N
N

N

HAL

open science

Anomaly detection in Hyper Suprime-Cam galaxy
images with generative adversarial networks

Kate Storey-Fisher, Marc Huertas-Company, Nesar Ramachandra, Francois

Lanusse, Alexie Leauthaud, Yifei Luo, Song Huang, J. Xavier Prochaska, J

Xavier Prochaska

» To cite this version:

Kate Storey-Fisher, Marc Huertas-Company, Nesar Ramachandra, Francois Lanusse, Alexie Leau-
thaud, et al.. Anomaly detection in Hyper Suprime-Cam galaxy images with generative adver-
sarial networks. Monthly Notices of the Royal Astronomical Society, 2021, 508 (2), pp.2946-2963.

10.1093 /mnras/stab2589 . hal-03451418

HAL Id: hal-03451418
https://hal.science/hal-03451418
Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03451418
https://hal.archives-ouvertes.fr

onthly Notices

MNRAS 508, 2946-2963 (2021)
Advance Access publication 2021 September 13

https://doi.org/10.1093/mnras/stab2589

Anomaly detection in Hyper Suprime-Cam galaxy images with generative
adversarial networks

Kate Storey-Fisher *,!* Marc Huertas-Company *’,>? Nesar Ramachandra *,** Francois Lanusse *,°

Alexie Leauthaud “,” Yifei Luo ”,” Song Huang “’® and J. Xavier Prochaska “ 7

! Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, USA

2 Instituto de Astrofisica de Canarias (IAC); Departamento de Astrofisica, Universidad de La Laguna (ULL), E-38200 La Laguna, Spain
3LERMA, PSL Research University, Observatoire de Paris, CNRS, Sorbonne Universites, UPMC Univ. Paris 06, F-75014 Paris, France
“High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA

5CPS Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

SAIM, CEA, CNRS, Universite Paris-Saclay, Université de Paris, F-91191 Gif-sur-Yvette, France

" Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

8 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

9Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan

Accepted 2021 August 8. Received 2021 August 5; in original form 2021 May 6

ABSTRACT

The problem of anomaly detection in astronomical surveys is becoming increasingly important as data sets grow in size. We
present the results of an unsupervised anomaly detection method using a Wasserstein generative adversarial network (WGAN)
on nearly one million optical galaxy images in the Hyper Suprime-Cam (HSC) survey. The WGAN learns to generate realistic
HSC-like galaxies that follow the distribution of the data set; anomalous images are defined based on a poor reconstruction by
the generator and outlying features learned by the discriminator. We find that the discriminator is more attuned to potentially
interesting anomalies compared to the generator, and compared to a simpler autoencoder-based anomaly detection approach, so
we use the discriminator-selected images to construct a high-anomaly sample of ~13 000 objects. We propose a new approach
to further characterize these anomalous images: we use a convolutional autoencoder to reduce the dimensionality of the residual
differences between the real and WGAN-reconstructed images and perform UMAP clustering on these. We report detected
anomalies of interest including galaxy mergers, tidal features, and extreme star-forming galaxies. A follow-up spectroscopic
analysis of one of these anomalies is detailed in the Appendix; we find that it is an unusual system most likely to be a
metal-poor dwarf galaxy with an extremely blue, higher-metallicity H1I region. We have released a catalogue with the WGAN
anomaly scores; the code and catalogue are available at https://github.com/kstoreyf/anomalies-GAN-HSC; and our interactive
visualization tool for exploring the clustered data is at https://weirdgalaxi.es.

Key words: methods: data analysis—methods: statistical — galaxies: general —galaxies: individual: COSMOS 244571-
galaxies: peculiar.

1 INTRODUCTION

Many discoveries in astronomy have been made by identifying
unexpected outliers in collected data (e.g. Cardamone et al. 2009;
Massey, Neugent & Levesque 2019). These outliers, also referred
to as anomalies or novelties, are data points that lie outside of
the normal distribution of data. In the astronomy context, we are
interested in finding unknown classes of objects, objects belonging
to rare classes, and individual objects of known type with anomalous
properties. As data sets increase in size, automated methods for
detecting these outliers are becoming necessary. The Sloan Digital
Sky Survey (SDSS) surveyed one-third of the sky and observed over
1 billion catalogued objects (York et al. 2000). In the near future,
the Rubin Observatory will observe 40 billion objects (Ivezic et al.
2019). These present opportunities for novel discoveries in their
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massive data sets, as well as the need for new, automated methods to
filter the data and identify anomalies.

Outlier identification has been an area of study since as early as
the 19th century (Edgeworth 1887). This early work was primarily
focused on identifying and filtering out measurement errors and
other non-interesting outliers. While this is still a main avenue in
modern work on anomaly detection, and is in fact increasingly
important for today’s large data sets, we have become interested
using in anomaly detection for discovery. Recent work in as-
tronomy along these lines has applied a range of statistical and
computational techniques. A nearest neighbours approach, often
combined with a dimensionality reduction step, has been used for
outlier detection in cross-matched astronomical data sets (Henrion
et al. 2013). Applications often target specific types of objects,
such as using Bayesian model selection to select rare high-redshift
quasars from a star-dominated population (Mortlock et al. 2012).
Another approach is Principal Component Analysis (PCA) to identify
distinguishing features; for instance, Dutta et al. (2007) used PCA for
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anomaly detection in SDSS and 2MASS flux and surface brightness
data.

Machine learning methods are being rapidly developed as ap-
proaches to anomaly detection in astronomy and other fields. A
review of anomaly detection methods and applications using deep
learning is presented in Chalapathy & Chawla (2019). Unsupervised
learning lends itself to this problem, as it allows for outlier iden-
tification without expert labelling of training data or introducing
biases based on expected outliers. Baron & Poznanski (2017) use
random forests to find outliers in SDSS spectroscopic data. Solarz
et al. (2017) apply support vector machines to find anomalies in
the Wide-field Infrared Survey Explorer (WISE) survey. Segal et al.
(2019) explore the use of apparent complexity as a feature for
machine learning algorithms to better identify radio galaxies with
complex morphology. Unsupervised learning has also been applied
to anomaly detection problems beyond galaxy surveys, including
on supernovae data (Pruzhinskaya et al. 2019) and Kepler light
curves (Giles & Walkowicz 2019). Finally, general frameworks
for anomaly detection have been developed, such as the combined
machine learning-human input approach of Lochner & Bassett
(2021).

Deep generative models present another class of approaches to
anomaly detection. These have a natural application to identifying
outliers, as they are able to model complex distributions of high-
dimensional data. Autoencoders have recently shown promise in this
realm: Morawski et al. (2021) apply a convolutional autoencoder
(CAE) to gravitational wave data, and D’Addona et al. (2021)
use a disentangled CAE to find outliers in KiDS data. Variational
autoencoders (VAEs) are a natural choice for anomaly detection,
as they provide a direct probability measure (An & Cho 2015);
Villar et al. (2021) use a VAE to detect anomalous extragalactic
transients. However, vanilla CAEs are simple models that do not
always reproduce the data well, and VAEs are known to suffer
from constraining priors and over-regularization (Ghosh et al. 2020),
limiting their application to anomaly detection.

Another deep generative model class that is gaining popularity is
generative adversarial networks (GANs), proposed by Goodfellow
et al. (2014). GANs were first applied to anomaly detection by
Schlegl et al. (2017), in the context of medical imaging. They
demonstrate that a GAN trained on normal images can then be used to
identify abnormal images. Zenati et al. (2018b) show that training an
encoder simultaneously with the GAN improves testing efficiency,
and they demonstrate their performance on outlier detection tasks
on a range of high-dimensional data. GANs have also been used to
detect outliers in time-series data (Li et al. 2018). Recently, Margalef-
Bentabol et al. (2020) used a GAN to detect merging galaxies and
compare galaxy simulations against observations. Di Mattia et al.
(2019) present a survey of the application of GANs to anomaly
detection and perform empirical validation of the models.

