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Abstract. We prove, using syntactical proof–theoretic methods, that
free modal Riesz spaces are Archimedean. Modal Riesz spaces are Riesz
spaces (real vector lattices) endowed with a positive linear 1–decreasing
operator, and have found application in the development of probabilistic
temporal logics in the field of formal verification. All our results have
been formalised using the Coq proof assistant.

1 Introduction

Riesz spaces, also known as real vector lattices, are real vector spaces equipped
with a lattice order (≤) such that the vector space operations of addition and
scalar multiplication are compatible with the order in the following sense: (1) if
x ≤ y then x+ z ≤ y + z and (2) if x ≤ y then rx ≤ ry, for all r ∈ R≥0.

The simplest example of Riesz space is the linearly ordered vector space of
real numbers (R,≤) itself. More generally, for a given set X, the space of all
functions RX with operations and order defined pointwise is a Riesz space. If X
carries some additional structure, such as a topology or a σ–algebra, then the
spaces of continuous and measurable functions both constitute Riesz subspaces
of RX . For this reason, the study of Riesz spaces originated at the intersection of
functional analysis, algebra and measure theory and was pioneered in the 1930’s
by F. Riesz, G. Birkhoff, L. Kantorovich and H. Freudenthal among others.
Today, the study of Riesz spaces constitutes a well–established field of research.
We refer to [LZ71, JR77] as standard references.

An important class of Riesz spaces is given by Archimedean Riesz spaces. A
Riesz space (A,≤) is Archimedean if, for any given pair of elements a, b ∈ A,(

∀n ∈ N. na ≤ b
)
=⇒ a ≤ 0.
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All the examples of Riesz spaces given above, given by collections of real valued
functions, are Archimedean. For this reason the Archimedean property is of key
importance in the theory of Riesz spaces.

It is well known that free Riesz spaces (i.e., free objects in the category of
Riesz spaces and their homomorphisms) are Archimedean.

Modal Riesz spaces. In a series of recent works [MS17, MFM17, Mio18, FMM20]
concerning the study and design of temporal logics for formal verification of
probabilistic programs, the notion of modal Riesz space has been introduced as
the algebraic semantics of the Riesz modal logic for Markov processes [FMM20].

A modal Riesz space (see Section 2.2) is a structure (A,≤, 1,♦) where (A,≤)
is a Riesz space, 1 ∈ A is a positive element (1 ≥ 0) and ♦ : A → A is a unary
operation which satisfies three axioms (see Figure 2): linearity (♦(r1x+ r2y) =
r1♦(x)+r2♦(y)), positivity (if x ≥ 0 then ♦(x) ≥ 0) and 1–decreasing (♦(1) ≤ 1).

Examples of modal Riesz spaces are given in Section 2.2 and more can be
found in [FMM20]. The class of modal Riesz spaces, being defined by a set of
equations, constitutes a variety and thus free objects exist. In [FMM20, §6.3]
the authors left open the following problem regarding modal Riesz spaces: is the
free modal Riesz space on the empty set of generators3 Archimedean? The main
contribution of this paper is to give a general answer, covering any possible sets
of generators, to this question.

Theorem 1. Free modal Riesz spaces are Archimedean.

Our Syntactic Proof. An interesting aspect of our proof is that it is syntactic
and based on the proof–theoretic machinery of the hypersequent calculus HMR
for modal Riesz spaces developed in [LM19, LM20]. One of the novel results,
obtained in [LM20, Thm 4.13] using the HMR machinery, is the decidability of
the equational theory of modal Riesz spaces. This work further illustrates, by
proving Theorem 1, the general usefulness of the proof theory. We first reformu-
late the Archimedean property in terms of derivability in HMR and then prove
it using proof–theoretic techniques based on the results from [LM20] (like, e.g.,
a form of cut–elimination). Our main technical result (Theorem 2) establishes
that derivability in HMR is continuous, in an appropriate sense.

After a preliminary Section 2 consisting of technical background on (modal)
Riesz spaces, and Section 3 summarising the main notions and results regarding
the hypersequent calculus HMR from [LM20], our proof of Theorem 1 is pre-
sented in Section 4. To better present the argument, we first prove, using the
sequence of steps outlined above, the known fact that free (non–modal) Riesz
spaces are Archimedean. To this end, rather than HMR, we use its subsystem
HR (also introduced in [LM20, §3] and presented in Section 3.1), which is sound
and complete for the theory of (non–modal) Riesz spaces. Once this is done,
we prove Theorem 1 tackling in Section 4.2 the additional complexity of modal
Riesz spaces using the system HMR.
3 The focus in [FMM20] is on the free Riesz space on the empty set of generators
because it is the initial object in the category of modal Riesz spaces.



Coq formalisation. All our definitions and proofs have been formalised using the
Coq proof assistant [Luc21]. See Section 2.3 for a detailed discussion.

2 Technical background

In this section we present the basic definitions and results about Riesz spaces
(Section 2.1), modal Riesz spaces (Section 2.2) and details about the Coq for-
malisation of the results of this work (Section 2.3).

2.1 Riesz Spaces

We refer to [LZ71, JR77] as standard references on the theory of Riesz spaces.
The signature of Riesz spaces is given by ΣRS =

{
+, 0, {r(_)}r∈R,t,u

}
com-

bining the signature of real vector spaces (addition, neutral element and scalar
multiplication by reals) and of lattices (supremum and infimum). Given a set V ,
we denote with TRS(V ) the set of ΣRS–terms built from the set of atoms V . We
use the letters φ and ψ to range over terms.

The class of Riesz spaces is the class of ΣRS–algebras satisfying the axioms
of Figure 1, each of which can be expressed as universally quantified equations.

1. Axioms of real vector spaces:
– Abelian groups: x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x,
x− x = 0,

– Axioms of scalar multiplication: r1(r2x) = (r1 · r2)x, 1x = x, r(x+ y) =
(rx) + (ry), (r1 + r2)x = (r1x) + (r2x),

2. Lattice axioms: (associativity) xt(ytz) = (xty)tz, xu(yuz) = (xuy)uz,
(commutativity) z t y = y t z, z u y = y u z, (absorption) z t (z u y) = z,
z u (z t y) = z.

