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Abstract: While numerous transgenic mouse strains have been produced to model the formation
of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ
deposits have to be validated and standardized. Moreover, routine immunohistochemistry
performed on brain slices precludes any shape analysis of Aβ plaques, or require complex
procedures for serial acquisition and reconstruction. The present study shows how in-line
(propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced
brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ
plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified
differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of
Aβ plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and
more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique,
XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could
thus become instrumental in quantifying the 3D spreading and the morphological impact of
seeding when studying prion-like properties of Aβ aggregates in animal models of Alzheimer’s
disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual
histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole
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rodent brain and in human autopsy brain tissue.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The amyloid cascade is considered pivotal in the development of Alzheimer’s disease. In the last
20 years, numerous transgenic mouse strains have been produced to model the accumulation of
amyloid-β (Aβ) peptides and formation of Aβ plaques in the brain. Most are knock-in animals,
obtained by insertion of human genes, which usually include mutations observed in familial
cases: presenilins (PSEN1/2), amyloid precursor protein (APP), microtubule associated protein
tau (MAPT), triggering receptor expressed on myeloid cells 2 (TREM2), etc. The Alzforum
database currently lists 126 mouse models with 1 transgene, and 62 multi-transgene mouse models
(https://www.alzforum.org/research-models; last access on October 14, 2021). Fast methods
for whole-brain analysis are thus of great value for characterizing and comparing phenotypes
among the variety of strains available. Several recent developments have been proposed to enable
individual Aβ plaque detection through the entire brain in 3D. These include two-photon serial
imaging [1], ultramicroscopy [2], or optical projection tomography [3], which all belong to the
field of optical mesoscopy.

X-ray-based virtual histology is a new field of research mainly aimed at 3D datasets of
biological tissue virtually sliced in any direction [4]. X-ray phase-contrast tomography (XPCT)
using synchrotron radiation allows imaging of excised biological tissues or organs with weak
X-ray absorption (like the brain) at microscopic level [5]. XPCT achieves a high signal-to-noise
ratio without the need to add staining agents, by probing small changes in refractive indices in
the tissue microstructure. It provides micrometric spatial resolution and isotropic reconstruction
in a ∼ 1 cm3 field of view (FOV), thus offering ideal prerequisites for imaging protein aggregates
of ∼ 10 µm in the entire and intact (unsliced, unstained) mouse brain [6].

Several pioneer studies already reported detection of Aβ plaques with various X-ray phase-
contrast techniques [7–9]. However, these first developments required long acquisition times (30
min–180 min) and/or provided limited anatomical contrast. Recently, free space propagation
between object and detector has been shown to be a simple, fast and efficient technique for
detecting Aβ plaques with good contrast [10,11]. In addition, anatomic contrast can be greatly
enhanced by dehydrating the brain prior to imaging, which increases small local differences
between the refractive indices of the different brain structures [5,6]. In terms of analysis and
quantification, most previous studies reported only qualitative results, or quantification restricted
to parameters accessible to standard 2D histology (e.g., number of plaques, diameter, volume).
Only one recent report used XPCT to extract sphericity of Aβ plaques inside the cerebellum [12].
The present study aimed to realize the full potential of XPCT by combining:

1. optimal brain tissue preparation through dehydration in ethanol,

2. fast acquisition in three different (mono, double and triple) transgenic mouse strains
displaying Aβ pathology,

3. semi-automatic segmentation of Aβ plaques inside the hippocampus using open-source
tools (combination of Fiji plugins),

4. and full characterization of their 3D morphology.

This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology
of the brain; Part I shows how in-line XPCT enables myelin mapping of the whole brain [13].

https://doi.org/10.1364/OA_License_v1#VOR-OA
https://www.alzforum.org/research-models
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2. Methods

2.1. Samples

All experimental procedures were carried out in accordance with European regulations for animal
use (EEC Council Directive 2010/63/EU). The present study was performed on excised brains.
Three transgenic lines were used, for a total of 8 brains:

1. mono-transgene line J20 (n=2 animals, 2 y.o.), with mutant APP [14];

2. double-transgene line APPswe/PSEN1dE9 or APP/PS1 (n=3 animals, 1 y.o.), with mutant
APP and mutant PSEN1 [15];

3. triple-transgene line 3xTg (n=3 animals, 1 y.o.), with mutant APP, mutant PSEN1 and
mutant MAPT [16].