The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is
a natural data set for anomaly detection applications (Miyazaki et al.
2018). It is a wide-field optical survey with very good seeing, an
average of 0.6 (FWHM) in the i-band, and a deep magnitude limit, of
26.2 given a 5o point source detection limit. Many interesting objects
have already been identified in HSC; some have been found by
machine learning algorithms, such as in the case of galaxy interaction
signatures (Goulding et al. 2018), while others used more traditional
selection techniques targeted to the objects of interest, such as
for strong gravitational lenses (Wong et al. 2018) and extended
emission-line objects (Sun et al. 2018). We are interested in finding
more of these types of objects, as well as galaxies with extreme
colours, galaxies with extreme activity, rare quasars, and other rare
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or interesting objects. In addition to these, anomaly detection will be
useful for filtering out optical artefacts in HSC.

In this work, we train a GAN to identify anomalous objects in
a subsample of galaxies with HSC imaging. We then characterize
the anomalous images with a new convolutional autoencoder-based
approach, and identify a set of scientifically interesting anomalies.
We also compare the GAN-detected anomalies to those found
with a simple CAE approach. This paper is organized as follows.
In Section 2, we detail the galaxy image data set used in our
application. We describe our WGAN model, approach to anomaly
score assignment, technique for characterization, and CAE model in
Section 3. In Section 4, we discuss our results and show anomalous
galaxies identified with our framework. We present a summary and
our conclusions in Section 5. A follow-up spectroscopic analysis of
one of our GAN-detected anomalies is described in Appendix A.

2 DATA

2.1 Hyper Suprime-Cam survey

We use data from the Hyper Suprime-Cam Subaru Strategic Program
(Aihara et al. 2018a). The wide-field optical survey is imaged with
the Subaru Telescope and has been ongoing since March 2014, with
the first public data release in 2018 (Aihara et al. 2018b). HSC
provides extremely high sensitivity and resolving power, thanks to
the large 8.2 m mirror of the Subaru Telescope; its i-band seeing of
0.6 (FWHM) is a large improvement from SDSS, which has a typical
i-band seeing of 1.4.

We work with the second public data release (PDR2; Aihara
et al. 2019), which contains over 430 million primary objects in
the wide field covering 1114 deg”. Of this wide field, a 305 deg?
area is observed in full-depth full colour. The objects in this field
are observed in five broad-band filters, grizy, with 5o point-source
detection limits within a 2 arcsec diameter aperture of 26.2 mag
in the r and 7 bands, 26.6 mag in the g-band, and 25.4 mag in the
z-band.

2.2 Selection of sample

The HSC data are reduced using a sophisticated data reduction
pipeline (Bosch et al. 2018). We use the force-photometry catalogue
for sample selection. Using the i-band CModel photometry, we select
objects within a magnitude range of 20.0 < i < 20.5 for our analysis.
This choice of a thin magnitude slice allows for a more consistent
sample in object size; we note that this choice is important for ease of
analysis, as detection on a wide range of magnitudes runs the risk of a
bias towards identifying bright objects as anomalies. For application
to larger samples, one could train separate WGANSs on each slice, or
carefully choose training batches to balance magnitudes; we leave
this for future work.

We exclude objects flagged as having significant issues by the
pipeline. These are, in any band: cosmic rays crossing the centre
pixel, saturated centre pixel, interpolated centre pixel, source at edge
of survey volume, failed flux fit. The full query, including these
cuts and the information we retain about each sample, can be found
at https://github.com/kstoreyf/anomalies- GAN-HSC/blob/master/pr
epdata/hsc_pdr2_query.sql, and can be run through the HSC data
access site at https://hsc-release.mtk.nao.ac.jp/datasearch.

We generate cutouts of 96 x 96 pixels (~15 x 15 arcsec) around
each object; this captures the entirety of most objects while still being
a reasonable size for training the network. We use the gri bands to
construct three-colour images. This results in a sample of 942 782
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(a)
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Figure 1. (a) A random subsample of the HSC images used for training the WGAN and identifying anomalies. (b) A random sample of images generated by
the WGAN, each conditioned on a latent-space vector drawn from a random normal distribution.

objects. A random subsample from our final training data selection is
shown in Fig. 1(a). We see the sample contains many compact objects,
most of which are faraway galaxies. The red compact sources may
be high-redshift galaxies, but some of them may also be stars; low-
temperature dwarfs look similar in the survey, and are not simple to
filter out. We also see some more extended galaxies, including some
with clear structure including bulges and spiral arms.

We first pre-process the images to avoid issues due to the raw
data range spanning multiple orders of magnitude. We convert the
flux values to RGB values using the method of Lupton et al. 2004,
which rescales the data using the inverse hyperbolic sine function
(asinh). We use a stretch value of 0.5 and a softening parameter
of 15. This produces values from 0 to 255 for each pixel in each
band, and we then normalize these image by image to between
0 and 1. This scaling may affect the features identified by the
WGAN as anomalous; for instance, it may suppress the degree
of anomaly of galaxies that have extremely high or low flux in
certain regions. However, the rescaled images should largely retain
the information about each object, which is sufficient for this work;
we leave further exploration of the effect of flux conversions to future
work.

3 MODEL AND TRAINING

3.1 WGAN architecture and training

The standard GAN framework, introduced in Goodfellow et al.
(2014), involves a generator and a discriminator which compete
against each other in a minimax game. The discriminator D(x)
learns to distinguish real images x from those generated by the
generator G(z), where z is a vector in the generator’s latent space.
The generator, in turn, learns how realistic its generated images
are based on feedback from the discriminator. The loss function to
optimize is then

mGin max Lpc = Exepllog(D(x))]

+ Ezvp,m[log(1 — D(G(2)))], (1
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where [~ (x) is the expectation value over the distribution of all
real images, and ;- () is the expectation value over random input
vectors to the generator.

GANSs are notorious for instability in training; balancing the
generator and discriminator losses is nontrivial, and vanilla GANs
can fail to find a Nash equilibrium (Salimans et al. 2016). One
improvement is to use the Wasserstein distance as a metric to compare
real and generated samples. This is a more meaningful distance
measure and is smooth even when the distributions are disjoint.
Wasserstein GANs are shown to be more stable and avoid vanilla
GAN issues including mode collapse (Arjovsky, Chintala & Bottou
2017). The WGAN formulation is qualitatively different from that
of vanilla GANs in that, rather than the discriminator outputting
a probability of whether the sample was drawn from the real or
generated distribution, the discriminator outputs the Wasserstein
distance between the probability distributions of real and generated
samples. The WGAN discriminator is often called the ‘critic’ to
distinguish it, though we will continue to use ‘discriminator’ for
clarity.

The Wasserstein distance can be approximated by

W (pr(x), p(2) = SUp [Exm ) [D)] = Eznp, o [D(G2)]], (2)

where ‘sup’ denotes the supremum over discriminator parameters.
The generator aims to minimize this distance to achieve a distribution
of generated images closest to the distribution of real images. The
generator only enters into the second term, so its loss function can
be defined as

L = —Eerp,[D(G(2))]. ©)

The discriminator aims to maximize the Wasserstein distance; its loss
function can be taken as the difference between the discriminator
output on the real and generated samples. However, a discriminator
with this naive loss would get ‘stuck’ when the discriminator is
perfect, as the gradient vanishes and the loss function cannot continue
to be updated. One approach to address this is to apply a gradient
penalty (GP) to penalize the loss to avoid vanishing gradients;
to implement this we add a regularization term to the loss. The
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discriminator loss is then

Lp = Exp[D)] = Erep, ) [D(G(2))]
+ hop Eyp, [([IVy DY) ]2 — 1] )

where y = ex + (1 — €)G(z) is a uniform sampling from the line
between samples from the real and generated distributions (with €
as a mixing parameter drawn uniformly from 0 < € < 1), Agp is the
hyperparameter controlling the strength of the regularization, and
[| - || is the L, norm.

For our model, we use this standard formulation of a Wasserstein
GAN with gradient penalty (WGAN-GP). The implementation is
in tensorflow and python, based on that by Gulrajani et al.
(2017). The generator and the discriminator are convolutional neural
networks; the generator takes as input a latent space vector of
dimension 128, and outputs an image of size 96 x 96 x 3 pixels
where 3 is the number of colour bands. It has a depth of 4 and
a sigmoid activation function. The discriminator takes as input an
image of size 96 x 96 x 3 pixels and outputs a real number; it also
has a depth of 4.