3. Compatibility axioms:
– if x ≤ y then x+ z ≤ y + z,

expressed equationally as: (x u y) + z ≤ y + z,
– if x ≤ y then rx ≤ ry, for all r ≥ 0,

expressed equationally as: r(x u y) ≤ ry, for all r ≥ 0.
where x ≤ y can be expressed by the equality x u y = x.

Fig. 1. Axioms of Riesz spaces.

Example 1. The Riesz space (R,+, 0,max,min) is a main example. Furthermore,
for any set V , the collection of functions RV (f : V → R) is a Riesz space
where operations on functions are defined pointwise: e.g., (f + g)(v) = f(v) +
g(v). Subalgebras of RV are, therefore, also Riesz spaces. For instance, if V is a
topological space, the collection of continuous functions on R is a Riesz space.

Given two terms φ, ψ ∈ TRS(V ), we write φ ≡RS ψ (or just φ ≡ ψ if clear
form the context) if φ and ψ can be proved equal, in the usual apparatus of
equational logic, from the axioms of Riesz spaces in Figure 1.



Being definable purely by equations, the class of Riesz spaces is a variety
in the sense of universal algebra. Therefore the category of Riesz spaces and
their homomorphisms (functions preserving all ΣRS operations) has free objects.
Given a set V , we denote with FreeRS(V ) the free Riesz space on the set V . The
following definition and proposition are standard.

Definition 1 (Term algebra). Given a set V , the term algebra TRS(V )/≡
is the Riesz space whose elements are terms generated by V taken modulo the
equivalence relation ≡RS, and operations defined on equivalence classes as: [φ]≡+
[ψ]≡ = [φ+ ψ]≡, r[φ]≡ = [rφ]≡, [φ]≡ t [ψ]≡ = [φ t ψ]≡, [φ]≡ u [ψ]≡ = [φ u ψ]≡.

Proposition 1. For any set V , the free Riesz space FreeRS(V ) and term Riesz
space TRS(V )/≡RS

are isomorphic.

We are now ready to define the Archimedean property of Riesz spaces (see,
e.g., [LZ71, §22, Thm 22.2]).

Definition 2 (Archimedean Property). A Riesz space A is Archimedean if,
for any a, b ∈ A, it holds that:

(
∀n ∈ N. na ≤ b

)
=⇒ a ≤ 0.

The following result is well–known and follows from a theorem of Baker
[Bak68, Thm 2.4] (see also [Ble73, Thm 2.3]) identifying the free Riesz space
FreeRS(V ) with a Riesz subspace of RV → R, and the following simple facts
(see, e.g., [H.74, §1.15]): (i) the Riesz space RX is Archimedean for any set X
(so in particular for X = RV ) and (ii) any Riesz subspace of an Archimedean
Riesz space is Archimedean.

Proposition 2. For any set V , the Riesz space FreeRS(V ) is Archimedean.

Syntactical conventions. We now introduce some convenient syntactical conven-
tions. Rather than working with arbitrary scalar multiplications by r ∈ R, it
is often useful to introduce the derived negation operator −φ = (−1)φ and re-
strict scalar multiplication only to strictly positive reals r ∈ R>0. Clearly this
is not a restriction as one can, e.g., just rewrite (−5)φ to −(5φ) introducing the
negation operator. Every Riesz term φ can be rewritten into a ≡RS-equivalent
term ψ in negation normal form (NNF), where negation is only applied to vari-
ables, using the following valid equalities: −(φ u ψ) = (−φ) t (−ψ),−(φ t ψ) =
(−φ) u (−ψ),−(−φ) = φ,−(φ+ ψ) = (−φ) + (−ψ),−0 = 0, 0φ = 0. We will use
the capital letters A and B to range over Riesz terms in NNF, rather than φ
and ψ. We write A for the NNF–term equivalent to the term −A. In particular,
x = −x. Note, therefore, that that terms in NNF can be seen as constructed,
without negations, from the variables x and x, with x ∈ V .

2.2 Modal Riesz spaces

In this section we introduce the notion of modal Riesz space, a concept which
has emerged as relevant in recent works [MS17, MFM17, Mio18, FMM20] con-
cerning the study and design of temporal logics for formal verification of proba-
bilistic programs.



The signature of modal Riesz spaces is given by ΣMRS = ΣRS ∪{1,♦} where
ΣRS is the signature of Riesz spaces, 1 is a constant symbol and ♦ is a unary
function symbol (we will often omit the parenthesis on ♦, since it is a unary
operator). Given a set V , we denote with TMRS(V ) the set of ΣMRS–terms build
from the set of generators V . Note that TRS(V ) ( TMRS(V ) since ΣRS ( ΣMRS.
We use the letters φ, ψ also to range over TMRS(V ).

Definition 3 (Modal Riesz spaces). The class of modal Riesz spaces is the
equationally defined class of ΣMRS–algebras generated by the universally quanti-
fied equational axioms of Figure 1 and the additional axioms of Figure 2.

4. Positivity of 1 : 0 ≤ 1.
expressed equationally: 0 u 1 = 0.

5. Modal axioms:
– Linearity: ♦(r1x+ r2y) = r1♦(x) + r2♦(y).
– Positivity: if x ≥ 0 then ♦(x) ≥ 0

expressed equationally: ♦(0 t x) u 0 = 0.
– 1-decreasing: ♦(1) ≤ 1.

expressed equationally: ♦(1) u 1 = ♦(1).

Fig. 2. Additional axioms of modal Riesz spaces.