One additional brain, from a wild-type mouse of C57BL6/129sv background, was used as a
control.

2.2. Preparation

On the day before imaging, formaldehyde-fixed brains were dehydrated in baths of ascending
ethanol concentrations (25, 50, 75, 96%, at least 5 min per bath), and conditioned in plastic tubes
(1 cm diameter) filled with ethanol.

2.3. Acquisition

Imaging was performed at the ID19 beamline of the European Synchrotron Research Facility
(ESRF, Grenoble, France). Acquisition parameters and data characteristics are summarized in
Table 1. Briefly, the tomographic images were recorded within 3 minutes at a single sample-
detector distance where the camera was positioned away from the sample (3 m) to obtain phase
contrast. The experiments were performed with a polychromatic "pink" incident X-ray beam
of 26 keV energy. Tomographic reconstructions were performed using the single-distance
phase-retrieval approach ("Paganin" method [17]) with PyHST2 software [18], the δ/β ratio
being set to 1000.

2.4. Segmentation

Semi-automated detection of Aβ plaques used Fiji software [19]. A pipeline was built with the fol-
lowing plugins: segmentation editor (to isolate hippocampus; https://imagej.net/Segmentation_Editor),
Trainable Weka Segmentation 3D (to identify plaques) [20], and MorphoLibJ [21] and 3D
ImageJ suite [22] (to label objects and extract relevant parameters). Image features used for
trainable segmentation were "Difference of Gaussian", "Variance", and "Maximum" for J20
and 3xTg. For APP/PS1, "Minimum" was used instead of "Maximum" after the application of
a 3D Laplacian-of-Gaussian (Mexican Hat) filter [23], as suggested by Astolfo et al. [10]. A
step-by-step guide to perform all image processing, "Amyloid-β XPCT Workflow", is publicly
available (DOI: 10.5281/zenodo.4584752) [24].

2.5. 3D parameters

Sphericity, elongation, flatness, sparseness and distance to nearest object were outputs from 3D
ImageJ Suite. Surface area, volume, mean breadth and mean signal intensity (here normalized
by background intensity) were outputs from MorphoLibJ. Definitions of these parameters are
reported in Table 2.

https://imagej.net/Segmentation_Editor
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Table 1. Acquisition parameters and data characteristics.

Setup ID19

Detector sCMOS (PCO edge)

Scintillator LuAg (500 µm)

Energy [keV] 26

Sample-detector distance [m] 3

Exposure time [s] 0.04

Number of projections 3000

Sample rotation [◦] 360

Acquisition time [min] 3

Reconstruction algorithm PyHST 2 (Paganin filter, δ/β = 1000)

Field-of-view [cm3] 1.3 × 1.3 × 0.9

Matrix 2048 × 2048

Number of slices 1400

Voxel size (isotropic) [µm] 6.5

Image size [GB] 11.7 (as 16-bit data)

Estimated dose [Gy] 35000

2.6. Analysis and statistics

Prism 8 (GraphPad) was used for violin plots and statistics. The Welch version of one-way
ANOVA (gaussian populations, unequal variances) was used to compare the above-cited parameter
values of individual Aβ plaques across the three transgenic groups, with additional Games-Howell
tests (recommended for n>50) for pairwise comparisons. Linear correlations between parameters
were quantified on Pearson correlation coefficient. MIPAV (v10.0.0, CIT, NIH [26]) was used
for 2D visualization of semi-transparent overlay of plaque labels onto native images. Amira
Software 6 (ThermoFisher) was used for all 3D renderings.