We train the WGAN in batches of 32 images, with 5 discriminator
updates per generator update. For the loss functions we use the
parameter Agp = 10, and maximize the losses with the Adam
optimizers with hyperparameters which we tune, choosing & = 1074,
B1=0.5,and B, = 0.9, for both the discriminator and generator. We
finalize the model at around 10 000 training iterations, after which the
generator and discriminator losses stabilize and no longer improve.

A random sample of images generated with this WGAN, starting
from latent space vectors drawn from a normal distribution, is shown
in Fig. 1(b). We can see that the WGAN is able to generate realistic
images for less extended objects, including neighbouring objects
and noise properties. It also captures the colour distribution of
the population well, and reproduces the general noise properties.
However, it is unable to reconstruct the finer structure of more
extended objects, such as spiral arms and distinct bulges; instead,
it generates diffuse-looking objects that do not always represent
realistic galaxies. That said, the fact that the WGAN does not
learn to generate these more structured images is in line with our
application of the WGAN to anomaly detection, as this limitation is
precisely due to the fact that these images are less well-represented
in the data. We quantify the ability of the WGAN to represent the
training objects and the connection to anomaly detection in the next
section.

3.2 Anomaly score assignment

The basic procedure for anomaly detection involves setting the
WGAN to generate its best reconstruction of each image. The
WGAN has learned the global distribution of the data and will be
better at generating ‘typical’ images; therefore, we expect that a
poorly reconstructed image indicates that an object is anomalous
with respect to the rest of the sample. This approach requires a
quantification of how anomalous an object is and an inverse mapping
from images to the WGAN’s latent space.

To determine how well the WGAN reconstructs a given image and
thus how anomalous it is, we set the trained network (with weights
fixed after training) to find its best reconstruction of each image. This
is defined as the generator image that minimizes a loss L based on
the residuals between the original image and reconstructed image,
in both pixel-space and feature-space. The generator residual Ly,
enforces a visual similarity between the images, and is defined as the
pixel-wise difference between the original image x and the generator-
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reconstructed image G(z):
Lgen = Z[ 1% — [G@)]il. Q)]

where i indexes the P = 96 x 96 x 3 pixels in the image and
its corresponding reconstruction. We also use the discriminator
to perform feature-matching to capture the similarity between the
features of the reconstruction and the original. The discriminator
residual Lgis is calculated by considering the representation d from
the last convolutional layer, which has dimension 6 x 6 x 512, and
taking the difference between this representation for the real and
reconstructed images:

Lgie = 2] |d(x); — d(G(2));1, (6)

where j indexes the F' discriminator features. The total loss then
Llot = (1 - )\anom) Lgcn + Xanom Ldisc’ where Aanom is a weighting
hyperparameter which we tune. We choose A,pom = 0.3 to balance the
typical variation in raw scores between generator and discriminator
residuals. Varying this parameter results in slightly different samples
of high-scoring anomalies; the importance of the generator versus
discriminator scores is investigated in Section 4.1.

The inverse mapping from image to latent-space vector is typically
performed with a straightforward optimization, starting from a
random draw from the WGAN’s latent space and optimizing to
find the latent-space vector that minimizes L (e.g. Schlegl et al.
2017). However, this is a time-limiting step for large samples, so
we propose an improvement: we first train an encoder, a standard
convolutional network, on the entire training sample to make a
first approximation of the latent-space vector. This encoder simply
provides a better initial guess of the latent-space location and does
not significantly affect the final reconstruction. We then start from
the encoder approximation and, for each image individually, perform
a basic minimization of L, optimizing for 10 iterations (though the
score usually converges before this). This loss value at the final
iteration, L™ quantifies the degree of anomaly of the image, so

tot °
we assign this to be the image’s anomaly score, swgan = Lﬁ)‘}al. We
also preserve the information about the generator and discriminator
residuals, assigning associated Scores Sgen = Lg;‘;‘l and sgige = Lml,
Higher anomaly scores indicate more anomalous objects, while lower
scores indicate objects better modelled by the WGAN; the scores are
relative and meaningful only with respect to the rest of the sample.

The result of this process is shown in Fig. 2. We can see that the
WGAN is able to generate realistic images; for compact objects with
standard colours, it constructs images nearly identical to the original,
and assigns the objects low anomaly scores (Fig. 2a). The model is
more challenged to generate objects with rare features or colours,
as in the images with scores around 3o above the mean shown in
Fig. 2(b). Finally, objects with optical artefacts, such as satellite
streaks or contamination from nearby bright stars, have extremely
high anomaly scores, as the WGAN struggles to reconstruct them
(Fig. 2¢).

3.3 Dimensionality reduction with a Convolutional
Autoencoder

A general problem with anomaly detection is to distinguish poten-
tially interesting objects from trivial data issues. We propose here
a new approach based on Convolutional Autoencoders (CAEs) to
post-process and explore identified anomalies.

We expect the residual images, the difference between the real and
reconstructed images, to contain information about why the WGAN
marked an object as anomalous. (We use the absolute difference
because we are restricted to positive pixel values on the RBG scale,

MNRAS 508, 2946-2963 (2021)
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swaan = -1.170 swgan = -1.100  swean = -1.040
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Figure 2. The results of WGAN image reconstruction and anomaly score assignment. The top row of each panel shows the original image, the second row
shows the best WGAN reconstruction, and the bottom row shows the residual between the two. The assigned anomaly score is shown at the top of each column.
The images in each panel are random samples of images in the following ranges of anomaly score: (a) significantly below the mean, (b) around 3o above the
mean, (c) greater than 50 above the mean. It is clear that higher anomaly scores are indicative of poorer WGAN reconstructions and hence larger residuals.

though this does lose potentially useful information.) However, the
pixel space is very high-dimensional, and contains information less
relevant to the anomalous features we are interested in, such as
background noise. We employ a CAE to reduce the dimensionality
of the data and isolate the relevant information.

We train a straightforward CAE to map the pixels of the residual
images to a 64-dimensional vector. The CAE has 4 encoding and
4 decoding layers, and uses a standard MSE loss between the true
and reconstructed image. We train the CAE in batches of 30 images,
and stop the training when the loss stops improving, freezing the
network at 30 000 iterations. We then use the CAE to encode each of
the images into a 64-dimensional vector representation. We confirm
that the CAE maps the encoded vectors to images that are reasonable
reconstructions of the originals. This autoencoding step allows us to
extract the information most relevant to the anomalous features of the
image, and perform further characterization to distinguish interesting
anomalies; we demonstrate this in Section 4.4. As a comparison, we
also train an identically constructed CAE on the pixels of the real
images; the results of this are also shown in Section 4.4.

3.4 Anomaly Detection with a Convolutional Autoencoder as a
benchmark

We compare our WGAN anomaly detection approach to a simpler
method using a straightforward convolutional autoencoder. We use
the trained CAE described in Section 3.3. In that section, we used
the CAE for the purpose of dimensionality reduction in order to
characterize the WGAN-detected anomalies, and we emphasize that
that application is independent from this use of the CAE as a
benchmark for anomaly detection. For this comparison, we obtain
the latent space representation from the trained CAE for each of
the nearly one million HSC objects, and apply the trained decoder
to get the CAE-decoded image. We then compute a CAE anomaly
score Scag by computing the residual image between the original and
CAE-decoded image, and then taking the sum over the residual pixel
values. This is analogous to how we compute the generator score as
described in Section 3.2.

We demonstrate the CAE approach in Fig. 3. We use the same
sample of images as for the WGAN approach in Fig. 2 for a

MNRAS 508, 2946-2963 (2021)

direct comparison (note that the groupings are now misaligned with
the CAE anomaly scores, as they are grouped by WGAN score).
The CAE decoded images are generally good reproductions of the
original images, but the CAE also struggles for images that are
outliers with respect to the full training set, as can be seen in
Fig. 3(c). The CAE also produces very smooth images that lack
the noise properties of the real data, while the WGAN is generally
good at reproducing this noise. We use the CAE anomaly score as a
benchmark, as it is an established approach that is simpler than our
WGAN method, but has some similar properties.