Example 2. A typical example of modal Riesz space is M = (Rn,≤, 1M ,♦M ),
the n-dimensional vector space Rn with vectors ordered pointwise where 1M is
the constant 1 vector, and ♦M is a linear map Rn → Rn, hence representable as
a square matrix (also denoted ♦M with some abuse of notation), such that all
entries ri,j are non–strictly positive (due to the positivity axiom) and where all
the rows sum up to a value ≤ 1, i.e., for all 1 ≤ i ≤ n it holds that

∑k
j=1 ri,j ≤ 1

(due to the 1–decreasing axiom):

1M =

1
...
1

 ♦M =

r1,1 r1,2 · · · r1,n...
...
. . .

...
rn,1 rn,2 · · · rn,n


The modal Riesz space M can be seen as representing a discrete–time Markov
chain, i.e., a probabilistic transition system having {1, . . . , n} states, where the
probability of moving from state i to state j at the next step is ri,j . The con-
straint

∑k
j=1 ri,j ≤ 1 represents the fact that there can be a nonzero probability

of terminating the execution at the state i, thus not moving to any other state.
These types of examples are the reason for the relevance of modal Riesz spaces
to the axiomatisation of logics for expressing properties of probabilistic transi-
tion systems. In fact, the duality theory developed in [FMM20] shows that all
Archimedean modal Riesz spaces with strong unit are topological generalisations
of the example just presented and can be identified with discrete time Markov
processes.



Remark 1. The choice of using the ♦ symbol for the unary operation of modal
Riesz spaces might suggest the existence of a distinct De Morgan dual operator
�x = −♦(−x). This is not the case since, due to linearity, �x = ♦x, i.e.,
♦ is self dual. While using a different symbol such as (◦) might have been a
better choice, we decided to stick to ♦ for backwards compatibility with previous
works on modal Riesz spaces. Another source of potential ambiguity lies in the
“modal” adjective itself. Of course other axioms for ♦ can be conceived (e.g.,
♦(xty) = ♦(x)t♦(y) instead of our ♦(x+y) = ♦(x)+♦(y), see, e.g., [DMS18]).
Therefore different notions of modal Riesz spaces can be investigated, just like
many types of classical modal logic exist (K, S4, S5, etc). Once again, our choice
of terminology is motivated by backwards compatibility with previous works.

We denote with ≡MRS (or just ≡, if clear from the context) the equivalence
relation on TMRS(V ) which equates modal Riesz terms that are provably equal
from the axioms of Definition 3. Being equationally defined, the class of modal
Riesz spaces is a variety in the sense of universal algebra. Therefore the category
of modal Riesz spaces and their homomorphisms (functions preserving all ΣMRS
operations) has free objects. Note that every modal Riesz space is a Riesz space
(since it satisfies all axioms of Figure 1). Furthermore, any Riesz space R can be
turned into a modal Riesz space by, e.g., defining 1R = 0 and ♦R = id, where
id : R → R is the identity map. Hence the notion of modal Riesz space is a
conservative extension of that of Riesz space.

Given a set V , we denote with FreeMRS(V ) the free modal Riesz space on
the set V and with TMRS(V )/≡MRS

the term algebra.

Proposition 3. For any set V , the free modal Riesz space FreeMRS(V ) and the
term modal Riesz space TMRS(V )/≡MRS

are isomorphic.

The main result of this paper is Theorem 1, stating that FreeMRS(V ) is
Archimedean. Our proof is presented in Section 4. This is a novel result and
solves a problem left open [FMM20, §6.3]. We remark that free modal Riesz
spaces can be rather complex objects. For instance, FreeMRS(∅) is not even
finitely generated as a Riesz space [FMM20, §6]. For instance, the term ♦n1 can
not equivalently be expressed by a Riesz combination of terms with ♦–depth
(the maximum number of nested ♦ operators) lower than n.

Syntactical conventions. We extend the notion of negation normal form (NNF)
from Riesz terms to modal Riesz space terms, taking in consideration the exis-
tence of the constant 1 in ΣRMS. A modal Riesz term φ inTMRS(V ) is in negation
normal form (NNF) if the operator (−) is only applied to atoms in V or the
constant 1. Using the equality (−♦(φ) = ♦(−φ)), every term φ in TMRS(V ) is
provably equal to a term in NNF. We will use the capital letters A and B to
range over modal Riesz terms in NNF, rather than φ and ψ. We try to make it
always clear if the term belong to TMRS(V ) or just to TRS(V ).
2.3 On the Coq formalisation

All the results of this paper have been formalised using the Coq proof assis-
tant and are publicly available [Luc21]. Throughout the paper, we refer to specific



points of the formalisation by highlighting with a grey background either some
portions of Coq code (as in the definition of Axiom IPP below) or by specifying
the name of the lemma and its path as: Repository [Luc21]: (Lemma) in Path.

Our formalisation is based on the following mathematical notions and results.

1. The real numbers R, functions on them (+, ×, etc) and their basic properties.
2. The (strictly) positive real numbers R>0 with basic functions and properties.
3. The notion of polynomial expression, syntax and semantics.
4. Basic notions about limits of sequences of (tuples of) reals and (sequential)

continuity of polynomial expressions.
5. The infinitary pigeonhole principle: for every sequence u ∈ NN bounded by

some m ∈ N (i.e., un < m for all n), there is a constant subsequence (uφ(n))
of u, i.e., there is i ∈ [0..m[ such that uφ(n) = i for all n.

6. The sequential compactness of R: if u ∈ RN is a sequence bounded by a lower
bound lb ∈ R and a upper bound ub ∈ R, then there is a subsequence (uφ(n))
of (un) and a real l ∈ R such that lim

n∈N
uφ(n) = l.

Regarding (1), we use the default Coq implementation of real numbers R.
For (2), strictly positive reals are implemented as dependent pairs where the first
element is the real number and the second element is a proof that this real is
strictly positive. Operations and basic properties on R>0 are easily derived from
those of R (standard library). For (3), polynomial expressions over the variables
α1, . . . αn are simply defined by the grammar: R,S := αi | r ∈ R | R + S | RS
( Repository [Luc21]: (Poly : Type) in Utilities/polynomials.v. ) and
interpreted as polynomial functions P : Rk → R as expected. Regarding (4), we
use the Coquelicot library [BLM15] which provides definitions and results re-
garding uniform spaces (like R), continuity, etc. In particular we are able to
derive the following statement.