2.7. Immunochemistry

One sample of each transgenic strain underwent paraffin embedding, 7 µm-thick microtome
slicing (Leica RM2245) and standard Aβ immunofluorescence or histological staining. Aβ
immunofluorescence was performed after i) standard dewaxing, ii) antigen retrieval with 100%
formic acid for 15–20 minutes at room temperature (RT), and iii) blocking with 5% Bovine
Serum Albumin (BSA) and 0.5% Triton-X in Phosphate Buffer Saline (PBS, Sigma-Aldrich ref.
P4417) for 30 minutes at RT, by incubating the anti-Aβ monoclonal antibody 4G8 (Covance,
ref. SIG-39220, dilution 1 : 1000 in 5% BSA) on each microscope slide overnight, in a humid
chamber at 4◦C. After three 5 min washes in PBS at RT, secondary antibody (anti-mouse
AlexaFluor 488 or 546, ThermoFisher, dilution 1 : 500 in 5% BSA) was incubated on each
microscope slide for 60 minutes, in a humid chamber at RT. After three 5 min washes in PBS
at RT, slides were mounted with DAPI-containing medium (Roti-Mount FluorCare DAPI, Carl
Roth), and stored at 4◦C. Thioflavin S staining (ThS, Sigma-Aldrich ref. T1892) (0.05% in
ethanol 70%) was performed for 10 min at RT after dewaxing, and slides were mounted with
DAPI-containing medium, after two 1 min washes in ethanol 70%. Fluorescence images were
captured on a microscope (AxioScope A1, Zeiss) equipped with a digital camera interfaced with
image-analysis software (ZEN 2 lite, Zeiss).
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Table 2. Morphometric parameters. More details are available at
https://imagej.net/MorphoLibJ.html#Documentation and in [25].

Name Definition Formula

Compactness
(not reported)

Ratio (C) between volume
(V) and surface area (A);
"3D ImageJ Suite"
implements a ’discrete’
compactness, described by
Bribiesca (2008), estimated
from the number of voxels
(Nvoxels); spheres have a
compactness of 1.

C = 36πV2

A3 ≈
Nvoxels−

A
6

Nvoxels−(Nvoxels)2/3

Sphericity Ratio (S) between volume
(V) and surface area (A);
linked to compactness (or
discrete compactness);
spheres have a sphericity of
1.

S = C1/3 ≈

(︃
Nvoxels−

A
6

Nvoxels−(Nvoxels)2/3

)︃1/3

Elongation Elongation of the equivalent
ellipsoid, where
R1> = R2> = R3 are are the
lengths of the semi-axes of
the ellipsoid with same
inertia tensor as the object

Elongation = R1
R2

Flatness Flatness of the equivalent
ellipsoid, where
R1> = R2> = R3 are are the
lengths of the semi-axes of
the ellipsoid with same
inertia tensor as the object

Flatness = R2
R3

Sparseness Ratio between the volume of
the equivalent ellipsoid
(Vell) and the volume of the
object (Vobj)

Sparseness = Vell
Vobj

Mean Signal
Intensity (SI)

Mean intensity from the raw
image; here reported as a
mean signal-to-background
ratio

Volume Volume in the given unit
(µm3)

Surface Area Surface area in the given
unit (µm2)

Mean Breadth Average of the Feret
diameter of convex objects
measured over a selected
number of orientations (µm)

Distance Distance between two
closest segmented objects
(µm)

https://imagej.net/MorphoLibJ.html#Documentation
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3. Results

3.1. Qualitative analysis

After ethanol dehydration, brain anatomy, and specifically white matter tracts, was uniquely
displayed on XPCT images (Fig. 1), as reported in Part I of this series of articles [13].

Fig. 1. Whole-brain anatomy of ethanol-dehydrated brains from the three mouse strains
(XPCT single slices). The plaques from the three strains are visible mainly in the hippocampi
(in red).