4 RESULTS

4.1 Anomaly score distribution

We compute anomaly scores for each of the ~940 000 objects in our
sample, using both a generator score sy, and a discriminator score
Sdisc as described in Section 3.2. These raw scores have very different
ranges due to their definitions based on image pixel differences or
feature value differences, so to compare them we show the scores by
their number of standard deviations from the mean.

These distributions are shown in the left panel of Fig. 4. Recall that
higher anomaly scores indicate more anomalous objects, while lower
scores indicate objects that are more well-modelled by the WGAN.
We find that the distribution is skewed towards higher scores, which is
expected: most typical objects are reconstructed well by the WGAN
so have similar scores, while there are more ways to be anomalous
than to be typical, resulting in a wider range of scores. The high-score
tail extends out to an object with sq4;c = 35.20, and the low-score
tail extends to an object with sg, = —4.70 (we only show the bulk
of the distribution for clarity).

The right-hand panel of Fig. 4 shows sgisc Versus sy, for each of the
images. As expected, we see that most objects have relatively similar
generator and discriminator scores, indicating that the generator
and discriminator generally agree on the degree of anomaly of
the image. That said, the distribution has significant scatter, so the
pixel-residuals and feature-residuals may be picking up on different
indications of anomalousness. At high scores, there is a skew towards
higher discriminator scores: anomalous objects are more likely
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Figure 4. Left: The distribution of anomaly scores for the ~940 000 objects in our sample, for the score based on the generator pixel-wise residual sgen (blue
dotted), the score based on the discriminator feature-matching residual sqisc (red dashed), and the combined total score swgan (purple solid). We normalize
each by their mean and standard deviation o, so the scores shown are in terms of o away from the mean of the given distribution. We do not show the long
tails of these for clarity; a few objects extend up to Sgen = 25.50 and sgise = 35.20, and down 0 sgen = —4.70 and sgisc = —2.30. Right: The distribution of
discriminator versus generator scores, colour-coded by total anomaly score. The dashed line shows where sgen = Saisc in terms of their o away from the mean.

to have a high discriminator score compared to generator score.
However, this only applies to very high-scoring objects above ~50,
and is likely a result of how we compute the raw scores — there
is a maximum to the generator residual due to the pixel values,
while discriminator scores are essentially unbounded — so we do not
subscribe great significance to this. These distributions also reflect
the fact that the scores are not Gaussian distributed, but rather have
a long one-sided tail towards high anomaly scores.

As a comparison, we also compute the CAE anomaly scores for
each of the images as described in Section 3.4. These are based
on the residual pixel values between the real image and the CAE
decoded image, and so they are directly comparable to the generator
scores. We show the raw score distribution for both of these in the
left-hand panel of Fig. 5. The CAE scores are lower on average

than the generator scores, meaning the reconstructions are generally
more similar to the original image. The right panel shows the
correspondence between the generator and CAE scores for each
image, and we see that the CAE scores are typically lower. These
points are colour-coded by the total WGAN score; we see that there
is also not much of a correlation between CAE score and WGAN
score, meaning that the discriminator component of the WGAN score
corresponds more with the generator score than the CAE score.
Although the CAE scores tend to be lower than the WGAN scores,
we hypothesize that this is largely due to noise properties. Looking
at Figs 2 and 3, the CAE reconstructions are much smoother and
less noisy than the WGAN reconstructions. The residuals for the
CAE then contain the noise of the real image. On the other hand,
the WGAN reconstructions attempt to generate images with similar
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Figure 5. Left: The distribution of anomaly scores for the ~940 000 objects in our sample, for the score based on the generator pixel-wise residual sge, (blue
dotted), and the score based on the CAE pixel-wise residual (green dot—dashed). We show the raw scores, as these are directly comparable. As in Fig. 4, we do
not show the long high-score tails for clarity. Right: The distribution of generator versus CAE scores, colour-coded by total WGAN anomaly score. The dashed

line shows where sgen = SCAE-

noise properties as the original, as the WGAN has learned the typical
noise level of the training data. However, it will not place the noise
in exactly the same pixels as in the real image (given that we are
limited in the optimization step to find the best reconstruction of the
image in the WGAN’s latent space). The residuals for the WGAN
then contain roughly double the noise values as those for the CAE,
as they include the noise of the original and the reconstruction. This
contributes significantly to the generator score, pushing the score
distribution to higher values compared to the CAE scores. If this
difference is mainly due to noise, then it is not very relevant to
anomaly detection; the differences in scores within each definition
will be more meaningful. We investigate this in the next section by
looking at high-anomaly samples based on each score definition. We
also note that in some cases the CAE does seem to produce a better
reconstruction than the WGAN, but we show in the next section that
even so, the WGAN discriminator score is a more useful metric for
identifying interesting anomalies.

4.2 High-anomaly sample selection

We investigate the role of the generator and discriminator scores
by looking at selections of high-scoring anomalies with different
score definitions. We also compare these to selections based on the
CAE score. Fig. 6 shows a comparison of random samples of these
definitions, based on a 3¢ cut-off. The larger samples in the top row
of all panels show a selection based on Sgep, Sgisc, and scag. It is clear
that all of these high-scoring samples are anomalous with respect to
the full sample (Fig. 1a), showing objects with interesting features
and properties, as well as noise-dominated images and those with
optical artefacts. We can see that the generator score sample (Fig. 6a)
contains many empty images and some containing optical artefacts;
the majority of the images are clearly scientifically uninteresting.
The discriminator score sample (Fig. 6b) also has some noisy and
saturated images, but it contains a significantly higher proportion
of interesting-looking images, which we broadly consider as those
that contain actual galaxies, and galaxies that are not just typical-
coloured, compact sources. It also contains some objects of even

MNRAS 508, 2946-2963 (2021)

higher interest, including extended galaxies with unusual structure,
and compact objects with extreme colours. Looking at the CAE score
sample (Fig. 6¢), we see that the high CAE scores are picking up many
images with high, grainy noise, as well as some optical artefacts.

For each selection, we can ask which images are captured that
other score definitions would miss with the 3o cut; this is shown
in the bottom row of each panel. We can see that the generator
score selects mostly noisy images that the other definitions miss (the
bottom panels of Fig. 6a). The discriminator score definition, on the
other hand, would capture a decent number interesting objects that
are missed by both the generator and CAE definitions (the bottom
panels of Fig. 6b). The high-scoring CAE images that the other
definitions miss (bottom panels of Fig. 6¢) are, once again, mainly
noise and otherwise uninteresting images.

This analysis suggests that the generator score, which is based on
the pixel-residual, is more attuned to selecting anomalous images
due to noise or other image corruption issues, which tend to affect
most of the pixels in the image and lead to larger absolute differences
between the real and reconstructed images. On the other hand, the
discriminator selects images that are anomalous in feature-space,
which is more flexible in selecting various types of anomalies
including those that are more localized in pixel space. This results in a
set of images that have more potential to be scientifically interesting.
We also investigate using the combined score for selecting this high-
anomaly sample, and find that it effectively results in a mix of the
generator and discriminator high-scoring samples; as we showed in
Fig. 6 that the generator score selects very few interesting objects
missed by the discriminator score, we choose to not incorporate the
generator score at all and just use the discriminator score.

We hypothesize that the WGAN is better suited to anomaly
detection compared to the CAE due to several factors. The first is that
the WGAN is specifically intended to learn the true distribution of
the input data. Thus, we should be able to better identify the objects
that are outliers of that distribution. On the other hand, the CAE is
much simpler, just trained to compress and reproduce the images
in a lower dimension. Secondly, CAEs tend to smooth the data, as
we see in our decoded images; this will wash out subtle anomalies,
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Figure 6. Comparison between image samples selected using various score definitions. The top panel of (a) shows a random sample with a 30 cut on the
combined anomaly score sgen. The lower left-hand panel shows a sample of images that this score definition would include but sgisc > 30 would miss; the
lower right-hand panel of (a) similarly shows images missed by scag > 3o. Panels (b) and (c) show the same thing for sgisc and scag. The sgisc > 30 selection
shows the highest proportion of interesting anomalies, and it selects interesting images the other scores would miss; we choose this selection criterion for our

high-anomaly sample for further characterization.

and in astrophysics we often care about these subtleties. Finally, the
WGAN’s discriminator is particularly suited to anomaly detection,
as it is trained to detect ‘realistic’ images, which will look more like
the bulk of the input data. We can use the discriminator feature-space
as a natural anomaly quantification, and we see that indeed it finds
more interesting anomalies, while the CAE has no such quantity.