Proposition 4 (Sequential continuity of Polynomial expressions). Let
R be a polynomial expression. For all j ∈ [1..k], let (ti,j)i∈N ∈ RN and tj ∈ R
such that lim

i→+∞
ti,j = tj. Then lim

i→+∞
R(ti,1, ..., ti,k) = R(t1, ..., tk).

Proof. Repository [Luc21]: (Poly_lim) in Utilities/pol_continuous.v.

Finally, the infinitary pigeonhole principle (5) and sequential compactness
(6) are stated as follows and assumed as axioms:

22 Axiom IPP : forall (u : nat → nat) m,
23 (forall n, u n < m) →
24 {’ (phi, i) & prod (subseq_support phi) (*∃ phi,i,(subseq phi)∧ *)
25 ((i < m) ∗ (* (i < m) ∧ *)
26 (forall n, u (phi n) = i))}. (*(∀ n, u_{phi n} = i) *)

...



158 Axiom SequentialCompactness : forall (u : nat → R) lb ub,
159 (forall n, prod (lb <= u n) (u n <= ub)) →
160 {’ (phi , l) & prod (subseq_support phi) (*∃ phi,l,(subseq phi)∧ *)
161 (is_lim_seq (fun n ⇒ u (phi n)) l)}. (* (lim u_{phi n} = l) *)

Repository [Luc21]: Utilities/R_complements.v

3 Hypersequent Calculi

In this section we introduce a structural proof system called HMR from
[LM20] (see also [LM19]) for the theory of modal Riesz spaces. We also discuss
a subsystem of HMR, called HR, also introduced in [LM20, §3] for the theory
of Riesz spaces. A proof system is called structural if it manipulates terms (or
formulas) having a certain specific structure. For instance, Gentzen’s sequent
calculus LK [Gen34] manipulates and allows for the derivation of sequents S
of the form A1, . . . An ` B1, . . . , Bm which are interpreted as the Boolean term
LSM = (A1∧· · ·∧An)⇒ (B1∨· · ·∨Bm). We say that LK is sound and complete
for the theory of Boolean algebras because a sequent S is derivable in LK if and
only if LSM = > is a valid identity in the theory of Boolean algebras.

In a similar way, the proof system HMR is structural as it manipulates
structured terms G, called hypersequents, which are interpreted as modal Riesz
space terms LGM. The system HMR is sound and complete with respect to
the theory of modal Riesz spaces in the sense that G is derivable in HMR if
and only if LGM ≥ 0 (or LGM u 0 = 0, written equationally) is a valid identity
in the theory of modal Riesz spaces. Similarly, the subsystem HR of HMR,
only manipulating (non–modal) Riesz space terms, is sound and complete with
respect to the theory of (non–modal) Riesz spaces.

The key advantage of working with structural proof systems, compared to
non–structural deductive systems such as equational logic, appears from results
such as the cut–elimination system (called CAN elimination theorem in the
context of H(M)R), which greatly simplify the analysis of proofs.

We now procede with the formal definitions. We first present the subsystem
HR (Section 3.1) and then the full system HMR (Section 3.2).

All definitions and results regarding HR and HMR have been formalised:
Repository [Luc21]: folders: /hr and /hmr .

3.1 Hypersequent calculus HR

In what follows, A and B range over Riesz terms in NNF (see end of Section
2.1) built from a set of variables V , ranged over by the letters x, y, z.

Definition 4 (Sequents and Hypersequents). A sequent is a list of pairs
(r,A) where r ∈ R>0 is a strictly positive real number and A is a formula in NNF.
The sequent Γ = ((r1, A1), ..., (rn, An)) is written as: ` r1.A1, ..., rn.An. The
empty sequent is denoted by (`). A hypersequent is a nonempty list of sequents.
The hypersequent G = [Γ1, Γ2, ..., Γn] is written as: ` Γ1 | ` Γ2 | ... | ` Γn.



We use the letters Γ,∆ and the letters G,H to range over sequents and
hypersequents, respectively. Note that ( ` Γ ) can, ambiguosly, denote both the
sequent ` Γ and the hypersequent [` Γ ] consisting of only one sequent. The
context should always determine which of the two interpretations is intended.

The proof system HR allows for the derivation of hypersequents using the
axioms and deductive rules of Figure 3. We write .HRG if the hypersequent G
is derivable in the proof system HR. Before discussing the meaning of the rules
and giving some examples, we define the interpretation of hypersequents and
state the soundness and completeness of the proof system.

Definition 5 (Interpretation of Hypersequents). We interpret sequents
and hypersequents by Riesz terms as follows. A sequent Γ = (` r1.A1, . . . , rn.An)
is interpreted by the Riesz term LΓ M = r1A1 + · · ·+ rnAn. In particular, for the
empty sequent, L`M = 0. A hypersequent G = (` Γ1 | · · · |` Γn) is interpreted by
the Riesz term LGM = L` Γ1M t · · · t L` ΓnM.

Example 3. L` 1.(x u y) |` 1(x t y), 2.xM = (1(x u y)) t (1(x t y) + 2x).

Lemma 1 (Soundness and Completeness [LM20, Thm 3.10 and 3.11]).
Let G be an hypersequent. Then .HRG if and only if LGM ≥ 0 (or LGM u 0 = 0,
written equationally) holds universally in all Riesz spaces.