One additional formaldehyde-fixed sample of the J20 strain was scanned in PBS using the
same set-up and reconstruction algorithm (Fig. S1): though some Aβ plaques were visible,
surrounding brain tissue exhibited low overall signal intensity, strongly contaminated by ring
artefacts. Thus, imaging in ethanol was required for region-specific segmentation. In this
proof-of-concept study, we chose to focus on the hippocampus, in which all three mouse strains
exhibited Aβ plaques. However, these plaques displayed strikingly different appearances (Fig. 2):
i) J20 exhibited numerous small intense spots, sometimes very close to each other and seemingly

Fig. 2. XPCT images (maximum intensity projections over 50 slices) obtained at the level
of the dorsal hippocampus, showing the density and appearance of Aβ plaques in the three
mouse strains.
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coalescing; ii) APP/PS1 displayed intense spots, often surrounded by a diffuse rim, resembling
typical human dense-core plaques; iii) 3xTg showed few but large and highly intense deposits.

These 3D signals obtained without labeling matched the 2D fluorescence of corresponding
brain slices after thioflavin S staining or Aβ-peptide immunohistochemistry (Fig. 3), although
some of the stained plaques seemed not to produce hyperintense contrast on XPCT.

Fig. 3. Corresponding XPCT image (left row), amyloid staining with 4G8 antibody (red
filter, exc 550 nm, em 605 nm), and Thioflavin S staining (right row, green filter, exc 485 nm,
em 515 nm), for the three transgenic mouse strains. DAPI staining was obtained with a blue
fluorescence filter (exc 365 nm, em 445 nm).

3.2. Morphological quantification

Following hippocampus extraction (steps 2–3 in the Amyloid-β XPCT Workflow), machine
learning was used to perform Aβ plaque recognition: Trainable Weka Segmentation 3D used
a strain-selective classifier that was built from 5 consecutive slices and then applied to the
whole hippocampus (>200 slices) to produce a probability map that was thresholded by visual
inspection (steps 4–5 in the Amyloid-β XPCT Workflow). This strategy proved versatile and
accommodated the different types and numbers of plaques imaged in this study (Fig. 4).

After automatic labeling and size filtering of segmented objects (step 6 in the Amyloid-β
XPCT Workflow), a few manual cleaning steps were performed under expert supervision (author
FC). False-positive objects were, in most cases, located in the myelinated tracts of the perforant
pathway (Fig. S2). On rare occasions, neurons or blood clots remaining in vessels were also
detected as plaques. In 3xTg brains, a few false-positive labels were easily identified and removed,
out of a dozen correctly segmented plaques (6–16 per hemisphere). In J20, which in contrast
had several hundreds of plaques (774–916 per hemisphere), expert screening showed that the
false-positive detection rate was below 5%. Importantly, not all J20 plaques could be individually
separated; hence some segmented objects were "twin" plaques, in close contact, which were
manually removed from analysis. In the case of APP/PS1, plaques were of lower signal intensity,
and could not be unambiguously distinguished from perforant pathway signals. APP/PS1 volumes
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Fig. 4. Representative 2D overlay and 3D orthographic rendering (AMIRA) of segmented
plaques for each strain.

were thus screened to manually select a hundred representative plaques outside the perforant
tracts, which were used to calculate morphological parameters. Finally, as a specificity control,
the 3 classifiers were applied to the hippocampus of a wild-type mouse, and, after similar

Fig. 5. Violin plots of morphological parameters extracted from the population of Aβ
plaques. Definitions of the parameters are reported in Table 2; Significance levels of
pairwise Games-Howell comparisons are indicated (* p<0.05; ** p<0.01; *** p<0.001;
**** p<0.0001); Mean (interquartile range) are represented as dashed lines.
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thresholding and size filtering, yielded no other detection than the same type of false-positive
objects described above (Fig. S2).

Both the MorphoLibJ and 3D ImageJ Suite plugins were able to extract morphological
parameters (step 7 in the Amyloid-β XPCT Workflow), and we here report a combination of the
shape parameters available for each strain (Fig. 5).

