts that has attracted a lot of attention in the literature; see [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF][START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF][START_REF] Hairer | Solving the KPZ equation[END_REF][START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] and the two review papers [START_REF] Corwin | The Kardar-Parisi-Zhang equation and universality class[END_REF][START_REF] Quastel | The one-dimensional KPZ equation and its universality class[END_REF]. Furthermore, in the case of a Dirac initial condition, the solution to (1.1) has been used to describe the scaling limit of a onedimensional directed polymer in a random environment [START_REF] Alberts | The continuum directed random polymer[END_REF][START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF], called the continuum directed polymer model. With Lévy noise, the existence of solutions to (1.1) has only been proved under some additional integrability assumptions on the Lévy measure; see [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF][START_REF] Chong | Stochastic PDEs with heavy-tailed noise[END_REF][START_REF] Saint | Étude d'une EDPS conduite par un bruit poissonnien[END_REF] as well as Sections 1.2 and 1.3 below for a more detailed review. Recently, [START_REF] Berger | The scaling limit of the directed polymer with power-law tail disorder[END_REF] further showed that directed polymers in certain heavy-tailed environments have scaling limits that, as we shall show below, agree with solutions to (1.1) with α-stable ξ, providing a physical motivation for studying the SHE with Lévy noise.

Another central point of interest in past studies of the SHE is the phenomenon of localization of solutions, or intermittency [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF][START_REF] Gärtner | Parabolic problems for the Anderson model. I. Intermittency and related topics[END_REF][START_REF] Zel'dovich | Intermittency in random media[END_REF]. One striking manisfestation is the appearance of sharp peaks at large times t in the random field (u(t, x)) x∈R d , where u is the solution to (1.1) with initial condition u 0 ≡ 1. These peaks result from mass concentration of u(t, •) on a fraction of space that decreases exponentially in t. A common way to quantify this concentration property (see Section 1.4 for more details) is to prove that for some p < p , the ratio of moments E[u(t, x) p ]/E[u(t, x) p ] grows exponentially in time, and to compute the growth rate. For the SHE with Gaussian noise, this type of moment intermittency was studied in depth by, for example, [START_REF] Bertini | The Stochastic Heat Equation: Feynman-Kac formula and intermittence[END_REF][START_REF] Chen | Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions[END_REF][START_REF] Chen | Precise intermittency for the parabolic Anderson equation with an (1 + 1)-dimensional time-space white noise[END_REF][START_REF] Das | Fractional moments of the stochastic heat equation[END_REF][START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF]. We also refer to [START_REF] Khoshnevisan | Intermittency and multifractality: a case study via parabolic stochastic PDEs[END_REF][START_REF] Khoshnevisan | A macroscopic multifractal analysis of parabolic stochastic PDEs[END_REF] for a path-by-path analysis of the intermittency peaks. For the SHE with Lévy noise, the issue of moment intermittency was investigated only much more recently in [START_REF] Chong | Intermittency for the stochastic heat equation with Lévy noise[END_REF]. In [START_REF] Chong | The almost-sure asymptotic behavior of the solution to the stochastic heat equation with Lévy noise[END_REF], it was further proved that unusually large peaks (on a logarithmic scale) already appear in the solution to the SHE with an additive Lévy noise.

Before we describe our main results in Section 2, we provide a detailed technical introduction to Equation (1.1), which aims at being as self-contained as possible.

1.1. Lévy noise with positive jumps. Given a measure λ on (0, ∞) that satisfies λ([1, ∞)) < ∞ and (0,1) z 2 λ(dz) < ∞, we provide a constructive definition of a pure-jump Lévy noise with intensity λ. General Lévy noises, with a Gaussian part or with negative jumps, will be considered in Section 3.3. Let ω be a Poisson point process on R×R d ×(0, ∞) with intensity ν := dt⊗dx⊗λ(dz). The law of ω is denoted by P. For convenience, we sometimes split ω into two processes ω < and ω ≥ that correspond to the restriction of ω to R × R d × (0, 1) and R × R d × [1, ∞), respectively. We let P < and P ≥ denote the associated probabilities, so that P = P < ⊗ P ≥ . For a ∈ (0, 1], consider the measure ξ a ω := (t,x,z)∈ω z1 {z≥a} δ (t,x) -κ a L , (1.3) where L is the Lebesgue measure on R × R d and κ a = [a,1) z λ(dz). We also set ξ a ω< := (t,x,z)∈ω z1 {z∈[a,1)} δ (t,x) -κ a L and ξ ω ≥ := (t,x,z)∈ω z1 {z≥1} δ (t,x) .

(1.4)

Under the assumption (0,1) z 2 λ(dz) < ∞, the measure ξ a ω converges a.s., in the local Sobolev space H -s loc (R × R d ) for any s > (1 + d)/2, towards a limit ξ ω ∈ H -s loc (R × R d ) (this is a standard result, we refer to [13, Appendix A] for a proof of this exact statement). For k ≥ 1 and u ∈ R, the Sobolev space H u (R k ) is the Hilbert space of all Schwartz distributions ϕ ∈ S (R k ) for which

ϕ H u (R k ) := R k (1 + |ξ| 2 ) u | φ(ξ)| 2 dξ 1 2 < ∞,
where φ denotes the Fourier transform of ϕ. When ϕ ∈ C ∞ c (R k ) (i.e., ϕ is smooth and compactly supported), then φ is defined by φ(ξ) := R k e iξ•x ϕ(x) dx. The local Sobolev space H u loc (R k ) is then defined by

H u loc (R k ) := ϕ ∈ S (R k ) : ∀ρ ∈ C ∞ c (R k ), ρϕ ∈ H u (R k
) , equipped with the topology induced by the family of seminorms {ϕ → ρϕ H u (R k ) : ρ ∈ C ∞ c (R k )}. The random distribution ξ ω is called a Lévy (space-time white) noise with intensity or Lévy measure λ. In the the case where λ(dx) = αx -(1+α) dx for some α ∈ (0, 2), ξ ω is referred to as an α-stable noise. We refer the reader to [START_REF] Aziznejad | Wavelet analysis of the Besov regularity of Lévy white noise[END_REF] and [START_REF] Dalang | Lévy processes and Lévy white noise as tempered distributions[END_REF] for more background on Lévy noises. In the remainder, we let F := (F t ) t≥0 be the completed natural filtration associated with ξ ω , that is,

F t := σ ω ∩ ([0, t] × R d × (0, ∞)) .
(1.5)

Remark 1.1. Note that the Poisson process ω is measurable with respect to σ(ξ ω ). Hence the solution u to (1.1) that we construct in this paper (which is defined in terms of ω) is a function of the noise ξ. Our choice to index by ω instead of ξ is only for convenience because many quantities in our proofs are easier to express in terms of ω than in terms of ξ; in particular, this is not because we need an extension of the probability space in our construction. We mention this explicitly because there are martingale constructions which are similar to the one used in this paper and that do require an extension of the probability space: this is, for instance, the case in Kahane's construction of Gaussian multiplicative chaos associated with a kernel of σ-positive type (see [START_REF] Kahane | Sur le chaos multiplicatif[END_REF] for the seminal paper or [88, Section 2.1] for a review). The statement includes the requirement that the integrals be well-defined and finite. In (1.6),

ρ(t, x) := (2πt) -d 2 e -x 2 2t
is the d-dimensional heat kernel and • denotes the Euclidean norm on R d .

Remark 1.2. If (0,1) z λ(dz) = ∞, the noise ξ does not have a locally finite total variation. In this case, the stochastic integral on the right-hand side of (1.6) cannot be defined as a path-by-path Lebesgue integral (i.e., an integral with respect to a random measure defined on [0, t] × R d ) and must be interpreted in Itô's sense.

In [START_REF] Saint | Étude d'une EDPS conduite par un bruit poissonnien[END_REF], it was shown that (1.1) has a unique mild solution if the Lévy measure λ satisfies ∃ q ∈ (1, 1 + 2 d ) :

(0,∞) z q λ(dz) < ∞ .

(1.7)

While this condition covers many examples, it is not fully satisfying, in particular because it rules out α-stable noises for all α ∈ (0, 2). Subsequent papers that considered the case of α-stable noise (e.g., [START_REF] Balan | SPDEs with α-stable Lévy noise: a random field approach[END_REF][START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF][START_REF] Chong | Stochastic PDEs with heavy-tailed noise[END_REF][START_REF] Chong | Path properties of the solution to the stochastic heat equation with Lévy noise[END_REF]) neither established uniqueness nor the finiteness of moments of the solution to (1.1). At this point, let us also mention [START_REF] Mueller | The heat equation with Lévy noise[END_REF][START_REF] Mytnik | Stochastic partial differential equation driven by stable noise[END_REF], who investigated an SHE with stable noise but with a non-Lipschitz nonlinearity.

1.3. The truncation approach to SHE. Prior to this article, the most general existence condition for the solution to the SHE (1.1) was obtained, for a Lévy noise with positive jumps, in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF], but using a (possibly) weaker notion of solution than (1.6). The approach in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF] consists in solving the equation ∂ t u a = 1 2 ∆u a + βu a ξ a ω , u a (0, •) = u 0 , (1.8) with ξ a ω from (1.3) and then taking the limit of u a as a ↓ 0. Remark 1.3. In [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF], it is not proved that the obtained limit satisfies (1.6). In fact, the main focus of [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF] is not the SHE, but rather constructing a continuum path measure on R d : the continuum directed polymer in Lévy noise. This is further discussed in Section 3.1 below.

In order to review the results of [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF], let us start by introducing some important notations and quantities. For 0 < s < t < ∞, x, y ∈ R d , let X k (s, t) := {(t 1 , . . . , t k ) ∈ R k : s < t 1 < • • • < t k < t} denote the k-dimensional simplex delimited by s and t and define, for t ∈ X k (s, t) and x ∈ (R d ) k , ρ s,x;t,y (t, x) = k+1 i=1 ρ(∆t i , ∆x i ) , (1.9) where ∆t i := t i -t i-1 and ∆x i := x i -x i-1 , (1.10) with the convention that t 0 := s, x 0 := x and t k+1 := t, x k+1 := y. Given a > 0 we let |ξ a ω | and ξ a,+ ω denote the total variation and the positive part of ξ a ω (considered as a measure), that is, |ξ a ω | = ξ a ω + 2κ a L and ξ a,+ ω = ξ a ω + κ a L.

(1.11)

We define the point-to-point partition function associated with (1.8) and truncated Lévy noise ξ a ω as Z ω,a β (s, x; t, y) := ρ(t -s, y -x)

+ ∞ k=1 β k X k (s,t)×(R d ) k ρ s,x;t,y (t, x) k i=1 ξ a ω (dt i , dx i ), (1.12) 
under the assumption that the sum of integrals is absolutely convergent, that is,

∞ k=0 β k X k (s,t)×(R d ) k ρ s,x;t,y (t, x) k i=1 |ξ a ω |(dt i , dx i ) < ∞. (1.13) 
It is proved in [13, Prop. 2.5 and 2.6] that (1.13) holds if and only if

[1,∞) (log z) d 2 λ(dz) < ∞. (1.14)
The case where x = 0 and s = 0 is of particular interest to us, hence we introduce the notational convention Z ω,a β (x; t, y) := Z ω,a β (0, x; t, y), Z ω,a β (t, x) := Z ω,a β (0, 0; t, x), (1.15) which applies similarly to other quantities such as X k (t) := X k (0, t) and ρ t,x (t, x) := ρ 0,0;t,x (t, x).

When the condition (1.14) holds, Z ω,a β (•, •) is a mild solution solution to the SHE with noise ξ a ω and initial condition δ 0 . Indeed, from (1.13), the integrals are absolutely convergent, so (1.12) can be rewritten as Z ω,a β (t, x) = ρ(t, x) + β t 0 R d ρ(t -s, x -y)Z ω,a β (s, y) ξ a ω (ds, dy) .

(1. [START_REF] Bertin | Very strong disorder for the parabolic Anderson model in low dimensions[END_REF] In the same manner, Z ω,a β (y; •, •) is a mild solution to the SHE with initial condition δ y and noise ξ a ω , and given some uniformly bounded u 0 : R d → [0, ∞), the random field u a defined by u a (t, x) := R d u 0 (y)Z ω,a β (y; t, x) dy (1.17) is a mild solution to the SHE with initial condition u 0 and noise ξ a ω ; see [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 2.19]. Remark 1.4. Note that by translation invariance, we have Z ω,a β (s, x; t, y)

y∈R d (d)
= Z ω,a β (t -s, y -x)

y∈R d (d) = e - x-y 2 + y 2 2(t-s)
Z ω,a β (t -s, y)

y∈R d
. (1.18) For this reason, we present most results only for the case s = 0 and x = 0, without loss of generality.

The next step is to investigate existence and "relevance" of the limit Z ω,a β (t, x) as a ↓ 0. If (1.14) holds, integrating the "Lebesgue part" of ξ a ω (see [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 2.15] for details), we obtain the alternative expression

Z ω,a β (t, x) = e -βκat ρ(t, x) + ∞ k=1 β k X k (t)×(R d ) k ρ t,x (t, x) k i=1
ξ a,+ ω (dt i , dx i ) , (1.19) which entails the positivity of Z ω,a β (t, x). Still under (1.14), considering the reverse filtration G := (G a ) a∈(0,1) defined by

G a := σ(ξ a ω ) = σ(ω ∩ (R × R d × [a, ∞))), (1.20) 
one can observe that for almost every realization of ω ≥ , (Z ω,a β (t, x)) a∈(0,1] is a non-negative càdlàg time-reversed P < -martingale with respect to G (cf. [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Lemma 3.5]) and thus admits a limit as a ↓ 0. To determine whether lim a→0 Z ω,a β (t, x) is a good candidate for being a solution to (1.6), a first step is to determine whether this limit is degenerate or not. The answer depends on the intensity measure λ and the following result summarizes the main findings of [13, Thm. 2.7 & Prop. 2.10-2.15].

Theorem A. Assume that λ satisfies the condition in (1.14).

(i) If, in addition,

       (0,1) z 2 λ(dz) < ∞ if d = 1, ∃ p ∈ 1, 1 + 2 d :
(0,1)

z p λ(dz) < ∞ if d ≥ 2, (1.21) 
then for every 0 < s < t < ∞ and x, y ∈ R d , we have Z ω β (s, x; t, y) := lim a→0 Z ω,a β (s, x; t, y) > 0 P-a.s.

(1.22)

Moreover, the convergence holds in L 1 (P < ) for P ≥ -a.e. realization of ω ≥ , that is, lim a→0 E < Z ω β (s, x; t, y) -Z ω,a β (s, x; t, y) = 0 P ≥ -a.s.

(ii) If, on the other hand, we have

               (0,1) z 2 λ(dz) = ∞ if d = 1, (0,1) z 2 |log z| λ(dz) = ∞ if d = 2, (0,1) z 1+ 2 d λ(dz) = ∞ if d ≥ 3, (1.23) 
then P-a.s., we have lim a→0 Z ω,a β (s, x; t, y) = 0.

One can also consider a free-end (or point-to-line) version of the partition function with truncated Lévy noise, given by Z ω,a β (s, x; t, * ) :=

R d
Z ω,a β (s, x; t, y) dy. (1.24) Theorem A applies to Z ω,a β (s, x; t, * ) mutatis mutandis. Following the convention (1.15), we use the notations Z ω β (s, x; t, * ), Z ω β (x; t, * ) and Z ω β (t, * ) for the limits we obtain as a tends to zero (as a consequence of the reverse martingale property). Furthermore, under the assumptions of Theorem 2.1, [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 2.20] showed that lim a→0 u a (t, x) exists a.s. for u a defined in (1.17), without proving that the limit is a solution to (1.6). Since moments of the measure λ play an important role in our assumptions, we introduce a notation for partial moments of the measure λ by setting z p λ(dz) , (1.25) for 0 ≤ a ≤ b ≤ ∞. We simply write µ := µ 1,∞ [START_REF] Ahn | Nonstationary Anderson model with a Lévy random potential[END_REF] for the first moment restricted to [1, ∞).

Remark 1.5. In the case of a finite mean µ, given t > 0 and x ∈ R, the convergence of both Z ω,a β (t, x) and Z ω,a β (t, * ) as a → 0 also holds in L 1 (P). If µ < ∞, it is convenient to consider the normalized partition functions, defined as Zω,a

β (t, x) := e -βµt Z ω,a β (t, x), Zω,a β (t, * ) := e -βµt Z ω,a β (t, * ). (1.26)
In the same manner, we can center the noise by setting ξa ω := ξ a ω -µL, (

which has the effect that integrals with respect to ξa ω have mean zero. Note that we have Zω,a

β (t, x) = ρ(t, x) + ∞ k=1 β k X k (t)×(R d ) k ρ t,x (t, x) k i=1 ξa ω (dt i , dx i ) (1.28)
and a similar identity for Zω,a β (t, * ). 1.4. Intermittency and related notions. Consider a random field (v(t, x)) t>0,x∈R d where d ≥ 0; when d = 0 this means that (v(t)) t>0 is a stochastic process only indexed by t. Assuming that the moment Lyapunov exponents

γ(p) = γ(v, p) := lim t→∞ 1 t log E |v(t, x)| p (1.29)
exist on the extended real line for all p ∈ (0, ∞) and are independent of x ∈ R d , we let Clearly, γ(1) = 0. Following the terminology of [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF][START_REF] Gärtner | Parabolic problems for the Anderson model. I. Intermittency and related topics[END_REF][START_REF] Zel'dovich | Intermittency in random media[END_REF], if p > 1 and |γ(1)| < ∞, we say that v exhibits (moment) intermittency of order p if γ(p) ∈ (0, ∞). We say that v exhibits full intermittency if v is intermittent of all orders p ∈ (1, ∞) ∩ I.

I = I(v) := {p ≥ 0 : γ(v, p) < ∞}, (1.30 
Let us also introduce some new terminology when we consider moments of order p ∈ (0, 1): we say that v exhibits strong intermittency (in analogy with "very strong disorder" used in the directed polymer context, see the discussion below) if γ(p) ∈ (-∞, 0) for some p ∈ (0, 1). As p → γ(p) is convex on I (cf. Proposition 2.9 (i) below), strong intermittency implies γ(p) < 0 for all p ∈ (0, 1) but also that γ(p) > 0 for all p > 1. Thus, strong intermittency implies full intermittency. As Section 3.2 below reveals, strong intermittency, plus some ergodic properties in x, yields a geometric characterization of intermittency: we have a mass concentration of the paths of v at large times, characterized by the appearance of exponentially large peaks on islands covering only an exponentially small fraction of space (a more quantitative study of this phenomenon was undertaken in [START_REF] Khoshnevisan | Intermittency and multifractality: a case study via parabolic stochastic PDEs[END_REF][START_REF] Khoshnevisan | A macroscopic multifractal analysis of parabolic stochastic PDEs[END_REF], and we also refer to [START_REF] Gärtner | Geometric characterization of intermittency in the parabolic Anderson model[END_REF] for a similar work concerning the parabolic Anderson model on Z d ).

Intermittency for the SHE. Let us first discuss the known intermittency result in a semi-discrete setting (this is the setup where the most is known). For the SHE on Z d with either a Gaussian or a finite-variance Lévy noise, the results of [START_REF] Ahn | Nonstationary Anderson model with a Lévy random potential[END_REF][START_REF] Ahn | Nonstationary Anderson model with Lévy potential[END_REF][START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] and [START_REF] Bertin | Very strong disorder for the parabolic Anderson model in low dimensions[END_REF] show that

• if d = 1, 2, then strong intermittency holds for every β > 0;

• if d ≥ 3, then strong intermittency holds if and only if β > βc for some βc > 0. For the SHE on R driven by a multiplicative Gaussian white noise ξ, the analysis of intermittency has a long history: if ξ has variance β 2 and u 0 ≡ 1, the authors of [START_REF] Bertini | The Stochastic Heat Equation: Feynman-Kac formula and intermittence[END_REF] derived the formula

γ(p) = γ(u, p) = p(p 2 -1) 24 β 4 (1.32)
for p ∈ N and proved it for p = 2. Later, a proof of (1.32) was given in [START_REF] Chen | Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions[END_REF] and [START_REF] Lê | A remark on a result of Xia Chen[END_REF] for all integers p ∈ N and all real numbers p ≥ 2, respectively. The formula (1.32) for all p > 0 (and in particular, strong intermittency) was only established recently in [START_REF] Das | Fractional moments of the stochastic heat equation[END_REF][START_REF] Ghosal | Lyapunov exponents of the SHE for general initial data[END_REF] using integrable probability methods. For d ≥ 2, there is no notion of solution to the SHE with a Gaussian space-time white noise (cf. Section 3.3). For the SHE on R d driven by a Gaussian noise that is white in time and colored in space with, say, a compactly supported correlation function, one has a similar picture to the discrete-space setting: strong intermittency always holds if d = 1, 2 and only for large β if d ≥ 3; see [START_REF] Chen | Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency[END_REF][START_REF] Lacoin | Influence of spatial correlation for directed polymers[END_REF]. The situation may be different if the noise has long-range spatial correlation, as shown in [START_REF] Chen | Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency[END_REF][START_REF] Foondun | Moment bounds for a class of fractional stochastic heat equations[END_REF][START_REF] Lacoin | Influence of spatial correlation for directed polymers[END_REF].

For the solution to the Lévy-driven SHE, under the assumption (1.7), [START_REF] Chong | Intermittency for the stochastic heat equation with Lévy noise[END_REF] established intermittency of order p in the following cases: for all p ∈ (1, 3) if d = 1; for p close enough to (but smaller than) 1 + Very strong disorder for the directed polymer model. To complete the former discussion, let us mention some results that have been proved for the directed polymer in a random environment (DPRE), whose partition function formally corresponds to the solution to an SHE in discrete space and time. In the context of the directed polymer model, the notion equivalent to strong intermittency is that of very strong disorder (see for instance [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF][START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF][START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF]). For cultural reasons (DPRE is a statistical mechanics model), very strong disorder is a property of the free energy, that is, of the asymptotic behavior of E[log Z β (N, * )], rather than a property of the moments of order p ∈ (0, 1) of the partition function; but this is not relevant for the present discussion. Very strong disorder has been proved to hold for directed polymers in a various settings:

• When d = 1 [START_REF] Comets | Majorizing multiplicative cascades for directed polymers in random media[END_REF] and d = 2 [START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF] for any β > 0;

• When d ≥ 3, if the environment has a power-law distribution with exponent α ∈ (1, 1 + 2 d ], for any β > 0, in [START_REF] Viveros | Directed polymer in γ-stable random environments[END_REF] (this roughly corresponds to α-stable noise in the SHE context). The method used in [START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF] does not rely much on the discrete nature on the model and has been adapted to prove analogous results when either space or time are continuous: Let us mention the case of the SHE on Z d with Gaussian white noise [START_REF] Bertin | Very strong disorder for the parabolic Anderson model in low dimensions[END_REF], the SHE on R d with a Gaussian noise which is white in time but colored in space [75, Theorem 1.2], or directed polymers in a Poisson environment [START_REF] Comets | Brownian polymers in Poissonian environment: a survey[END_REF]Remark 3.4.3] (the partition function of which corresponds to that of the SHE with a spatially convoluted Lévy noise). In fact, the techniques can also be adapted to the SHE with Lévy noise, and the content of Section 9.2 in the present paper is strongly inspired by the proofs in [START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF] (for d = 1) and [START_REF] Viveros | Directed polymer in γ-stable random environments[END_REF] (for the case of heavy-tailed noise).

On the other hand there are other situations where the directed polymer model does not display very strong disorder:

• When d ≥ 3, if the environment has bounded second moment and β is small [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF][START_REF] Imbrie | Diffusion of directed polymers in a random environment[END_REF]; • When d ≥ 3, if the environment has a power-law distribution with exponent α > 1 + 2 d and β is sufficiently small [START_REF] Viveros | Directed polymer in γ-stable random environments[END_REF].

In both cases, it has been shown that the directed polymer displays weak disorder, a property which implies but goes beyond the absence of very strong disorder. Weak disorder implies, for instance, that the sample paths drawn from the polymer measure have diffusive behavior [START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF].

For this reason, the question of whether strong intermittency holds for the SHE with Lévy space-time white noise is particularly intriguing when d ≥ 3 and β is small.

Main results

Our main results can be summarized as follows:

• Firstly, we considerably reduce the gap conditions (1.21) and (1.23) leave regarding the nondegeneracy of Z ω β (t, x) if d ≥ 2. We obtain, in Theorem 2.1 and Proposition 2.2, a necessary and sufficient condition in dimension d = 2 and a close-to-optimal condition in dimensions d ≥ 3. We further prove the L p -convergence of Z ω,a β (t, x) to Z ω β (t, x) for all p ∈ (1, 1 + 2 d ) as soon as the noise ξ ω has a finite pth moment (i.e., µ 1,∞ (p) < ∞).

• Secondly, in Theorem 2.5, we show that the limit Z ω β (t, x), when non-degenerate, is indeed a mild solution to the SHE with initial condition δ 0 . Theorem 2.7 further establishes the uniqueness of solutions under conditions that are general enough to include the case of α-stable noise.

• Thirdly, after establishing the existence of the moment Lyapunov exponents of Z ω β (t, * ) and Z ω β (t, x) in Proposition 2.8, we show our most striking result in Theorem 2.10: the solution to the SHE with a multiplicative Lévy noise and δ 0 -initial condition exhibits strong intermittency-and thus, in particular, full intermittency-for any non-trivial environment with finite expectation, that is, for any β > 0, in any dimension d ≥ 1, for any non-trivial intensity measure λ with µ < ∞. In Theorems 2.11 and 2.12, we further complement this result by deriving sharp asymptotic estimates on the moment Lyapunov exponents as β tends to 0.

The proof of the aforementioned results relies on two main methodological achievements:

• By combining decoupling inequalities with an iterative partition of X k (t) × (0, ∞) k (the integration domain of (t, z)), we establish, in Propositions 6.1 and 6.3, sharp moment bounds of order p > 1 on the multiple Lévy integrals that arise in the series representation (1.28) of Zω,a β (t, x). From these, we will then derive the upper bounds for p > 1 and, by convexity, the lower bounds for p < 1 in Theorems 2.11 and 2.12. The proof of Theorems 2.1, 2.5 and 2.7 will also rely on (variants of) these moment bounds.

• By combining a change-of-measure technique with a coarse-graining approach, summarized in Lemma 9.1, we obtain moment upper bounds of order p ∈ (0, 1) for Z ω β (t, * ) which are then used to show Theorem 2.10 as well as the lower bounds in Theorems 2.11 and 2.12. Moreover, we apply a simpler version of this method to prove Proposition 2.2. While the coarse-graining and change-of-measure approach is derived from that used in [START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF], which itself was inspired from earlier work on disordered pinning [START_REF] Derrida | Fractional moment bounds and disorder relevance for pinning models[END_REF][START_REF] Giacomin | Hierarchical pinning models, quadratic maps and quenched disorder[END_REF][START_REF] Toninelli | Coarse graining, fractional moments and the critical slope of random copolymers[END_REF], its implementation to prove Proposition 9.5 (which is the most important part of the proof of Theorem 2.10) and Proposition 2.2 relies on important novel ideas, which we discuss in more details at the beginning of Section 9).

2.1.

Optimal conditions for the non-degeneracy of Z ω β (t, x). When d ≥ 2, Theorem A displays a gap between the sufficient condition (1.21) and the necessary condition (1.23) for the non-degeneracy of Z ω β (s, x; t, y). Our first result reduces this gap when d ≥ 3 and identifies the necessary and sufficient condition in dimension d = 2. Our new sufficient condition reads as follows:

       (0,1) z 2 λ(dz) < ∞ if d = 1 , (0,1) z 1+ 2 d |log z| λ(dz) < ∞ if d ≥ 2 .
(2.1)

For later reference, we also included the case d = 1, which is identical to (1.21). 