The meaning of most of the axioms and deductive rules of the hypersequent
calculus HR is easy to grasp. For instance, the INIT rule allows to derive the

Axiom:

` INIT
ID and CAN rules:

G | ` Γ
G | ` Γ,−→r .x,−→s .x

ID,
∑
ri =

∑
si

G | ` Γ,−→s .A,−→r .A
G | ` Γ

CAN,
∑
ri =

∑
si

Structural rules:

G
G | ` Γ W

G | ` Γ | ` Γ
G | ` Γ C

G | ` Γ1, Γ2

G | ` Γ1 | ` Γ2
S

G | ` Γ1 G | ` Γ2

G | ` Γ1, Γ2
M

G | ` r.Γ
G | ` Γ T

Logical rules:

G | ` Γ
G | ` Γ,−→r .0

0
G | ` Γ,−→r .A,−→r .B
G | ` Γ,−→r .(A+B)

+
G | Γ ` Γ, (s−→r ).A
G | Γ ` Γ,−→r .(sA)

×

G | ` Γ,−→r .A | ` Γ,−→r .B
G | ` Γ,−→r .(A tB)

t
G | ` Γ,−→r .A G | ` Γ,−→r .B

G | ` Γ,−→r .(A uB)
u

Fig. 3. Inference rules of HR ([LM20]).

empty sequent (`) and indeed this is a sound rule since L`M = 0 and L`M ≥ 0. The
contraction rule (C) reflects the idempotency of the lattice operation t, which



is used to interpret the (|) symbols of hypersequents. Similarly, the (+)–rule
reflects the interpretation of commas in sequents as addition. In the T -rule, any
sequent (in the hypersequent) can be multiplied by any positive scalar r ∈ R>0.
This reflects the fact that if rx ≥ 0 then x ≥ 0, for every r ∈ R>0. Several rules
adopt a vector notation (−→r ) to indicate that several terms are active in the rule.
For example, the following is a valid instance of the rule ID:

G | ` Γ
G | ` 1

2 .x,
1
3 .x,

1
6 .x,

2
3 .x

ID, 1
2 + 1

3 = 1
6 + 2

3

because the proviso is satisfied. The ID rule expresses the fact that, since 1
2x+

1
3x + 1

6 (−x) +
2
3 (−x) = 0, the terms can be cancelled out. Note that the CAN

rule has the same interpretation, but in the reverse direction. Finally, the rules
M and S which, in various forms have appeared in the proof–theory literature
(not necessarily related to Riesz spaces, see, e.g., [MOG09, Avr96, FR94]) do not
have an equally simple interpretation, but are sound [LM20, Thm 3.10].

The key results regarding the hypersequent calculus HR from [LM20], which
are relevant for this work, are stated as the following lemmas.

Lemma 2 (CAN–elimination [LM20, Thm 3.14]). If a hypersequent G is
derivable in HR then G has a HR derivation that does not use the CAN rule.

Lemma 3 ([LM20, Thm 3.12]). The rules {0,+,t,u,×} are invertible: if the
conclusion of an instance of one of these rules is derivable, then all its premises
are also derivable.

An hypersequent G is called atomic if all terms A appearing in G are either
variables or covariables, i.e., A = x or A = x, for x ∈ V .

Lemma 4 (λ-property for HR [LM20, Lemma 3.43]). For all atomic hy-
persequents G formed using the variables and covariables x1, x1, . . . , xk, xk of the
form ` Γ1 | ... | ` Γm, where for each i ∈ [1 . . .m],

Γi =
−→r i,1.x1, ...,−→r i,k.xk,−→s i,1.x1, ...,−→s i,k.xi,k

then G is derivable in HR if and only if there exist numbers t1, ..., tm ∈ [0, 1],
one for each sequent in G, such that:

1. there exists i ∈ [1...m] such that ti = 1, and
2. for every (co)variable (xj , xj), it holds that:

∑m
i=1 ti(

∑−→r i,j −∑−→s i,j) = 0.

It is important to appreciate how Lemma 4 reduces the derivability problem
of atomic hypersequents in HR to the existence of a solution in a linear arith-
metic problem. The derivability problem of arbitrary hypersequents can also be
reduced to linear arithmetic by invoking, in an iterative fashion, Lemma 3 which
allows to simplify the term–complexity of the considered hypersequents.



3.2 Hypersequent calculus HMR

In this section we define the hypersequent calculus HMR from [LM20]. This
is an extension of HR obtained by: (1) considering modal Riesz terms A, B
(in NNF, see Section 2.2) rather than just (non–modal) Riesz terms, and (2)
extending the set of rules of HR (Figure 3) with the two additional rules of
Figure 3 dealing with the connectives {1,♦}. The rule (1) is justified by the

Additional rules:

G | ` Γ,−→r .1,−→s .1
G | ` Γ

1,
∑
si ≤

∑
ri

` Γ,−→r .1,−→s .1
` ♦Γ,−→r .1,−→s .1

♦,
∑
si ≤

∑
ri

Fig. 4. Additional inference rules of HMR ([LM20]).

axiom 0 ≤ 1 of modal Riesz spaces (Definition 3). The (♦) rule is justified by
the the positivity and linearity of the ♦ operator as well as the axiom ♦1 ≤ 1
(see [LM20, §4.3]).

We write .HMRG if the hypersequentG (involving modal Riesz termsA,B, . . . )
is derivable in the system HMR. By interpreting sequents and hypersequents
as in Definition 5, the main results regarding HR extend to HMR: soundness,
completeness, CAN–elimination and invertibility of the rules {0,+,t,u,×}. Also
a more sophisticated variant of the λ–property (Lemma 4) holds for HMR (see
[LM20]), as we now state. A hypersequent G whose terms A are either atoms
(A = x or A = x), or A = 1 or A = 1 or diamond–terms (i.e., A = ♦B, for some
term B) is called a basic hypersequent.