As expected from visual assessment, 3xTg displayed the highest plaque signal intensity after
normalization to background (3xTg > J20 > APP/PS1, p<0.0001), while J20 had the smallest
volume (J20 < APP/PS1 < 3xTg, p<0.0001) and surface area (J20 < APP/PS1 < 3xTg, p<0.0001)
per plaque. Mean breadth, a parameter proportional to the integral of the mean curvature,
was also significantly less in J20 (< APP/PS1 < 3xTg, p<0.0001). Shape differences were
more pronounced for 3xTg, which had greater elongation and flatness (3xTg > APP/PS1 ≈ J20,
both p<0.0001), and lower sphericity (3xTg < APP/PS1 ≈ J20, p = 0.0002) compared to J20
and APP/PS1. Finally, it was possible to compute nearest-neighbor distances (Fig. S3), the
mean value of which was 4-fold greater in 3xTg than J20. These parameters are not mutually
independent, and correlation matrices were computed to highlight strain differences in correlation
coefficients (Fig. 6).

Fig. 6. Pearson r correlation coefficients (color-coded from −1 = blue to 1 = red) between
the 8 parameters. Correlation coefficients highlighted with yellow boxes refer to comments
in the text.

While sphericity and sparseness were highly correlated in all three strains, mean breadth was
positively correlated with elongation, and negatively with sparseness, both in J20 and APP/PS1
(Fig. 6, yellow boxes), but not in 3xTg. In contrast, flatness was correlated with surface area,
volume and mean breadth in 3xTg only (Fig. 6, yellow boxes).

4. Discussion

The present study went beyond previous pioneer reports of Aβ detection with XPCT by:

1. studying a complete experimental group (10 brains in total vs 1–2 samples);

2. comparing 3 different strains (vs. a single one);

3. and providing access to multiple morphometric parameters (while previous reports were
confined to plaque number, volume and sphericity).

An additional contribution consisted in building and sharing a "biologist-friendly" analysis
workflow, by assembling multiple Fiji plugins: segmentation editor, Trainable Weka Segmentation,
3D, MorphoLibJ, 3D ImageJ Suite. We were especially interested in the ability of the workflow
to correctly detect a significant proportion of Aβ plaques with very different appearances and
morphologies. Hence versatility rather than completeness of the segmentation was the primary
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goal of the method. We were able to successfully segment numerous Aβ plaques, even when their
refractive indices (and subsequent XPCT signals) were barely different from surrounding tissue,
as in the case of APP/PS1. In future studies in a dedicated mouse strain, segmentation may be
improved, by building a dedicated Weka classifier combining a few slices from different animals,
and/or by using several classes of objects to better discriminate Aβ plaques from neuronal tracts,
and/or by using wild-type littermate brains to avoid false-positive detections and thus avoid
human intervention to threshold probability maps and exclude false positives.

Tested on three different transgenic mouse strains, the analysis workflow yielded an entirely
new class of 3D parameters, with distribution easily measured on multiple plaques. We provide
basic examples of how to handle this set of parameters: e.g., building correlation matrices
(Fig. 6) or searching for spatial patterns (Visualization 1 showing the distribution of mean
breadth values on APP/PS1 hippocampus). Hence, the present work leveraged 3D analysis to
extract multiple morphological parameters of Aβ plaques which otherwise require extended serial
microscopy acquisitions with 3D reconstruction [1]. The development of such quantification
pipelines is a necessary step for popularizing XPCT in neuroscience laboratories which need to
phenotype transgenic animal cohorts. Moreover, this imaging modality could be instrumental
in studying the prion-like properties of Aβ fibrillar aggregates. Typical experiments involve
exogenously inoculated Aβ seeds (prion-like agents) which template and accelerate Aβ deposition
in the host brain [27,28]. Hence non-destructive 3D imaging would be a great advantage in
identifying the spreading routes of inoculated seeds [29]. Moreover, it was suggested that seed
morphology influences the final morphology of disseminated Aβ deposits; but the existence
of these "morphotypes" was inferred from 2D immunohistochemistry [30] and awaits 3D
confirmation.