E < Z ω,a β (t, x) -Z ω β (t, x) p = 0 P ≥ -a.s. (2.3) If furthermore µ 1,∞ (p) < ∞, then lim a→0 E Z ω,a β (t, x) -Z ω β (t, x) p = 0. (2.4)
The same convergence results hold for the free-end partition function Z ω β (t, * ). Together with (1.23), this shows that (2.1) is necessary and sufficient for the non-degeneracy of

Z ω β (t, x) and Z ω β (t, * ) in dimension d = 2. If d ≥ 3
, the following result improves upon the necessary condition in (1.23). Proposition 2.2 (Degeneracy). Suppose that (1.14) holds and that d ≥ 3. If for some ε > 0, we have that

(0,e -e ) z 1+ 2 d |log z| (log|log z|) 5+ 4 d +ε λ(dz) = ∞ , (2.5)
then for all t > 0 and x ∈ R d , we have lim a→0 Z ω,a β (t, x) = lim a→0 Z ω,a β (t, * ) = 0 P-a.s. While there is still a small gap between (2.1) and (2.5) if d ≥ 3, we believe that (2.1) is necessary and sufficient for non-degeneracy.

Remark 2.3. There is a small abuse of language when we say that we establish an almost necessary and sufficient condition for existence of solutions to the SHE, since Proposition 2.2 does not a priori exclude the existence of solutions that are not given by limits of solutions with truncated noise. Remark 2.4. Besides replacing (1.21) by the weaker condition (1.23) and the inclusion of L pconvergence, Theorem 2.1 contains a third important improvement. Contrary to Theorem A, the proof of (2.3), which is sufficient to establish non-triviality of the limit, does not rely on the positivity of Z ω,a β (t, x) and can thus be directly adapted to the case of signed noise, an observation that we will further elaborate on in Section 3.3. On the other-hand, our proof of Proposition 2.2 strongly relies on having only positive jumps.

2.2.

Existence and uniqueness of solutions to SHE. Our next result shows that the pointto-point partition function Z ω β (t, x) solves the SHE with Lévy noise ξ ω and initial condition δ 0 . Theorem 2.5 (Existence). Suppose that (1.14) and (2.1) hold.

(i) The point-to-point partition function Z ω β (t, x) is a mild solution to the SHE (1.6) with initial condition δ 0 , that is, for every (t, x) ∈ (0, ∞) × R d , the stochastic integral below is well defined and the following identity holds a.s.:

Z ω β (t, x) = ρ(t, x) + β t 0 R d ρ(t -s, x -y)Z ω β (y, s) ξ ω (ds, dy) . (2.6) (ii) If u 0 is a locally finite signed measure on R d such that lim sup r→∞ r -2 log |u 0 |([-r, r] d ) < 1 2T (2.7)
for some T > 0, then

v(t, x) := R d Z ω β (y; t, x) u 0 (dy) (2.8)
is well defined and finite for all (t, x) ∈ [0, T ] × R d and is a solution to the SHE (1.6) with initial condition u 0 , on [0, T ] × R d .

Remark 2.6. The proof presented in this paper actually implies that

Z ω β (t, x) = ρ(t, x) + ∞ k=1 β k X k (t)×(R d ) k ρ t,x (t, x) k i=1 ξ ω (dt i , dx i ), (2.9) 
where the right-hand side is well defined as a convergent sum of iterated stochastic integrals (see Section 4.3 for the corresponding framework).

Under the stronger condition (1.21), we prove that the solution found above is unique. 

     E < |v(t, x)| p < ∞ P ≥ -a.s., (0,t)×R d ρ(θ(t -s), x) p E < |v(s, x)| p ds dx < ∞ P ≥ -a.s. ( 2 
γ β (p) := γ(Z ω β (t, * ), p) = lim t→∞ 1 t log E Z ω β (t, * ) p (2.11)
exists and is finite. (ii) The exponents γ β (p) also capture the growth of the point-to-point partition function, in the sense that lim

t→∞ 1 t log E Z ω β (t, 0) p = γ β (p) . (2.12) By [38, Theorem 3.1], we have E[Z ω β (t, * ) 1+2/d ] = E[Z ω β (t, 0) 1+2/d ] = ∞ for any t > 0 and non- trivial λ. We also have E[Z ω β (t, * ) p ] = ∞ if µ 1,∞ (p) = ∞.
Hence, γ β (p) is well defined (possibly infinite) for every p ≥ 0. Letting

p max = p max (λ) := sup p ∈ [0, 1 + 2 d ) : µ 1,∞ (p) < ∞ , ( 2.13) 
we obtain from the above observation that the set To shed more light on this peculiar result, we further investigate the detailed behavior of γβ (p) in the small β limit. Let us start with the case of light-tailed noise at infinity. (i) If d = 1 and µ 1,∞ (2) < ∞, then for every p ∈ I λ \ {1}, there exists C p ∈ (0, ∞) such that for every β ∈ (0, 1], we have

I λ := I(Z ω β (t, * )) = {p ≥ 0 : γ β (p) < ∞} (2.
(C p ) -1 β 4 ≤ |γ β (p)| ≤ C p β 4 .
(2.15)

In the special case p = 2, we have γβ (2) = If d = 1 and d = 2, these results match the asymptotics for the free energy of the directed polymer in a random environment (see [START_REF] Nakashima | Free energy of directed polymers in random environment in 1+1-dimension at high temperature[END_REF] for d = 1 and [START_REF] Berger | The high-temperature behavior for the directed polymer in dimension 1 + 2[END_REF] for d = 2). In dimensions d ≥ 3, however, one has in the directed polymer setting that γβ (p) = 0 for sufficiently small β, see [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF] and [START_REF] Viveros | Directed polymer in γ-stable random environments[END_REF]Prop. 4 

(i) If µ 1,∞ (q) < ∞ for some q ∈ (1, min(2, 1 + 2 d ))
, then for every p ∈ (0, q] \ {1}, there exists C p,q ∈ (0, ∞) such that for every β ∈ (0, 1],

|γ β (p)| ≤ C p,q β q νq , (2.18)
which implies

lim inf β→0 log|γ β (p)| log β ≥ q ν q . (2.19) (ii) If µ 1,∞ (q) = ∞ for some q ∈ (1, min(2, 1 + 2 d ))
, then for every p ∈ (0, q) \ {1},

lim sup β→0 log|γ β (p)| log β ≤ q ν q . (2.20)
In particular, if

lim z→∞ log λ([z, ∞)) log z = -α (2.21)
for some 1 < α < min(2, 1 + 2 d ) (which includes the α-stable case), then for all p ∈ (0, α) \ {1}

lim β→0 log|γ β (p)| log β = α ν α . (2.22)
2.4. Overview of the rest of the paper. The remainder of the paper is organized as follows.

In Section 3, we discuss some extensions of our results and some related conjectures concerning geometric localization. Section 4 introduces a few important tools that are needed throughout the paper. In Section 5, we prove all basic properties concerning the moment Lyapunov exponents, that is, Propositions 2.8 and 2.9. Section 6 is devoted to proving our first main technical achievement: Propositions 6.1 and 6.3, which contain upper estimates on moments of order p > 1 of Z ω β (t, x). In Section 7, we then use these moment bounds to derive Theorem 2.1 and the first halves of Theorems 2.11 and 2.12. The existence and uniqueness of solutions (i.e., Theorems 2.5 and 2.7) are addressed in Section 8. Finally, Section 9 gathers the proofs that rely on a coarse-graining/change-of-measure approach summarized in Lemma 9.1. In particular, we show the remaining halves of Theorems 2.11 and 2.12 as well as Proposition 2.2. The Appendix contains proofs of some of the results introduced in Section 4.

Extensions and consequences of our results

3.1. Continuum directed polymer model. As mentioned in Remark 1.3, the main purpose of introducing Z ω,a β (t, * ) in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF] is not to study the SHE but rather to define a random probability measure on the space of continuous functions C 0 ([0, T ]) := {θ : [0, T ] → R d : θ continuous and θ(0) = 0}, called the continuum directed polymer in a Lévy environment. For T > 0 the directed polymer in the truncated environment ξ a ω is the probability measure Q ω,a T,β on C 0 ([0, T ]) defined via the integral of bounded Borel measurable functions as follows:

Q ω,a T,β (f ) = e -βκat Z ω,a β (T, * ) Q f ((B t ) t∈[0,T ] ) + ∞ k=1 β k X k (T )×(R d ) k ρ(t, x, f ) k i=1 ξ a,+ ω (dt i , dx i ) , (3.1)
where ρ(t, x, f

) := Q[f ((B t ) t∈[0,T ] ) | ∀i ∈ k : B t i = x i ]
and k := {1, . . . , k}. Here, Q denotes the distribution of a standard d-dimensional Brownian motion and, with some light abuse of notation,

Q[• | ∀i ∈ k : B t i = x i ]
is the law of the concatenation of Brownian bridges obtained by conditioning a Brownian motion on the null event {∀i ∈ k :

B t i = x i }.
The main result in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF] is to prove that Q ω,a T,β converges in distribution to a limit Q ω T,β under the assumptions (1.14) and (1.21). By the findings of the present paper, we can replace the assumption (1.21) by (2.1) in the results of [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF].

Theorem 3.1. If the measure λ satisfies (1.14) and (2.1), then there exists a measure Q ω T,β on C 0 ([0, T ]) such that almost surely, for every bounded continuous function f in C 0 ([0, T ]), we have

lim a→0 Q ω,a T,β (f ) = Q ω T,β (f ). (3.2)
Proof. The convergence of Q ω,a T,β (f ) for a fixed f is a consequence of Theorem 2.1. Indeed, Q ω,a T,β (f ) can be written as a quotient Z ω,a β (T, f )/Z ω,a β (T, * ). Theorem 2.1 asserts that the denominator converges to a positive limit and the martingale argument below (1.20) entails the almost-sure convergence of Z ω,a β (T, f ). The fact that convergence holds simultaneously for all continuous bounded functions is a consequence of tightness. The proof given in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Section 4.8] shows that the family of non-normalized measures {Z ω,a β (T, * ) × Q ω,a T,β : a ∈ (0, 1]} is tight, with no other assumption than (1.14). The tightness of {Q ω,a T,β : a ∈ (0, 1]} then follows from the almost-sure positivity of Z ω,a β (T, * ); cf. (2.2). 3.2. Geometric localization of the solution to the SHE.

The case u 0 ≡ 1. The intermittency result given in Theorem 2.10 (especially the part concerning strong intermittency) has direct implications on the distribution of mass for the solution to (1.6) with initial condition u 0 ≡ 1. To illustrate this, let us present an argument from [17, §2.4], adapted to the case of non-integer moments-the argument in [17, §2.4] is about mass concentration for the square of the solution.

If µ < ∞ and (2.1) holds, then the solution to (1.6) with u 0 ≡ 1 is given by

U (t, x) := R d Z ω β (y; t, x) dy.
Let us define the normalized solution Ū (t, x) := e -µt U (t, x). By symmetry, we have that Ū (t, x)

(d)
= Zω β (t, * ) for any fixed x. For a fixed value of t, let us assume that the field Ū (t, x) x∈R d is ergodic (in the case of a Gaussian noise, this was proved in [START_REF] Chen | Spatial ergodicity for SPDEs via Poincaré-type inequalities[END_REF]): we then get lim

R→∞ x ≤R Ū (t, x) dx σ d R d = E Zω β (t, * ) = 1 , (3.3) 
where

σ d = π d/2 Γ( d 2 + 1
) is the volume of the unit ball in R d . On the other hand, if p ∈ (0, 1) and γβ (p) < 0 (which is ensured by Theorem 2.10), then for any α ∈ (0, γβ (p) p-1 ) we have lim

R→∞ x ≤R Ū (t, x)1 { Ū (t,x)≤e αt } dx σ d R d = E Zω β (t, * )1 { Zω β (t, * )≤e αt } ≤ e (1-p)αt E[ Zω β (t, * ) p ] ≤ e [(1-p)α+γ β (p)]t , ( 3.4) 
where the last inequality relies on super-multiplicativity, see Lemma 5.1 below. Setting δ := α(p -1) -γβ (p) > 0 and combining (3.3) and (3.4), we obtain lim

R→∞ x ≤R Ū (t, x)1 { Ū (t,x)≥e αt } dx x ≤R Ū (t, x) dx ≥ 1 -e -δt . (3.5)
Note that we also have

lim R→∞ x ≤R 1 { Ū (t,x)≥e αt } dx σ d R d = P Zω β (t, * ) ≥ e αt ≤ e -αt , (3.6) 
thanks to Markov's inequality. Hence, the two identities (3.5) and (3.6) show that in the large t limit, the mass of the solution concentrates on a very small portion of space.

The case u 0 = δ 0 . Although this is much more difficult to prove rigorously, we believe that intermittency in Theorem 2.10 also has implications on the localization of the solution Z ω,a β (t, x) to the SHE with δ 0 initial condition. Let us consider the probability measure on R d given by

P ω β,t (dx) = Z ω,a β (t, x) Z ω,a β (t, * ) dx.
When β = 0, P ω β,t is simply ρ(t, x) dx. In this case, for large t, its mass is roughly homogeneously spread out on the centered Euclidean ball of radius t 1/2 . By contrast, if β > 0, the large time behavior of P ω β,t (dx) is conjectured to be different: the mass of P ω β,t should typically be concentrated on a set of bounded volume (the volume here should not depend on t). Conjecture 1. Given ε > 0 and β > 0, there exist two constants k = k(ε, β) ∈ N and R = R(ε, β) > 0 such that for all t ≥ 0,

P ∃z 1 , z 2 , . . . , z k ∈ R d : P ω β,t k i=1 B(z i , R) ≥ 1 -ε ≥ 1 -ε, where B(z, R) := {x ∈ R d : x -z < R}.
A weaker version of the above conjecture is that localization holds in Cesàro mean, that is, for ε > 0 and β > 0 fixed, there exist two constants

k = k(ε, β) ∈ N and R = R(ε, β) > 0 such that lim inf T →∞ 1 T T 0 max z 1 ,...,z k ∈R d P ω β,t k i=1 B(z i , R) dt ≥ 1 -ε. (3.7)
In fact, such statements have been rigorously proved for a discrete analogue of the SHE: the partition function of the discrete polymer in Z d . In this setup, the link between very strong disorder and localization in the Cesàro sense was first explored in [START_REF] Carmona | On the partition function of a directed polymer in a Gaussian random environment[END_REF][START_REF] Comets | Directed polymers in a random environment: path localization and strong disorder[END_REF]. More recently, in [START_REF] Bates | The endpoint distribution of directed polymers[END_REF], it was shown that for directed polymers, very strong disorder implies (3.7); the result was extended to continuous space and discrete time in [START_REF] Bakhtin | Localization of directed polymers in continuous space[END_REF]. The approach in [START_REF] Bakhtin | Localization of directed polymers in continuous space[END_REF][START_REF] Bates | The endpoint distribution of directed polymers[END_REF] is to prove that the measure 1 T T 0 P ω β,t dt converges to a limiting object, using a specific topology (introduced in [START_REF] Mukherjee | Brownian occupation measures, compactness and large deviations[END_REF]) on the space of finite measures on R d . The corresponding localization result has also been shown for a continuum directed polymer model (and SHE) with spatially convoluted Gaussian white noise in [START_REF] Bröker | Localization of the Gaussian multiplicative chaos in the Wiener space and the stochastic heat equation in strong disorder[END_REF], using a Gaussian multiplicative chaos approach. While many details of the proofs presented in [START_REF] Bakhtin | Localization of directed polymers in continuous space[END_REF][START_REF] Bates | The endpoint distribution of directed polymers[END_REF] use the discrete nature of the polymer model, the general ideas the proof is based on do not seem to rely on it. For this reason, we believe that while there are technical challenges to be overcome, these proofs could in principle be adapted to the continuum case, to show that (3.7) holds whenever γβ (p) < 0 for p ∈ (0, 1) and hence, by Theorem 2.10, for any β > 0 as soon as µ < ∞. Remark 3.2. Note that the localization result in [START_REF] Bates | The endpoint distribution of directed polymers[END_REF] holds for every β in dimensions 1 and 2 but only for β above a certain threshold in dimensions d ≥ 3. This is because for the directed polymer, the analogue of our Theorem 2.10 does not hold. Quite the contrary, if d ≥ 3 and β is small, the end-point distribution of the directed polymer satisfies the central limit theorem [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF][START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF][START_REF] Imbrie | Diffusion of directed polymers in a random environment[END_REF].

Remark 3.3. The above discussion gives a justification of Conjecture 1 in the case when µ < ∞ (which implies that Z ω β (t, * ) has a finite expectation). As a general rule, an environment with heavier tail is expected to only increase geometric localization (cf. [START_REF] Vargas | Strong localization and macroscopic atoms for directed polymers[END_REF]). Remark 3.4. When d = 1, known results concerning the distribution of Z ω β (t, x) in the case of Gaussian white noise [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF] strongly suggest that, in fact, only one big ball (that is, k = 1) is sufficient to capture most of the mass of P ω β,t . For a proof of a result of this kind in the discrete polymer setup (with a special boundary condition), we refer to [START_REF] Comets | Localization in log-gamma polymers with boundaries[END_REF]. In dimension d ≥ 2, whether one or finitely many balls are needed is a challenging open problem, even at the heuristic level, see [10, Section 9, (1)].

3.3.

The case of more general noise. In general, a Lévy white noise ξ (on R × R d ) is a random distribution in s>(1+d)/2 H -s loc (R × R d ) that can be decomposed as follows:

ξ = ξ 1 -ξ 2 + α 1 ξ 3 + α 2 L (3.8)
where ξ 1 and ξ 2 are two independent Lévy noises with respective jump intensities λ 1 and λ 2 , ξ 3 is a standard Gaussian space-time white noise that is independent of ξ 1 and ξ 2 , and α 1 ≥ 0 and α 2 ∈ R are constants. In our exposition so far, we have chosen to focus on the case ξ 2 ≡ 0 and α 1 = α 2 = 0. The constant α 2 is irrelevant for any discussion of (1.1) as it only adds a multiplicative exponential in t to the solution. Adding a Gaussian part in dimension 1 does not pose a problem for solving (1.1); see [START_REF] Chong | Lévy-driven Volterra equations in space and time[END_REF]. Given that γ(p) in (1.32) exhibits the same behavior in β as γ β (p) in (2.15), we believe that both Theorem 2.11 and 2.12 remain valid when Gaussian noise is added. If d ≥ 2, the SHE with multiplicative Gaussian white noise is known to be degenerate in the following sense. If ξ (ε) denotes the noise obtained by space convolution of ξ with a smooth kernel θ ε := ε -d θ(ε -1 •), then the solution of

∂ t u (ε) = 1 2 ∆u (ε) + βξ (ε) u (ε) , u ε (0, •) = δ 0 satisfies lim ε→0 u (ε) (t,
•) = 0 (not only pointwise but also in L 1 (R d ) for any fixed t > 0). In the past years, important progress has been made to obtain convergence of the solutions to non-trivial (non-Gaussian) limits for d = 2 when β is sent to zero (in a specific critical window) jointly with ε, see [START_REF] Caravenna | On the moments of the (2 + 1)-dimensional directed polymer and stochastic heat equation in the critical window[END_REF][START_REF] Gu | Moments of the 2d she at criticality[END_REF] and the recent breakthrough [START_REF] Caravenna | The critical 2d stochastic heat flow[END_REF].

One can also consider a noise ξ = ξ 1 -ξ 2 that includes negative jumps. In this case, one can approximate ξ by ξ a = ξ a 1 -ξ a 2 . Then the criterion (1.14) applied to both jump intensities λ 1 and λ 2 still implies the convergence of the integrals in (1.13), and many of the proofs presented in this paper can be applied verbatim. Note that when negative jumps are present in the noise, the solution is not necessarily positive. In particular, in this case, Z ω β (t, x) does not correspond to the partition function of a polymer model.

Applying the proofs presented below, Theorems 2.1, 2.5 and 2.7 remain valid when signed noise is considered, and the same holds true for the upper bounds of

E[|Z ω β (t, 0)| p ] for p > 1.
In fact, this translates into half of the inequalities (the upper bounds) proved in Theorems 2.11 and 2.12. On the other hand, our proof of Proposition 2.8 and the upper bounds on E |Z ω β (t, 0)| p for p ∈ (0, 1) rely in a crucial manner on the positivity of Z ω β (t, 0), and thus break down when allowing for negative jumps. Note that the upper bounds on fractional moments of the partition function are required for the other half of the inequalities (the lower bounds) in Theorems 2.11 and 2.12, and in particular, for Theorem 2.10. We believe nonetheless that intermittency occurs in the following sense.

Conjecture 2. If ξ = ξ 1 -ξ 2 is a signed Lévy white noise as above, with jump intensities that satisfy (2.1) and ∞ 0 z p 0 (λ 1 + λ 2 )(dz) for some p 0 < min(2, 1 + 2 d ), then 

γ β (p) := lim t→∞ 1 t log E[|Z ω β (t, 0)| p ] is well defined for p ∈ [0, p 0 ] and p → γ β (p)/p
P a β,t (ω ∈ A) := E Zω,a β (t, * )1 A , (4.1)
which is referred to as the size-biased measure. Note that when ( Zω,a β (t, * )) a∈(0,1) is uniformly integrable, then using martingale convergence, we can also consider P 0 β,t whose density with respect to P is given by Zω β (t, * ).

Lemma 3.7 in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF] gives a useful representation of the size-biased measure P a β,t : the distribution of ω under P a β,t is obtained by adding to ω an independent Poisson process on the trajectory of a Brownian motion. More precisely, we let ω be a Poisson point process on R × (0, ∞) with intensity dt ⊗ βz λ(dz) and we denote its law by P β . Furthermore, let (B t ) t∈[0,∞) be a standard d-dimensional Brownian motion starting from 0 that is independent of both ω and ω and denote its distribution by Q. For a ∈ [0, 1], we then define

ω(ω , B) := (τ, B τ , ζ) : (τ, ζ) ∈ ω , ω a,t (ω , B) := (τ, B τ , ζ) : (τ, ζ) ∈ ω , τ ∈ [0, t] , ζ ≥ a ,
which corresponds to putting the Poisson process ω on the trajectory of B, with some restrictions on τ and ζ in the second case. When a = 0, the dependence in a is sometimes omitted. Lemma 4.1. If µ < ∞, then for any β, t > 0 and a ∈ (0, 1] and for any measurable bounded function g, we have

E a β,t [g(ω)] = E ⊗ E β ⊗ Q[ g a,t (ω, ω , B)], (4.2)
where g a,t (ω, ω , B)

:= g(ω ∪ ω a,t (ω , B)). If ( Zω,a β (t, * )) a∈(0,1) is uniformly integrable, then (4.2) is also satisfied for a = 0.
If a > 0, this was shown in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Lemma 3.7]. For a = 0, the result can be deduced from the case a > 0 by observing that E[ Zω

β (t, * ) | G a ] = Zω,a β (t, * ) for any a ∈ (0, 1], which is why (4.
2) with a = 0 is true for any bounded G a -measurable g. The monotone class theorem yields (4.2) for general g. Note that by Theorem 2.1, ( Zω,a β (t, * )) a∈(0,1) is uniformly integrable as soon as (2.1) holds.

Remark 4.2. Let us make a quick comment about notation. In (4.2) as well as in the rest of the paper, we denote the expectation with respect to a measure P, possibly with decorations, by E with the same decorations. For example, we write E a β,t and E β for expectation with respect to P a β,t and P β , respectively.

Decoupling inequalities.

In the proofs below, we shall occasionally make use of moment decoupling inequalities for multiple Poisson integrals. The results that we review in this section are based on [START_REF] Kallenberg | Tangential existence and comparison, with applications to single and multiple integration[END_REF], where discrete-time decoupling techniques from [START_REF] De La Peña | Decoupling. Probability and its Applications[END_REF][START_REF] Kwapień | Random series and stochastic integrals: single and multiple[END_REF] are extended to continuous time. We also refer the reader to these references for further literature (and history) on the subject.

Let N ≥ 1 be an integer, let X := (0, ∞) × R d × (0, ∞), with generic point w := (t, x, z), and for concreteness let

M = M ω be the compensated Poisson random measure M ω (dw) = (δ ω -ν)(dw) (recall that ν := dt ⊗ dx ⊗ λ(dz)). Furthermore, suppose that f : X N → R is measurable and tetrahedral, that is, f ((t 1 , x 1 , z 1 ), . . . , (t N , x N , z N )) = 0 unless t 1 < • • • < t N .
In that case, subject to integrability conditions on f , the multiple integral

X N f (w) M (dw 1 ) • • • M (dw N ) := X • • • X f (w) M (dw 1 ) • • • M (dw N ) ,
with w = (w 1 , . . . , w N ), can be defined as an iterated Itô integral (recall Remark 1.2). The general definition of Itô integrals used in this paper is detailed in Section 4.3. We let (ω i ) N i=1 denote i.i.d. copies of our environment ω and we use the notations P ⊗N and E ⊗N for the associated probability and expectation, respectively. The following theorem is proved in Appendix A.

Theorem 4.3.

There exists a universal constant C > 0 such that for every 1 < p ≤ 2, for any integer N ≥ 1 and any measurable and tetrahedral function f : X N → R satisfying

X N |f (w)| p ν(dw 1 ) • • • ν(dw N ) < ∞ , (4.3)
the stochastic integrals below are well defined and have finite moments of order p satisfying

p -1 C N E ⊗N X N f (w) M ω 1 (dw 1 ) • • • M ω N (dw N ) p ≤ E X N f (w) M ω (dw 1 ) • • • M ω (dw N ) p ≤ C p -1 N E ⊗N X N f (w) M ω 1 (dw 1 ) • • • M ω N (dw N ) p . (4.4) 4.3.
Stochastic integration in the absence of moments. Because Z ω β (t, x) does not possess any finite moments in general, the proof of Theorem 2.5 has to make use of a stochastic integration theory that does not assume existence of any moments a priori. For the reader's convenience, let us give a brief review of this L 0 -theory, which was developed by [START_REF] Bichteler | Random measures and stochastic integration[END_REF] in its most general form (see also [37, Appendix A] for a summary). Let M = M ω denote either the Poisson measure δ ω or its compensated version δ ω -ν.