We thus select our final high-anomaly sample with a cut on
discriminator score, sqgisc > 30, as in the upper panel of Fig. 6(b),
producing a sample with 13 477 images, representing 1.4 per cent
of the total sample. We also show sgisc as the relevant anomaly
score in the rest of our analysis given its stronger relation with
potentially interesting anomalies. We note that the choice of using
only sgisc for our anomaly score is different than previous work,
such as Schlegl et al. (2017), Zenati et al. (2018a) and Margalef-
Bentabol et al. (2020), which all use an anomaly score that combines
the generator and discriminator losses. Our choice may indeed miss
some anomalies, but we have shown in Fig. 6 that the choice of a
Sdise > 30 results in missing the least interesting objects. We strive
for purity over completeness in our high-anomaly sample, as we aim
to identify scientifically interesting anomalies, which is easier with
less contamination from noisy images. We provide the full score
information in our released catalog so subsequent studies may use a
different selection if they so choose.

4.3 Correlation with HSC catalogue information

In order to further explore the results of our anomaly detection
process, we compare the objects in various samples with derived
properties from the HSC catalogue. This acts as a validation step

to understand the information that our anomaly detection approach
might be using to make its assignments, as well as to determine if
it is picking up on information beyond that in the catalogue. Fig. 7
shows the normalized distributions of selected galaxy properties for
the full sample and the 30-anomaly samples, selected with each of
the score definitions discussed previously.

We first look at the spatial extendedness of the object. We use
the effective radius R.s of the exponential component from the best-
fitting CModel result. It indicates the intrinsic extendedness of an
object after taking PSF convolution into account. Among the different
size measurements provided in HSC data base, it is the most stable
and robust measure of size. Objects with Ry < 1 arcsec are very
compact, while those with Rir > 5 arcsec are quite extended (recall
that the sizes of cutouts are 15 x 15 arcsec). Among the objects with
R > 5 arcsec, we notice a population of problematic objects that
do not appear to be that extended and also have faint - and g-band
magnitude; we believe that these are due to bad deblending processes.
From the figure, we see that most of the objects in the full sample
are compact, with a median of R ~ 0.5 arcsec. In comparison, the
generator and discriminator 30 anomaly samples contain a majority
of extended objects; the discriminator-selected sample has a median
Reir ~ 2.5 arcsec. This shows that the WGAN tends to find high-
R.¢ objects to be more anomalous, as these high values encompass
both bad deblends and actual extended galaxies. The latter makes
sense as extended objects are more resolved and can show more
complex details, such as interesting galactic structure. That said,
these high-anomaly samples still contain significant numbers of
compact objects, showing that the WGAN is able to detect interesting
compact objects and is not simply flagging all extended objects as

MNRAS 508, 29462963 (2021)
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Figure 7. The distribution of catalogue properties from the HSC pipeline for various score definitions. We compare the distribution of the full sample (solid
orange) to those of high-anomaly samples selected by scag (dot-dashed green), sqisc (dashed red), and sgeq (dotted blue). The properties we show are the
effective radius Refr, ellipticity, blendedness, ratio of aperture to CModel flux iaper/icModel, & — r colour, and r — i colour. The grey line in the blendedness panel

indicates the typical threshold for filtering out highly blended objects.

anomalous and all compact ones as boring. We note some small
but interesting differences between the generator and discriminator
samples: the generator selects many objects with unrealistically high
radii, while the discriminator tends towards intermediate-extended
objects. We also show the distribution of high-CAE score objects,
and we find that it separates into two populations: one of compact
objects like the bulk of the full sample, and the other of very large
radius objects that are likely bad deblends. This latter peak is very
similar to (and even more extreme than) that feature in the generator
sample distribution. This supports our finding that the generator and
the CAE are attuned to optical artefacts which do not have meaningful
radii, while the discriminator more often finds actual galaxies with
interesting properties.

We next examine the ellipticity e of objects using the exponential
components of the CModel flux. Here 0 means circular and 1 means

MNRAS 508, 2946-2963 (2021)

highly elliptical. We note that this is for both extended and compact
objects, and ellipticity may be less meaningful for the latter. In the
full sample, objects skew towards small ellipticity. While the full
population has a higher fraction of objects in the 0.05 < e < 0.3 bin,
the anomaly samples show an excess of very low ellipticity objects
at e < 0.05. Interestingly, the CAE sample has the highest excess,
perhaps due to having a higher proportion of compact objects. The
anomaly samples also tend to pick up more highly elliptical (e >
0.9) objects. Such high ellipticity is rarely physical; it is often due to
poor fits on corrupted images.

We look at the blendedness of the objects, which describes the
contamination of one object by the light from other close objects. It
is computed from the i-band flux fits, as described in Bosch et al.
(2018). A blendedness of O indicates an isolated object, while a

value near 1 indicates a very blended object. A very small number of
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objects are assigned unphysical negative blendedness scores; we do
not show these, but they do contain a higher proportion of anomalies.
We see that in the full sample, for the vast majority of objects, their
photometry is not affected by image blends. For the anomaly samples,
most images also have low blendedness values, showing that the
anomaly detector is finding interesting isolated objects and not just
identifying blends. That said, the anomaly samples do also show
a significantly higher fraction of highly blended objects compared
to the full sample. This is expected due to the low representation
of blended objects in the data, as well as the correlation between
objects with larger angular size and higher blendedness. The grey
line at 107%37 shows the cut-off suggested for eliminating blends
(Mandelbaum et al. 2018); 4.6 per cent of all of the objects in our
full sample are above this threshold, while 32 per cent of the objects
in the high discriminator score sample are above it. Interestingly,
the discriminator selects for more of the highly blended objects
than the generator and CAE, suggesting that many of these are
actual overlapping objects and not just artefacts, as we know that
the discriminator flags fewer artefacts as anomalous compared to the
other scores.

The ratio between the aperture flux and CModel flux
logio(iaper/icModer) 18 another interesting diagnosis of photometry.
It has been used as an empirical indicator for problematic objects
due to bad deblending processes. Fig. 7 only shows the i-band, but
the distribution is very similar for the other bands. The aperture flux
is computed in a small 2 arcsec aperture on images convolved with
kernels matched to a common FWHM-1.2 arcsec PSF across all five
bands, to homogenize the flux measurements across the bands; the
CModel flux takes into account the emission from the entire image.
Thus a low ratio means that the object is very large, or that there is a
strong colour gradient; it may also indicate that there is an issue with
the CModel fit, for instance due to poor deblending. We see that most
objects in the full sample have a ratio near one, with a skew towards
smaller ratios as expected from the flux definitions. The 30 anomaly
samples show a markedly different distribution, with many objects
having very small ratios. This makes sense as we have seen that our
anomaly detector selects for both extended objects and deblending
errors. The generator-selected sample shows a large proportion of
very small ratio objects: 56 per cent of the high generator score
images have a logo(iaper/icModet) < —1.0, compared to 40 per cent
of discriminator score images, 36 per cent of CAE score images,
and 4.8 per cent of the full sample. This aligns with the generator’s
tendency to flag optical artefacts that likely have poor deblends, and
shows that this metric is particularly useful for understanding the
types of images that our anomaly detectors are selecting.

Finally, we look at the colour distributions for both g — rand r — i
colour, based on the CModel flux fits. We see that the high-anomaly
samples are significantly bluer (lower g — r) than the full sample.
There is less of a difference for r — i colour, but the anomalies do
skew towards bluer colours (lower r — 7). This may be because of the
relationship between colour and angular size: galaxies with larger R
tend to be bluer, and larger objects are disproportionately anomalous
in our sample, as we have seen in the R distribution. In both cases,
we also see a longer tail into the red end of the colour distribution,
indicating that the anomalous sample contains more extreme colour
images on both ends; this makes sense as both interesting objects and
problematic photometry would exhibit extreme colours. We see little
difference in the distributions for the discriminator and generator 3o
samples, suggesting that they are capturing similar proportions of ob-
jects of each colour. The CAE 3¢ score distribution is more similar to
the full distribution, as we have seen in the previous panels, indicating
that it is not picking up on as many outlying images as the WGAN.