Lemma 5 (λ-property of HMR [LM20, Lemma 4.44]). For all basic hy-
persequents G formed using the variables and negated variables x1, x1, . . . , xk, xk
of the form

` Γ1,♦∆1,
−→
r′ 1.1,

−→
s′ 1.1 | ... | ` Γm,♦∆m,

−→
r′m.1,

−→
s′m.1

where Γi = −→r i,1.x1, ...,−→r i,k.xk,−→s i,1.x1, ...,−→s i,k.xi,k, for all i ∈ [1 . . .m], then
G is derivable in HMR if and only if there exist numbers t1, ..., tm ∈ [0, 1], one
for each sequent in G, such that the following conditions hold:

1. there exists i ∈ [1..m] such that ti = 1,
2. for every (co)variable (xj , xj) it holds that:

∑m
i=1 ti(

∑−→r i,j −∑−→s i,j) = 0

3. 0 ≤
∑m
i=1 ti(

∑−→
r′ i −

∑−→
s′ i),

4. the following hypersequent (consisting of just one sequent) is derivable:
` t1.∆1, ..., tm.∆m, (t1

−→
r′ 1).1, ..., (tm

−→
r′m).1, (t1

−→
s′ 1).1, ..., (tm

−→
s′m).1.

3.3 Parametrised Hypersequents

The hypersequents of HMR (and its subsystem HR) are built out of ex-
pressions of the form (r.A) where r > 0 is a concrete real number (see Definition



4). It is often useful, however, to state properties of parametrised families of
hypersequents. For example, the hypersequent schema (` α.x |` α.x), involving
a variable α ranging over scalars, is derivable for all α > 0.

Rather than just scalar variables (α, β), it is convenient to allow for even
more general hypersequents schemas where in place of scalars we allow polyno-
mial expressions over a certain number of variables α, β. We call such hyper-
sequents parametrised. Given a parametrised hypersequent G(α1, . . . , αn), built
using polynomial expressions R,S (see Section 2.3) involving scalar variables
α1, . . . , αn we can obtain a concrete hypersequent (in the sense of Definition 4)
G(r1, . . . , rn) by instantiating the scalar variables with concrete real numbers ri
and by evaluating the polynomial expressions as expected. Note, however, that
since scalars r in expressions (r.A) of concrete hypersequents are strictly posi-
tive real numbers, not all instantiations result in valid hypersequents. Therefore,
when we write G(r1, . . . , rn), we implicitly mean that the substitution [ri/αi]
results in a valid concrete hypersequent.

Example 4. ` (α1 − 2α2).(x t y), (α2
1 − 1

2 ).x is a parametrised hypersequent in-
volving two scalar variables α1 and α2. The instance [1/α1,−1/α2] results in the
hypersequent ` (3).(xty), 12 .x, and is therefore valid. The instance [1/α1, 1/α2],
instead, would result in ` (−1).(x t y), 12 .x and is, therefore, not valid because
(−1) is not a valid scalar.

Remark 2. Our main goal with the introduction of parametrised hypersequents
is to express formally and schematically the last condition of the λ-property of
H(M)R (Lemmas 4 and 5). To this end, even though scalars r in expressions
(r.A) of concrete hypersequents are strictly positive (Definition 4), it will be
convenient to consider as valid also instances which results in the scalar 0. In
this case, we use the convention G |` Γ, 0.A = G |` Γ , i.e., we remove every
formula that has a weight equal to 0.

4 Main Result – Proof of Theorem 1

In this section we present our main result, a syntactic proof–theoretical proof
of Theorem 1: free modal Riesz spaces are Archimedean.

868 Lemma FreeMRS_archimedean : forall A B,
869 (forall n, (INRpos n) ∗S A ≤ B) → (* forall n, (n+1)*A ≤ B *)
870 A ≤ MRS_zero. (* A ≤ 0 *)

hmr_archimedean/archimedean.v

The same type of proof technique can also be used to prove the known fact
that free (non–modal) Riesz spaces are Archimedean (Proposition 2).

As a first step, we express the Archimedean property for (modal) Riesz spaces
as a derivability problem in the hypersequent calculus proof system H(M)R.

Lemma 6. For any set V , the free (modal) Riesz space Free(M)RS(V ) has the
Archimedean property if and only if, for any (modal) Riesz terms A and B it
holds that: (∀n, .H(M)R ` 1.A, 1

n .B) =⇒ .H(M)R ` 1.A.



Proof. Recall that Free(M)RS(V ) is isomorphic to T(M)RS(V )/≡ and therefore,
by Definition 2, we have that Free(M)RS(V ) is Archimedean if and only if the
implication (∀n, n[A]≡ ≤ [B]≡)⇒ [A]≡ ≤ [0]≡ holds, for all (modal) Riesz terms
A,B. Equivalently (using the identity nx ≤ y ⇔ −x + 1

ny ≥ 0), Free(M)RS(V )

is Archimedean if and only if (∀n,−[A]≡+ 1
n [B]≡ ≥ [0]≡)⇒ −[A]≡ ≥ [0]≡holds.

Finally, by the using the completeness and soundness of H(M)R (Theorem 1),
this is equivalent to: (∀n, .H(M)R ` 1.A, 1

n .B)⇒ .H(M)R ` 1.A.

In order to establish the implication of Lemma 6 we prove a stronger result
of independent interest about the hypersequent calculus H(M)R. This states
that derivability inH(M)R is continuous in the sense that derivability preserves
limits of scalars in hypersequents.

Theorem 2 (Continuity). Let G(α1, ..., αl) be a parametrized H(M)R hy-
persequent. Let (si,n) ∈ RN be a sequence of l–tuples of reals such that:
1. G(s1,n, ..., sl,n) is a valid instance of G(α1, ..., αl), for all n ∈ N, and
2. .H(M)RG(s1,n, ..., sl,n) holds for all n ∈ N,
3. For each i ∈ {1, . . . , l}, the limit lim

n→+∞
si,n = si exists.

Then the limit instance G(s1, . . . , sl) is also valid and .H(M)RG(s1, ..., sl) holds.

Proof. Proofs for HR and HMR are presented in Sections 4.1 and 4.2.

The Archimedean property of free (modal) Riesz spaces is a direct corol-
lary of Lemma 6 and Theorem 2, considering the parametrised hypersequent
` 1.A, α1.B and the sequence s1,n = 1

n , so that s1 = lim
n→+∞

1
n = 0.