A predictable step process H is of the form H = r i=1 a i 1 A i , where r ∈ N, a i ∈ R, and for each i we have

A i ∈ P ⊗ B(R d × (0, ∞)) (where P is the usual predictable σ-field) and A i ⊆ Ω × (0, T ) × [-N, N ] d × (a, ∞) for some T, N, a > 0. Then, the integral of the predictable step process H = r i=1 a i 1 A i is canonically defined as X H(w) M (dw) := r i=1 a i M (A i ) .
Denoting by S the collection of predictable step processes, we can extend the integral to a larger subset of predictable processes by using the metric induced by

K M,p := sup H∈S,|H|≤|K| X H(w) M (dw) L p , ( 4.5) 
defined for P ⊗B(R d ×(0, ∞))-measurable processes K, where we have used the notation

X L p := E[|X| p ] 1/p and X L 0 := E[1 ∧ |X|]. Such a process K is called L p -integrable with respect to M if there exists a sequence (H n ) n∈N ⊆ S such that lim n→∞ K -H n M,p = 0.
The stochastic integral of K with respect to M is then defined as the L p -limit of X H n (w) M (dw), which exists and does not depend on the choice of (H n ) n∈N . If p = 0, we simply say that K is integrable with respect to

M . According to [20, (2.8)], K is L p -integrable with respect to M if and only if    K M,p < ∞ if p > 0, lim u→0 uK M,0 = 0 if p = 0. (4.6)
Furthermore, by [37, Lemma A.2],

•

if 1 ≤ p < ∞ and M ω = δ ω -ν, there are c = c p > 0 and C = C p > 0 such that c K M,p ≤ E X K(w) 2 δ ω (dw) p 2 1 p ≤ C K M,p ; (4.7) • if 0 < p ≤ 1 and M ω = δ ω , then K p M,p ≤ X E[|K(w)| p ] ν(dw).
In particular, the L p -theory, p ≥ 1, for δ ω -ν encompasses the L p -and L 2 -integrals considered in [START_REF] Saint | Étude d'une EDPS conduite par un bruit poissonnien[END_REF] and [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. Even in the case when δ ω -ν has a finite first moment (i.e., is a martingale measure), the L 0 -theory is more general since, for example, it does not require the integrands have finite moments. Let us end this section with a simple integrability criterion that we need in the proof of Theorem 2.5. Its proof can be found in the appendix. Lemma 4.4. Suppose that for P ≥ -a.e. realization of ω ≥ , the process (ω < , t, x) → K(ω < ∪ ω ≥ , t, x) is L p (P < )-integrable with respect to ξ ω< for some p > 0. Then K is L 0 (P)-integrable with respect to ξ ω< .

A technical lemma.

The following technical result will be used repeatedly in the paper. Its proof comes from a straightforward calculation and can be found in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Lemma A.3].

Lemma 4.5. For any

t > 0, k ≥ 0 and ζ 1 , . . . , ζ k+1 > 0, X k (t) k+1 i=1 (∆t i ) ζ i -1 dt i = t k+1 i=1 ζ i -1 k+1 i=1 Γ(ζ i ) Γ( k+1 i=1 ζ i )
, where ∆t i := t i -t i-1 as defined in (1.10), with the convention t 0 = 0 and t k+1 = t.

Qualitative properties of Lyapunov exponents

In this section, we prove the statements made in Section 2.3 concerning existence and basic properties of moment Lyapunov exponents (Propositions 2.8 and 2.9), assuming that Theorem 2.1 as well as the bounds in Propositions 6.1 and 6.3 below are true. These are proved independently in Sections 6 and 7, respectively.

Existence of Lyapunov exponents.

The existence of γ β (p) readily follows from sub-/ supermultiplicative properties of the moments of the partition function.

Lemma 5.1. Under assumption (1.14), for every a ∈ (0, 1], s, t > 0 and p

∈ [0, 1 + 2 d ), we have E[Z ω,a β (t + s, * ) p ] ≤ E[Z ω,a β (s, * ) p ]E[Z ω,a β (t, * ) p ] if p ≥ 1, (5.1) 
E[Z ω,a β (t + s, * ) p ] ≥ E[Z ω,a β (s, * ) p ]E[Z ω,a β (t, * ) p ] if p ≤ 1. (5.2) Proof. The statement being trivial if µ 1,∞ (p) = ∞, we can assume µ 1,∞ (p) < ∞
for the remainder of the proof. Let P ω,a β,t denote the (random) probability measure on R d whose density with respect to the Lebesgue measure is given by Z ω,a β (t, x)/Z ω,a β (t, * ) and X denote an R d -valued random variable with distribution P ω,a β,t . Recalling the definition (1.24) of Z ω,a β (s, x; t, * ) and using the Markov property for Brownian motion, we have

Z ω,a β (s + t, * ) = R d Z ω,a β (s, x)Z ω,a β (s, x; s + t, * ) dx = Z ω,a β (s, * ) R d Z ω,a β (s, x; s + t, * ) P ω,a β,s (dx) = Z ω,a β (s, * ) E ω,a β,s Z ω,a β (s, X; s + t, * ) . For p ≥ 1, we get by Jensen's inequality that Z ω,a β (s + t, * ) p ≤ Z ω,a β (s, * ) p E ω,a β,s Z ω,a β (s, X; s + t, * ) p ,
and the inequality goes in the other direction if p ∈ (0, 1). Now, recalling (1.5) and (1.18), we have

E Z ω,a β (s, * ) p E ω,a β,s Z ω,a β (s, X; s + t, * ) p F s = Z ω,a β (s, * ) p E ω,a β,s E Z ω,a β (s, X; s + t, * ) p F s = Z ω,a β (s, * ) p E Z ω,a β (t, * ) p .
Altogether, we have proven that for p ≥ 1,

E Z ω,a β (s + t, * ) p F s ≤ Z ω,a β (s, * ) p E Z ω,a β (t, * ) p ,
which yields (5.1).Repeating the same computation with reversed inequalities when p ∈ (0, 1), we obtain (5.2).

Proof of Proposition 2.8. As a consequence of (2.4) in Theorem 2.1, we have

lim a→0 E Z ω,a β (t, * ) p = E Z ω β (t, * ) p .
Therefore, the previous lemma remains valid for Z ω β (t, * ) instead of Z ω,a β (t, * ). An immediate consequence is that the limit in (2.11) exists by the continuous version of Fekete's subadditive (or superadditive) lemma. It remains to check that γ β (p) is finite when (2.1) is satisfied and

µ 1,∞ (p) < ∞. When p ∈ [1, 1 + 2 d ), γ β (p) < ∞ follows from γ β (p) = lim n→∞ 1 n log E Z ω β (n, * ) p ≤ lim n→∞ 1 n log E Z ω β (1, * ) p n = log E Z ω β (1, * ) p , ( 5.3) 
and the finiteness of

E[Z ω β (1, * ) p ], see Theorem 2.1. For p ∈ (0, 1), we prove γ β (p) > -∞ and γ β (p) < ∞ separately.
For the first part, let γ < β (p) be the moment Lyapunov exponents that one obtains after replacing ω by ω < . Thus, by an obvious comparison and convexity (see Proposition 2.9, applied to λ < (dz) = 1 (0,1) (z) λ(dz)), it follows that (5.3).

γ β (p) ≥ γ < β (p) ≥ γ < β (1) -(1 -θ)γ < β (1 + 1 d ) θ > -∞, where θ ∈ (0, 1) is such that 1 = θp + (1 -θ)(1 + 1 d ). Note that γ < β (1) = 0 and that γ < β (1 + 1 d ) < ∞ thanks to
In order to show that γ β (p) < ∞ when p ∈ (0, ∞) and µ 1,∞ (p) < ∞, we use Jensen's inequality for E < so that for every a ∈ [0, 1),

E Z ω,a β (t, * ) p ≤ E Z ω ≥ β (t, * ) p .
To bound the right-hand side, we use the following simple inequality, which will be used extensively in the remainder of the paper: given κ ∈ (0, 1) and any countable collection of non-negative numbers (a i ) i∈I , we have

i∈I a i κ ≤ i∈I a κ i .
(5.4)

We will refer to (5.4), which can be proved by induction (using the fact that (a + b) κ ≤ a κ + b κ ), as the subadditivity property; note that it obviously extends to stochastic integrals with respect to discrete measures. Moreover, note that we have

ρ(t, x) p = t νp-1 ϑ(p)ρ( t p , x), ( 5.5) 
where ν p = 1 -d 2 (p -1) was defined in (2.17) and ϑ(p) := (2π) νp-1 p -d 2 . Thus, using (5.4) for the first step, (5.5) and the fact that ρ is a density for the second step, and Lemma 4.5 for the last step, we derive

E Z ω ≥ β (t, * ) p ≤ ∞ k=0 (β p µ 1,∞ (p)) k X k (t)×(R d ) k k i=1 ρ(∆t i , ∆x i ) p dt i dx i = ∞ k=0 (β p ϑ(p)µ 1,∞ (p)) k X k (t) k i=1 (∆t i ) νp-1 dt i = ∞ k=0 (β p ϑ(p)µ 1,∞ (p)Γ(ν p )t νp ) k Γ(ν p k + 1
) .

Using Stirling's formula for the gamma function (or the estimate (7.13) below), one can check that the right-hand side grows exponentially in t: as a consequence, we have γ β (p) < ∞. This ends the proof of part (i) of the proposition.

For part (ii), we are going to prove the upper and lower bounds in (2.12) separately. Using Jensen's inequality for the first inequality and the translation invariance (1.18) for the last identity, we have, for p > 1,

E Z ω β (t, * ) p ≤ R d ρ(t, x)E ρ(t, x) -1 Z ω β (t, x) p dx = E ρ(t, 0) -1 Z ω β (t, 0) p . ( 5.6) 
Since ρ(t, 0) -1 is of order t d/2 , after taking logarithm, dividing by t and taking the limit as t → ∞, we obtain lim inf

t→∞ 1 t log E Z ω β (t, 0) p ≥ γ β (p).
(5.7)

The same proof yields for p ∈ (0, 1) that lim sup

t→∞ 1 t log E Z ω β (t, 0) p ≤ γ β (p). (5.8) 
Let us now prove the complementary bound, first in the case p > 1. We introduce the probability measure P ω β,t with Lebesgue density

Z ω β (t, x)ρ(1, x)/ R d Z ω β (t, x)ρ(1, x) dx. Then we have Z ω β (t + 1, 0) = R d Z ω β (t, x)ρ(1, x)Z ω β (t, x; t + 1, 0)ρ(1, x) -1 dx = R d Z ω β (t, x)ρ(1, x) dx Ēω β,t Z ω β (t, X; t + 1, 0)ρ(1, X) -1 .
Proceeding as in the proof of Lemma 5.1 and using the translation invariance (1.18), we obtain for p > 1

E Z ω β (t + 1, 0) p ≤ E R d Z ω β (t, x)ρ(1, x) dx p E Z ω β (1, 0) p ρ(1, 0) -p .
(5.9)

In particular, we have

E Z ω β (t + 1, 0) p ≤ (2π) -pd 2 E Z ω β (t, * ) p E Z ω β (1, 0) p ρ(1, 0) -p , which implies, for p > 1, lim sup t→∞ 1 t E Z ω β (t + 1, 0) p ≤ γ β (p) .
When p ∈ (0, 1), repeating the proof of (5.9), but using concavity instead of convexity, we obtain

E Z ω β (t + 1, 0) p ≥ E R d Z ω β (t, x)ρ(1, x) dx p E Z ω β (1, 0) p ρ(1, 0) -p . (5.10) Now setting C z := z + [0, 1) d , we have Z ω β (t, * ) = z∈Z d Cz Z ω β (t, x) dx ≤ z∈Z d max x∈Cz ρ(t, x) Y z (t) (5.11) with Y z (t) := Cz Z ω β (t, x)ρ(t, x) -1 dx.
Note that the variables Y z are identically distributed by (1.18), which together with (5.4) implies

E Z ω β (t, * ) p ≤ z∈Z d max x∈Cz ρ(t, x) p E[Y 0 (t) p ] ≤ Ct d 2 (1-p) E[Y 0 (t) p ]
(5.12)

for t > 1. Moreover, also for t > 1,

R d Z ω β (t, x)ρ(1, x) dx ≥ min x∈C 0 ρ(1, x)ρ(t, x) Y 0 (t) ≥ (2π) -d t -d 2 Y 0 (t) .
(5.13) Therefore, combining (5.10) with (5.12) and (5.13), we obtain that

E Z ω β (t + 1, 0) p ≥ C t -d 2 E Z ω β (t, * ) p .
This allows us to conclude that, for p ∈ (0, 1), lim inf

t→∞ 1 t log E Z ω β (t + 1, 0) p ≥ γ β (p).

Monotonicity and convexity properties.

To show the monotonicity in β of the Lyapunov exponents, we prove a more general result linking monotonicity and convexity. Its proof is inspired by an analogous result proved in the discrete setup [START_REF] Comets | Directed polymers in a random environment are diffusive at weak disorder[END_REF]Lemma 3.3]. Recall the definition of the renormalized partition function (1.26).

Lemma 5.2. Assume that µ 1,∞ (q) < ∞ for some q ∈ [1, 1 + 2 d ) and let ϕ : [0, ∞) → R be a convex function that satisfies sup u≥1 |ϕ(u)|u -q < ∞ . Then β → E[ϕ( Zω,a β (t, 0))
] is a non-decreasing function, for any a > 0.

Proof of Proposition 2.9. As a consequence of Lemma 5.

2, if µ 1,∞ (p) < ∞ for some p ∈ [1, 1 + 2 d ), then β → E[ Zω,a
β (t, 0) p ] is non-decreasing if p > 1 and non-increasing if p ∈ (0, 1) (apply Lemma 5.2 to the convex function x → -x p ). Letting a → 0, we obtain the same results for E[ Zω β (t, 0) p ] because of (2.4). Since we have

γβ (p) = lim t→∞ 1 t log E[ Zω β (t, 0) p ] ,
this completes the proof of (ii) in Proposition 2.9. Both (i) and (iii) are standard: The convexity of p → γ β (p) follows from that of p → log E[X p ], valid for an arbitrary non-negative random variable X by Hölder's inequality; (iii) is a direct consequence of convexity since for 1 < p < p we have γβ (p) ≤ p-1 p -1 γβ (p ), recalling that γβ (1) = 0 by definition.

Proof of Lemma 5.2. Since ϕ is convex, there exists a and b such that ϕ(u) + au + b ≥ 0 for every u ≥ 0. Hence, replacing ϕ(u) by ϕ(u) + au + b, we can assume that ϕ is non-negative, since E[ Zω,a β (t, 0)] = ρ(t, 0) does not depend on β. We may also assume without loss of generality that ϕ is differentiable on [0, ∞) and that ϕ is bounded. Indeed, if this is not the case, we can find a sequence ϕ n ↑ ϕ that has these properties and then use monotone convergence.

Recalling the notation (1.11) and setting κa = κ a + µ, we have, similarly to (1.19),

Zω,a β (t, 0) = e -βκat ∞ k=0 β k X k (t)×(R d ) k ρ t,0 (t, x) k i=1 ξ a,+ ω (dt i , dx i ).
Taking the derivative with respect to β, we obtain, after an index shift for the first term,

∂ β Zω,a β (t, 0) = e -βκat ∞ k=0 β k (k + 1) X k+1 (t)×(R d ) k+1 ρ t,0 (t, x) k+1 i=1 ξ a,+ ω (dt i , dx i ) -κa t X k (t)×(R d ) k ρ t,0 (t, x) k i=1 ξ a,+ ω (dt i , dx i ) .
(5.14)

The first term in the sum can be viewed as the sum of k + 1 integrals where the variables of integration are (t 1 , . . . , t i , s, t i+1 , . . . , t k ) ∈ X k+1 (t) and (x 1 , . . . , x i , y, x i+1 , . . . , x k ) for i = 0, . . . , k.

Recombining the terms, we arrive at the identity (recall the convention t 0 := 0 and t k+1 := t)

(k + 1) X k+1 (t)×(R d ) k+1 ρ t,0 (t, x) k i=1 ξ a,+ ω (dt i , dx i ) = X k (t)×(R d ) k (0,t)×R d ρ t,0 (t, x)ρ(s, y | t, x) ξ a,+ ω (ds, dy) k i=1 ξ a,+ ω (dt i , dx i ),
where

ρ(s, y | t, x) := ρ(s -t i-1 , y -x i-1 )ρ(t i -s, x i -y) ρ(t i -t i-1 , x i -x i-1 ) if s ∈ (t i-1 , t i )
and ρ(t i , y | t, x) := 0 for all i = 1, . . . , k. As R d ρ(s, y | t, x) dy = 1, the second term in (5.14) corresponds to a centering of the noise ξ a,+ ω (ds, dy), and we have

∂ β Zω,a β (t, 0) = e -βκat ∞ k=0 β k X k (t)×(R d ) k (0,t)×R d ρ t,0 (t, x)ρ(s, y | t, x) ξa ω (ds, dy) k i=1 ξ a,+ ω (dt i , dx i ).
(5.15)

Note that we have

|∂ β Zω,a β (t, 0)| ≤ e -βκat ∞ k=0 β k X k (t)×(R d ) k (0,t)×R d ρ t,0 (t, x)ρ(s, y | t, x) | ξa ω |(ds, dy) k i=1 ξ a,+ ω (dt i , dx i ) ,
where | ξa ω | = ξa ω + 2κ a L. Since we have reduced to the case where ϕ is bounded, the expression above implies (cf. [13, Prop. 2.5]) that for any β 0 > 0,

E sup β∈[0,β 0 ] ∂ β Zω,a β (t, 0)ϕ ( Zω,a β (t, 0)) < ∞. (5.16)
This allows to interchange derivative and expectation and by (5.15), we obtain that

∂ β E ϕ Zω,a β (t, 0) = E ∂ β Zω,a β (t, 0) ϕ Zω,a β (t, 0) = e -βκat ∞ k=0 β k E X k (t)×(R d ) k U ω k (t, x)ρ t,0 (t, x) k i=1 ξ a,+ ω (dt i , dx i ) ,
(5.17)

where we have set

U ω k (t, x) := [(0,t)\{t i } k i=1 ]×R d ρ(s, y | t, x) ξa ω (ds, dy) ϕ Zω,a β (t, 0) . Given (t, x, z) ∈ X k (t) × (R d ) k × (0, ∞) k , we let ω ∪ (t,
x, z) be the point process obtained by adding the k points (t i , x i , z i ) 1≤i≤k to ω. By Mecke's multivariate equation (see [START_REF] Last | Lectures on the Poisson process[END_REF]Thm. 4.4]), we have

E X k (t)×(R d ) k U ω k (t, x)ρ t,0 (t, x) k i=1 ξ a,+ ω (dt i , dx i ) = E X k (t)×(R d ) k ×(0,∞) k U ω k (t, x)ρ t,0 (t, x) k i=1 z i 1 [a,∞) (z i ) δ ω (dt i , dx i , dz i ) = X k (t)×(R d ) k ×(0,∞) k E U ω∪(t,x,z) k (t, x) ρ t,0 (t, x) k i=1 z i 1 [a,∞) (z i ) dt i dx i λ(dz i ).
( 

(t, x) ≥ E [(0,t)\{t i } k i=1 ]×R d ρ(s, y | t, x) ξa ω (ds, dy) E ϕ ( Zω∪(t,x,z),a β (t, 0)) = 0.
Combining this with (5.17) and (5.18), we conclude that ∂ β E ϕ Zω,a β (t, 0) ≥ 0.

Moments of order p > 1

The goal of this section is to formulate and prove Propositions 6.1 and 6.3 below, which form the core of all moment upper bounds for p > 1 in this paper. 

(i) If µ 1,∞ (2) < ∞, then for any a ∈ [0, 1), E ρ(t, x) -2 Zω,a β (t, x) 2 = ∞ k=0 β 2 µ a,∞ (2) √ t 2 k √ π Γ((k + 1)/2) = 1 + β 2 µ a,∞ (2) √ πt exp 1 4 β 4 µ a,∞ (2) 2 t Φ β 2 µ a,∞ (2) t 2 , (6.1)
where Φ is the standard normal distribution function. (ii) There exists a constant C ∈ (0, ∞) such that if µ 1,∞ (p) < ∞ for some p ∈ (1, 2), then for any value of η ∈ (0, 1], a ∈ [0, 1) and t, β > 0,

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ √ 2Γ(ν p ) 1 p ∞ k 1 ,k 2 =0 Cβ p -1 k 1 +k 2 µ 0,η (2)t 1 2 k 1 2 (µ η,∞ (p)t νp ) k 2 p Γ(ν p (k 2 + 1)) 1 p . (6.

2)

(iii) There exists a constant C ∈ (0, ∞) such that if µ 1,∞ (p) < ∞ for some p ∈ (2, 3), then for any value of a ∈ [0, 1) and t, β > 0,

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ π 1 4 Γ(ν p ) 1 p ∞ k 2 =0 Cβµ 0,∞ (2) 1 2 Γ(ν p ) 1 p t 1 4 k 2 Γ( k 2 +1 2 ) 1 2 ∞ =0 C βµ 0,∞ (p) 1 p t νp p Γ(ν p ) 1 p Γ(ν p ( + 1)) 1 p k 2 +1
. (6.3) Remark 6.2. The formula (6.1) is rather straightforward to prove. Starting from (1.28) and using that ξa ω is centered, the second moment is given by

E ρ(t, x) -2 Zω,a β (t, x) 2 = 1 + ∞ k=1 (β 2 µ a,∞ (2)) k X k (t)×(R d ) k ρ(t, x) -2 k+1 i=1 ρ(∆t i , ∆x i ) 2 dt i dx i ,
with the notation (1.10) for ∆t i and ∆x i . Integrating over x 1 , . . . , x k ∈ R d , we get

E ρ(t, x) -2 Zω,a β (t, x) 2 = 1 + ∞ k=1 (β 2 µ a,∞ (2)) k (2 √ πt) X k (t) k+1 i=1 1 2 √ π∆t i dt i ,
which gives the first equality in (6.1) by Lemma 4.5. The second equality follows from the formula

∞ k=0 x k /Γ((k + 1)/2) = π -1/2 + 2xe x 2 Φ( √ 2x
). Let us also mention that this formula coincides with the one we obtain if Zω,a β (t, x) in (6.1) is replaced by the solution to the SHE (1.1) with a space-time Gaussian noise with variance µ a,∞ (2) (and u 0 = δ 0 ); cf. [30, Eq. (2.31)].

6.1.2. The case of dimension d ≥ 2. For the statement with d ≥ 2, we need to introduce a few auxiliary quantities. With the usual convention t 0 := 0 and t k+1 := t and ∆t i := t i -t i-1 , we define Λ(0, t, p) := 1 and

Λ(k, t, p) := t 1-νp X k (t) (∆t k+1 ) νp-1 k i=1 G p (∆t i ) dt i (6.4)
for k ≥ 1, where

G p (s) := s 1 3 νp-1 if t ≤ 1, s νp-1 if t ≥ 1. (6.5)
Also, we let

ζ 1 (η, p, t) := 8 µ log 0,η 1 + 2 d (1 + log + t) p 1+2/d , ζ 2 (η, p) := µ log 0,η 1 + 2 d + µ η,∞ (p), (6.6) 
where we have set log + t := log(t ∨ 1) and 

µ log 0,η 1 + 2 d := (0,η) z 1+ 2 d (3|log z| + 1)λ(dz) Note that both ζ 1 (η, p,
d such that if µ 1,∞ (p) < ∞ for p ∈ (1, 1 + 2 d )
, then for any value of η ∈ (0, 1], a ∈ [0, 1) and t, β > 0, we have 

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ ∞ k 1 ,k 2 =0 Cβ p -1 k 1 +k 2 ζ 1 (η, p, t) k 1 p ζ 2 (η, p) k 2 p Λ(k 2 , t, p) 1 p . ( 6 
sup (t,x)∈(0,T ]×R d E ρ(t, x) -1 Zω,a β (t, x) p 1 p < C(β, p, T ).
Proof. First let us note that the bounds in Propositions 6.1 and 6.3 already are uniform in a and x, so we only need to check uniformity in t.

Let us start with the case d = 1. The statement for p = 2 is obvious from (6.1). If p ∈ (1, 2), by reorganizing (6.2), we obtain that for every t ∈ [0, T ],

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ C ∞ k 1 =0 C p βµ 0,η (2) 
1 2 T 1 4 k 1 ∞ k 2 =0 C p βµ η,∞ (p) 1 p T νp p k 2 Γ(ν p ) 1 p Γ(ν p (k 2 + 1)) 1 p
,

where C p = C/(p -1)
. The first sum is finite if one chooses η such that Cβµ 0,η (2) 1/2 T 1/4 < 1 2 and the second one is always finite since Γ(ν p (k 2 + 1)) grows super-exponentially. If p ∈ (2, 3), we have from (6.3) that for every t ∈ [0, T ],

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ C p ∞ k 2 =0 C p βT 1 4 k 2 Γ( k 2 +1 2 ) 1 2 ∞ =0 C p βT νp p Γ(ν p ( + 1)) k 2 +1
.

Since Γ(ν p ( + 1)) and Γ( k 2 +1 2 ) both grow super-exponentially, the two sums are finite. When d ≥ 2, since ζ 1 is monotone in t, we have, in the same manner,

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ ∞ k 1 =0 C p βζ 1 (η, p, T ) 1 p k 1 ∞ k 2 =0
C p βζ 2 (η, p)

1 p k 2 Λ(k 2 , t, p) 1 p (6.8)
for t ≤ T . The first sum is finite provided that η is chosen sufficiently small. Considering the second term, we have

Λ(k 2 , t, p) ≤ t 1-νp (t ∨ 1) 2 3 νpk 2 X k 2 (t) (∆t k 2 +1 ) νp-1 k 2 i=1 (∆t i ) 1 3 νp-1 dt i = (t ∨ 1) 2 3 νpk 2 t 1 3 νpk 2 Γ( 1 3 ν p ) k 2 Γ(ν p ) Γ( 1 3 ν p (k 2 + 3))
, where we used Lemma 4.5 for the last identity. As a result, assuming that T ≥ 1, we obtain that for every t ∈ [0, T ],

C p βζ 2 (η, p) 1 p k 2 Λ(k 2 , t, p) 1 p ≤ C p βζ 2 (η, p) 1 p Γ( 1 3 ν p ) 1 p T νp p k 2 Γ(ν p ) 1 p Γ( 1 3 ν p (k 2 + 3)) 1 p
, and since Γ(ν p [(k 2 /3) + 1]) grows super-exponentially, the sum over k 2 in (6.8) is finite.

6.2. Bounding moments in the chaos expansion: the first term. From now on, we focus on the case x = 0, which yields no loss of generality by (1.18). Also, in both Propositions 6.1 and 6.3 above, the case a = 0 can be deduced from the case a > 0 using Fatou's lemma: in the following, we can always assume that a > 0. Starting from the chaos decomposition (1.28), we can use Minkowski's inequality to get

E ρ(t, 0) -p Zω,a β (t, 0) p 1 p ≤ ∞ k=0 β k E [|W a,k (t)| p ] 1 p , ( 6.9) 
where

W a,0 (t) := 1, W a,k (t) := X k (t)×(R d ) k ρ t,0 (t, x) ρ(t, 0) k i=1 ξa ω (dt i , dx i ) for k ≥ 1. (6.10)
The estimates for E[|W a,k (t)| p ] are intricate, so let us spend some time on the case k = 1 to illustrate the intuition behind our proof. In what follows, we write

X (k) t := X k (t) × (0, ∞) k , X (k) t := X k (t) × (R d ) k , X (k) t := X k (t) × (R d ) k × (0, ∞) k . (6.11)
We drop the superscript k when k = 1. For simplicity, let us consider the expansion of the free-end partition function. Because the integrals in (6.9) are martingales in t for the filtration (1.5), we can apply the Burkholder-Davis-Gundy (BDG) inequality and obtain 

E (0,t)×R d ρ(s, x) ξa ω (ds, dx) p ≤ C p E (0,t)×R d ×[a,∞) (ρ(s, x)z) 2 δ ω (
E Xt ρ(s, x) 2 z 2 δ ω (ds, dx, dz) p 2 ≤ E Xt ρ(s, x) 2 z 2 δ ω (ds, dx, dz) θ 2 p θ ≤ Xt ρ(s, x) θ z θ ds dx λ(dz) p θ = ϑ(θ) p θ Xt s ν θ -1 z θ ds λ(dz) p θ , ( 6.13) 
recalling also (5.5) and ν θ = 1 -d 2 (θ -1) for the last line. On the right-hand side, we see that when θ increases, the integrability in z around 0 improves but the one in s worsens, forcing us to chose ν θ > 0 (i.e., θ < 1 + 2 d ) to obtain a finite integral. As a consequence, we need to assume µ 0,∞ (θ) < ∞ for some θ ∈ [p, 1 + 2 d ). If this holds, then, in fact, the same estimate can be applied iteratively in order to obtain bounds for any of the multiple integrals in (6.9). Let us remark that this is essentially the assumption (and the method) used in [START_REF] Saint | Étude d'une EDPS conduite par un bruit poissonnien[END_REF] to obtain existence, uniqueness and moments for the solution to (2.6).