Detecting anomalous galaxies with GANs 2955

We also note that there is a strong correlation between objects near
bright stars and their anomaly score. For our initial selection, we
performed a basic cut on objects near foreground stars, but this still
left significant potentially contaminated regions. Applying a more
aggressive bright star mask, we see that 44.6 per cent of objects in
our discriminator-defined high-anomaly sample fall within the mask,
compared to only 8.5 per cent of objects in the full sample (this
newer mask can be found at https://hsc-release.mtk.nao.ac.jp/doc/in
dex.php/bright-star-masks-2). For increased purity, we could apply
this mask, though we would risk losing some potentially interesting
anomalies; in fact, these regions are often excluded due to the amount
of artefacts, but a filter based on anomaly score could make this data
usable. For this work, we do not apply this mask but note that it may
be useful depending on the downstream application. Additionally,
future HSC data releases that are in preparation will have more
sophisticated data reduction and filtering, and will allow anomaly
detectors to better learn interesting anomalies.

This comparison of the distributions of catalogue properties
elucidates the types of images that the WGAN generator and
discriminator, and in comparison the CAE, find to be anomalous. The
high anomaly score samples generally have significantly different
distributions of properties compared to the full sample. In particular,
the objects with high anomaly scores tend to have more extreme
properties, including both potentially interesting and unphysical
properties. We also observe that the CAE- and generator-selected
high-scoring samples have relatively similar distributions to each
other for many of the properties, more so than the discriminator-
selected sample, confirming the tendency of the CAE and generator to
select more for noisy images and optical artefacts. Further, we found
that there is a significant number of objects with non-extreme catalog
properties but that are found to be highly anomalous; this validates
that the anomaly detectors are incorporating more or higher-order
information in determining the degree of anomaly of an image, so
these anomaly samples could not be constructed with simple cuts on
pipeline data. Our anomaly scores could be used in combination with
the catalogue to further filter out noisy and uninteresting images or
to pick out specific types of anomalies.

4.4 Autoencoder results visualized with UMAP embedding

We visualize the image distribution with a Uniform Manifold
Approximation and Projection (UMAP, Mclnnes, Healy & Melville
2018), a dimensionality reduction algorithm that maps the objects
into a 2D representation. This is useful for understanding the global
properties of the distribution, and exploring the types of objects in
the sample through their clustering UMAP-space. We perform a
UMAP embedding on a 100 000-object subsample of our data set,
and look at the correlation between the UMAP and our WGAN-
assigned anomaly scores.

We first perform an embedding directly on the three-colour image
pixels; this is shown in Fig. 8(a). There is a general trend with
anomaly score, as well as significant structure in the distribu-
tion. We next embed the residual image pixel values between the
original images and the WGAN reconstruction, as we expect the
residuals to contain information about the magnitude and type of
anomaly; this is shown in Fig. 8(b). We see an increased amount
of structure, including a windy filamentary structure composed
of lower-scoring objects, with the high-scoring objects somewhat
clustered towards the centre of the distribution. The detailed
structures of the low-scoring objects in these UMAPs suggest
that the embeddings are dominated by less interesting pixel-level
features.

MNRAS 508, 2946-2963 (2021)
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Figure 8. The anomalies in our sample visualized with a UMAP in two dimensions, with different features used for the UMAP embedding. The choice of
autoencoded residual images (lower right) produces a UMAP distribution that is most strongly correlated with anomaly score.

In order to address this, we use a convolutional autoencoder
(CAE) to reduce the dimensionality of these images, as described in
Section 3.3. We emphasize that while we use the same CAE for this
application as we did for assigning CAE anomaly scores, as described
in Section 3.4, here we use it for a totally different purpose: to aid
in characterizing the anomalies found by the WGAN discriminator.
The CAE finds a 64-dimensional latent-space representation of each
original image, and separately of each residual image; these are much
more compressed than the 27,648 dimensions of the images (96 x 96
pixels in 3 colour bands).

We first apply the UMAP to embed these autoencoded low-
dimensional representations of the original images; this is shown in
Fig. 8(c). We see that there is now a more coherent cluster containing
most of the low-scoring anomalies, though there are high-scoring
objects scattered throughout the distribution. Finally, we show the
result of embedding the autoencoded residual images in Fig. 8(d). We
obtain a coherent distribution with a very clear gradient in anomaly

MNRAS 508, 2946-2963 (2021)

score. This indicates that the CAE applied to the residual images
is extracting information that is the most relevant to the WGAN-
assigned anomaly score, as compared to the image pixels or the
original images. This provides support that our CAE technique,
combined with our WGAN approach to anomaly detection, is useful
for consolidating the information in the galaxy images relevant to
their anomalousness. In the next section, we show that this is useful
for the further characterization of the high-anomaly sample to detect
scientifically interesting anomalies.

4.5 Characterization of anomalies with the WGAN, CAE, and
UMAP

We use our WGAN-based anomaly score and our autoencoded
residual images to explore and characterize the anomalous objects
in our data set. We perform a UMAP embedding of the autoencoded
residuals for just the objects in our high-anomaly sample, as defined
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in Section 4.1, as we are now interested in identifying the scientifi-
cally interesting anomalies among the high-scoring objects. This is
shown in Fig. 9(a). The distribution shows a clear correlation with
Sdisc, With high-score structures around the edges of the distribution,
while objects just passing the 3o threshold are more evenly located
in the centre of the distribution.

In exploring the objects in this distribution, we find that the
distribution reflects similarities in the objects and their residuals.
We demonstrate this by showing galaxies located in various regions
of the UMAP, indicated by the coloured boxes on Fig. 9(a). Panels
(b)—(e) of Fig. 9 show a random selection of galaxies from each of
the boxes of the corresponding colour. The differences in the regions
are clear visually. Fig. 9(b) shows images from the central region
of the UMAP, which contain mostly extended galaxies with diffuse
emission and little structure. The residuals show large empty regions
where the WGAN succeeded in reproducing the extended emission,
with noise and background or foreground sources around the edges.
The nearness of these images in UMAP-space demonstrates that
our approach successfully isolating the anomalous features and
clustering based on these. The images in Fig. 9(c) correspond to
the edge of a high-scoring arm of the UMAP. They all exhibit
a strong blue-green colour: some of these are due to noise, but
others are bright blue sources that may be extreme star-forming
regions. We can see that the WGAN has difficulty reconstructing
these complicated structures, and while it captures some of the blue
colour the reconstructions are dominated by diffuse yellow emission,
which is more represented in the data. We note that the attempted
reconstructions are quite similar to each other, likely because there
is only a small region of the WGAN’s latent space that can produce
images resembling these as they are far from typical training set
images. In addition to characterizing types of interesting anomalies,
the UMAP is useful for separating out optical artefacts. Fig. 9(d)
shows objects in a cluster far from the rest of the distribution, which
contain red streaks aligned in the same direction, possibly due to
satellites or other corruptions. The WGAN struggles to reconstruct
these; it attempts to line up multiple compact sources to approximate
the line, as it was trained on majority compact sources, so the
residuals all display similar features corresponding to gaps in the
line. The images in Fig. 9(e), from the cluster at the bottom of the
UMAP, have bright green features due to corruption from nearby
bright stars or passing satellites. The WGAN reproduced the central
object well but was unable to reconstruct the green features, as most
of the data set does not contain these.

These sets of galaxies with distinct anomalous features demon-
strate how our WGAN-based approach, combined with the CAE-
enabled UMAP distribution, provides a useful way of characterizing
anomalies. We are able to disentangle anomalies that scored highly
due to noise or saturation, such as those in panels (d) and (e), from
those with a high score due to unusual galaxy morphology or colour,
such as in panels (b) and (c). This indicates that our approach could be
used to robustly filter out bad images at the pipeline level, in addition
to identifying scientifically interesting anomalies in post-processing.
We built a custom visualization tool to interactively explore the
UMAP space in more detail, based on a similar tool by Reis et al.
(2021); it can be accessed at https://weirdgalaxi.es. We used this
tool to perform a search for scientifically interesting anomalies; the
results of this search are described in Section 4.6.

