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Turbulence theory
The search for coherent structures

Wang and Moin 2009

Hairpin or no hairpin? 

(Monty and Marusic 2019)

Eitel et al. 2015

Q- events (Lozano-Duran et al. 2012)

Eddy-attached model (Perry and Marusic 1995)
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Motivation

• Increase in data from simulations and experiments 

• Need for techniques that are able to extract relevant information from data 

• Existing unsupervised classification methods: Proper Orthogonal Decomposition 
(POD), Dynamic Mode Decomposition (DMD), k-means… 

• …Allow identification of latent factors but lack an inherent probabilistic framework

The search for coherent structures with machine learning
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Looking for latent factors
A familiar concept in natural language processing

• Classification to extract meaning from a collection of documents containing words 

•

Collection Observations Key Latent Factors

NLP Documents Words
         =Number of 

times word j appears 
in document k 

jjocument j word 
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Fluid 
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Mjk

Mjk
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How does LDA relate to other techniques?

★POD = LSA (Latent Semantic Allocation) 

• LSA  pLSA = LSA with a motif-cell distribution  

• pLSA LDA =pLSA with  a snapshot-motif distribution 

★k-means  hard clustering: each snapshot is assigned to one cluster 

•   LDA soft clustering technique with a generative model

→

→

↔
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What is a motif?
Latent Dirichlet Allocation (Blei et al. 2003)

Motifs are defined through two kinds of distributions: 

•  How each motif n  is distributed on the cells j (spatial mode)                                     

•How each snapshot k is distributed on the motifs n (amplitude) 

φn,j

θk,n
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LDA:  and  are modelled with Dirichlet distributions of parameter   and  φ θ α β



An example 
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LDACreation



Application to turbulent channel flow
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Motif-cell distribution 

of instantaneous Q- Reynolds stress

Rτ = 590



Do motifs scale with wall distance?
Confronting motifs with eddy attached (or detached!) hypotheses
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Inverse scaling of numbers of motifsLinear scaling of motif size



Using LDA to reconstruct snapshots

10

τPOD
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n
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Using LDA to generate new snapshots
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Distribution of instantaneous Reynolds stress         τ−

τLDA
−,jk = ∑

n

θknφnj τPOD
−,jk = ∑

n

ankϕn(xj)

R-LDA:   stored 

G-LDA:  sampled

θkn

θkn

R-POD:   stored 

G-POD:  sampled 

akn

akn



Summary

• Adaptation of a statistical analysis technique used in natural  language processing 
to the identification of structures/motifs in turbulent flows using Q- Reynolds stress 
events 

• Characteristics of motifs identified with the technique  are consistent with classical 
hypotheses associated with the attached eddy model 

• The generative model associated with LDA captures the intermittent properties of 
the Reynolds stress. 

J
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More about LDA…

• Companion talk: Identification of sea level pressure anomaly patterns using Latent 
Dirichlet Allocation, L. Fery, B. Dubrulle, B. Podvin, F. Pons & D. Faranda (tomorrow 
at 3:20pm, 2C) 

• Coherent structure identification in turbulent channel flow using latent Dirichlet 
allocation, M Frihat, B Podvin, L Mathelin, Y Fraigneau, F Yvon, Journal of Fluid 
Mechanics 2021
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