Clearly, µ 0,∞ (θ) < ∞ does not hold, for any θ > 0, if ξ ω is an α-stable noise with α ∈ (1, 2); recall that we assume µ 1,∞ (p) < ∞ for some p > 1. In that case, at least when k = 1, it is easy to do better than (6.13). The key point is to first separate z ≥ 1 and z < 1 and then, for z < 1, further whether z ≤ s d/2 or z > s d/2 . For z ≥ 1, we can simply apply (6.13) with θ = p, that is,

E Xt ρ(s, x) 2 z 2 1 {z≥1} δ ω (ds, dx, dz) p 2 ≤ ϑ(θ)µ 1,∞ (p)ν -1 p t νp .
For z ≤ 1, we first consider the contribution coming from z ≤ s d/2 . By Jensen's inequality, we can take the exponent p 2 outside the expectation on the right-hand side of (6.12), which leads to the bound

E Xt 1 {z≤s d/2 ∧1} ρ(s, x) 2 z 2 δ ω (ds, dx, dz) p 2 = Xt 1 {z≤s d/2 ∧1} ρ(s, x) 2 z 2 ds dx λ(dz) p 2 .
Since d ≥ 3, we have, integrating first with respect to x (recall (5.5)), then with respect to s and finally with respect to z, Xt

1 {z≤s d/2 ∧1} ρ(s, x) 2 z 2 ds dx λ(dz) = Xt z 2 1 {z≤s d/2 ∧1} (4πs) d 2 ds λ(dz) ≤ 1 ( d 2 -1)(4π) d 2 µ 0,1 1 + 2 d .
For the contribution to the integral coming from z > s d/2 , applying (6.13) with θ = p, we get that it is smaller than

ϑ(p) Xt 1 {z>s d/2 ,z<1} s νp-1 z p ds λ(dz) = ϑ(p) ν p (0,1) z 1+ 2 d λ(dz) = ϑ(p) ν p µ 0,1 1 + 2 d ,
where we have first integrated with respect to s, using that ν p = 1 -d 2 (p -1) > 0 for p < 1 + 2 d , and then with respect to z. Altogether, we have shown the following bound. Lemma 6.6. In dimension d ≥ 3, there exists a constant C (which may depend on d but not on p) such that for all p ∈ (1, 1 + 2 d ),

E (0,t)×R d ρ(s, x) ξa ω (ds, dx) p ≤ C ν p µ 0,1 1 + 2 d p 2 + µ 0,1 1 + 2 d + µ 1,∞ (p)t νp .
In other words, the single integral has a finite pth moment for some p

∈ (1, 1 + 2 d ) if the intensity measure satisfies µ 0,1 (1 + 2 d ) + µ 1,∞ (p) < ∞.
In fact, this condition is necessary and sufficient by [87, Theorem 3.3], so Lemma 6.6 is optimal for single integrals. 6.3. Decoupling and partitioning: Key tools in proving Propositions 6.1 and 6.3.

6.3.1.

Decoupling. When k ≥ 2, there is no direct analogue of (6.12) since we cannot apply the BDG inequality for the k-fold iterated integral. The first step of our proof is to use the decoupling inequalities from Section 4.2 in order to obtain, instead of W a,k (t), multiple Poisson integrals with respect to k independent copies of the original noise. An important advantage of the decoupled integral is that we can change the order of integration without losing the martingale property. Using Theorem 4.3 with the tetrahedral function f (t, x, z) := ρ(t, 0) -1 ρ t,0 (t, x) k i=1 z i 1 {z i ≥a} (the reader can check that (4.3) is satisfied whenever µ 1,∞ (p) < ∞), we have

E[|W a,k (t)| p ] ≤ C p -1 k E ⊗k [|V a,k (t)| p ] , (6.14) 
where

V a,k (t) := X (k) t ρ t,0 (t, x) ρ(t, 0) k i=1 ξa ω i (dt i , dx i ) = X (k) t ρ t,0 (t, x) ρ(t, 0) k i=1 z i 1 {z i ≥a} (δ ω i -ν)(dt i , dx i , dz i ) (6.15)
and ω i , for i = 1, . . . , k, are i.i.d. copies of ω. For simplicity, and with a small abuse of notation, we write P, P ⊗k , E and E ⊗k in the remainder of the proof.

6.3.2.

Partitioning and integrating over space. As in Section 6.2, we want to estimate the pth moment of the right-hand side of (6.15) using a combination of the BDG inequality, Jensen's inequality and subadditivity and then integrate over space. Because we want to use an intermediate exponent as in (6.13) that depends on the value of t and z, a first task is to decompose V a,k (t) by considering a (non-random) partition P k of the parameter space X (k) t . For each element P ∈ P k of our partition, we will further determine a partition J 1 (P) ∪ J 2 (P) of k and first integrate with respect to (t i , z i ) with i ∈ J 1 (P) and then with respect to (t i , z i ) with i ∈ J 2 (P). We let k 1 and k 2 denote the respective cardinalities of J 1 = J 1 (P) and J 2 = J 2 (P).

When J ⊆ k , we use the following notation:

∆ J t i := t i -t i(J,-1) and ∆ J x i := x i -x i(J,-1) (6.16)
where x 0 = x k+1 = 0, t 0 = 0 and t k+1 = t as usual and where for i ∈ J ∪ {k + 1} we denote the predecessor of i in J ∪ {0, k + 1} by i(J, -1) . As a result of our partitioning procedure, we obtain the following estimate:

Lemma 6.7. Given p ∈ (1, 2 ∧ (1 + 2 d )) and θ ∈ (p, 2],
we have for all a ∈ (0, 1],

E V a,k (t) p 1 p ≤ C k P∈P k t 1-νp p X (k 2 ) t X (k 1 ) t 1 P (t, z) k+1 i=1 (∆t i ) ν θ -1 i∈J 1 z θ i dt i λ(dz i ) p θ × i∈J 2 ∪{k+1} (∆ J 2 t i ) (νp-1)+ p θ (1-ν θ ) i∈J 2 z p i dt i λ(dz i ) 1 p
.

(6.17)

Proof. For P ∈ P k , let us define

V a,k (t, P) := X (k) t 1 P (t, z) ρ t,0 (t, x) ρ(t, 0) k i=1 z i 1 {z i ≥a} (δ ω i -ν)(dt i , dx i , dz i ) . (6.18)
Then, by (6.15) and Minkowski's inequality, we have that

E V a,k (t) p 1 p ≤ P∈P k E V a,k (t, P) p 1 p .
Because the ω i 's are independent, we can, similarly to (A.4) in the appendix, permute the integrals in (6.15) and integrate with respect to the indices in J 1 first and J 2 afterwards. In conjunction with the BDG inequality, subadditivity (recall p ≤ 2) and Jensen's inequality (applied in the fashion as in (6.13)), we obtain

E[|V a,k (t, P)| p ] ≤ C k 2 X (k 2 ) t E X (k 1 ) t 1 P (t, z) ρ t,0 (t, x) ρ(t, 0) i∈J 1 z i 1 {z i ≥a} (δ ω i -ν)(dt i , dx i , dz i ) p × i∈J 2 z p i 1 {z i ≥a} dt i dx i λ(dz i ) ≤ C k X (k 2 ) t X (k 1 ) t 1 P (t, z) ρ t,0 (t, x) θ ρ(t, 0) θ i∈J 1 z θ i dt i dx i λ(dz i ) p θ i∈J 2 z p i dt i dx i λ(dz i ). (6.19) 
Remark 6.8. In the above integrals and for the remainder of the proof, with a small abuse of notation, the coordinates of elements of X (k 1 ) t are indexed by J 1 instead of k 1 (and similarly for

J 2 ). With this convention, X (k) t is a strict subset of X (k 1 ) t × X (k 2 ) t
, but this is not a problem since the indicator function 1 P restricts the integral to a subset of X (k) t . The next step is to carry out integration with respect to x 1 , . . . , x k explicitly. First of all, notice that for any m ≥ 1 and any p > 1, we have for every t ∈ X m (s)

(R d ) m ρ s,y (t, x) p m i=1 dx i = ϑ(p) m ρ(s, y) p s 1-νp m+1 i=1 (∆t i ) νp-1 . (6.20)
This can be proved by induction on m after checking the case m = 1 by hand, using (5.5); we leave the details to the reader.

We then successively apply (6.20) with p = θ to the segments of J 1 (i.e., maximal sets of consecutive indices in J 1 ). Recalling the notation (6.16), we get

(R d ) k 1 ρ t,0 (t, x) θ i∈J 1 dx i = ϑ(θ) k 1 k+1 i=1 (∆t i ) ν θ -1 j∈J 2 ∪{k+1} (∆ J 2 t j ) 1-ν θ ρ(∆ J 2 t j , ∆ J 2 x j ) θ . (6.21)
Applying (6.20) in the case y = 0, we also get

(R d ) k 2 j∈J 2 ∪{k+1} ρ(∆ J 2 t j , ∆ J 2 x j ) p i∈J 2 dx i = ϑ(p) k 2 ρ(t, 0) p t 1-νp j∈J 2 ∪{k+1} (∆ J 2 t j ) νp-1 . (6.22)
We conclude the proof of Lemma 6.7 by inserting (6.21) and (6.22) in (6.19).

6.4. The proof of Proposition 6.1. The second moment was computed in Remark 6.2. In order to prove (6.2), we only need to separate small and large values of z. We consider a partition P k indexed by the subsets J ⊆ k and we define

P(J) := {(t, z) ∈ X (k) t : z i < η for all i ∈ J and z i ≥ η for all i ∈ k \ J} (6.23)
as well as J 1 := J and J 2 := k \ J. Applying Lemma 6.7 with θ = 2 and noting that ν 2 = 1 2 and

ν p = 1 -1 2 (p -1) in dimension d = 1, we obtain E V a,k (t) p 1 p ≤ C k J⊆ k t 1-νp p µ 0,η (2) k 1 2 µ η,∞ (p) k 2 p × (0,t) k 2 (0,t) k 1 1 {t 1 <•••<t k } k+1 i=1 (∆t i ) -1 2 i∈J 1 dt i p 2 i∈J 2 ∪{k+1} (∆ J 2 t i ) 2-p 4 i∈J 2 dt i 1 p . ( 6.24) 
Integrating successively over the segments of J 1 and writing ∆ J 2 (i) = i -i(J, -1) for the distance between i ∈ J 2 ∪ {k + 1} and the previous index in J 2 (recall (6.16)), we get from Lemma 4.5 that

(0,t) k 1 1 X k (t) (t) k+1 i=1 (∆t i ) -1 2 i∈J 1 dt i = 1 X k 2 (t) ((t i ) i∈J 2 ) i∈J 2 ∪{k+1} (∆ J 2 t i ) 1 2 ∆ J 2 (i)-1 Γ( 1 2 ) ∆ J 2 (i) Γ( 1 2 ∆ J 2 (i))
.

(6.25) Now, if we bound (∆ J 2 t i ) (∆ J 2 (i)-1)/2 ≤ t (∆ J 2 (i)-1)/2 and Γ( 12 ) ≥ 1 2 √ π for any ≥ 1, we get that

(0,t) k 1 1 X k (t) (t) k+1 i=1 (∆t i ) -1 2 i∈J 1 dt i ≤ 1 X k 2 (t) ((t i ) i∈J 2 )2 k 2 +1 (πt) 1 2 k 1 i∈J 2 ∪{k+1} (∆ J 2 t i ) -1 2 .
Going back to (6.24) and taking the factor [(∆ J 2 t i ) -1/2 ] p/2 over to the outer integral, we compute

(0,t) k 2 1 X k 2 (t) ((t i ) i∈J 2 ) i∈J 2 ∪{k+1} (∆ J 2 t i ) 1-p 2 i∈J 2 dt i = t νpk 2 +νp-1 Γ(ν p ) k 2 +1 Γ(ν p (k 2 + 1)) , ( 6.26) 
thanks again to Lemma 4.5. We therefore conclude that

E V a,k (t) p 1 p ≤ J⊆ k √ πtµ 0,η (2) k 1 2 2 p 2 µ η,∞ (p)t νp Γ(ν p ) k 2 p √ 2Γ(ν p ) 1 p Γ(ν p (k 2 + 1)) 1 p ≤ (2C) k max k 1 +k 2 =k √ πtµ 0,η (2) k 1 2 2 p 2 µ η,∞ (p)t νp Γ(ν p ) k 2 p √ 2Γ(ν p ) 1 p Γ(ν p (k 2 + 1)) 1 p . (6.27)
Absorbing π k 1 /4 and (2 p/2 Γ(ν p )) k 2 /p , which is uniformly bounded in p ∈ [START_REF] Ahn | Nonstationary Anderson model with a Lévy random potential[END_REF][START_REF] Ahn | Nonstationary Anderson model with Lévy potential[END_REF], into the constant C and replacing the maximum by a sum, we derive (6.2) from (6.9), (6.14) and (6.27).

If p ∈ (2, 3), the subadditivity argument in (6.19) does not apply. Instead, we shall use a variant of the BDG estimate (6.12) that only contains the intensity measure ν := dt ⊗ dx ⊗ λ(dz) instead of δ ω . For any p ≥ 2, there exists a constant C p ∈ (0, ∞) such that for all (6.28) where C p = (2 p-1 p(p -1)(p/(p -1)) p ) p/2 ∨ 2(p/(p -1)) p (2 p + 1 + p) ≤ 729 when p ∈ [START_REF] Ahn | Nonstationary Anderson model with Lévy potential[END_REF][START_REF] Alberts | The continuum directed random polymer[END_REF]; see [85, Theorem 1 (b)] (and its proof for the value of C p ). We also refer to [START_REF] Marinelli | On maximal inequalities for purely discontinuous martingales in infinite dimensions[END_REF] for a survey of various versions and proofs (and names) of this inequality. Let us define

P ⊗ B(R d × (0, ∞))- measurable process K = K(ω, w) = K(ω, t, x, z), E X K(w) (δ ω -ν)(dw) p ≤ C p E X K(w) 2 ν(dw) p 2 + E X |K(w)| p ν(dw) ,
W a,0 (t, x) := ρ(t, x), W a,k (t, x) := X (k) t ρ t,x (t, x) k i=1 ξa ω (dt i , dx i ) for k ≥ 1,
so that in particular W a,k (t) = W a,k (t, 0)/ρ(t, 0). With this definition, applying (6.28), we have

E | W a,k (t, x)| p 1 p = E Xt ρ(t -t k , 0 -x k ) W a,k-1 (t k , x k ) ξa ω (dt k , dx k ) p 1 p ≤ C E µ 0,∞ (2) 
Xt (ρ(t -t k , x k ) W a,k-1 (t k , x k )) 2 dt k dx k p 2 1 p + µ 0,∞ (p) Xt ρ(t -t k , x k ) p E[| W a,k-1 (t k , x k )| p ] dt k dx k 1 p .
Thus, applying Minkowski's integral inequality, we get

E | W a,k (t, x)| p 1 p ≤ C µ 0,∞ (2) 
1 2 Xt ρ(t -t k , x k ) 2 E[| W a,k-1 (t k , x k )| p ] 2 p dt k dx k 1 2 + µ 0,∞ (p) 1 p Xt ρ(t -t k , x k ) p E[| W a,k-1 (t k , x k )| p ] dt k dx k 1 p
.

Repeating this estimate and recalling (6.9), we get

E Zω,a β (t, 0) p 1 p ≤ ρ(t, 0) + ∞ k=1 (C β) k θ∈{2,p} k µ 0,∞ (p) k 1 p µ 0,∞ (2) 
k 2 2 ρ t,0 (t, x) θ,t , (6.29) 
where k 1 is the number of p's and k 2 the number of 2's in θ, and where we have defined

f θ,t := Xt • • • Xt Xt f (t, x) θ 1 dt 1 dx 1 θ 2 θ 1 dt 2 dx 2 θ 3 θ 2 • • • θ k θ k-1 dt k dx k 1 θ k for f : ((0, ∞) × R d ) k → [0, ∞) and θ = (θ 1 , . . . , θ k ) ∈ [1, ∞) k .
Now in order to conclude, we want to replace ρ t,0 (t, x) θ,t by an integral which is analogous to that found in the on the right-hand side of (6.19). To do so, we use the following identity, valid for any positive function f and any measures µ 1 and µ 2 :

Ω 1 Ω 2 f (w 1 , w 2 ) 2 µ 2 (dw 2 ) p 2 µ 1 (dw 1 ) 1 p ≤ Ω 2 Ω 1 f (w 1 , w 2 ) p µ 1 (dw 1 ) 2 p µ 2 (dw 2 ) 1 2
.

This inequality is a special case of [START_REF] Kwapień | Random series and stochastic integrals: single and multiple[END_REF]Lemma 3.3.1]. Now, letting J 1 denote the set of indices for which θ i = p and J 2 those for which θ i = 2, we apply the above inequality iteratively to take all the integrals with respect to J 1 inside. We obtain (recall Remark 6.8)

ρ t,0 (t, x) θ,t ≤ X (k 2 ) t X (k 1 ) t 1 X k (t) (t)ρ t,0 (t, x) p i∈J 1 dt i dx i 2 p i∈J 2 dt i dx i 1 2
. (6.30)

Now we can first integrate with respect to the x i 's using (6.21) and (6.22) (with p instead of θ and 2 instead of p). Recalling that ν 2 = 1 2 , we obtain

ρ t,0 (t, x) θ,t ≤ ϑ(p) k 1 p ϑ(2) k 2 2 ρ(t, 0) × t 1 4 (0,t) k 2 (0,1) k 1 1 X k (t) (t) k+1 i=1 (∆t i ) νp-1 i∈J 1 dt i 2 p i∈J 2 ∪{k+1} (∆ J 2 t i ) 2 p (1-νp)-1 2 i∈J 2 dt i 1 2
.

Using Lemma 4.5 to integrate first with respect to (t i ) i∈J 1 , we get as in (6.25)

(0,1) k 1 1 X k (t) (t) k+1 i=1 (∆t i ) νp-1 i∈J 1 dt i = 1 X k 2 (t) ((t i ) i∈J 2 ) i∈J 2 ∪{k+1} (∆ J 2 t i ) νp∆ J 2 (i)-1 Γ(ν p ) ∆ J 2 (i) Γ(ν p ∆ J 2 (i)) ≤ 1 X k 2 (t) ((t i ) i∈J 2 )Γ(ν p ) k+1 t νpk 1 i∈J 2 ∪{k+1} (∆ J 2 t i ) νp-1 i∈J 2 ∪{k+1} Γ(ν p ∆ J 2 (i)) , (6.31) because (∆ J 2 t i ) νp∆ J 2 (i)-1 ≤ t νp(∆ J 2 (i)-1) (∆ J 2 t i ) νp-1 . Pulling (∆ J 2 t i ) νp-1
to the outer integral, we evaluate

(0,t) k 2 1 X k 2 (t) ((t i ) i∈J 2 ) i∈J 2 ∪{k+1} (∆ J 2 t i ) -1 2 i∈J 2 dt i = t k 2 2 -1 2 Γ( 1 2 ) k 2 +1 Γ( k 2 +1
2 )

, using once more Lemma 4.5. Altogether, bounding ϑ(p), ϑ(2) ≤ 1, we obtain that

ρ t,0 (t, x) θ,t ≤ ρ(t, 0)t νp p k 1 + 1 4 k 2 Γ(ν p ) 1 p (k+1) π 1 4 (k 2 +1) Γ( k 2 +1 2 ) 1 2 i∈J 2 ∪{k+1} Γ(ν p ∆ J 2 (i)) 1 p
.

Going back to (6.29), bounding ϑ(p), ϑ(2) ≤ 1 and expressing everything in terms of J 2 and

k 2 = |J 2 |, we get that E[ρ(t, 0) -p Zω,a β (t, 0) p ] 1/p is bounded by π 1 4 Γ(ν p ) 1 p ∞ k=0 J 2 ⊆ k C βµ 0,∞ (p) 1 p t νp p Γ(ν p ) 1 p k 1 C βµ 0,∞ (2) 
1 2 Γ(ν p ) 1 p π 1 4 t 1 4 k 2 Γ( k 2 +1 2 ) 1 2 i∈J 2 ∪{k+1} Γ(ν p ∆ J 2 (i)) 1 p = π 1 4 Γ(ν p ) 1 p ∞ k=0 k k 2 =0 C βµ 0,∞ (2) 1 2 Γ(ν p ) 1 p π 1 4 t 1 4 k 2 Γ( k 2 +1
2 )

1 2 × 1 ,..., k 2 +1 ≥1 1 +•••+ k 2 +1 =k+1 k 2 +1 i=1 C βµ 0,∞ (p) 1 p t νp p Γ(ν p ) 1 p i -1 Γ(ν p i ) 1 p
, where we have used a change of variable and the fact that

1 + • • • + k 2 +1 = k + 1 implies that k 1 = k 2 +1
i=1 ( i -1). Exchanging the first two sums and factorizing the last one yields (6.3).

6.5. Intermezzo: d ≥ 2 under stronger moment conditions. The method we have used for d = 1 can further be used to prove boundedness of moments under the more restrictive assumption given in (1.21). We illustrate this by Proposition 6.9 below whose proof can be achieved by replicating that of (6.2). This quantitative estimate is sufficient to prove the upper bound parts of Theorem 2.12 and similar ideas could in principle be used to prove Theorem 2.5 under the more restrictive assumption (1.21). The more involved method used in the proof of Proposition 6.3 below, however, is necessary to bridge the gap between the conditions (1.21) and (1.23); recall that the latter is optimal in dimension 2 and very close to optimal when d ≥ 3. Proposition 6.9. There exists a constant C ∈ (0, ∞) that only depends on d such that if d ≥ 2, µ 0,1 (q) < ∞ and µ 1,∞ (p) < ∞ for some 1 < p ≤ q < 1 + 2 d , we have, for all a ∈ [0, 1], η ∈ (0, 1] and β, t > 0,

E ρ(t, x) -p Zω,a β (t, x) p 1 p ≤ ∞ k 1 ,k 2 =0 CΓ(ν q )β p -1 k 1 +k 2 (µ 0,η (q)t νq ) k 1 q (Γ(ν p )µ η,∞ (p)t νp ) k 2 p Γ(ν p ) 1 p Γ(ν p (k 2 + 1)) 1 p .
Proof. Let us give a very short guideline for the proof: we use the same partition P k as in (6.23) and apply Lemma 6.7 with θ = q. The proof is identical to that of Proposition 6.1 (ii) except that (6.25) has to be replaced by (6.31), which together with the bound Γ(

ν q ∆ J 2 (i)) ≥ 1 2 gives (0,t) k 1 1 X k (t) (t) k+1 i=1 (∆t i ) νq-1 i∈J 1 dt i ≤ 1 X k 2 (t) ((t i ) i∈J 2 ) 2 k 2 +1 Γ(ν q ) k t νqk 1 i∈J 2 ∪{k+1} (∆ J 2 t i ) νq-1 .
6.6. The proof of Proposition 6.3. We use the same idea as for the proof of Proposition 6.1. We will consider a partition P k (defined below) of the parameter space X (k)

t : each element P ∈ P k induces a partition of k into two sets J 1 and J 2 and we are going to use Lemma 6.7 with θ = 1+ 2 d (and hence ν θ = 0). The main technical part of this section will then be to bound

U (P, t) := t 1-νp X (k 2 ) t X (k 1 ) t 1 P (t, z) k+1 i=1 (∆t i ) -1 i∈J 1 z 1+ 2 d i dt i λ(dz i ) p 1+2/d × j∈J 2 ∪{k+1} (∆ J 2 t j ) p 1+2/d +νp-1 i∈J 2 z p i dt i λ(dz i ) . (6.32)
The following is the main technical estimate of this section. Proposition 6.10. Recall (6.4) and (6.6). With the choice P k defined in Section 6.6.1 below (see in particular (6.37)), we have for every P ∈ P k , η ∈ (0, 1] and t > 0 that

U (P, t) ≤ ζ 1 (η, p, t) k 1 ζ 2 (η, p) k 2 Λ(k 2 , t, p), ( 6 

.33)

where

k 1 := |J 1 | and k 2 := |J 2 |.
Proposition 6.3 follows immediately from Proposition 6.10.

Proof of Proposition 6.3. Using Lemma 6.7, combined with (6.14) and (6.15), we obtain that

E[W a,k (t) p ] 1 p ≤ C p -1 k |P k | max P∈P k U (P, t) 1 p ≤ 2 9C p -1 k max k 1 +k 2 =k ζ 1 (η, p, t) k 1 ζ 2 (η, p) k 2 Λ(k 2 , t, p) 1 p , ( 6.34) 
where we have used that |P k | ≤ 2 × 9 k (see below). Replacing the max by a sum yields (6.7).

6.6.1. Constructing the partition P k . The construction of P k when d ≥ 2 is considerably more involved, as it no longer suffices to only differentiate between z i ≥ η and z i < η as we did for d = 1. Recall that in Section 6.2, in order to obtain optimal bounds, we had to split the integral according to how z i and ∆t d/2 i compare to each other. A problem arises when trying to generalize this method to k ≥ 2: On the right-hand side of (6.32), the value of ∆t i plays the same role as ∆t i+1 , which is the reason why we cannot break down the k-fold integral into 2 k parts as we did in the proof of Proposition 6.1.

We now describe our solution to this problem. To give the idea behind our partition and its link to the bound (6.33), recall from (6.32) that we first integrate with respect to the variables with indices in J 1 and then with respect to those with indices in J 2 . Loosely speaking, indices in J 1 correspond to values of z i that are small compared to (∆t i ) d/6 and (∆t i+1 ) d/6 ; this gives rise to a factor ζ 1 (η, p, t) k 1 that can be explained by the calculations in (6.40)-(6.41) below. Note that after integrating with respect to such an index, one may have to update the set of parameters since for the next step one has to compare z i with time increments formed between the remaining variables. These may differ from ∆t i and ∆t i+1 , which explains why the partition has to be defined iteratively.

Each element of our partition P ∈ P k is encoded by a finite sequence (L j , I j -, I j + , D j ) m j=1 of partitions of k + 1 ; the length m of the sequence is a variable. With some abuse of notation, we identify P with this sequence. We also use the notation I j := I j -∪ I j + . Not every sequence is admissible, so let us present the rules for constructing the set of admissible sequences:

• First we partition k + 1 into three sets L 1 , I 1 + , and I 1 -, imposing that k + 1 ∈ I 1 , and we define D 1 := ∅. • The procedure is then iterative. Assume that m ≥ j and that one has constructed the sets of the first j steps. We let i(+1, j) denote the successor of i and i(-1, j) denote the predecessor of i in

L j ∪ I j -∪ I j + , that is, i(+1, j) := min{ ∈ L j ∪ I j -∪ I j + : ≥ i + 1} , i(-1, j) := max{ ∈ L j ∪ I j -∪ I j + : ≤ i -1} , ( 6.35) 
with the convention max ∅ = 0; we only use the notation i(+1, j) if the set over which the minimum is taken is non-empty. Unless

L j × := {i ∈ k : i ∈ L j and i(+1, j) ∈ I j -} = ∅ , ( 6.36) 
we need to add extra terms corresponding to j + 1 to our sequence, which will be described in the next point. This procedure is repeated until at some stage j, (6.36) is satisfied. We then define m = j and our sequence is complete.