4.6 Identified interesting anomalies

Using our approach combining WGAN-based anomaly scores and
CAE-enabled characterization, we find a number of potentially

Detecting anomalous galaxies with GANs 2957

scientifically interesting galaxy images. A categorized selection of
these is shown in Fig. 10. We note that these categories were assigned
by hand, and do not correlate very clearly with regions in UMAP-
space; the identification and categorization required a decent amount
of visual inspection using our interactive visualization tool. That
said, some of these objects do cluster in the UMAP, and in fact we
found some of these objects by looking nearby previously identified
images in the category of interest.

Fig. 10(a) shows galaxies with regions of intense blue emission,
some more diffuse and some in discrete clumps; these indicate
extreme star formation. In fact, some of these objects have already
been identified and followed up in the literature; for example, the
leftmost and centre image in the top row are part of MCG+00-25-
010, ablue compact dwarf system that was found to have a metal-poor
stellar population that powers extreme nebular emission (Senchyna
et al. 2017). We also find several extended galaxies with discrete
intensely purple regions, shown in Fig. 10(b). This indicates strong
emission in the i-band (red), which is from the H « line, as well
as the g-band (blue), which could be H g or [O 111] 4959 and 5007
lines; thus in certain redshift ranges, the purple regions would suggest
star formation activity. Fig. 10(c) shows potential galaxy mergers,
including one possible triple merger. We also detect many galaxies
with tidal features due to gravitational interactions; a sample of these
are shown in Fig. 10(d). Finally, Fig. 10(e) shows other anomalous
images with potential scientific interest, including arcs of extended
emission, a strangely shaped cluster of discrete sources, and bright
compact blue and white objects in extended sources. This last sample
demonstrates the potential of our approach to identify ‘unknown
unknowns,” which a more targeted anomaly detection method would
likely have missed.

All of the objects shown here were found in our sq;sc > 30 sample.
Of these 45 images, only 11 of them were in the sg, > 30 sample,
and only 2 of them were in the scag > 30 sample. This confirms
that the WGAN discriminator is well suited to finding interesting
anomalies that other methods, especially the simpler CAE approach,
cannot. While it is likely that those samples would have contained
some number of interesting anomalies that this discriminator sample
does not, we showed in Fig. 6 that more would be lost than gained
in those cases.

We performed follow-up spectroscopic observations of several of
these objects to determine if they are indeed scientifically interesting.
Our findings on one of these objects is presented in Appendix A.

5 SUMMARY AND CONCLUSIONS

In this work, we presented an approach combining a WGAN, CAE,
and UMAP to detect anomalous images, and applied it to a sample
of ~940 000 objects in the Hyper Suprime-Cam survey. We train a
WGAN on the full data set in order to model the overall distribution
of the data. Data that are not well represented in the WGAN’s latent
space are identified as more anomalous with respect to the data
set as a whole. We quantify the degree of anomaly by setting the
WGAN to find the closest representation of each object in its latent
space and reconstruct the image. We then assign scores based on
the residuals between the original and the reconstruction, both the
pixel-wise residual with the generator and a feature residual with the
penultimate layer of the WGAN discriminator.

We found that the discriminator is more adept at identifying
interesting anomalous images, while the generator tends to identify
images that are anomalous due to noise or other optical artefacts. We
compare the WGAN-based scores to a simpler anomaly detection
method using a convolutional autoencoder (CAE). We find that, while
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Figure 9. A visualization of our anomaly characterization method with our WGAN-based anomaly scores and autoencoded residual images. Panel (a) shows
a UMAP embedding of all anomalies with sgisc > 30 above the mean, colour-coded by anomaly score. Panels (b)—(e) show a random selection of galaxies in
each of UMAP regions enclosed by the box of the corresponding colour in panel (a). It is clear that different regions of the UMAP correspond to different types
of anomalies, including both interesting objects [as in (b) and (c)] and corrupted images [as in (d) and (e)].
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(a) Galaxies with extreme, blue star formation.

(c) Galaxy mergers or potential mergers.
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(b) Galaxies with purple active regions.

.-

(d) Galaxies with tidal features.

(e) Images containing other potentially interesting

anomalies.

Figure 10. A selection of the interesting anomalies with scientific potential detected using our method.

the CAE reconstructions have smaller residuals from the original
images than the WGAN reconstructions, they are less indicative
of interesting anomalies compared to the WGAN discriminator
score. This is likely due to the CAE producing smooth, noiseless

reconstructions, and the WGAN discriminator’s ability to model the
true data distribution. We thus select a high-anomaly sample based
on the WGAN discriminator scores to investigate in more detail, with
a Sqisc > 30 cut resulting in 13 477 objects.
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One of the main difficulties with anomaly detection is determining
which anomalies are scientifically interesting. To address this, we
augment our WGAN-based anomaly detection approach with a novel
characterization method based on a CAE and a UMAP. We use the
CAE to reduce the dimensionality of the residual images, and use
these lower-dimensional representations with a UMAP embedding
to further cluster objects with high anomaly scores.

Using our approach, we identify numerous interesting anomalies
with scientific potential, including galaxy mergers and galaxies with
extreme star-forming regions. Of the 45 interesting anomalies we
show from the WGAN discriminator score sample, only 2 would have
been found with the CAE anomaly scores. We perform follow-up
observations on some of these objects, and detail our findings on one
of these. The object is a compact blue source in a region of extended
emission, which we find to likely be a metal-poor star-forming dwarf
galaxy with unusual asymmetric emission lines, which we conclude
is due to a spatially offset, extremely blue H 11 region. This confirmed
the scientific interest of an object detected with our approach, and
demonstrates the potential for a synergy between machine-assisted
anomaly detection methods and detailed observational follow-up.

We have publicly released a catalogue of our full data set with
our WGAN-assigned anomaly scores, together with our custom
visualization tool for further exploring this data. Our approach is
flexible and can be applied to other data sets and data types. The
combination of the WGAN and CAE for unsupervised anomaly
detection is scalable, reproducible, and removes spontaneity from
the discovery process, making it ideal for extracting novel science
from the increasingly large surveys of the coming decade.
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APPENDIX A: FOLLOW-UP ANALYSIS OF A
WGAN-DETECTED ANOMALOUS GALAXY

A1l Source properties

We performed follow-up observations on several seemingly interest-
ing sources that were found by our anomaly detection approach to
determine whether they are indeed scientifically interesting. Leading
up to this, we first constructed a sample of galaxies with high
anomaly scores from our main HSC sample that fell in the COSMOS
field, where we had observing time on the DEIMOS spectrograph
on the Keck II Telescope. We used the characterization approach
described here to examine the types of anomalies present. One
category of objects, we found were images that contained bright
blue compact sources situated towards the edges of larger regions of
diffuse emission; these are shown in Fig. A1l. We performed follow-
up observations of three of these, and obtained a good spectrum
for one, with HSC ID 43158859342174406. Here, we present our
analysis of this object as a demonstration of the scientific potential
of our anomaly detection method.

ID: 43158B50342174406  1D: 43158455615251507  1D: 43158730033093636

ID: 412062B1310070060  1D: 43159009666030497  1D: 40669165584920421

Figure A1. A sample of anomalous galaxies we detected with bright blue
and purple sources within a region of more diffuse emission. We performed
follow-up observations on the first three, and present a detailed analysis of
the first object, HSC J0959344-013707 (cyan border).

Detecting anomalous galaxies with GANs 2961

The object has coordinates RA = 09:59:34.060, dec =
+01:37:07.84; we refer to it as HSC J095934+013707 (it is also
in the COSMOS catalog, labelled as COSMOS 244571). The asso-
ciation between the blue compact source and the diffuse emission is
unclear from visual inspection; they may be two associated galaxies,
or a single galaxy with a bright feature, or unrelated overlapping
objects. The object is in the COSMOS catalogue and is computed to
have a mass of 10"*M,, based on 30-band SED fitting, and a redshift
z = 0.0320.