Corollary 1. Free(M)RS(V ) has the Archimedean property.

4.1 Proof of Continuity for HR

As a first step, we prove that Theorem 2 holds for all HR hypersequents
G(α1, ..., αl) that are atomic, i.e., such that all terms appearing in G are either
variables or covariables, i.e., A = x or A = x. Intuitively, this fact follows from
the last point of Lemma 4, which reduces derivability of atomic hypersequents to
the existence of a solution of a system of polynomial inequalities, and polynomials
expressions are continuous.

Lemma 7 (Atomic continuity of HR). The statement of Theorem 2 for HR
holds for all atomic hypersequents G(α1, ..., αl).

Proof. Repository [Luc21]: (HR_atomic_lim) in archimedean.v. LetG =

` Γ1 | . . . | ` Γm with Γi =
−→
R i,1.x1, ...,

−→
R i,k.xk,

−→
S i,1.x1, ...,

−→
S i,k.xk, where all

the indexed expressions R,
−→
R , S and

−→
R are polynomials over α1, . . . , αl.

By assumption, each G(s1,n, ..., sl,n) is a valid instance (the evaluation of all
polynomial expressions results in a strictly positive scalar or 0 scalar, see Remark
2). Furthermore, G(s1,n, ..., sl,n) is assumed to be derivable in HR which means,
by Lemma 4, that there exist real numbers t1,n, ..., tm,n ∈ [0, 1], such that:



1. there exists i ∈ [1..m] such that ti = 1, and
2. for every variable and covariable pair (xj , xj), it holds that∑m

i=1 ti,n(
∑−→

R i,j(s1,n, ..., sl,n)−
∑−→

S i,j(s1,n, ..., sl,n)) = 0.

By the infinitary pigeon principle (see Section 2.3), there exists i ∈ [1..m]
such that ti,n = 1 infinitely often and since [0, 1]m is a compact space, by se-
quential compactness of [0, 1] (see Section 2.3), we can extract a subsequence
(t1,σ(j), ..., tm,σ(j))j converging to (t1, ..., tm) with ti,σ(j) = 1 for all j (and so
ti = 1). Finally, the identity

∑m
i=1 ti(

∑−→
R i,j(s1, ..., sl) −

∑−→
S i,j(s1, ..., sl)) = 0

holds, because polynomial expressions are continuous and therefore preserve lim-
its of converging sequences. Hence, we have that
1. there exists i ∈ [1..m] such that ti = 1, and
2. for every variable and covariable pair (xj , xj), it holds that:∑m

i=1 ti(
∑−→

R i,j(s1, ..., sl)−
∑−→

S i,j(s1, ..., sl)) = 0,

and, according to Lemma 4, this implies that G(s1, ..., sl) is derivable.

In order to conclude the proof of Theorem 2 for HR, we need to extend
the result of Lemma 7 to arbitrary parametrised hypersequents G(α1, . . . , αl).
This is done by showing that the continuity of parametrised hypersequents of a
certain complexity can be reduced to the continuity of hypersequents of lower
complexity, with the case of atomic hypersequent (Lemma 7) serving as base
case. The main tool allowing this reduction is Lemma 3, which states that the
logical rules of HR are invertible.

Definition 6 (Complexity). The complexity of a sequent ` Γ , noted | ` Γ |,
is the sum of all connectives {0,+, r(_),t,u} appearing in terms of Γ . The
complexity of a (parametrized) hypersequent G, noted |G|, is a pair (a, b) ∈ N2

defined by: a = max
`Γ∈G

| ` Γ |, the maximal complexity of sequents in G, and

b = |{` Γ ∈ G| | ` Γ | = a}|, the number of sequents in G with complexity a.

Note that atomic hypersequents have complexity |G| = (0, b). We are now
ready to conclude the proof of Theorem 2.

Proof (general case). Repository [Luc21]: (HR_lim) in archimedean.v.
Let G(α1, . . . , αl) and (si,n) ∈ RN be as in the statement of Theorem 2. The
proof goes by lexicographic induction on the complexity |G|.

If |G| = (0, b), we can conclude with Lemma 7.
Otherwise |G| = (a, b) for some a, b > 1. Hence G has the shape G′ |` Γ,R.A

where the complexity of ` Γ,R.A is equal to a and A is a term with some
outermost connective in {0,+, r(_),t,u}. Here we only consider the case of
A = B t C, the other cases being similar.

By assumption we know that, for all n, .HR(G′ | ` Γ,R.(BtC))(s1,n, ..., sl,n),
for all tuples (s1,n, ..., sl,n). The invertibility of the t rule (Lemma 3) implies
that the following hypersequents, for each tuple (s1,n, ..., sl,n), are also derivable:

.HR(G′ | ` Γ,R.B | ` Γ,R.C)(s1,n, ..., sl,n)



Note that the above hypersequents have complexity lower than |G|. Hence, by
applying the induction hypothesis we obtain, by continuity, that

.HR(G′ | ` Γ,R.B | ` Γ,R.C)(s1, ..., sl)

holds. We can then conclude the argument by deriving the desired hypersequent
as follows, by one application of the t rule.

(G′ | ` Γ,R.B | ` Γ,R.C)(s1, ..., sl)
(G′ | ` Γ,R.(B t C))(s1, ..., sl)

t

4.2 Proof of Continuity for HMR

The proof of Theorem 2 for HMR presented in this section has the same
structure of the proof presented in Section 4.1 forHR. Namely, (1) we first prove
a result similar to the atomic continuity Lemma 7 of Section 4.1 stating that
Theorem 2 holds for certain “simple” hypersequents, and then (2) extend this
result to arbitrary HMR hypersequents.