• When L j × = ∅, the next sets (L j+1 , I j+1 -, I j+1 + , D j+1
) are only partially determined by (L j , I j -, I j + , D j ): while we prescribe the choice D j+1 := D j ∪ L j × , there is some liberty for choosing the sets L j+1 , I j+1 -and I j+1 + . We set

I j × := {i(+1, j) : i ∈ L j × }
and consider an arbitrary partition {I

(j+1) - , I (j+1) + , L (j+1) } of I j × subject to only one con- straint: if k + 1 ∈ I j × , then k + 1 ∈ I (j+1) - ∪ I (j+1) +
(this is to guarantee that k + 1 ∈ I j for all j). We then define L j+1 , I j+1 -and I j+1 + as follows:

         L j+1 := (L j \ L j × ) ∪ L (j+1) , I j+1 - := (I j -\ I j × ) ∪ I (j+1) - , I j+1 + := I j + ∪ I (j+1) +
.

Given an element in P k , we further define

J 1 := D m ∪ {i ∈ L m : i(+1, m) ∈ L m } and J 2 := k \ J 1 .
An example of an admissible sequence of partitions as well as the associated sets J 1 and J 2 are shown in Figure 1. Let us now determine, or rather bound from above, the cardinality of P k , that is, the number of admissible sequences that can be constructed according to the above rules. Note that we have 2 × 3 k possibilities for choosing L 1 , I 1 + and I 1 -. Afterwards, at each step, one has to assign one out of three labels I -, I 1 + ), we define

- --+ - + -+ - + -+ + + + J 1 J 1 J 2 J 2 Notation: → L j -→ I j - + → I j + → D j
1 P (t, z) := m j=1 i∈I (j) - 1 {z i ≥(∆ j t i ) d/6 ∧η, z i(-1,j) <(∆ j t i ) d/6 ∧η} i∈I (j) + 1 {z i ∧z i(-1,j) ≥(∆ j t i ) d/6 ∧η} × i∈L (j)
1 {z i <(∆ j t i ) d/6 ∧η} , (6.37) 
where ∆ j t i := t i -t i(-1,j) (recall (6.35)) and z k+1 := ∞ by convention.

It is easy to verify that (6.37) induces a partition of X (k) t indexed by P k : Indeed, for any fixed (t, z) ∈ X (k) t , the values of z i and ∆t i uniquely determine (L 1 , I 1 -, I 1 + ) = (L (1) , I

-, I

+ ). Assuming that (L j , I j -, I j + ) has been identified up to some j ≥ 1, we can check whether (6.36) is satisfied. If so, we set m = j and we are done. Otherwise, we again use the values of z i and ∆t i to find (L (j+1) , I (j+1) -

, I (j+1) +

), from which we can then determine (L j+1 , I j+1 -, I j+1 + ). Therefore, every (t, z) is contained in some P ∈ P k . The uniqueness of P is straightforward. 6.6.2. Proof of Proposition 6.10. Recall the formula (6.32) of U (P, t). The proof is divided into two parts: first we integrate with respect to variables with indices in J 1 and then with respect to those with indices in J 2 .

Step 1. Integrating with respect to indices in J 1 . Our first task is to prove that, roughly speaking, the integral with respect to each z i and t i with indices i ∈ J 1 yields at most a factor ζ 1 (η, p, t) k 1 . More precisely, we prove that U (P, t) ≤ ζ 1 (η, p, t) k 1 U 2 (P, t), (6.38) where

U 2 (P, t) := t 1-νp X (k 2 ) t 1 P (∆ J 2 t k+1 ) νp-1 i∈J 2 (∆ J 2 t i ) νp-1 z p i (3|log z i | + 1) 1 {z i <η} dt i λ(dz i )
and

1 P := i∈I (m) - 1 {z i ≥(∆ J 2 t i ) d/6 ∧η} i∈I (m) + 1 {z i ∧z i(-1,J 2 ) ≥(∆ J 2 t i ) d/6 ∧η} i∈L (m) ∩J 2 1 {z i <(∆ J 2 t i ) d/6 ∧η} (6.39)
represents constraints on the values of ∆ J 2 t i and z i that are inherited from P for i ∈ J 2 . Note that compared to (6.37), we only have j = m and we have replaced ∆ m t i by ∆ J 2 t i . This makes no difference when i ∈ I (m) -

or i ∈ I (m) + since i(-1, m) ∈ J 2 in both cases; for i ∈ L (m) , the constraint is implied by P since ∆ J 2 t i ≥ ∆ m t i .
First, let us reduce to the case where m = 0, that is, L 1 × = ∅, : the idea is to integrate with respect to variables with indices in L 1 × , then with respect to those with indices in L 2 × , etc. One may refer to Figure 1 to understand how this procedure goes on. We start with integration with respect to z i and t i when i ∈ L 1 × . In this case, we have

z i < [∆t i ∧ ∆t i+1 ] d/6 ∧ η.
To treat these indices, note that by symmetry,

t 0 s -1 (t -s) -1 1 {z<[s∧(t-s)] d/6 } ds ≤ 2 t/2 0 s -1 (t -s) -1 1 {z<s d/6 } ds ≤ 4t -1 log 1 2 tz -6 d , (6.40) 
where for the last bound we used that t -s ≥ t/2. From now on, we assume η ≤ 1. Then, if z ∈ (0, η), using also that 6/d ≤ 3, we have

t 0 s -1 (t -s) -1 1 {z<[s∧(t-s)] d/6 } ds ≤ 8t -1 (3|log z| + 1)(1 + log + t) .
Recalling the definition (6.6) of ζ 1 (η, p, t), we end up with t 0 (0,η) (6.42) where t (i) and z (i) denote the vectors t and z with the ith coordinate omitted and P (i) is obtained from P by ignoring all the constraints that involve either z i or t i . Thus, at the cost of a multiplicative factor ζ 1 (η, p, t) (1+2/d)/p one can, for each i ∈ L 1 × , simplify the integrals with respect to λ(dz i ) dt i . After relabeling the indices, we can then iterate this process, making use of the iterative construction of P. As a result, we are left to prove (6.38) in the case where L 1 × = ∅. Since m = 1 in this case, we drop the superscript 1 from the notation.

s -1 (t -s) -1 1 {z<[s∧t-s] d/6 } z 1+ 2 d ds λ(dz) ≤ t -1 ζ 1 (η, p, t) 1+2/d p . (6.41) So if i ∈ L 1 × , using the trivial fact that ∆ 2 t i := t i+1 -t i-1 ≤ t, we have t i+1 t i-1 (0,∞) (∆t i ∆t i+1 ) -1 z 1+ 2 d i 1 P (t, z) dt i λ(dz i ) ≤ ζ 1 (η, p, t) 1+2/d p (∆ 2 t i ) -1 1 P (i) (t (i) , z (i) ),
Under the assumption L 1 × = ∅, we have J 1 = {i ∈ L : i+1 ∈ L}. We may treat different segments of J 1 separately. Let us assume, for instance, that i, i + -1 ⊆ J 1 , where i, j := {i, i + 1, . . . , j}.

In the same spirit as (6.40)-(6.42), we have that

t i+1 t i-1 (∆t i ∆t i+1 ) -1 1 P (t, z) dt i ≤ 8(1 + log + t) ∆ 2 t i (1 + 3|log(z i ∧ z i+1 )|)1 P (i) (t (i) , z (i) )1 {z i ∨z i+1 <(∆ 2 t i ) 6/d ∧η} .
Iterating this and noticing that |log

(z i ∧ z i+1 )| = |log z i | ∨ |log z i+1 | since z i , z i+1 < η ≤ 1, we get X (t i-1 ,t i+ ) j=0 (∆t i+j ) -1 1 P (t, z) dt i • • • dt i+ -1 ≤ (8(1 + log + t)) t i+ -t i-1 × j=0 (3|log z i+j | + 1) min j∈ (3|log z i+j | + 1)
.

The second denominator can be ignored since it is larger than 1. If one then integrates with respect to z i , . . . , z i+ -1 (recall (6.39) and the remark afterwards), one obtains

X (t i-1 ,t i+ )×(0,∞) j=0 (∆t i+j ) -1 1 P (t, z) -1 j=0 z 1+ 2 d i+j dt i+j λ(dz i+j ) ≤ 1 P ζ 1 (η, p, t) 1+2/d p t i+ -t i-1 (3|log z i+ | + 1).
This completes integration with respect to (t i , z i ) for i ∈ J 1 (note that i + -1 ∈ J 1 implies i + ∈ L and hence z i+ < η). Recalling (6.32) and bounding (3| log z| + 1) p/(1+2/d) ≤ 3| log z| + 1, we obtain (6.38).

Step 1. Integrating with respect to indices in J 2 . To complete the proof, we need to show that

U 2 (P, t) ≤ ζ 2 (η, p) k 2 Λ(k 2 ,

t, p). (6.43)

To simplify notation, let us assume that J 2 = k and hence k 2 = k (again, this simply amounts to relabeling the vertices). Recalling the definition (6.6) of ζ 2 (η, p), the bound (6.43) follows once we have shown that if (t, z) ∈ P , then

(∆t k+1 ) νp-1 k i=1 (∆t i ) νp-1 z p i ≤ G p (t) k i=1 z p i 1 {z i ≥η} + z 1+ 2 d i 1 {z i <η} , ( 6.44) 
where, recalling the definition (6.5) of G p (s), we set

G p (t) := (∆t k+1 ) νp-1 i∈ k G p (∆t i ) if k / ∈ L, (∆t k ) νp-1 i∈ k+1 \{k} G p (∆t i ) if k ∈ L.
Note that in both cases, t 1-νp times the integral of G p (t) over the simplex X k (t) is equal to Λ(k, t, p) as defined in (6.4) (in the second case one simply needs to exchange the role of ∆t k and ∆t k+1 ). The reason why (6.44) is needed is that, on the left-hand side of (6.44), the exponent p makes z p i a priori not integrable near zero. But since ν p -1 > -1, there is some margin for the integrability of (∆t i ) νp-1 : the idea is to use the constraints in P to "transfer" a part of the exponent of ∆t i onto that of z i or z i-1 or both.

To this end, we shall use the equivalence (∆t) 6.45) in two cases: (i) if i ∈ I -∪ I + and z i < η, with z = z i and ∆t = ∆t i ; (ii) if i ∈ L (hence z i < η), with z = z i and ∆t = ∆t i+1 . The reader can check that for (t, z) ∈ P , the left-hand side of (6.45) is satisfied in these two cases. Notice now that if i ∈ L, then necessarily we have i+1 ∈ I + : indeed, i + 1 cannot be in I -since L 1 × = ∅ and it cannot be in L, either, since i ∈ J 2 by assumption. Therefore, we obtain

d 6 ≤ z ⇐⇒ (∆t) νp 3 ≤ z 1+ 2 d -p ( 
(∆t k+1 ) νp-1 k i=1 (∆t i ) νp-1 z p i ≤ i∈I - (∆t i ) νp-1-νp 3 1 {z i <η} i∈I + (∆t i ) νp-1-νp 3 (1 {z i <η} +1 {i-1∈L} ) × i∈L (∆t i ) νp-1 k i=1 z p i 1 {z i ≥η} + z 1+ 2 d i 1 {z i <η} .
(6.46)

The bound (6.44) now follows from the estimate i∈I -

(∆t i ) νp-1-νp 3 1 {z i <η} i∈I + (∆t i ) νp-1-νp 3 (1 {z i <η} +1 {i-1∈L} ) i∈L (∆t i ) νp-1 ≤ G p (t), (6.47)
which is a consequence of the following three observations concerning the exponent of ∆t i on the left-hand side of (6.47):

• It is larger than or equal to

νp 3 -1 (which we use if ∆t i ≤ 1). • It is equal to ν p -1 if ∆t i ≥ 1 > η (
as can be checked from the definition (6.39) of P ).

• It is equal to ν p -1 if i = k and k ∈ L or if i = k + 1 and k / ∈ L (this follows from the convention z k+1 = ∞).
This completes the proof of (6.43), which, together with (6.38), implies (6.33).

7. Proof of Theorem 2.1 and upper bounds in Theorems 2.11 and 2.12 7.1. Proof of Theorem 2.1. First let us note that the results for the free-end partition function follows from those for the point-to-point version and Jensen's inequality, as observed in (5.6). The L p -convergence (2.4) for p > 1 is a direct consequence of Corollary 6.5 and the fact that (Z ω,a β (t, x)) a∈(0,1] is a time-reversed martingale for the filtration G defined in (1.20). The convergence in L 1 when µ < ∞ cannot be obtained in this manner but can be recovered by a truncation argument. More precisely, we consider the partition function [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Equation (2.40) and below]) and reproduce the argument used in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 4.6 and 4.7] but with a moment of order p ∈ (1, 1 + 2 d ) ∩ (1, 2] instead of 2. Let us move to the proof of (2.3). Recall that ω < and ω ≥ denote the set of points in ω with third coordinate in (0, 1) and [1, ∞), respectively. Consider the reduced partition function

Z ω,[a,b) β (t, x) obtained by replacing ω by ω ∩ (R × R d × [0, b)) (see
Z ω<,a β (t, x) = ρ(t, x) + ∞ k=1 β k X k (t)×(R d ) k ρ t,x (t, x) k i=1 ξ a ω< (dt i , dx i ).
It is easy to obtain that

Z ω,a β (t, x) = Z ω<,a β (t, x) + ∞ k=1 β k X k (t)×(R d ) k Z ω<,a β,t,x (t, x) k i=1 ξ a ω ≥ (dt i , dx i ), (7.1) 
where we have defined

Z ω<,a β,t,x (t, x) := k+1 i=1 Z ω<,a β (t i-1 , x i-1 ; t i , x i ) ,
with the convention x 0 := 0, x k+1 := x, t 0 := 0, t k+1 := t. As a consequence, using Minkowski's inequality, the identity (1.18) and Corollary 6.5, we have for any p ∈ (1, 1 + 2 d ),

E < Z ω,a β (t, x) p 1 p ≤ C(β, p, t)ρ(t, x) + ∞ k=1 β k X k (t)×(R d ) k k+1 i=1 E < Z ω<,a β (∆t i , ∆x i ) p 1 p k i=1 ξ a ω ≥ (dt i , dx i ).
Using Corollary 6.5 again, we obtain

E < Z ω<,a β (∆t i , ∆x i ) p 1 p ≤ C(β, p, t)ρ(∆t i , ∆t i )
for every a ∈ (0, 1). Setting β := βC(β, p, t), we conclude that

E < Z ω,a β (t, x) p 1 p ≤ C(β, p, t)Z ω ≥ β (t, x) < ∞ (7.2)
for every a ∈ (0, 1). As Z ω,a β (t, x) is a reversed martingale in a under P < , this shows (2.3). For the proof of the positivity statement in (2.2), we refer to [13, Section 4.7].

Proof of Theorem 2.11 (first half: upper bounds).

In this section, we prove all upper bounds on |γ β (p)|. By convexity and the fact that γβ (1) = 0, we have for q ∈ (0, 1) and p ∈ (1, 1+ 

If t = t(β) = c p β -4
with a sufficiently small constant c p , the bound (6.3) gives that

E ρ(t, 0) -p Zω β (t, 0) p ≤ C p ∞ k 2 =0 (C p βt 1 4 ) k 2 Γ( k 2 +1
2 )

1 2 ∞ =0 (C p βt νp p ) Γ(ν p ( + 1)) 1 p k 2 +1 ≤ 2C p ∞ k 2 =0 (2C p βt 1 4 ) k 2 Γ( k 2 +1
2 )

1 2 ≤ 4C p .
Indeed, since 1 p ν p < 1 4 for p ∈ (2, 3), we can choose c p sufficiently small so that both the internal sum over and the sum over k 2 in the second line are bounded by 2. Altogether, thanks to (7.4) 

C p -1 k ζ 1 (p, t) k 1 p ζ 2 (p) k 2 p ≤ C 1 (log t) 1 1+2/d k 1 C k 2 2 , (7.5)
where C is the constant in (6.7). For Λ(k 2 , t, p), we use the following lemma, which we prove afterwards.

Lemma 7.1. For any

k ≥ 0, p ∈ (1, 1 + 2 d ), t ≥ 1 and α ∈ (0, 1), Λ(k, t, p) ≤ (k + 1) 2 (4ν -1 p α -νp ) k e αt .
Using Proposition 6.3, (7.5) and Lemma 7.1 (and the trivial bound (k + 1) 2/q ≤ (k + 1) 2 ), we have for any α > 0 and q ∈ (1, 1

+ 2 d ) E ρ(t, 0) -q Zω β (t, 0) q 1 q ≤ e α q t ∞ k 1 =0 (C 1 β(log t) 1 1+2/d ) k 1 ∞ k 2 =0 (k 2 + 1) 2 4 1 q C 2 βν -1 q q α - νq q k 2 . (7.6)
Now, for sufficiently small β we choose q ∈ (1

+ 1 d , 1 + 2 d )
, α ∈ (0, 1), t ≥ e in the following way (the dependence in β may sometimes be omitted in the computations below, for readability):

q(β) := 1 + 2 d - 8e d (2C 2 β) 1+ 2 d , α(β) := (4(2C 2 β) q ν -1 q ) 1 νq and t(β) := e (2C 1 β) -(1-2 d ) . (7.7)
Note that with this choice we have ν q = 4e(2C 2 β) 1+ 2 d and thus

α = (2C 2 β) -2 d exp - 1 4e(2C 2 β) 1+ 2 d , (7.8) C 1 β(log t) 1 1+2/d = 1 2 and 4 1 q C 2 βν -1 q q α - νq q = 1 2 , ( 7.9) 
so that the sums in k 1 and k 2 in (7.6) are respectively equal to 2 and 12. We end up with E ρ(t, 0) -q Zω β (t, 0) q 1 q ≤ 24 e α q t . (7.10)

For a fixed p ∈ (1, 1 + 2 d ), we can now deduce the upper bound in (2.16) from (7.10). We consider β sufficiently small so that q = q(β) ≥ p. Using first (7.4) and then Jensen's inequality, we get .11) Using (7.8) and replacing t by its value (7.7) yield the upper bound in (2.16) since p/q ≤ 1. Let us finally comment on our choice (7.7). The parameters α and t have been chosen so that (7.9), hence (7.10), holds. The value of q = q(β) is chosen so that α, seen as a function of q for fixed β, is minimized. This completes the proof of the upper bounds in (2.15) and (2.16).

γβ (p) ≤ 1 t log E ρ(t, 0) -p Zω β (t, 0) p ≤ p t log E ρ(t, 0) -q Zω β (t, 0) q 1 q ≤ p log 24 t + pα q . ( 7 
The lower bounds in (2.15) and (2.16) will be shown after Proposition 9.5.

Proof of Lemma 7.1. Recall the definitions (6.4) and (6.5) of Λ(k, t, p) and G p (s). For fixed j ∈ k , using a symmetry argument, we have that

X k (t) 1 {∆t k+1 = max i∈ k+1 ∆t i } (∆t k+1 ) νp-1 k i=1 G p (∆t i ) dt i = X k (t) 1 {∆t j = max i∈ k+1 ∆t i } (∆t j ) νp-1 i∈ k+1 \{j} G p (∆t i ) dt i ≥ X k (t) 1 {∆t j = max i∈ k+1 ∆t i } (∆t k+1 ) νp-1 i∈ k G p (∆t i ) dt i ,
where we have used that (∆t k+1 ) νp-1 G p (∆t j ) ≤ (∆t j ) νp-1 G p (∆t k+1 ) if ∆t k+1 ≤ ∆t j for the second step. As a consequence, again by a symmetry argument, we have

Λ(k, t, p) ≤ (k + 1) t 1-νp X k (t) 1 {∆t k+1 = max i∈ k+1 ∆t i } (∆t k+1 ) νp-1 k i=1 G p (∆t i ) dt i .
Together with the inequality max i∈ k+1 ∆t i ≥ t/(k + 1), this implies

Λ(k, t, p) ≤ (k + 1) 2-νp X k (t) k i=1 G p (∆t i ) dt i .
We can conclude our proof by observing that

X k (t) k i=1 G p (∆t i ) dt i ≤ e αt ∞ 0 G p (s)e -αs ds k and ∞ 0 G p (s)e -αs ds ≤ 1 0 s 1 3 νp-1 ds + ∞ 0 s νp-1 e -ανp ds = 3ν -1 p + Γ(ν p )α -νp ≤ 4ν -1 p α -νp ,
where the last step is valid because ν p ∈ (0, 1) and α ∈ (0, 1). If d ≥ 2, the arguments from Section 7.2 remain valid if we let q be equal to the value corresponding to our assumption µ 1,∞ (q) < ∞ (we consider C 1 and C 2 such that (7.5) is valid for this value of q) but retain the choice in (7.7) for α and t. The conclusion (7.11) is still valid for any p ∈ (1, q], and because α(β) = C 3 β q/νq , (2.18) follows.

If d = 1, it suffices by convexity to treat the case when p = q. By (6.2) (with η = 1) and our assumptions, there are constants C 1 and C 2 , which may depend on q, such that

E ρ(t, x) -q Zω β (t, x) q 1 q ≤ ∞ k 1 =0 (C 1 βt 1 4 ) k 1 ∞ k 2 =0 (C 2 βt νq q ) k 2 Γ(ν q (k 2 + 1)) 1 q . (7.12)
Let us choose t = t(β) := (2C 1 ) 4 β -4 so that the first sum is equal to 2. For the second sum, consider the three-parameter function Theorem 1], from which one gets that there is

F (γ) α,δ (x) = ∞ m=0 x m /Γ(αm + δ) γ . A precise asymptotic of F (γ) α,δ is given in [55,
K (γ) α,δ > 0 such that for all x ≥ 0, F (γ) α,δ (x) ≤ K (γ) α,δ e 2γx 1 αγ . (7.13)
Thanks to this estimate, the second sum in (7.12) is bounded by C 3 (1 + β cq ) exp( 1 q (C 2 β) q/νq t) with c q = (q -1)( 1 νq -4 q ) < 0. In view of (7.4), we obtain that γβ (q) ≤ q log(2C

3 (1 + β cq )) t(β) + C 2 β q νq ≤ C 4 β 4 log(1 + β -1 ) + C 2 β q νq .
Recalling that q/ν q < 4 if p < 2, this gives the upper bound in (2.18). Finally, the lower bound in (2.22) is an immediate consequence of (2.19) since our assumption lim z→∞ log λ([z, ∞))/ log z = α implies that µ 1,∞ (q) < ∞ for all q < α.

The second half of Theorem 2.12 will be shown after Proposition 9.5.

Existence and uniqueness of solutions to the SHE

This section is devoted to the proof of Theorems 2.5 and 2.7. The existence part, that is, Theorem 2.5 is detailed in the Sections 8.1-8.4. Theorem 2.7, is addressed afterwards: in Section 8.5, we verify that the solution defined in Theorem 2.5 satisfies the condition (2.10), while uniqueness is shown in Section 8.6. 8.1. Overview of the proof of Theorem 2.5. For the ease of exposition, we first present the case where the initial condition u 0 is the Dirac function δ 0 . By (1.16), we have

Z ω,a β (t, x) = ρ(t, x) + β (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ a ω< (ds, dy) + β (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ ω ≥ (ds, dy). (8.1)
We want to let a tend to 0 and conclude that

Z ω β (t, x) = ρ(t, x) + β (0,t)×R d ρ(t -s, x -y)Z ω β (s, y) ξ ω< (ds, dy) + β (0,t)×R d ρ(t -s, x -y)Z ω β (s, y) ξ ω ≥ (ds, dy). (8.2)
We have to prove that the two integrals in the on the right-hand side are well defined in Itô's and Lebesgue's sense, respectively (cf. Remark 1.2), that they are finite and that they are the limit of the integrals displayed in (8.1). For this last point, setting

I a 1 (t, x) := (0,t)×R d ρ(t -s, x -y)(Z ω,a β (s, y) -Z ω β (s, y)) ξ a ω< (ds, dy), I a 2 (t, x) := (0,t)×R d ρ(t -s, x -y)Z ω β (s, y) ξ [0,a)
ω< (ds, dy),

I a 3 (t, x) := (0,t)×R d ρ(t -s, x -y)(Z ω,a β (s, y) -Z ω β (s, y)) ξ ω ≥ (ds, dy),
with ξ

[a,b) ω := ξ a ω -ξ b ω (and ξ 0 ω := ξ ω ), we need to prove that for all (t, x) and j = 1, 2, 3, the following convergence holds in probability:

lim a→0 I a j (t, x) = 0. (8.3)
The finiteness and convergence of these integrals are proved in Section 8.2 and Section 8. β, p, T ) andC = C(β, p, T ) such that for every t ∈ [0, T ],

E < sup a∈(0,1) Z ω,a β (t, x) p 1 p ≤ CZ ω ≥ β (t, x) P ≥ -a.s.
Proof. By Doob's maximal inequality, it is sufficient to bound E < [Z ω,a β (t, x) p ] 1/p uniformly in a, t and x. With the conventions that t k+1 := t, x k+1 := x and the term corresponding to k = 0 is equal to Z ω<,a β (t, x), we have that

Z ω,a β (t, x) = ∞ k=0 β k X k (t)×(R d ) k k+1 i=1 Z ω<,a β (t i-1 , x i-1 ; t i , x i ) k j-1
ξ ω ≥ (dt j , dx j ). (8.4) Averaging with respect to ω < and using the Minkowski inequality, translation invariance and Corollary 6.5 (we let C 0 = C 0 (β, p, T ) denote the constant obtained from Corollary 6.5), we obtain the desired bound as follows:

E < Z ω,a β (t, x) p 1 p ≤ ∞ k=0 β k X k (t)×(R d ) k k+1 i=1 E < Z ω<,a β (∆t i , ∆x i ) p 1 p k j-1 ξ ω ≥ (dt j , dx j ) ≤ C 0 ∞ k=0 [C 0 β] k X k (t)×(R d ) k ρ t,x (t, x) k j=1 ξ ω ≥ (dt j , dx j ) = C 0 Z ω ≥ C 0 β (t, x).
Remark 8.2. In this section and the next, the dependence in β, p and T of the constant do not have a major importance: most of the time, they are omitted in computations.

We now proceed to showing that the integrals in (8.2) are well defined and finite. The integral I a 3 is a Lebesgue integral. Because of (2.2), it clearly suffices to show that

(0,t)×R d ρ(t -s, x -y) sup a∈(0,1)
Z ω,a β (s, y) ξ ω ≥ (ds, dy) < ∞. (8.5)

In fact, we are going to show that the L p (P < )-norm of the quantity in (8.5) is finite P ≥ -a.s. Using Minkowski's integral inequality and Lemma 8.1, we have

E < (0,t)×R d ρ(t -s, x -y) sup a∈(0,1)
Z ω,a β (s, y) ξ ω ≥ (ds, dy)

p 1 p ≤ (0,t)×R d ρ(t -s, x -y)E < sup a∈(0,1)
Z ω,a β (s, y) p

1 p ξ ω ≥ (ds, dy) ≤ C (0,t)×R d ρ(t -s, x -y)Z ω ≥
β (s, y) ξ ω ≥ (ds, dy).

(8.6) By (8.1), applied with a = 1, the integral in the last line is equal to (Z ω ≥ β (t, x) -ρ(t, x))/β , which is finite and therefore proves (8.5).