A2 Spectroscopic analysis of source

We placed the slit centred on the compact source and crossing the
diffuse emission. The spectrum we obtained is shown in Fig. A2,
zoomed in on regions with visible emission lines. We compute
a redshift of z = 0.03221 from the H «, H 8, and O 111 lines,
very close to that from the COSMOS catalogue. There is only one
detectable redshift, so we conclude that the compact and diffuse
components are at the same cosmological redshift. We do see a
slightly offset component of faint emission that may indicate a
spatially separated region in the system. The diffuse emission has
a diameter of ~4.1 arcsec, so given this redshift, it has a spatial
extent of ~2.7 kpc. The spectrum, which is the combined signals
of the blue and diffuse sources, shows strong H «, very low N 11,
moderate H B, and moderate O 111 lines, as well as moderate SII
lines. This indicates that the source is highly star forming and metal
poor.

All of the emission lines exhibit a clear asymmetry, with a
blueshifted tail. We perform double Gaussian fits to each of the
emission lines; these are much better fits than those with single
Gaussians. For most of the lines, but particularly H « and O 111d, there
is a large component on the blue side. The strength of this asymmetry
is highly unusual, though some asymmetry has been observed in
dwarf galaxies with gas outflows or inflows in MaNGA (Wylezalek
et al. 2020; Avery et al. 2021), as well as in some extremely metal-
poor dwarf galaxies (EMPGs) in the EMPRESS sample (Kojima
et al. 2019). This initially suggests that our source is a dwarf galaxy
with a gaseous outflow; we investigate this possibility by looking at
the components of the flux fit.

The two components of the double Gaussian fits are separated
by a relative velocity of ~180 kms™!; this could imply either two
separate but interacting galaxies, or one galaxy with an inflowing or
outflowing source. The higher wavelength component has a larger
flux for all lines; this suggests that it corresponds to the bright
blue source (also consistent with the spatial distribution of the
emission in the 2D spectrum), while the lower wavelength component
corresponds to the fainter, more diffuse galaxy. This is corroborated
by a previous spectrum of the object taken as part of the DEIMOS
10K survey: this spectrum shows the same emission lines but they
are completely symmetric, and centred on the lower wavelength
components. The slit for this observation was, most likely, at an
angle that did not cross the blue source, and only captured the diffuse
region. This component analysis disfavours the interpretation of a
gaseous outflow, as the blue source is redshifted with respect to the
associated galaxy. Rather, this understanding, combined with the
strong emission lines, suggests that the blue source is a strong H1I
region, associated with a more diffuse but still star-forming dwarf
galaxy system.

The spatial and dynamical relationship between the two compo-
nents remains somewhat unclear. The blue source may be in front of
the diffuse region, moving towards it, or behind it and moving away
from it; in the latter case, we would still expect to see the strong
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Figure A2. Spectrum of our interesting source, HSC J095934+-013707 (black), converted to rest wavelength. The H « region is shown in the top panel the and
H B region in the bottom panel. We plot the best double Gaussian fits, with the individual components in pink and the total in blue.

blue source shining through the diffuse galaxy image if that galaxy
lacks significant dust. Indeed, we find that the Balmer decrement is
H «a/H g = 2.80, very close to the expected value of 2.86 for star-
forming galaxies without dust obscuration (though this value does
not vary significantly with galaxy properties, Osterbrock & Ferland
2006). The lack of dust does fit with our understanding that this region
is a dwarf galaxy, which tend to have little dust. We might expect
to find H 11 regions like the blue source off-centre in dwarf galaxies;
an event in the object’s history could have triggered extreme star
formation that ionized the gas. Further, the asymmetry of the diffuse
region suggests possible disruption from interaction in the past. That
said, the large velocity offset between the blue source and the diffuse
galaxy mean that we cannot be sure about their interaction history or
current dynamics.

We compute the fluxes of the emission lines for the individual
and combined components from the Gaussian fits. We compute
the oxygen abundance of the combined object with three different
methods, and find values in the range 12 + log(O/H) = 7.92 — 8.16.
We separately compute the metallicities of the lower wavelength and
higher wavelength components. The lower wavelength component
has 12 + log(O/H) = 7.71 — 8.13, while the higher wavelength
component has 12 + log(O/H) = 8.03 — 8.24. For all of these
cases, the source is low metallicity; however, it is not as low as
EMPGs, which are defined as having 12 + log(O/H) < 7.69, less
than 10 per cent of the solar value. The metallicity is also higher than
the typical range for some other types of galaxies that bear some
resemblance to ours, including blueberry galaxies (Yang et al. 2017),
green pea galaxies (Cardamone et al. 2009), and Ultra Blue Compact
Dwarfs (Corbin et al. 2006). These metallicities do fall in the range
of Luminous Blue Compact Galaxies (e.g. Hoyos et al. 2007), which
tend to be low-mass, aligning with our mass measurement.

MNRAS 508, 2946-2963 (2021)

We see that the higher wavelength component, which we take to be
the blue H 11 region, has higher metallicity than the lower wavelength
component (diffuse region) for all ways of estimating the metallicity.
This is quite unexpected, as H1I regions are typically metal-poor
compared to their surrounding galaxy. The source could be an H1I
region that is self-enriched, making it higher metallicity compared
to its host galaxy, which is possible though rare (Kroger, Hensler &
Freyer 2006).

We show the position of our source on the Baldwin, Phillips &
Terlevich (BPT; Baldwin, Phillips & Terlevich 1981) diagram in
Fig. A3. We show both the individual components and the combined
flux positions; we also plot the Kauffmann et al. (2003) classification
between star-forming and composite galaxies, and the Kewley et al.
(2001) starburst limit. For comparison, we show a sample of galaxies
from the SDSS (York et al. 2000) with 0.02 < z < 0.05 (close to our
galaxy’s redshift of z = 0.03221), only selecting objects with S/N >
3 for all the four emission lines in the BPT diagram, and b/a > 0.5 to
filter out edge-on galaxies. Both components of our source are solidly
in the star-forming region, in both methods of classification; this
rules out the possibility of an AGN. The fact that lower-wavelength
component has smaller line ratios compared to the higher wavelength
component aligns with metallicity comparison above. However, we
note that these have large error bars due to degeneracies in the
double Gaussian fit, so the difference in metallicity may not be
significant. The combined-flux emission ratios place the object at the
star-forming edge of the SDSS sample, though it is not an extreme
outlier. The lower wavelength component does fall outside the bulk
of the distribution of SDSS galaxies.

Finally, we show the colour—colour diagram for our source,
compared to the same SDSS sample (Fig. A4). The colour is meaured
from the CModel flux magnitudes of just the compact blue source.
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Figure A3. BPT diagram for our source, HSC J095934+013707. We show
the position of the combined flux measurement (pink star), and the positions
with the flux measured just from the lower-wavelength component (teal star)
and the higher wavelength component (orange star). For comparison, we
show the position of SDSS galaxies with similar redshift (blue dots).

We see that the source has an extremely blue colour, more so than
most of the SDSS galaxies. This further supports our conclusion that
the blue source is a very extreme H1I region.

Based on this analysis, we conclude that the source is most
likely a metal-poor star-forming dwarf galaxy with an associated
self-enriched H1I region, which is spatially distinct from the host
galaxy. That said, there are still open questions about this object; we

Detecting anomalous galaxies with GANs 2963

O HSC J095934+013707 (blue source only)

159 =+ SDSS galaxies (0.02 <z<0.05)

1.0 4
A
(=}
8
Y 0.5
|
o

0.0 A o

_0.5 N
—0.5 0.0 05 1.0

r—icolor

Figure A4. Colour—colour diagram for our source, HSC J095934+013707.
The colour is computed for just the bright blue source. A sample of SDSS
galaxies with similar redshift are shown for comparison.

encourage follow-up observations of this and similar sources to better
understand this type of system. In any case, we did confirm that this
is indeed a very interesting object: the asymmetry of the emission
lines is a rare feature, the compact source is extremely blue, and the
relative metallicity of the system components is not easily explained.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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