Regarding (1), the notion of “simple” is that of basic hypersequent associated
with the λ–property of HMR (Lemma 5). Note, however, that unlike the corre-
sponding λ–property of HR (Lemma 4), the statement of Lemma 5 reduces the
derivability of basic HMR hypersequents not just to the existence of a solution
in a system of polynomial inequalities, but also in terms of derivability of simpler
(in terms of the number of ♦ operators in their terms) hypersequents. Hence, a
slightly more sophisticated proof by induction on an appropriate notion of com-
plexity of hypersequents is needed. Regarding (2), the key technical tool used
(as in the proof of Section 4.1 for HMR) is the invertibility of the logical rules
{0,+, r(_),t,u} of HMR, and is also based on an induction on the complexity
of the hypersequent.

Definition 7 (Modal Depth and Outer Complexity). The modal depth
D(A) of a modal Riesz space term A is the maximum number of nested ♦’s
in A, i.e., is defined inductively as: D(♦B) = 1 + D(B), D(A) = 0 if A ∈
{x, x, 1, 1, 0},D(rB) = D(B) and D(B?C) = max(D(B),D(C)), for ? ∈ {+,t,u}.

The outer complexity O(A) of a modal Riesz space term A is the total number
of connectives {0,+, r(_),t,u} that do not appear under the scope of some ♦
in A, i.e., as: O(A) = 0 if A ∈ {♦B, x, x, 1, 1}, O(0) = 1, O(rB) = 1 + O(B)
and O(B ? C) = 1 +O(B) +O(C) for ? ∈ {+,t,u}.

Definition 8 (Hypersequent Complexity). The modal depth and outer com-
plexity of a sequent ` Γ of the form r1.A1, . . . rn.An are defined as: D(` Γ ) =
maxni=1D(Ai) and O(` Γ ) =

∑n
i=1O(Ai). The complexity of a (parametrized)

hypersequent G, noted |G|, is a triplet (a, b, c) ∈ N3 defined by: a = max
`Γ∈G

D(` Γ )
is the maximum modal depth of any sequent in G, b = max

`Γ∈G
O(` Γ ) is the max-

imum outer complexity of any sequent in G, and c = |{` Γ ∈ G|O(` Γ ) = b}| is
the number of sequents in G having outer complexity b.



Note that hypersequents G with |G| = (a, 0, c) are basic hypersequents (see
Section 3.2). Furthermore note that if |G| = (0, 0, c), then the hypersequent only
contains terms of the form {x, x, 1, 1}, and the statement of Lemma 5 simplifies
(point 4 becomes trivial) and it reduces the HMR derivability of G to the
solution of a system of polynomial equations.

We are now ready to present the proof of Theorem 2 for HMR.

Proof. Repository [Luc21]: (HMR_lim) in archimedean.v. LetG(α1, . . . , αl)

and (si,n) ∈ RN be as in the statement of Theorem 2. We prove the result by
lexicographic induction on |G|.

If |G| = (0, 0, c), then Lemma 7 of Section 4.1 can be easily adapted, using
the λ–property (Lemma 5) of HMR, to prove that .HMRG(s1, ..., sl).

If |G| = (a, b, c) with b > 0, following the same technique presented in Sec-
tion 4.1 based on the invertibility of the logical rules {0,+, r(_),t,u}, we can
reduce the complexity of |G| to some (a, b′, c′) with b′ < b, apply the induction
hypothesis and finally deduce that .HMRG(s1, ..., sl).

Lastly, assume that |G| = (a, 0, c), i.e., that G is a basic hypersequent and
has the form ` Γ1,♦∆1,

−→
R′1.1,

−→
S′1.1 | . . . | ` Γm,♦∆m,

−→
Rm.1,

−→
S′m.1 where

Γi =
−→
R i,1.x1, ...,

−→
R i,k.xk,

−→
S i,1.x1, ...,

−→
S i,k.xi,k. By assumption G(s1,n, ..., sl,n)

has a proof for all n. Thus, by the λ–property (Lemma 5), for all n there exist
numbers t1,n, ..., tm,n ∈ [0, 1] such that the following conditions hold:

1. there exists i ∈ [1..m] such that ti,n = 1,
2. for every variable and covariable pair (xj , xj), it holds that:∑m

i=1 ti,n(
∑−→

R i,j(s1,n, ..., sl,n)−
∑−→

S i,j(s1,n, ..., sl,n)) = 0,
3. 0 ≤

∑m
i=1 ti,n(

∑−→
R′i(s1,n, ..., sl,n)−

∑−→
S′i(s1,n, ..., sl,n)),

4. the following hypersequent, consisting of only one sequent, is derivable:
(` t1,n.(∆1,

−→
R′1.1,

−→
S′1.1), , ..., tm,n.(∆m,

−→
R′m.1, tm,n

−→
S′m).1)(s1,n, ..., sl,n).

From point (4), by considering m additional scalar variables αl+1, . . . , αl+m
and by defining sl+i,n = ti,n, the parametrised hypersequent H defined as
` αl+1.(∆1,

−→
R′1.1,

−→
S′1.1), , ..., αl+m.(∆m,

−→
R′m.1, tm,n

−→
S′m.1) has a proof for all

n. Note that |H| < |G|, due to the lower modal–depth complexity.
By assumption lim

n→+∞
si,n = si exits for i ∈ {1, . . . , l} but the extended

sequence (s1, . . . , sl, sl+1, . . . sl+m) might not have limits on the coordinates l +
1, . . . , l + m. However, following the same argument of the proof of Lemma 7,
by the infinitary pigeon principle and the sequential compactness of [0, 1]k, we
can extract a subsequence that converges on all coordinates and agrees with the
existing limits si for i ∈ {1, . . . , l}. Hence, by induction hypothesis, we can apply
the continuity theorem to H and deduce that H(s1, ..., sl+m) has a proof.

Finally, in order to conclude the proof and prove that .HMRG(s1, ..., sl), we
apply once again the λ–property (Lemma 5) which states that .HMRG(s1, ..., sl)
is derivable if and only if the four points above hold, instantiated to (s1, ..., sl).
The fourth point has been established. The points (1–3) follow from the conti-
nuity of polynomial expressions as discussed in the proof of Lemma 7.
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