Let us now deal with I a 1 and I a 2 . We show that for P ≥ -a.e. realization of ω ≥ , the process (ω < , s, y) → ρ(t -s, x -y)Z ω<∪ω ≥ β (s, y) is L p (P < )-integrable with respect to ξ ω< , in the sense described in Section 4.3. Thanks to Lemma 4.4, this implies that (ω, s, y) → ρ(t -s, x -y)Z ω β (s, y) is L 0 (P)-integrable with respect to ξ ω< . To this end, according to (4.6) and (4.7), we only need to prove that for some p ∈ (1, 1 + 2 d ), we have

E < (0,t)×R d ×(0,1) ρ(t -s, x -y) 2 Z ω β (s, y) 2 z 2 δ ω< (ds, dy, dz) p 2 < ∞. (8.7) 
Using Fatou's Lemma for the inner integral, we can replace Z ω β (s, y) by Z ω,a β (s, y) and add a restriction 1 {z≥a} provided that the bound we prove is uniform in a. Now using the BDG inequality in the reverse direction, we obtain that

E < (0,t)×R d ×(0,1) ρ(t -s, x -y) 2 Z ω,a β (s, y) 2 z 2 1 {z≥a} δ ω< (ds, dy, dz) p 2 ≤ C E < (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ a ω< (ds, dy) p . ( 8.8) 
Now using (8.1) and the Minkowski inequality, we have

βE < (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ a ω< (ds, dy) p 1 p ≤ ρ(t, x) + E < Z ω,a β (t, x) p 1 p + β E < (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ ω ≥ (ds, dy) p 1 p . ( 8.9) 
We conclude by observing that all summands on the right-hand side are uniformly bounded in a: we use Lemma 8.1 for the second one, while the third one has been controlled in the previous paragraph (see (8.6)).

Convergence of stochastic integrals.

We give the proof of (8.3) in this section. The convergence of I a 3 follows from (8.5) and dominated convergence. The convergence of I a 2 follows from dominated convergence for stochastic integrals. The main piece of work consists in proving the convergence of I a 1 . We define

J a,b 1 (t, x) := (0,t)×R d ρ(t -s, x -y)(Z ω,a β (s, y) -Z ω β (s, y)) ξ [a,b) ω< (ds, dy) , J a,b 2 (t, x) := (0,t)×R d ρ(t -s, x -y) Z ω,a β (s, y) -Z ω β (s, y) ξ b ω< (ds, dy) ,
and we prove that the following holds in P ≥ -probability:

lim b→0 sup a∈(0,1) E < |J a,b 1 (t, x)| = 0 and lim a→0 E < |J a,b 2 (t, x)| = 0. Convergence of J a,b 2 (t, x). By Jensen's inequality, it suffices to prove that E < [|J a,b 2 (t, x)| p ] → 0 for some p ∈ (1, min(2, 1 + 2 d ))
. By the BDG inequality, we can further reduce this to proving

lim a→0 E < (0,t)×R d ×[b,1)
ρ(t -s, x -y) 2 (Z ω,a β (s, y) -Z ω β (s, y)) 2 z 2 δ ω< (ds, dy, dz)

p 2 = 0. (8.10)
By subadditivity (5.4), for a < b this quantity is smaller than

E < (0,t)×R d ×[b,1) ρ(t -s, x -y) p |Z ω,a β (s, y) -Z ω β (s, y)| p z p δ ω< (ds, dy, dz) = µ b,1 (p) (0,t)×R d ρ(t -s, x -y) p E < |Z ω,a β (s, y) -Z ω β (s, y)| p ds dy.
As the integrand tends to zero thanks to (2.3), by dominated convergence we will get that the last integral converges to 0 for P ≥ -a.s. if we show that for P ≥ -a.e. realization of ω ≥ ,

(0,t)×R d ρ(t -s, x -y) p E < sup a∈(0,1)
Z ω,a β (s, y) p ds dy < ∞ . (8.11) To this end, we use Lemma 8.1 to bound the left-hand side of (8.11) by a constant times

(0,t)×R d ρ(t -s, x -y) p Z ω ≥ β (s, y) p ds dy ≤ ∞ k=0 (β ) k X k (t)×(R d ) k (t k ,t)×R d ρ(t -s, x -y) p ρ(s -t k , y -x k ) p ds dy 1 p × k i=1 ρ(∆t i , ∆x i ) ξ ω ≥ (dt i , dx i ) p , (8.12) 
where the last inequality follows from Minkowski's inequality (for the L p -norm of the measure ρ(t -s, x -y) p ds dy). Recalling (5.5) and using Lemma 4.5, one has

(t k ,t)×R d ρ(t -s, x -y) p ρ(s -t k , y -x k ) p ds dy = ϑ(p) 2 Γ(ν p ) 2 Γ(2ν p ) (t -t k ) 2νp-1 ρ 1 p (t -t k ), x -x k = ϑ(p) Γ(ν p ) 2 Γ(2ν p ) (t -t k ) νp ρ(t -t k , x -x k ) p . (8.13)
Therefore, the right-hand side of (8.12) is further bounded by

ϑ(p)Γ(ν p ) 2 Γ(2ν p ) -1 t νp times ∞ k=0 (β ) k X k (t)×(R d ) k ρ t,x (t, x) k i=1 ξ ω ≥ (dt i , dx i ) p = Z ω ≥ β (t, x) p , ( 8.14) 
which is finite. This concludes the proof of (8.10).

Convergence of J a,b 1 (t, x). Using Jensen's inequality, we need to show that for some p

∈ (1, 1 + 2 d ), lim b→0 sup a∈(0,1) E < (0,t)×R d ρ(t -s, x -y)Z ω,a β (s, y) ξ [a,b) ω< (ds, dy) p = 0, lim b→0 sup a∈(0,1) E < (0,t)×R d ρ(t -s, x -y)Z ω β (s, y) ξ [a,b) ω< (ds, dy) p = 0. (8.15) 
For the second line, we apply the BDG inequality and realize that sup a∈(0,1)

E < (0,t)×R d ρ(t -s, x -y)Z ω β (s, y) ξ [a,b) ω< (ds, dy) p ≤ C E < (0,t)×R d ×[0,b) ρ(t -s, x -y) 2 Z ω β (s, y) 2 z 2 δ ω< (ds, dy, dz) p 2
.

Thanks to (8.7), this converges to 0 as b → 0, by dominated convergence. Concerning the first line in (8.15), we rely on the proof of Propositions 6.1 and 6.3 but with a small variation. Let us define a modified partition function by

Y ω,a,b β (s, x; t, y) := ∞ k=1 β k-1 X k (s,t)×(R d ) k ρ s,x;t,y (t, x) k-1 i=1 ξ a ω (dt i , dx i ) ξ [a,b) ω (dt k , dx k ) and Y ω,a,b β (t, x) := Y ω,a,b β (0, 0; t, x). The reader can check that the E < [(• • • )]-term in the first line of (8.15) is simply E < [|Y ω,a,b β (t, x)| p ].
In analogy with (7.1), we have

Y ω,a,b β (t, x) = Y ω<,a,b β (t, x) + ∞ k=1 β k X k (t)×(R d ) k Y ω<,a,b β (t k , x k ; t, x) k i=1 Z ω<,a β (t i-1 , x i-1 ; t i , x i ) ξ ω ≥ (dt i , dx i ).
Applying Minkowski's inequality, we get

E < |Y ω,a,b β (t, x)| p 1 p ≤ E < Y ω<,a,b β (t, x) p 1 p + ∞ k=1 β k X k (t)×(R d ) k E < |Y ω<,a,b β (∆t k+1 , ∆x k+1 )| p 1 p × k i=1 E < Z ω<,a β (∆t i , ∆x i ) p 1 p ξ ω ≥ (dt i , dx i ).
We then need the following estimate, which comes from a small adaptation of the proofs of Propositions 6.1 and 6.3 and Corollary 6.5. The proof of this lemma is postponed to the end of the section. 

E ρ(t, x) -p |Y ω,a,b β (t, x)| p 1 p ≤ δ(b).
By Corollary 6.5 and Lemma 8.3, we obtain a constant C 0 = C 0 (β, p, T ) such that

E < |Y ω,a,b β (t, x)| p 1 p ≤ δ(b) ρ(t, x) + ∞ k=1 (C 0 β) k X k (t)×(R d ) k ρ t,x (t, x) k i=1 ξ ω ≥ (dt i , dx i ) = δ(b)Z ω ≥ β (t, x) , with β := C 0 β. Since Z ω ≥ β (t, x) is P ≥ -a.
s. finite, this shows the first line of (8.15). Thus, the proof of the convergence to zero of J a,b 1 (t, x) is complete.

Proof of Lemma 8.3. The proof is considerably easier for d = 1, so we only provide details in the case d ≥ 2. We follow exactly the plan of the proof of Proposition 6.3 up to Equation (6.15). Because of the restriction on the last iteration of the integral over the noise, the quantity we need to bound is not

E[|V a,k (t) p |] but rather E[|V b a,k (t)| p ] where V b a,k (t) := X (k) t ρ t,0 (t, x) ρ(t, 0) 1 {z k <b} k i=1 z i 1 {z i ≥a} (δ ω i -ν)(dt i , dx i , dz i ).
To conclude, we only need to slightly improve the bounds in further computations. The reader can check that the proof of Lemma 6.7 yields the inequality (6.17) for V b k (t) with an additional 1 {z k <b} in each of the integrals on the right-hand side. Let U(P, t, b) denote the corresponding integrals in the case θ = 1 + 2 d , cf. (6.32). Adapting the proof of Proposition 6.10, we want to prove that

U(P, t, b) ≤ ε(b, η)ζ 1 (η, p, t) k 1 ζ 2 (η, p) k 2 Λ(k 2 , t, p) (8.16) 
for some ε(b, η) that converges to 0 as b → 0 for any fixed η ∈ (0, 1). Because of (8.16), the factor ε(b, η) appears on the right-hand side of (6.34) so that, provided that η has been chosen sufficiently small, we obtain that for every t

∈ [0, T ], x ∈ R d and a ∈ (0, b), E ρ(t, x) -p Y ω,a,b β (t, x) p ≤ β -1 ε(b, η)C(β, p, T )
with the constant C(β, p, T ) of Corollary 6.5. This is exactly the desired result. Note that the factor β -1 comes from the fact that in the definition of Y ω,a,b β (t, x), we have β k-1 instead of β k . To prove (8.16), we follow the proof of Proposition 6.10 and realize that we can improve the upper bound by a factor of (µ log 0,b (1

+ 2 d )/µ log 0,η (1 + 2 d )) p/(1+2/d) if k ∈ J 1 and a factor of µ log 0,b (1 + 2 d )/ζ 2 (η, p) if k ∈ J 2 so that (8.16) is valid for ε(b, η) := µ log 0,b (1 + 2 d ) µ log 0,η (1 + 2 d ) p 1+2/d ∨ µ log 0,b (1 + 2 d ) ζ 2 (η, p) .
8.4. General initial condition. Using translation invariance, we have already shown that the point-to-point partition function Z ω β (y; t, x) is a solution to (1.6) with u 0 = δ y , for all y ∈ R d . The fact that v as defined in (2.8) is a mild solution to the SHE with initial condition u 0 follows immediately by integrating (2.6) on both sides with respect to u 0 , provided that integrals can be permuted in the following manner:

R d (0,t)×R d ρ(t -s, x -y )Z ω β (y; s, y ) ξ ω (ds, dy ) u 0 (dy) = (0,t)×R d ρ(t -s, x -y ) R d
Z ω β (y; s, y ) u 0 (dy) ξ ω (ds, dy ).

Writing ξ ω = ξ ω< + ξ ω ≥ , we can use the ordinary Fubini theorem for the ξ ω ≥ -integral and a stochastic version of Fubini's theorem [START_REF] Chong | Path properties of the solution to the stochastic heat equation with Lévy noise[END_REF]Theorem A.3] for the integration with respect to ξ ω< . Both cases require some integrability properties, which we are going to show by recycling the estimates from Section 8.2.

Concerning the integral with respect to ξ ω ≥ , we simply need to check integrability in the Lebesgue sense, that is,

R d (0,t)×R d ρ(t -s, x -y )Z ω β (y; s, y ) ξ ω ≥ (ds, dy ) |u 0 |(dy) < ∞ P ≥ -a.s.
By Minkowski's integral inequality and Lemma 8.1, for p ∈ (1, 1 + 2 d ), the L p (P < )-norm of the left-hand side is bounded by a constant times

R d (0,t)×R d ρ(t -s, x -y )Z ω ≥ β (y; s, y ) ξ ω ≥ (ds, dy ) |u 0 |(dy) = (β ) -1 R d Z ω ≥ β (y; t, x)|u 0 |(dy) - R d ρ(t, x -y) |u 0 |(dy) ,
where the equality follows from (8.1) with a = 1. The second integral on the right-hand side is finite as a consequence of our assumption (2.7). The first one is finite by [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 2.21].

For the integral with respect to ξ ω< , according to [START_REF] Chong | Path properties of the solution to the stochastic heat equation with Lévy noise[END_REF]Theorem A.3], changing the order of integration is permitted if we have

R d E < (0,t)×R d ×(0,1) ρ(t -s, x -y ) 2 Z ω β (y; s, y ) 2 z 2 δ ω< (ds, dy , dz) p 2 1 p |u 0 |(dy) < ∞.
Using (8.8) and (8.9), together with Lemma 8.1 and (8.6), we can bound the quantity above by a constant times

R d ρ(t, x -y) + Z ω ≥ β (y; t, x) + (0,t)×R d ρ(t -s, x -y )Z ω ≥ β (y; s, y ) ξ ω ≥ (ds, dy ) |u 0 |(dy),
The integrability of each of the three terms has already been shown above.

Integrability property of the solution.

Let us show that the solution v defined in Equation (2.8) satisfies the integrability condition (2.10). The important part is to show that whenever u 0 satisfies (2.7) for a given T > 0, then for any p ∈ (1, 1 + 2 d ), we have

(0,T )×R d ρ(θ(T -t), x) p E < R d Z ω β (y; t, x) u 0 (dy) p dt dx < ∞. (8.17) 
In our proof of (8.17), we will check along the way that the expectation term, which equals

E < [|v(t, x)| p ]
, is finite for any t and x, proving the first line of (2.10). By (2.7), we can find ε > 0

such that 2T lim sup r→∞ r -2 log |u 0 |([-r, r] d )) < 1 -2ε . ( 8.18) 
We also let θ := (1 -ε) -1 . In the following proof, the parameters p ∈ (1, 1 + 2 d ), T , β and λ and ε are all fixed, and the constants appearing in the inequalities may depend on them.

Using Minkowski's inequality first and Lemma 8.1 afterwards, we have for any t ∈ [0, T ],

E < R d Z ω β (y; t, x) u 0 (dy) p 1 p ≤ R d E < Z ω β (y; t, x) p 1 p |u 0 |(dy) ≤ C R d Z ω ≥ β (y; t, x) |u 0 |(dy) .
The a.s. finiteness of the right-hand side for fixed x and t is a consequence of [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Prop. 2.19]. Using the inequality above, to prove (8.17), we now need to show that P ≥ -a.s.,

(0,T )×R d ρ(θ(T -t), x) p R d Z ω ≥ β (y; t, x) |u 0 |(dy) p dt dx < ∞. (8.19) 
We do so by comparing Z ω ≥ β (y; t, x) with a variable with finite pth moment. For a small ε > 0, we introduce the quantity

T := sup k≥1 sup y∈R d sup (t i ,x i ,z i ) k i=1 ⊆ω ≥ : 0<t 1 <•••<t k <T k i=1 log z i -ε k i=2 x i -x i-1 2 2(t i -t i-1 ) -ε y 2 2T + x 1 -y 2 2t 1 . (8.20)
Note that optimizing over y leads to the simpler expression

T = sup k≥1 sup (t i ,x i ,z i ) k i=1 ⊆ω ≥ : 0<t 1 <•••<t k <T k i=1 log z i -ε k i=2 x i -x i-1 2 2(t i -t i-1 ) - ε x 1 2 2(T + t 1 ) . ( 8.21) 
The following lemma is an easy consequence of [13, Lemma 4.17].

Lemma 8.4. For any T > 0 and ε > 0, T is finite P ≥ -a.s.

Proof. By [13, Lemma 4.17], we have (with the convention x 0 = 0 and t 0 = 0) sup k≥1 sup

(t i ,x i ,z i ) k i=1 ⊆ω ≥ : 0<t 1 <•••<t k <2T k i=1 log z i -ε x i -x i-1 2 2(t i -t i-1 ) < ∞.
Taking a further restriction (namely t 1 > T ) and shifting time by -T , we obtain by translation invariance that sup k≥1 sup

(t i ,x i ,z i ) k i=1 ⊆ω ≥ : 0<t 1 <•••<t k <T k i=1 (log z i ) -ε k i=2 x i -x i-1 2 2(t i -t i-1 ) -ε x 1 2 2(t 1 + T ) < ∞.
As a consequence of Lemma 8.4, we have for every x, y ∈ R d and t ∈ [0, T ] that

Z ω ≥ β (y; t, x) ≤ e T + ε y 2 2T ∞ k=0 (β ) k X (k) t ρ y;t,x (t, x) k+1 i=1 e ε ∆x i 2 2∆t i k j=1 δ ω ≥ (dt j , dx j , dz j ), (8.22) 
with the convention that x 0 = y. Because

ρ(t, x)e η x 2 2t = θ d 2 η ρ(θ η t, x) with θ η = (1 -η) -1 (8.23) and θ = (1 -ε) -1 , we have Z ω ≥ β (y; t, x) ≤ e T + ε y 2 2T Z ω ≥ β (y; t, x), where Z ω ≥ β (y; t, x) := ∞ k=0 (θ d 2 β ) k X (k) t ρ y;θt,x (θt, x) k j=1
δ ω ≥ (dt j , dx j , dz j ) . (

Setting û0 (dy) := e ε y 2

2T |u 0 |(dy), we can reduce the proof of (8.19) to showing

(0,T )×R d ρ(θ(T -t), x) p R d Z ω ≥ β (y; t, x)û 0 (dy) p dt dx < ∞. (8.25) 
We take the expectation and apply Minkowski's inequality twice to get

E (0,T )×R d ρ(θ(T -t), y) p R d Z ω ≥ β (y; t, x)û 0 (dy) p dt dy ≤ (0,T )×R d ρ(θ(T -t), y) p R d E Z ω ≥ β (y; t, x) p 1 p û0 (dy) p dt dx ≤ R d (0,T )×R d ρ(θ(T -s), y) p E Z ω ≥ β (y; t, x) p dt dx 1 p û0 (dy) p . (8.26) 
Observe now that Z ω ≥ β (y; t, x) is a (non-normalized) point-to-point partition function corresponding to a Poisson environment with intensity measure λ([1, ∞))δ θ d/2 β and a time-rescaling by θ. Therefore, by Corollary 6.5,

E[ Z ω ≥ β (y; t, x) p ] ≤ Cρ(θt, x -y) p , ( 8.27) 
for a constant C that depends on all parameters but not on y, t and x. Hence, the 1 p th power of (8.26) is bounded by a constant times

R d (0,T )×R d ρ(θ(T -t), x) p ρ(θt, x -y) p dt dx 1 p û0 (dy) ≤ C R d
T νp e -y 2 2θT û0 (dy) ,

where the inner integral has been computed exactly, as in (8.13). The above integral is finite thanks to our choice of ε and θ in (8.18). Thus, (8.25) holds and the proof is complete.

8.6. Uniqueness of solutions to the SHE. We assume in this section that λ satisfies (1.21) and prove uniqueness among solutions satisfying (2.10). By the fact that the condition (2.10) is stable under linear combinations, it is sufficient to show that any solution to (1.6) with u 0 ≡ 0 is equal to zero. Consider v that satisfies (2.10) and is such that for every t ∈ (0, T ] and

x ∈ R d , v(t, x) = β t 0 R d ρ(t -s, x -y)v(s, y) ξ ω (ds, dy) .
Applying this identity to v(s, y) in the integrand and repeating this, we obtain that for any k ≥ 1, 1) , x (1) )v(t 1 , x 1 )

v(t, x) = β k X (k) t ρ t 1 ,x 1 ;t,x (t ( 
k i=1
ξ ω (dt i , dx i ), (8.28) where t (1) and x (1) are obtained from t and x, respectively, by removing the first component. Fixing x ∈ R d and t ∈ (0, T ), we are going to prove that v(t, x) = 0 by showing that the right-hand side in (8.28) is summable in k. More precisely, we set

U(t, x) := ∞ k=0 β k X (k) t
ρ t 1 ,x 1 ;t,x (t (1) , x (1) )v(t 1 , x 1 )

k i=1 ξ ω (dt i , dx i ) ,
the term for k = 0 being simply v(t, x). We fix p ∈ (1, 1 + 2 d ) for which µ 0,1 (p) < ∞ (when d = 1 we fix p = 2) and we are going to prove that

E < U(t, x)
p < ∞ P ≥ -a.s. (8.29) Separating ω < and ω ≥ in ξ ω , we have that

U(t, x) = ∞ k=0 β k X (k) t V(t 1 , x 1 ) k+1 i=2 Z ω< β (t i-1 , x i-1 ; t i , x i ) k i=1 ξ ω ≥ (dt i , dx i ), (8.30) 
where (1) , x (1) )v(t 1 , x 1 )

V(t, x) := ∞ k=0 β k X (k) t ρ t 1 ,x 1 ;t,x (t
k i=1 ξ ω< (dt i , dx i ) (8.31)
and the terms for k = 0 in (8.30) and (8.31) are V(t, x) and v(t, x) respectively. By Corollary 6.5 and translation invariance, there exists β > 0 such that

E < |U(t, x)| p 1 p ≤ E < |V(t, x)| p 1 p + ∞ k=1 (β ) k X (k) t E < |V(t 1 , x 1 )| p 1 p k+1 i=2 ρ(∆t i , ∆x i ) k i=1 ξ ω ≥ (dt i , dx i ). (8.32)
To prove (8.29), we bound each of the two summands in (8.32) separately.

Let us start with E < [|V(t, x)| p ] 1/p . Using the triangle inequality and iterating the BDG inequality and the subadditivity property (5.4) for each term (as done in (A.1), for example), we obtain (1) , x (1) 

E < |V(t, x)| p 1 p ≤ ∞ k=0 (C p βµ 0,1 (p) 1 p ) k X (k) t ρ t 1 ,x 1 ;t,x (t
) p E < |v(t 1 , x 1 )| p k i=1 dt i dx i 1 p .
Then, applying (6.20) and Lemma 4.5 with the trivial inequality t -t 1 ≤ t, we get that

E < |V(t, x)| p 1 p ≤ E < |v(t, x)| p 1 p + ∞ k=1 C p β(µ 0,1 (p)Γ(ν p )t νp ) 1 p k Γ(kν p ) 1 p (0,t)×R d ρ(t -t 1 , x -x 1 ) p E < |v(t 1 , x 1 )| p dt 1 dx 1 1 p . (8.33)
Since the sum in k in finite, the two conditions in our assumption (2.10) implies the P ≥ -a.s. finiteness of the right-hand side of (8.33).

To show that the series in (8.32) is finite, we apply a similar trick to (8.22) and replace the z i 's coming from the atoms of ω ≥ by one. More precisely, we set

T (t, x) := sup k≥1 sup (t i ,x i ,z i ) k i=1 ⊆ω ≥ : 0<t 1 <•••<t k <t k i=1 (log z i ) -η k+1 i=2 x i -x i-1 2 2∆t i , ( 8.34) 
with the convention that t k+1 = t and x k+1 = x. The value of η > 0 in (8.34) is chosen such that θ = (1 -η 3p-1 2 ) -1 , with the same θ as in the assumption (2.10). By the translation invariance and symmetry properties of ω ≥ , [13, Lemma 4.17] guaranties that T (t, x) < ∞, P ≥ -a.s. Defining

Z ω ≥ β (s, y; t, x) := ∞ k=0 (β ) k X (k) t ρ s,y;t,x (t, x) k+1 i=1 e η ∆x i 2 2∆t i k j=1
δ ω (dt j , dx j dz j ) , (8.35) we find that the series in (8.32) β (s, y; t, x) by ρ(t -s, x -y)e η x-y 2 /(t-s) . This is the purpose of the following lemma whose short proof is postponed to the end of the section. Then we have # (Θ(t, x) ∩ ω≥ ) < ∞ P ≥ -a.s.

As a consequence of Lemma 8.5, the integral in (8.36) To this end, we use the bound (8.33) for E < [|V ω β (s, y)| p ] 1/p and check that the integrals corresponding to each of the two summands on the right-hand side of (8.33) are finite. In the first case, we must show that Applying Jensen's inequality for the finite measure e -η x-y 2 /2(t-s) ds dy, we can bound the quantity above by

(0,t)×R d E < v(s, y)
(0,t)×R d E < v(s, y) p ρ(t -s, x -y) p e η(3p-1)
x-y 2 2(t-s) ds dy

1 p . ( 8.41) 
Recalling (8.23) and the relation θ = (1 -η 3p-1 2 ) -1 , the finiteness of (8.41) follows from our assumption (2.10).

For the second summand on the right-hand side of (8.33), we have to show that

(0,t)×R d e η x-y 2 (t-s) ρ(t -s, x -y) (0,s)×R d ρ(s -r, y -v) p E < |v(r, v)| p dr dv 1 p
ds dy < ∞ . (8.42) Using the same trick as in (8.41), we see that it is sufficient to prove the finiteness of (0,t)×R d (0,s)×R d e -η(3p-1)

x-y 2 2(t-s) ρ(t -s, x -y) p ρ(s -r, y -v) p E < |v(r, v)| p dr dv ds dy . Now, by (8.23) and thanks to our choice of η, we can replace e -η(3p-1) x-y 2 /2(t-s) ρ(t-s, x-y) p by a constant times ρ(θ(t -s), x -y) p and bound ρ(s -r, y -v) p by a constant times ρ(θ(s -r), y -v) p . Then, using (5.5) as in(8.13), we have

(r,t)×R d ρ(θ(t -s), x -y) p ρ(θ(s -r), y -v) p ds dy ≤ C η,p (t -r) νp ρ(θ(t -r), x -v) p .
Hence, the finiteness of (8.42) is also consequence of (2.10), which finally concludes the proof.

Proof of Lemma 8.5. By Markov's inequality and (8.27), we have for any given s, y ∈ (0, t) × R d ,

P ≥ Z ω ≥ β (s, y; t, x) ≥ ρ(t -s, x -y)e η x-y 2 (t-s) ≤ C ρ t-s 1-η , x -y ρ(t -s, x -y) e -η x-y 2 (t-s) p = C e -ηp
x-y 2 2(t-s) , using (8.23) for the last inequality. Hence, we have

E ≥ # (Θ(t, x) ∩ ω≥ ) ≤ C (0,t)×R d ×[1,∞) e -ηp
x-y 2 2(t-s) ds dy λ(dz)

= C p λ([1, ∞)) (0,t) (t -s) d 2 ds < ∞.
9. Moments of order p ∈ (0, 1) and lower bounds in Theorems 2.11 and 2.12

This section is dedicated to estimating fractional moments of Z ω β (t, * ). More precisely, we focus on E[Z ω β (t, * ) 1/2 ] to simplify notation, but the method would be equally efficient to directly estimate E[Z ω β (t, * ) p ] for p ∈ (0, 1). The estimates obtained in this section allow us to complete the proof of Theorems 2.11 and 2.12, since by convexity and the fact that γβ (1) = 0 and γβ (0) = 0, we have

       γβ (p) ≤ 2pγ β ( 1 2 ) for p ∈ (0, 1 2 ), γβ (p) ≤ 2(1 -p)γ β ( 1 2 ) for p ∈ ( 1 2 , 1), γβ (p) ≥ -2(p -1)γ β ( 1 2 )
for p > 1.

