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Introduction

Sequences are slowly diverging in the course of evolution. The similarity between genomic loci, as for instance specific gene sequences, can in principle be used to infer the evolutionary relationship between individuals. Clustering methods are often used to group sequences together into species, genus, families, orders, class, phylum's, kingdoms and domains. Different experimental methods, such as DNA barcoding [START_REF] Hajibabaei | Dna barcoding: how it complements taxonomy, molecular phylogenetics and population genetics[END_REF]; DeSalle and Goldstein (2019)), are used to determine the set of sequences to be clustered. Sequences are then often curated and gathered into large databases [START_REF] Munoz | Release ltps104 of the all-species living tree[END_REF][START_REF] Mcdonald | An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[END_REF]). With the recent advances in DNA high-throughput sequencing [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF]), specimen collections, and storage capacities, it is now common to deal with datasets with millions of entries. Several computational approaches have been developed to keep up with the size of these datasets [START_REF] Rognes | Vsearch: a versatile open source tool for metagenomics[END_REF]; [START_REF] Mahé | Swarm v2: highly-scalable and high-resolution amplicon clustering[END_REF]) but they all provide clusters rather than trees. We propose here a new and fast method that performs a multiple alignment free, multi-scale clustering of a set of sequences found in a FASTA [START_REF] Lipman | Rapid and sensitive protein similarity searches[END_REF]) file, leveraging the density-based algorithm for discovering clusters in large spatial databases with noise (DBSCAN) [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]). Nested clusters are then identified to build a tree.

Briefly sketched, the DBSCAN algorithm is a two parameter algorithm requiring a radius and a minimum number of objects minpts, in our case sequences, to be found withing this radius. As such, this algorithm finds density ρ = n minpts V ( ) connected regions, i.e. clusters with a density > ρ(minpts, ) [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]). The use of DBSCAN has been proposed by others as a guide to phylogenetic inference [START_REF] Ruzgar | Clustering based distributed phylogenetic tree construction[END_REF]; [START_REF] Mahapatro | Phylogenetic tree construction for dna sequences using clustering methods[END_REF]). The novelty introduced by picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture "output" -2021/5/10 -page 2 -#2 picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture our multi-scale approach is that we perform the DBSCAN algorithm at various densities, and use these layered results to infer a "phylogenetic" tree. Clustering for different values allows us to find dense sequence clusters embedded into diffuse clusters (Fig. 1a). We can then build a tree of density connected clusters by successive DBSCAN runs with increased parameters and cluster comparison as outlined in Fig. 1b and in the supplementary document. The DBSCAN algorithm was chosen over newer density based methods as, contrary to OPTICS [START_REF] Ankerst | Optics: Ordering points to identify the clustering structure[END_REF]), DBSCAN allows us to control the density of the clusters found and thus allows us to precisely build trees from layers of specific densities.

Further DBSCAN features a reduced algorithmic complexity and has as such a runtime advantage over algorithms such as SUBCLU [START_REF] Kailing | Density-connected subspace clustering for high-dimensional data[END_REF]). MNHN-Tree-Tools contains the utilities to cluster sequences using two different distance measures:

• The L 2 -norm operating on a principal component analysis (PCA) based subspace projection of the k-mer sequences representations [START_REF] Chatterji | Compostbin: A dna composition-based algorithm for binning environmental shotgun reads[END_REF]) • The Smith-Waterman distance [START_REF] Smith | Identification of common molecular subsequences[END_REF]), which features parametric penalties for both substitutions and insertions.

In comparing the k-mer/PCA based approach to the use of the Smith-Waterman distance we show that a k-mer/PCA based distance can yield better clusters and trees due to the inherent feature selection of the PCA while the Smith-Waterman distance can provide more accessible results. In depth details of this comparison are discussed in the supplement to this article. The Smith-Waterman distance computation was implemented in OpenCL [START_REF] Stone | Opencl: A parallel programming standard for heterogeneous computing systems[END_REF]) allowing for execution on Graphics Processing Units (GPUs). We also used the Message Passing Interface (MPI) library [START_REF] Forum | Mpi: A message-passing interface standard[END_REF]) to distribute the workloads across different high performance computing cluster nodes.