In this proof-of-concept report, 3xTg displayed a different type of Aβ plaque, with larger
volume and area, greater elongation and flatness, and much higher signal intensity than J20 and
APP/PS1. Aβ aggregation has been shown to start intracellularly in hippocampal neurons of
the 3xTg strain, and it is interesting to note that neuronal bodies in the hippocampus showed
high signal intensity in comparison to other strains (Fig. 1). Thus, the distinct aggregation
cascade in this strain might translate into different extracellular morphotypes of Aβ plaque.
While the mechanisms leading to these particularities remain elusive, these observations illustrate
how XPCT can probe the pathophysiological microenvironment of brain tissue. In terms of
morphometry, the study identified mean breadth as an original and discriminating parameter.
Mean breadth is a quantity proportional to the integral of mean curvature over area (>0 for convex
objects such as Aβ plaques). In this case, mean breadth can be defined as the average of the Feret
diameter measured over a selected number of orientations. It correlated strongly with area and
volume (all related to the size of the plaque), but exhibited radically different correlation patterns
with other parameters in 3xTg (Fig. 6). This shows that the analysis of 3D geometry can benefit
from other parameters in addition to the often-reported sphericity and volume. Ultimately, the
combination of all parameters results in "morphological signatures" that allows discriminating
the strains. The interpretation of the associations between the morphological parameters could
however complexify when the number of parameters increases. In that case, exploratory data
analysis such as dimensionality reduction or clustering could help reveal which parameters
correlate, and which ones carry complementary information [31,32]

Though the pathophysiological relevance of Aβ shape remains unknown, the morphology of
Aβ plaques gained interest with the recent development of brain clearing techniques [2,3,33,34].
In comparison, XPCT has the following advantages: i) ultra-fast sample preparation (around
1 hour, whereas 3D immunofluorescence typically requires several days’ incubation with anti-
amyloid antibodies), ii) variation in size through sole ethanol dehydration (up to 40% decrease
in the brain [35]) whereas most clearing techniques drastically change brain size, leading to
shrinkage or expansion, through multiple and successive chemical treatments [36], and iii)

https://doi.org/10.6084/m9.figshare.15052206
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whole-brain acquisition (whereas light-sheet imaging usually requires multiple acquisitions and
fastidious stitching procedures). Therefore, XPCT can be positioned as a forefront technique,
allowing high-throughput brain screening, and guidance for subsequent brain clearing and
3D immunohistochemistry on selected samples. XPCT is therefore unique as a whole-brain,
label-free method for ex vivo amyloid imaging. The current limitations of XPCT are the following.

1. The sensitivity of detection of Aβ plaques likely depends on size and location in the brain;
this point could be addressed by more precisely adjusting tissue dehydration (by varying
the percentage of ethanol) so as to get minimal anatomical contrast while preserving Aβ
detectability.

2. Not all Aβ plaques seem detectable and the source of the XPCT contrast from Aβ plaques
is not currently fully understood, though it is likely to arise from a local change in
refractive index due to insoluble fibrillar Aβ [37], along with a possible contribution
of endogenous metals entrapped in the plaque [38]. Indeed, there are scarce reports of
calcium accumulation in transgenic mice and in Alzheimer patients [39,40]. Furthermore,
using various methods, metals like iron, copper or zinc have been shown to accumulate in
amyloid plaques, although contrasting results have been reported according plaque types
(mouse or human, senile or diffuse) [38,40–43]

3. The availability of synchrotron sources with XPCT capacity is restricted to 20-30 sites in
the world; but several methods have been proposed to obtain phase-contrast images from a
laboratory X-ray source [40,44–46].

5. Conclusion

In summary, we presented a complete workflow for ex vivo whole-brain imaging and quantification
of Aβ pathology. Sample preparation was limited to reversible dehydration of tissue, which
remained available for standard immunohistochemistry. Propagation-based XPCT produced
unequalled image quality (Fig. S4), with various concurrent types of anatomical information
(white matter, vessels, neuronal organization). New 3D parameters, not attainable on routine
immunohistochemistry, were successfully extracted from 3 transgenic Alzheimer’s disease
models.
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