(9.1)

We also prove Proposition 2.2 in Section 9.4, partially using ideas developed in Sections 9.1-9.3. In Section 9.1, we introduce a method that combines a coarse-graining and a change-of-measure argument, which allows to obtain upper bounds that decay exponentially in t (this is crucial for the proof of Theorems 2.11 and 2.12). This approach originates in the study of the discrete pinning model [START_REF] Derrida | Fractional moment bounds and disorder relevance for pinning models[END_REF][START_REF] Giacomin | Hierarchical pinning models, quadratic maps and quenched disorder[END_REF]: in its refined form, which first appeared in [START_REF] Toninelli | Coarse graining, fractional moments and the critical slope of random copolymers[END_REF], it can be used in a continuum setup such as the SHE. Note that the method found many implementations in the last decade, such as for disordered pinning [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF][START_REF] Giacomin | Marginal relevance of disorder for pinning models[END_REF], directed polymers and variants [START_REF] Berger | The high-temperature behavior for the directed polymer in dimension 1 + 2[END_REF][START_REF] Bertin | Very strong disorder for the parabolic Anderson model in low dimensions[END_REF][START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF][START_REF] Lacoin | Influence of spatial correlation for directed polymers[END_REF], the random walk pinning model [START_REF] Berger | On the critical point of the random walk pinning model in dimension d = 3[END_REF][START_REF] Birkner | Disorder relevance for the random walk pinning model in dimension 3[END_REF], large deviations of random walks in a random environment [START_REF] Yilmaz | Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three[END_REF], self-avoiding walks in a random environment [START_REF] Lacoin | Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster[END_REF], and anomalous path detection in a random environment [START_REF] Chatterjee | Thresholds for detecting an anomalous path from noisy environments[END_REF].

The achievement of the method (presented in Lemma 9.1) is to reduce the problem of estimating moments to that of showing that the original measure P significantly differs (in total variation) from an alternative measure where the environment has been modified along a Brownian trajectory (the size-biased measure). This last statement is proved in Sections 9.2 (for d = 1 or heavy-tailed noises) and 9.3 (for d ≥ 2 and light-tailed noises). While Lemma 9.1 is quite general and can be adapted to various settings, the proof that the original and the tilted measures differ in total variation heavily depends on context.

The proof presented in Section 9.2 for d = 1 relies on ideas found in [START_REF] Lacoin | New bounds for the free energy of directed polymer in dimension 1 + 1 and 1 + 2[END_REF]Section 3]: in essence, we discriminate between the original and the tilted environments by looking at the average in a box of length T and wdith √ T . The proof for heavy-tailed environments, also found in Section 9.2, relies on a similar idea to that found in [93, Section 2].

On the other hand, the approach taken in Section 9.3 and Section 9.4 are completely new and have no discrete analogue. We show that what makes the tilted measure different from the original one is the presence of clusters of points that are very close to one another. It requires a fine analysis to identify exactly what the characteristics of these clusters are. 9.1. A general coarse-graining lemma. For notational simplicity, we set Z ω β,t := Zω β (t, * ) in the remainder of this section. Our coarse-graining approach reduces the problem of bounding fractional moments of Z ω β,t to identifying a single event that is unlikely under the original measure P but becomes likely under the size-biased measure P 0 β,t ; recall Section 4.1 and notation therein. We say that a measurable event A for the point process ω has time range [0,

T ) if 1 A (ω) is a function of ω ∩ ([0, T ) × R d × (0, ∞))
. Moreover, defining ω = ω(ω, ω , B) := ω ∪ ω(ω , B), we will use, for a generic real-valued function f defined on the set of environments, the abbreviation

f (ω, ω , B) := f • ω(ω, ω , B). (9.2)
Also, recall that Q x is the law of a d-dimensional standard Brownian motion starting from x.

Lemma 9.1. Assume that µ < ∞. There exists a constant K ∈ (0, ∞), which only depends on the dimension d, with the following property: For any β > 0 and T > 0, if there exists an event A with time range [0, T ) satisfying both

P(ω ∈ A) ≤ e -K , (H1) max x∈[0, √ T ) d P ⊗ P β ⊗ Q x ( ω / ∈ A) ≤ e -K , ( H2 
)
then for all m ≥ 1 we have

E (Z ω β,mT ) 1 2 
≤ 2 -m , (

and as a consequence γβ ( 1 2 ) ≤ -(log 2)T -1 . Below, we are going to apply Lemma 9.1 to events of the type

A := {ω : f (ω) -E[f (ω)] > h} or A := {ω : f (ω) > h} (9.4)
where f is a function that only depends on ω ∩ ([0, T ) ∩ R d × (0, ∞)) and h ∈ R is a threshold to be chosen appropriately. More precisely, we consider functions f of the form

f (ω) = X (k) T Υ(t, x, z) k i=1 δ ω (dt i , dx i , dz i ), (9.5) 
where k is a positive integer and Υ is a non-negative function on X (k)

T (recall the notation (6.11)). Given f as above, we define

f (ω , B) = X (k) T Υ(t, (B t i ) k i=1 , z) k i=1 δ ω (dt i , dz i ). (9.6) 
In other words, f is the total contribution of the additional terms in f that are obtained by considering (only) the atoms on the added "environment spine" (ω , B) (recall (9.2)). Then, for f of the form (9.5), since Υ is non-negative, we have

f (ω, ω , B) ≥ f (ω) + f (ω , B). (9.7)
In this setting, verifying (H1) and (H2) boils down to first and second moment computations for f and f . Corollary 9.2. Assume that f is as in (9.5) and satisfies one of the two following conditions:

(C1) For all x ∈ [0, √ T ) d , we have that

E β ⊗ Q x [f (ω , B)] 2 ≥ 4e K Var(f (ω)) + Var P β ⊗Qx (f (ω , B)) ; (C2) The function Υ is integer-valued, we have E[f (ω)] ≤ e -K and ∀x ∈ [0, √ T ) d : E β ⊗ Q x [f (ω , B)] 2 ≥ e K Var P β ⊗Qx (f (ω , B)).
In both cases, also assume that the variances on the right-hand side are finite. Then (H1) and (H2) are satisfied and

γ β ( 1 2 ) ≤ -(log 2)T -1 . Proof. If (C1) is satisfied, define m := E[f (ω)]
and σ := Var(f (ω)) + Var P β ⊗Qx (f (ω , B))

and consider the event

A := {ω : f (ω) > m + e K 2
σ}. We can apply Chebyshev's inequality, using that σ 2 ≥ Var(f (ω)), to check the validity of (H1). For (H2), we observe that as a consequence of (9.7), we have

{ ω / ∈ A} ⊆ {f (ω) + f (ω , B) ≤ m + e K 2
σ}. Using Chebyshev's inequality, we deduce that

P ⊗ P β ⊗ Q x ( ω / ∈ A) ≤ Var(f (ω)) + Var P β ⊗Qx (f (ω , B)) e K 2 σ -E β ⊗ Q x [f (ω , B)] 2 ≤ e -K .
If (C2) is satisfied, we set

A := {ω : f (ω) ≥ 1} = {ω : f (ω) > 0} .
We then deduce (H1) from Markov's inequality applied to f (ω) and (H2) from Chebychev's inequality applied to f (ω , B).

Remark 9.3. We will use the assumption (C1) for d = 1 in the light-tailed case and the assumption (C2) in all heavy-tailed cases and for d ≥ 2. These two assumptions correspond to two different ways of distinguishing between the original measure and the size-biased one. In Assumption (C1), f is increased under the size-biased measure by an amount f that, on average, exceeds the typical fluctuation (measured as Var(f (ω))) under the original measure. Assumption (C2) implies that there are patterns in ω that appear with large probability under the size-biased measure and are most likely absent under the original one.

Proof of Lemma 9.1. Let us assume that T and A satisfy (H1) and (H2). We divide R d into cubes of side length √ T : define

C j = C (T ) j := j √ T + [0, √ T ) d , j ∈ Z d .
Given j = (j 1 , . . . , j m ) ∈ (Z d ) m , we define the function

χ j : C([0, mT ]) → R by χ j (ϕ) := 1{∀i ∈ m : ϕ(iT ) ∈ C j i }.
In other words, χ j (ϕ) is the indicator that the function ϕ passes through a prescribed sequence of cubes of diameter √ T at times iT , where i ∈ m . If ϕ = (B t ) t∈[0,mT ] is a Brownian motion, the unique value of j such that χ j (B) = 1 corresponds to a coarse-grained trajectory (or skeleton) of B on time scale T . Now, recalling that we have set Z ω β,t = Zω β (t, * ) and recalling the notation from Section 4.1, we have

Z ω β,mT = (R d ) m M i=1
Zω β ((i -1)T, x i-1 ; iT, x i ) dx i . (9.8) This can be checked directly from the definition if Z ω β,mT and Zω β ((i -1)T, x i-1 ; iT, x i ) are replaced by Zω,a β (mT, * ) and Zω,a β ((i -1)T, x i-1 ; iT, x i ), respectively. The case a = 0 then follows from the L 1 -convergence in Theorem 2.1. We therefore get

Z ω β,mT = j∈(Z d ) m Z ω β,mT (χ j ) , Z ω β,mT (χ j ) := (R d ) m M i=1 Zω β ((i -1)T, x i-1 ; iT, x i )1 {x i ∈C j i } dx i .
As a consequence, by subadditivity (5.4), we have

E (Z ω mT ) 1 2 ≤ j∈(Z d ) m E Z ω mT (χ j ) 1 2 .
Our aim is to obtain a good bound on E[(Z ω β,mT (χ j )) 1/2 ]. This is where we introduce a change-ofmeasure procedure. We use the Cauchy-Schwarz inequality as follows:

E (Z ω β,mT (χ j )) 1 2 2 ≤ E G j (ω) -1 E G j (ω)Z ω β,mT (χ j ) , ( 9.9) 
for some non-negative function G j that penalizes the ω's that contribute most to E[Z ω β,mT (χ j )]. This procedure is referred to as a change of measure since E[G j (ω)Z ω β,mT (χ j )] corresponds to the expectation of Z ω β,mT (χ j ) under a new measure whose density with respect to the original one is given by G j (ω). We now construct G j with a product structure in order to gain a constant factor per coarse-grained step of the trajectory. For K > 0, a fixed constant to be determined below, we define (with j 0 := 0)

g(ω) := exp(-K 1 A (ω)), g i,j (ω) := g • θ ((i-1)T,j √ T ) (ω), G j (ω) := m i=1 g i,j i-1 (ω), (9.10) 
where θ (t,x) is the space-time shift operator acting on point collections in R × R d × (0, ∞), that is,

θ (t,x) (ω) = {(s -t, y -x, z) : (s, y, z) ∈ ω}.
Because A has time range T , for given j, the variables (g i,j i-1 (ω)) m i=1 are independent and identically distributed under P, so that, by (H1),

E[G j (ω) -1 ] = (1 + (e K -1)P(A)) m ≤ 2 m .
We then derive from (9.9) that

E (Z ω β,mT ) 1 2 ≤ 2 m 2 j∈(Z d ) m E G j (ω)Z ω β,mT (χ j ) . ( 9.11) 
Using the size-biased representation of Lemma 4.1 and recalling the notation (9.2), we obtain that

E G j (ω)Z ω β,mT (χ j ) = E ⊗ E β ⊗ Q G j (ω, ω , B)χ j (B) . Letting B (i) t := B (i-1)T +t -j i-1
√ T , using the stationarity of ω and ω and the fact that A has time-range T , we have

E ⊗ E β ⊗ Q G j (ω, ω , B)χ j (B) = E ⊗ E β ⊗ Q m i=1 g i,j i-1 (ω, ω , B (i) )1 {B (i) T ∈C j i -j i-1 } = Q m i=1 E ⊗ E β g i,j i-1 (ω, ω , B (i) )1 {B (i) T ∈C j i -j i-1 } = Q m i=1 E ⊗ E β g(ω, ω , B (i) )1 {B (i) T ∈C j i -j i-1 } . Conditionally on (B t ) t∈[0,(i-1)T ] , (B (i) t ) t≥0 is a Brownian motion starting from B (i-1)T -j i-1
√ T , which belongs to C 0 . Thus, using the Brownian motion's Markov property iteratively (starting with i = m), we obtain that

E ⊗ E β ⊗ Q G j (ω, ω , B)χ j (B) ≤ m i=1 max x∈C 0 E ⊗ E β ⊗ Q x g(ω, ω , B)1 {B T ∈C j i -j i-1 } .
Reindexing the sums yields

j∈(Z d ) m E G j (ω)Z ω β,mT (χ j ) ≤ j∈Z d max x∈C 0 E ⊗ E β ⊗ Q x g(ω, ω , B)1 {B T ∈C j } m . ( 9.12) 
Hence, it remains to show that the sum on the right-hand side is small. Given an integer N , since g ≤ 1, we have

j∈Z d max x∈C 0 E ⊗ E β ⊗ Q x g(ω, ω , B)1 {B T ∈C j } ≤ j ∞≥N max x∈C 0 Q x [B T ∈ C j ] + (2N ) d max x∈C 0 E ⊗ E β ⊗ Q x g(ω, ω , B) . (9.13)
We then choose N to be the smallest integer such that the first sum is smaller than (4 √ 2) -1 ; note it depends on d but not on T . For the second term, recalling the definition (9.10) of g and using assumption (H2) for the last inequality, we have

E ⊗ E β ⊗ Q x [ g(ω, ω , B)] = e -K + (1 -e -K )P ⊗ P β ⊗ Q x ( ω / ∈ A) ≤ 2e -K . ( 9.14) 
Finally, combining (9.11)-(9.14), we obtain that 

E (Z ω β,mT ) 1 2 ≤ 2 m 2 1 4 √ 2 + (2N ) d √ 2e -K m = 2 -m ,

If we only assume lim sup

A→∞ A α λ([A, ∞)) > 0, then lim inf β→0+ β -α να γβ ( 1 2 ) < 0. (9.17)
Proof. The proofs of (i) and (ii) slightly differ but have the same starting point, that is, the same function f (to which we will apply Corollary 9.2), up to a choice of parameter.

Preparing the setup. We start by fixing R > 1 such that

(2π) -1 2 [-R,R-1] e -u 2 2 du d ≥ 1 - 1 64 e -K . (9.18)
where K is the constant from Lemma 9.1. Given T > 0 and 0 < a < b ≤ ∞, we then consider the functional f (ω) :=

X (1) T 1 { x ∞≤R √ T ,z∈[a,b)} δ ω (dt, dx, dz), (9.19) 
which is Poisson distributed with

E[f (ω)] = Var(f (ω)) = λ([a, b))(2R √ T ) d T. (9.20)
Using the formalism of the previous subsection, we further have

f (ω , B) = (0,T )×(0,∞) 1 { Bt ∞≤R √ T ,z∈[a,b)} δ ω (dt, dz).
To estimate the expectation and variance of f , we define

f (ω ) := (0,T )×(0,∞) 1 {z∈[a,b)} δ ω (dt, dz).
Note that we have f (ω , B) ≤ f (ω ) and, recalling that ω has intensity measure βz dt λ(dz), also

E β [ f (ω )] = βµ a,b (1)T, E β [ f (ω ) 2 ] = βµ a,b (1)T + (βµ a,b (1)T ) 2 . ( 9.21) 
The condition (9.18) guarantees that for any

x ∈ [0, √ T ) d and t ∈ (0, T ] Q x B t ∞ ≤ R √ T ≥ 1 - 1 64 e -K
, so that we have

E β ⊗ Q x [f (ω , B)] ≥ 1 - 1 64 e -K βµ a,b (1)T ≥ 1 √ 2 βµ a,b (1)T . (9.22)
We also have, combining (9.21) and the first inequality of (9.22),

Var P β ⊗Qx (f (ω , B)) ≤ E β [ f (ω ) 2 ] -E β ⊗ Q x [f (ω , B)] 2 ≤ βµ a,b (1)T + e -K 32 (βµ a,b (1)T ) 2 . (9.23)
We are now ready to apply these estimates to specific cases.

Proof of (i). We first choose a and b such that λ([a, b)) > 0 (in a way that does not depend on T or β) and then we let

T = T (β) := 2 10 R 2 e 2K λ([a, b)) 2 β 4 µ a,b (1) 4 .
With this choice and for β sufficiently small, the second term on the right-hand side of (9.23) dominates: using (9.22) for the second inequality, we get

Var P β ⊗Qx (f (ω , B)) ≤ e -K 16 (βµ a,b (1)T ) 2 ≤ e -K 8 E β ⊗ Q x [f (ω , B)] 2 .
Now the reader can check that with our definition of T , we have (recall (9.20))

Var(f (ω)) = 2Rλ([a, b))T 3 2 = e -K 16 (βµ a,b (1)T ) 2 ≤ e -K 8 E β ⊗ Q x [f (ω , B)] 2 .
Therefore, condition (C1) in Corollary 9.2 is indeed satisfied for small β, and we thus have lim sup

β→0+ β -4 γβ ( 1 2 ) ≤ - (log 2)µ a,b (1) 4 2 10 R 2 e 2K λ([a, b)) 2 .
Proof of (ii). We let > 0 denote the limit superior/inferior of A -α λ([A, ∞)). We choose

A = A(β) := M β -d+2 2-d(α-1) , ( 9.24) 
where M = M (K, R, ) is a large constant that depends on K, R and . For the remainder of the proof, we assume that β is such that we have, for the value of A specified above,

λ([A, ∞)) ≥ A -α 2 . ( 9.25) 
(We assume that β is sufficiently small if the assumption is about the limit inferior, and we take β along a well-chosen subsequence tending to 0 if the assumption is about the limit superior.) We are going to use Corollary 9.2 for the function (9.19), with the choices a = A, b = ∞ and

T := e -K (2R) -d λ([A, ∞)) -1 2 2+d . (9.26)
With our choice of A and our tail assumption, we have

T ≤ e -K (2R) -d 2 M α 2 2+d β -α να .
Therefore, once we show that (C2) is satisfied, Corollary 9.2 yields the desired bound on γβ ( 12 ). For the expectation of f , by (9.20), our choice for T directly yields

E[f (ω)] = (2R) d λ([A, ∞))T 1+ d 2 = e -K .
To check the condition on the variance of f , in view of (9.22) and (9.23), it is sufficient to have With Propositions 9.4 and 9.5 at hand, we can complete the proof of Theorems 2.11 and 2.12. Recall that the first half of the proof was given in Sections 7.2 and 7.3, respectively.

Proof of Theorems 2.11 and 2.12 (second half). By (9.1), the lower bounds in (2.15) and (2.16) directly follow from (9.15) and (9.27). Next, (2.20) follows from (9.17) since µ 1,∞ (q) = ∞ implies that lim sup A→∞ A α λ([A, ∞)) > 0 for every α > q. Finally, the upper bound in (2.22) follows from (2.20) because (2.21) implies µ 1,∞ (q) = ∞ for all q > α.

Proof of Proposition 9.5. In Section 9.2, counting the number of atoms in ω with size in a certain range was sufficient to determine the correct order of magnitude (in β) of γβ ( 12 ) (and hence of γβ (p) for other values of p). If d ≥ 2 and if λ is light-tailed, in order to obtain optimal estimates, we must consider certain clusters of atoms. Furthermore, the size of these point configurations, which we denote by k, must be taken large. We shall obtain our result (9.27) by proving that for any fixed k ≥ 3, we have lim sup

β→0 log|log|γ β ( 1 2 )|| |log β| ≤ (1 + 2 d ) k k -2 .
This will be achieved again by using Corollary 9.2. We need to introduce a few parameters for the functional f used in this proof. First, we fix 0 < a < b < ∞ such that λ([a, b)) > 0 as well as two parameters 0 < κ < κ satisfying

κ ∈ 1 k , 1 k -1 and (k -2)κ + κ < 1. (9.28) Furthermore, we let R = R(k, d) be such that (2π) -1 2 [- √ 2R, √ 2(R-1)] e -u 2 2 du d (2π) -1 2 [-R,R] e -u 2 2 du d(k-1) ≥ 1 - e -K 8 , ( 9.29) 
where K is the constant from Lemma 9.1. With this choice of R, we have, for any T > 0 and

t ∈ X k (T ) such that t 1 ≤ T 2 , inf x∈[0, √ T ) d Q x B t 1 ∞ ≤ R √ T , ∀i ∈ 2, k : ∆B t i ∞ ≤ R ∆t i ≥ 1 - e -K 8 . ( 9.30) 
Finally, for some small ε ∈ (0, 1) (independent of β and to be chosen later), we set

T := exp ε -4+d 4(k-2) β -(1+ 2 d ) k k-2 . ( 9.31) 
Using the notation v I := i∈I v i for I ⊆ k , we consider the multi-body functional

f (ω) = X (k) T 1 {∀i∈ k : z i ∈[a,b)} 1 {t 1 ≤ T 2 , ∀i∈ 2,k-1 : ∆t i ∈[T -κ ,T -κ ], ∆t 2,k ≤εβ 2k/d T -1 } × 1 { x 1 ∞≤R √ T , ∀i∈ 2,k : ∆x i ∞≤R √ ∆t i } k i=1 δ ω (dt i , dx i , dz i ). (9.32) 
This function f counts clusters of atoms that are so close to each other (in time) that the benefit of visiting all of them, which is k i=2 z i ρ(∆t i , ∆x i ) or roughly (∆t 2,k ) -d/2 , outweighs the cost of visiting the first atom of the group, which is of order T -d/2 in the bulk of the box. Limiting the possible range for ∆t i is convenient in the computations and our particular choice for this limitation is largely ad hoc. If

εβ 2k d T -1+(k-2)κ ≤ T -κ , ( 9 
.33) then the conditions on the t i 's in the first line of (9.32) imply ∆t k ≤ T -κ . With our choice (9.31) for T and (9.28), the condition (9.33) is satisfied for any β < 1.

Let us now check that condition (C2) in Corollary 9.2 is satisfied. We start with the condition on E[f (ω)]. Integrating over the x i 's and t 1 , making the change of variable s i = ∆t i+1 and using that we have ∆t k ≤ T -κ , we get

E[f (ω)] = T 1+ d 2 2 (2R) d λ([a, b)) k [T -κ ,T -κ ] k-2 ×[0,T -κ ] 1 {s k-1 ≤εβ 2k/d T -1 } k-1 i=1 s d 2 i ds i . (9.34)
Next, we integrate with respect to s k-1 and use (9.33) to obtain 

T 1+ d 2 [T -κ ,T -κ ] k-2 ×[0,T -κ ] 1 {s k-1 ≤εβ 2k/d T -1 /s k-2 } k-1 i=1 s d 2 i ds i = ε 1+ d 2 β (1+ 2 d )k 1 + d 2 [T -κ ,T -κ ] k-2 k-2 i=1 s -1 i ds i = ε 1+ d 2 β (1+ 2 d )k [(κ -κ) log T ] k-2 d + 2 .
E[f (ω)] = Cε 1+ d 2 β (1+ 2 d )k (log T ) k-2 = Cε d 4 .
Hence, choosing ε ≤ (Ce K ) -4/d fulfills the assumption on E[f (ω)] in (C2); let us stress that ε must satisfy a second condition which will be specified later in the proof.

Let us now estimate the expectation and variance of f (ω , B) (recall the definition (9.6)). We consider an alternative function f (ω ) :=

([0,T ]×[a,b)) k 1 {t 1 ≤ T 2 , ∀i∈ 2,k-1 : ∆t i ∈[T -κ ,T -κ ], ∆t 2,k ≤εβ 2k/d T -1 } k i=1 δ ω (dt i , dz i ) (9.36)
that does not include any restriction for B. Using (9.30), we obtain, similarly to (9.22) and (9.23), that for any

x ∈ [0, √ T ) d E β ⊗ Q x [f (ω , B)] ≥ 1 - e -K 8 E β [ f (ω )] ≥ 1 √ 2 E β [ f (ω )], Var P β ⊗Qx (f (ω , B)) ≤ Var P β ( f (ω )) + e -K 4 E β [ f (ω )] 2 .
(9.37)

We can thus conclude that the variance bound in (C2) is satisfied if

Var P β ( f (ω )) ≤ e -K 4 E β [ f (ω )] 2 . (9.38)
Proceeding as in (9.34)-(9.35) and recalling that ω has intensity measure βz dt λ(dz), we have

E β [ f (ω )] = (βµ a,b (1)) k T 2 [T -κ ,T -κ ] k-2 ×[0,T -κ ] 1 {s k-1 ≤εβ 2k/d T -1 } k-1 i=1 ds i = ε 2 µ a,b (1) k β (1+ 2 d )k [T -κ ,T -κ ] k-2 k-2 i=1 s -1 i ds i = C εβ (1+ 2 d )k (log T ) k-2 = C ε -d 4 , (9.39) 
with C = C (λ, a, b, κ, κ , k, d), and where we have used the value (9.31) of T for the last identity.

In order to compute the second moment of f (ω ), we expand the integral in (9.36) by writing

k i=1 δ ω (dt i , dz i ) = I⊆ k i∈I δ ω (dt i , dz i ) -βz i dt i λ(dz i ) j∈I c
βz j dt j λ(dz j ), (9.40) where I c := k \I. We let f I denote the integral corresponding to the term

I. Since f ∅ = E β [ f (ω )], we have Var P β ( f (ω )) = I,J⊆ k : I,J =∅ E β [f I (ω )f J (ω )]. (9.41) 
The terms in the sum above are equal to zero if I and J do not have the same cardinality.

If |I| = |J|, then E β [f I (ω )f J (ω )
] is obtained by matching the values of (t i ) i∈I to that of (t i ) i∈J in the integral before averaging. More precisely, we have

E β [f I (ω )f J (ω )] = (βµ a,b (1)) 2k-|I| [0,T ] 2k-|I| 1 Q (t (1) i ) k i=1 j∈I c dt (1) j 1 Q (t (2) i ) k i=1 j∈J c dt (2) j i∈I dt i ,
where Q is the subset of [0, T ] k induced by the indicator function in (9.36), and the vectors t (1) and t (2) are completed by setting

t (1) i = t (2) σ(i) = t i for i ∈ I , ( 9.42) 
with σ being the unique increasing bijection from I to J. In particular, we have

E β [f k (ω ) 2 ] = E β [ f (ω )]. (9.43) When |I| = |J| = ∈ k -1 , we are going to show that [0,T ] 2k-|I| 1 Q (t (1) i ) k i=1 j∈I c dt (1) j 1 Q (t (2) i ) k i=1 j∈J c dt (2) j i∈I dt i ≤ T 1-(2k--1)κ . (9.44)
So combining (9.43) with (9.44), we obtain that

Var P β ( f (ω )) ≤ E β [ f (ω )] + k-1 =1 k 2 (βµ a,b (1)) 2k-T 1-(2k--1)κ ≤ E β [ f (ω )] + 1,
where the last inequality is valid for sufficiently small β, because 1 -(2k --1)κ ≤ 0 thanks to (9.28). For this reason, (9.38) is satisfied if E β [ f (ω )] ≥ 8e K , which according to (9.39) holds true provided that ε is chosen small enough.