Description of MNHN-Tree-Tools

MNHN-Tree-Tools is modular suite of command line tools written in the C language. In this section we outline the core utilities, which lead to a multilayered clustering with clusters organised into a tree. We further refer the reader to our manual and supplemental document for a complete documentation.

Input data: MNHN-Tree-Tools uses as input a FASTA file format that gathers sequences which do not need to be aligned. Typical lengths can vary from 100 to 10000 bp, with length variations up to 10% within samples, but are ultimately only limited by k-mer length or PCA information retention.

fasta2kmer A utility to transform FASTA files into a k-mer representation, with a choosable variable subsequence length k.

kmer2pca Computes projections of a k-mer representation onto its first principal components. The number of principal components to be used is here defined using an input parameter. The right number has to be chosen in a tradeoff between information capture and curse of dimensionality.

adaptive_clustering_PCA Performs clustering at different densities, with the following variable input parameters: initial , ∆ and minpts. c.f. (fig 1b)

split_sets_to_newick Generates a Newick tree from the clusters obtained.

Performance and accuracy

We evaluated the accuracy of the algorithm presented herein in three different ways: At first we measured the difference of obtained results to trees that were annotated by experts and as such provided us with valuable ground truth as highlighted in the case studies section below. Further we picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture "output" -2021/5/10 -page 3 -#3 picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture short Title 3 compared the algorithm to partitions found by the SWARM2 tool [START_REF] Mahé | Swarm v2: highly-scalable and high-resolution amplicon clustering[END_REF]). Complementing these experiences we used MNHN-Tree-Tools to evaluate simulated datasets. The comparison to ground truth trees shows that we are capable to find known partitions and highlight accuracy values in the tables provided by the supplemental document. The knowledge about this accuracy was further refined by the application of MNHN-Tree-Tools on simulated datasets that contain sequence clusters of monitored sequence density and inter cluster genetic distance. A comparison to SWARM2 [START_REF] Mahé | Swarm v2: highly-scalable and high-resolution amplicon clustering[END_REF]) clearly shows that our tree based approach yields, as we search for clusters at different densities, a sweet spot where the found partitions are in close correspondence to those annotated by experts. Classical partitioning tools such as SWARM2 [START_REF] Mahé | Swarm v2: highly-scalable and high-resolution amplicon clustering[END_REF]) on the other hand yield a single set of partitions that does not correspond, for the application presented herein, to expected results. We refer the reader to our supplement for further details on the accuracy and performance of MNHN-Tree-Tools where the outlined experiences are discussed in detail.

studies

Human alpha-satellites classification: Sequences were retrieved from [START_REF] Uralsky | Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly[END_REF]). Our algorithm reconstructed a tree ((Fig. 1c) from these 426 106 sequences which was coloured according to their family annotation.

The tree of life -The SILVA dataset: Ribosomal RNA sequences from diverse species (2 225 272 ) were downloaded from [START_REF] Munoz | Release ltps104 of the all-species living tree[END_REF]).

Our algorithm was used to reconstruct a tree of life based on these sequences ((Fig. 1d). For these two applications, the run time for one clustering step ranges from 5 minutes (426 106 seq.) to 173 minutes (2 225 272 seq.) on a single Intel(R)i7-4771 3.50GHz core. The clustering for different epsilon values can easily be run in parallel on several cores.

Fig. 1 .

 1 Fig. 1. Overview of MNHN-Tree-Tools(a) Closely related sequences form dense clusters (in purple and green). These are embedded into a less dense cluster (in blue). The DBSCAN algorithm applied at various radius values ( ), can identify these nested clusters. A tree of the identified clusters can then be build (b) Detailed computational workflow (c) Tree build with human Alpha-satellites sequences. Colors correspond to the family annotations in the original dataset (Uralsky et al. (2019)). (d) The tree of life built from 16S/18S RNA sequences. Bacteria, Archaea and Eukaryota are highlighted, with the color intensity corresponding to a logarithmic gradient of the number of sequences in the tree branches. A zoomed representation of Holozoa, clearly outlined as a subclass of Eukaryota, shows the Homo Sapiens branch.
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