To complete the proof, let us show how (9.44) is obtained: the key is to integrate in the correct order the different variables. We construct a graph G I,J with 2k -vertices where each vertex is identified with one of the variables (t i ) i∈I , (t i ) i∈J according to (9.42); any double edge that might have been created is replaced by a single edge. As I = ∅, the graph we obtain is connected. Now we consider an enumeration v 1 , v 2 , v 3 , . . . , v 2k-of the vertices of G I,J such that for every j ∈ 2k --1 , the subgraph G (j) I,J of G I,J induced by v j+1 , . . . , v 2k-is connected. One way of finding such an enumeration is, for example, to construct a spanning tree T I,J of G I,J and then, after v 1 , . . . , v j have been determined for some j ∈ {0, . . . , 2k --1}, to take any leaf of T I,J \ {v 1 , . . . , v j } as v j+1 . We refer to Figure 2 for one example of G I,J together with a permitted and a forbidden enumeration according to the rule we just introduced.

(
Having fixed such an enumeration, in order to obtain (9.44), we integrate v 1 , . . . , v 2k-in this order. Note that if v j = t 

σ(i)-1 , t (2)
σ(i)+1 } ∩ {v j+1 , . . . , v 2k-} = ∅. As a result, for each j ∈ 2k--1 , the range when we integrate with respect to the variable v j and the values of the variables v j+1 , . . . , v 2k-are fixed is included in an interval of length T -κ : Indeed, by (9.33), the indicator function 1 Q in the integral implies that ∆t (r) i ≤ T -κ for all i ∈ 2, k and r ∈ {1, 2}. We no longer have constraints only for the last variable v 2k-, which yields a factor of T . 9.4. Proof of Proposition 2.2. First, notice that it suffices to consider the free-end partition function. Since (Z ω,a β (t, x)) a∈(0,1]

(d)
= (e -x 2 /(2t) Z ω,a β (t, 0)) a∈(0,1] , the a.s. positivity of the limit when a → 0 does not depend on x. Hence the result in the point-to-point case follows from the free-end case by Fatou's Lemma. Although this is not essential to the reasoning, it is practical for our computations to assume that (0,1) z 1+2/d λ(dz) < ∞. If this assumption is violated, then the result has already been proved in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]Proposition 2.10]. We also assume that µ < ∞: the general case follows from a truncation procedure, see the end of Section 5 in [START_REF] Berger | The continuum directed polymer in Lévy noise[END_REF]. For notational simplicity, we actually assume that µ = 0 (i.e., that λ has support in (0, 1)). based on TI,J . Integration in the forbidden order only yields a suboptimal bound: once v1, . . . , v4 have been integrated (i.e., removed from the graph), we obtain two disconnected components, so if integration is continued, v6 becomes isolated and contributes a factor T when integrated (similarly, both v11 and v12 become isolated when v1, . . . , v10 have been integrated: each of them contributes a factor of T .

While the proof does not rely on Lemma 9.1, it partially builds on the same idea, which is to show that the size-biased measure transforms an atypical event under the original probability measure into a typical one. Let us summarize this in a lemma that is similar in spirit to Corollary 9.2. Recall (1.20) and the notation Z ω,a β,t := Zω,a β (t, * ). Lemma 9.6. Let us assume that there exists a sequence of integer-valued functions (f n ) n∈N of the form (9.5) (with Υ integer-valued and with T replaced by t) with the following properties:

(i) For every n, f n is G a -measurable for some a = a n > 0.

(ii) Using the notation (9.6), we have that = 0.

Proof. Consider ε > 0 and let n be sufficiently large such that both quantities in (9.45) are smaller than ε. Furthermore, let a = a n be such that f n is G a -measurable. Defining K := log ε and G(ω) := exp(-K1 {fn(ω)≥1} ), we have by the Cauchy-Schwarz inequality,

E (Z ω,a β,t ) 1 2 
≤ E G(ω) -1 E G(ω)Z ω,a β,t Clearly, by Markov's inequality, E[G(ω) -1 ] ≤ 1 + e K P(f n (ω) ≥ 1) ≤ 2 .

Using Lemma 4.1 and the fact that f n is G a -measurable, we further have (recall the notation (9.2))

E[G(ω)Z ω,a β,t ] = E ⊗ E β ⊗ Q G a,t (ω, ω , B) .
As f n is integer-valued, the inequality (9.7) implies that G a,t (ω, ω , B) ≤ e -K + 1 { fn(ω,ω ,B)=0} ≤ e -K + 1 {f (ω ,B)=0} , which, by an application of the Chebychev inequality, results in

E ⊗ E β ⊗ Q G a,t (ω, ω , B) ≤ e -K + P β ⊗ Q(f n (ω , B) ≤ 0) ≤ e -K + ε = 2ε.
Because a → (Z ω,a β,t ) 1/2 is a supermartingale, we obtain that lim sup a →0

E (Z ω,a β,t )

1 2
≤ E (Z ω,a β,t )

1 2 ≤ 2 √ ε,
which finishes the proof since ε is arbitrary.

Before we specify the sequence of functions f n , we need to introduce a few parameters. We let k n := 1 + n 1/3 and we set for n ≥ 1

M n := n i=1 k i-1 (k i-1 + 1 2 ) (k i-1 + 1)(k i-1 -1 2 )
and b n := e -Mn .

Let us stress that since we have

M n+1 M n = 1 + 1 2k 2 n + O(k -3 n )
we have log M n ∼ is summable. Considering a subsequence if necessary, we assume from now on, without loss of generality, that (9.47) holds with a limit instead of a lim sup. We set V n = ∞. We let δ = δ ε be sufficiently small so that ).

V n := M 1-1 kn n [b n+1 ,bn) z 1+
d -2δ d + 2 2(1 + 2 d ) + ε 2 > 2 , ( 9 
We are now ready to introduce f n . As in the proof of Proposition 9.5, we want to count clusters of k n atoms that are beneficial to visit; note that here we have k n → ∞. More precisely, assuming without loss of generality that t = 1, we define f n (ω) := Note that f n is G b n+1 -measurable. The restriction on the range for x i and the requirement that (∆t kn ) -d/2 z kn be large are important features of f . The remaining constraints are ad hoc and mainly serve the purpose to lighten the computations. If z i and t i satisfy the constraints above, then recalling the definition of θ n , we have where the computation is similar to (9.54). Now, since θ n -θ n ∼ → ∞, which leads to the first part of (9.56).

t d 2 1 ≤ A -1 n (∆t 2,kn ) -d 2 z kn ≤ A -1 n exp(M n [(k n -1)θ n -k n ]) = A -1 n . ( 9 
As in the previous section, to compute the second moment of fn (ω ), we can use (9.40) to write Var P β ( fn (ω )) in the form (9.41). As seen before, only sets with |I| = |J| contribute, and the term

corresponding to I = J = k n is simply E β [ fn (ω )]. If |I| = |J| = ∈ k n -1 , then E β [f I (ω )f J (ω )] = β 2kn- ((0,1)×[b n+1 ,bn)) 2kn- 1 R (t (1) i ) kn i=1 , (z (1) 
i ) kn . Then we proceed as in the proof of (9.44): by choosing an optimal order, we obtain that integration over each time variable produces a factor of at most b 2θn/d n , except for the last integration, which produces a factor of one. Thus,

E β [f I (ω )f J (ω )] ≤ β 2kn-b 2θn d (2kn--1) n [b n+1 ,bn) z λ(dz) 2kn- ≤ β 2kn-exp 2 d (2k n -)M n+1 -(2k n --1)θ n M n µ 0,1 (1 + 2 d ) 2kn-,
where in the second line we simply used the fact that Recalling (9.57), we have that for any constant C > 0 the expectation E β [ fn (ω )] is larger than C kn for sufficiently large n. This proves the second claim in (9.56) and concludes the proof.

Appendix A. Technical results

A.1. Proof of Theorem 4.3. The result is contained in [START_REF] Kallenberg | Tangential existence and comparison, with applications to single and multiple integration[END_REF], but only implicitly, so we give a short proof. Let us first check that (4.3) ensures that all integrals in (4.4) are well defined and finite. Applying the BDG inequality and using the subadditivity (5.4) of the function x → x p/2 for x > 0 iteratively, we deduce that

E X N f (w) M ω (dw 1 ) • • • M ω (dw N ) p ≤ C p E X X N -1 f (w) M ω (dw 1 ) • • • M ω (dw N -1 ) 2 δ ω (dw N ) p/2 ≤ C p E X X N -1 f (w) M ω (dw 1 ) • • • M ω (dw N -1 ) p δ ω (dw N ) = C p X E X N -1 f (w) M ω (dw 1 ) • • • M ω (dw N -1 ) p ν(dw N ) ≤ • • • ≤ C N p X N |f (w)| p ν(dw 1 ) • • • ν(dw N ) < ∞. (A.1)
These inequalities remain unchanged if ω is replaced by ω 1 , . . . , ω N and E is replaced by E ⊗N . Now we move to the proof of (4.4), for which we shall prove the second inequality. To obtain the reverse inequality it is sufficient follow the same proof and observe that all estimates are two-sided (i.e., one can always substitute "≥" for "≤" if one also replaces 1/C by C). We now consider a state space on which ω is jointly defined with our i.i.d. copies ω 1 , . . . , ω N (and ω is independent of (ω 1 , . . . , ω N )). We let P := P ⊗ P ⊗N denote the associated probability. In analogy with (1.5), we consider a filtration ( Ft ) t≥0 on this state space defined by Ft := F t ⊗ F

(1)

t ⊗ • • • ⊗ F (N ) t , F (i) t := σ ω ∩ ([0, t] ∩ R d × (0, ∞)) , i = 1, . . . , N.
Our result follows from applying the following inequality, valid for i = 1, . . . , N , iteratively:

Ē X N f (w) M ω (dw 1 ) • • • M ω (dw i ) M ω i+1 (dw i+1 ) . . . M ω N (dw N ) ≤ C 1 -p Ē X N f (w) M ω (dw 1 ) • • • M ω (dw i-1 ) M ω i (dw i ) • • • M ω N (dw N ) . (A.2)
Let us first spend some time on the first step i = N . By elementary properties of Itô integrals, the processes (X t ) t≥0 and (Y t ) t≥0 defined by

X t := X N f (w)1 (0,t] (t N ) M ω (dw 1 ) • • • M ω (dw N ), Y t := X N f (w)1 (0,t] (t N ) M ω (dw 1 ) • • • M ω (dw N -1 ) M ω N (dw N )

  µ a,b (p) := [a,b)

  ) with the convention γ(0) = 0. Further assuming |γ(1)| < ∞ in the following, we define the normalized moment Lyapunov exponents of v by γ(p) := γ(p) -p γ(1).(1.31)

Theorem 2 . 10 (

 210 Strong intermittency). Let d ≥ 1. If λ ≡ 0, µ < ∞ and β > 0, we have γβ (p) < 0 for p ∈ (0, 1) and γβ (p) > 0 for p ∈ I λ ∩ (1, ∞).

Theorem 2 . 11 (

 211 Light-tailed noise). Assume that (2.1) holds.

Figure 1 . 1 ×,

 11 Figure 1. Example of an admissible sequence of partitions of k + 1 with k = 11. The successive partitions (L j , I j -, I j + , D j ) 1≤j≤m (with m = 4) are represented from top to bottom. Each curved arrow represents an element of I j × and points from an index in L j × to an index in I j × . The symbol represents indices that can be chosen to belong to L (j+1) ( ), I (j+1) -( -) or I (j+1) +

  or L(j+1) to each element in I j × . Since |I j × | = |L j × | and the L j × 's are disjoint by construction, there are at most k choices to be made, hence at most 3 k possibilities. We therefore have|P k | ≤ 2 × 9 k .Next, let us explain how each sequence in P k is associated to a subset P ⊆ X = (L 1 , I1 

Lemma 8 . 3 .

 83 Assume that λ([1, ∞)) = 0. Given β, T > 0, and p ∈ (1, 1+ 2 d ) there exists a function δ(b) = δ β,p,T (b) such that lim b→0 δ(b) = 0 and sup t∈(0,T ]

Lemma 8 . 5 .

 85 Let Θ(t, x) := (s, y) ∈ (0, t) × R d : Z ω ≥ β (s, y; t, x) ≥ ρ(t -s, x -y)e η x-y 2 (t-s), ω≥ := (s, y) ∈ (0, t) × R d : ∃z ≥ 1, (s, y, z) ∈ ω .(8.37) 

p 1 p

 1 ρ(t -s, x -y)e η x-y 2 (t-s) ds dy < ∞ . (8.40) 

9 . 3 .Proposition 9 . 5 .

 9395 βµ A,∞ (1)T ≥ 4e K .To this end, we bound µ A,∞ (1) ≥ Aλ([A, ∞)) and use the definition (9.26) of T to get that βµ A,∞ (1)T is bounded below by a constant (that depends on K, R) times βAλ([A, ∞)) d/(2+d) . By(9.25) and the definition of A in (9.24), the latter can be made large by choosing M = M (K, R, ) sufficiently large. Multi-body estimates. The aim of this section is to prove the following. Suppose that d ≥ 2 and µ < ∞.

(9. 35 )

 35 Therefore, by(9.31), there exists a constant C = C(R, λ, a, b, κ, κ , k, d) such that

i

  for some j ∈ 2k --1 , r ∈ {1, 2} and i ∈ I c , then, by construction,{t (r) i-1 , t (r) i+1 } ∩ {v j+1 , . . . , v 2k-} = ∅; indeed, if both t (r)i-1 and t (r) i+1 had been picked before, then v j = t (r) i would be an isolated vertex in G (j-1) I,J because i ∈ I c . In the same manner, if v j = t i for some j ∈ 2k --1 and i ∈ I, then {t

(

  

Figure 2 .

 2 Figure 2. (a)The graph GI,J with k = 8, I = {1, 3, 6, 7} and J = {2, 3, 6, 7} and a spanning tree TI,J (thick edges); (b) a permitted enumeration of GI,J based on TI,J ; (c) a forbidden enumeration of GI,J based on TI,J . Integration in the forbidden order only yields a suboptimal bound: once v1, . . . , v4 have been integrated (i.e., removed from the graph), we obtain two disconnected components, so if integration is continued, v6 becomes isolated and contributes a factor T when integrated (similarly, both v11 and v12 become isolated when v1, . . . , v10 have been integrated: each of them contributes a factor of T .

  n (ω)] = 0 and lim n→∞ Var P β ⊗Q (f n (ω , B))E β ⊗ Q[f n (ω , B)] 2

3 2 n 1 / 3 ∼ 3 2 k

 132 n as n → ∞. Now, as the quantity | log z|/(log|log z|) 5+4/d+ε is of orderM n (log M n ) -(5+4/d+ε) on the interval [b n+1 , b n ), the assumption (2.5) is equivalent to ∞ n=1 M n (log M n ) 5+ 4 d +ε [b n+1 ,bn) z 1+ 2 d λ(dz) = ∞ . (9.46)Then, using that log M n ∼ c n 1/3 and in particular that M 1/kn n ≤ C for some constant C > 0

. 49 ) 2 [

 492 and we setR n := V δ/d n and η n := 1 -(2π) -1 -Rn,Rn] e -u 2 2 du dkn . (9.50)One can easily check that lim n→∞ R n = ∞ and also lim n→∞ η n = 0 (using that V n ≥ k 2(1+2/d) n

X (kn) 1 1 {× 1

 11 (∆t kn ) -d/2 z kn ≥An, ∀i∈ 2,kn :∆t i ∈[b {∀i∈ kn : ∆x i ∞≤Rn √ ∆t i , z i ∈[b n+1 ,bn)} kn i=1 δ ω (dt i , dx i , dz i ) ,

. 53 )] 1 n z kn } kn i=1 s d 2 i] 1 2 1 . 1 { 2 d n 2 ( 1 [

 5312111221 Since limn→∞ A n = ∞ (recall that lim n→∞ V n = ∞) and k n b 2θn/d n ≤ k n exp(-2 d M n ) goes to 0, we have A -1 n + (k n -1)b 2θn/d n≤ 1 for sufficiently large n, and hence ∆t knd 2 z kn ≥ A n , ∀i ∈ 2, k n : ∆t i ∈ [b 2θ n /d n , b 2θn/d n ] =⇒ t kn ≤ 1.Consequently, integrating first with respect to the x i 's, making a change of variables s i = ∆t i and then integrating only with respect to s kn , we haveE[f n (ω)] = (2R n ) dkn kn-1 ×[0,1]×[b n+1 ,bn) kn 1 {(s kn ) d/2 ≤A -ds i λ(dz i ) kn-1 ×[b n+1,bn) kn used the definition of R n and A n in the last line. Using the definition of V n , together with the fact that θ n -θ n ≤ (kn-1) 2 , we get thatE[f n (ω)]Since k n → ∞, this shows the first condition in (9.45).To check the second condition in (9.45), we compute the expectation and variance of fn (ω ) :=X kn (1)×[b n+1 ,bn) kn (∆t kn ) -d/2 z kn ≥A, ∀i∈ 2,kn : ∆t i ∈[b dt i , dz i ). (9.55)Recalling the notation (9.50) of η n , we haveQ(∀i ∈ k n : ∆B t i ∞ ≤ R √ ∆t i ) = 1 -η n .Hence, repeating the computations that led to(9.37) in the previous section, we obtainE β ⊗ Q[f n (ω , B)] = (1 -η n )E β [ fn (ω )], Var P β ⊗Q [f n (ω , B)] ≤ Var P β ( fn (ω )) + 2η n E β [ fn (ω )] 2 .Since η n tends to zero, the reader can check that the second condition in (9.45) follows from the following claims:lim n→∞ E β [ fn (ω )] = ∞, Var P β ( fn (ω )) ≤ 2E β [ fn (ω )]for sufficiently large n.(9.56) The first property in (9.56) follows from direct calculation. We have E β [ fn (ω )] = [b 2θ n /d n ,b 2θn/d ] kn-1 ×[0,1]×[b n+1 ,bn) kn 1 {(s kn ) d/2 ≤A -1 n z kn } kn i=1 ds i βz i λ(dz i ) = β kn A -θ n -θ n )M n d kn-

  i λ(dz i ),where R is the subset of ((0, 1) × [b n+1 , b n )) kn induced by the indicator function in (9.55) and for i ∈ I, we used the notationt ) = z i .Next, we relax the constraints imposed by R by only keeping ∆t (r) i ≤ b 2θn/d n

[ 1 =1 k n 2 β

 12 b n+1 ,bn) z λ(dz) ≤ (b n+1 ) -2 d µ 0,1 (1 + 2 d ) ,together with the definition of b n and b n+1 . Recalling the definition of θ n and of M n , we haveM n+1 = kn kn+1 M n θ n , so that (2k n -)M n+1 -(2k n --1)θ n M n = M n θ n k n 2k nk n + 1 -2k n --1 k n ≤ 0for any ≤ k n -1. We therefore end up withVar P β ( fn (ω )) ≤ E β [ fn (ω )] + kn-2kn-µ 0,1 (1 + 2 d ) 2kn-≤ E β [ fn (ω )] + C (d, λ, β) kn .

  [START_REF] Berger | The scaling limit of the directed polymer with power-law tail disorder[END_REF] is either [0, p max ) or [0, p max ], the latter occurring ifp max < 1 + 2 d and µ 1,∞ (p max ) < ∞. If p max > 1, then p → γ β (p)/p is strictly increasing on {p ∈ I λ : γ β (p) -pγ β (1) > 0}.Our next goal is to understand under what conditions we have strong intermittency. Based on the results reviewed in Section 1.4, one may conjecture that the solution to the SHE on R d driven by a Lévy noise (that is white in time and space) exhibits a similar behavior: strong intermittency in dimensions d = 1, 2 and strong intermittency only for large β if d ≥ 3. This turns out to be a fallacy: the SHE with a non-trivial Lévy noise always exhibits strong intermittency, irrespective of β, λ, d or p.

	The next result lists a few (partly classical) qualitative properties of γ β (p). If µ < ∞ (in which
	case 1 ∈ I λ ), we write
	γβ (p) := γ(Z ω β (t, * ), p) = γ β (p) -pγ β (1) = γ β (p) -pµ = γ( Zω β (t, * ), p).
	Note that by Jensen's inequality, we have γβ (p) ≥ 0 for p > 1 and γβ (p) ≤ 0 for p < 1.
	Proposition 2.9. Under the assumptions of Proposition 2.8, we have the following:
	(i) The map p → γ β (p) is convex on I λ .
	(ii) If µ < ∞ and p ∈ I λ , the map β → γβ (p) is non-decreasing if p ≥ 1 and non-increasing if
	p ∈ (0, 1].
	(iii)

  Finiteness of the moments. An almost immediate consequence of the proposition is the following uniform moment bound. If (2.1) holds and µ 1,∞ (p) < ∞ for some p ∈ (1, 1 + 2 d ), then for any β and T there exists C(β, p, T ) such that

	Corollary 6.5. sup
	a∈[0,1)

.7) Remark 6.4. In our proofs of Propositions 6.1 and 6.3, we keep track of the dependence in p. The reason for this is that in the proof of Theorem 2.11-more precisely in the proof of (2.16)-we need to apply (6.7) for p that depends of β. The only important point we need to make sure is that our estimates remain uniform for p in an interval around 1 + 2 d .

6.1.3.

  ds, dx, dz)

	p
	2
	. (6.12)

Since we are tracking the dependence in p, it is worth noting that it is possible to take C p = (4p) p ≤ 64 if p ≤ 2; see

[START_REF] Dellacherie | Probabilities and potential[END_REF] Chapter VII, Theorem 92]

. In order to bound the right-hand side uniformly in a, we replace [a, ∞) by (0, ∞). Let us further restrict ourselves to the case d ≥ 3 for simplicity (note that in particular p < 2). By Jensen's inequality and the subadditivity property (5.4), we have, for θ ∈ [p, 2],

  Hence it is sufficient to prove only an upper bound on γβ (p) for p ∈ (1, 1 + 2 d ). Furthermore, by Proposition 2.8 (ii), we can consider the point-to-point partition function in our computations. 7.2.1. Dimension d = 1. If d = 1 and p = 2, the first part of Proposition 6.1 immediately yields

				2 d )
	that	q -1 p -1	γβ (p) ≤ γβ (q) ≤ 0.	(7.3)
	γβ (2) = lim			

t→∞ 1 t log E ρ(t, x) -2 Zω β (t, x) 2 = β 4 µ 0,∞ (2) 2 4 .

The result for other values of p ∈ (1, 2) follows by convexity, which gives 0

≤ γβ (p) ≤ (p -1)γ β (2). If p ∈ (2,

3), we use the bound (6.3) for some t = t(β). Indeed, by sub-additivity of log E[ Zω β (t, * ) p ] (see Lemma 5.1), we get that γβ (p) = lim t→∞ 1 t log E Zω β (t, * ) p = inf t>0 1 t log E Zω β (t, * ) p . Using (5.6), we therefore get that for any p > 1 and any t > 0, γβ (p) ≤ 1 t log E ρ(t, 0) -p Zω β (t, 0) p . (7.4)

  , we get γβ (p) ≤ C p β 4 with C p = c -1 p log 4C p . 7.2.2. Dimension d ≥ 2. If d ≥ 2, we are going to use Proposition 6.3 with η = 1 and drop the dependence in η in the notation. Our first task is to replace the functions ζ 1 (p, t), ζ 2 (p) and Λ(k 2 , t, p) in (6.7) by something more tractable. First, we let C 1 and C

2 be constants, which only depend on the measure λ and are chosen to be larger than 1, such that for every p ∈ [1 + 1 d , 1 + 2 d ) and t ≥ e, we have

  is smaller than the following integral (we have replaced t 1 , x 1 , z 1 Note that the integral in (8.36) is a sum and that all terms are finite almost surely by(8.33) and(8.27). In order to show that the integral in(8.36) is finite, we proceed in several steps. The first one is to replace Z

	by s, y, z):					
	β e T (t,x)	(0,t)×R d ×[1,∞)	Z	ω ≥ β (s, y; t, x)E < |V(s, y)| p	1 p δ ω ≥ (ds, dy, dz).	(8.36)
	ω ≥					

  is finite if

		(0,t)×R d ×[1,∞)	N (s, y) δ ω ≥ (ds, dy, dz) < ∞	(8.38)
	where					
	N (s, y) := E < |V(s, y)| p	1 p ρ(t -s, x -y)e η	x-y 2 (t-s) .
	By [77, Prop. 12.1], (8.38) holds if we can show that		
	(0,t)×R d	E < |V(s, y)| p	1 p ρ(t -s, x -y)e	η x-y 2 (t-s)	ds dy < ∞ .	(8.39)

  1)i ) i∈I c , (t ) i∈J c . We start with two (initially disconnected) paths of k vertices labeled (t i+1 } for i ∈ k -1 . Then we glue the two paths together by identifying the vertices (t

		(2)
	{t (r) i , t (r)	(1) i ) k i=1 and (t (2) i ) k i=1 , respectively, the edges being (1) i ) i∈I
	with (t (2)	

i

  a)

			t	(1) 2	t (1) 4	t (1) 5		t	(1) 8
		t	(1) 1	t	(1) 3	t (1) 6	t	(1) 7
		t	(2) 2	t	(2) 3	t (2) 6	t	(2) 7
	t	(2) 1			t (2) 4	t (2) 5		t	(2) 8
			v 3	v 7	v 8		v 10
	(b)	v 2	v 6	v 9	v 12
	v 1			v 5	v 4		v 11
			v 3	v 7	v 8		v 11
	(c)	v 2	v 4	v 9	v 10
	v 1			v 5	v 6		v 12

  we have from our choice (9.49) for δ that (θ n -θ n )V

	(d-2δ)/(d+2)	1 2 k -2 n and k	-2(1+2/d)-ε/2 n	V n → ∞,
	n			

are martingales with respect to ( Ft ) t≥0 , whose quadratic variation processes are given by

respectively. Since ω and ω N are Poisson random measures with the same ( Ft ) t≥0 -intensity measures (namely dt ⊗ dx ⊗ λ(dz)), the jump measures associated to [X] and [Y ] have the same predictable compensator in ( Ft ) t≥0 . As a result, X and Y are weakly tangential martingales in the sense of [START_REF] Kallenberg | Tangential existence and comparison, with applications to single and multiple integration[END_REF]Section 3]. Thus, by [START_REF] Kallenberg | Tangential existence and comparison, with applications to single and multiple integration[END_REF]Thm. 4.1] and Doob's inequality, there is

The 

which concludes the proof of (A.2) for i = N .

In order to iterate and prove (A.2) for i ≤ N -1, we wish to interchange

, that is, we want to write

Even though the integral on the right-hand side is anticipative when considering the filtration ( Ft ) t≥0 , we can recover an integral in Itô's sense by constructing the inner integrals

using the filtration ( Ft ) t≥0 and the outer integrals using the filtration F(i) defined by

∞ . Note that the inner integrals are F(i) 0 -measurable. With this convention, we can justify (A.4) as follows: It certainly holds if f is a step function, that is, if f only assumes finitely many values (in that case, the integrals are simply finite sums). For general f , take a sequence of step functions (f n ) n∈N such that |f n | ≤ |f | for all n and f n → f pointwise as n → ∞. Equation (A.4) holds for f n , and arguing similarly to (A.1) and using dominated convergence, we have that .4). The fact that we are able to interpret the latter integral in Itô's sense is crucial for the BDG inequality, which was needed in (A.1), to apply. Once (A.4) is established, we can prove (A.2) by considering the weakly tangential martingales (for the filtration (

applying the same estimate as in (A.3) and re-arranging the integrals similarly to (A.4).

A.2. Proof of Lemma 4.4. For A, u, ε > 0 and H ∈ S that satisfies |H| ≤ u|K|, we have that

The second probability is bounded by

Therefore, using dominated convergence for the first term, we get Sending A → ∞ shows that the left-hand side is 0, which is obviously equivalent to uK ξ<,0 → 0 as u → 0. Therefore, K is integrable with respect to ξ ω< by (4.6).