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Motivation: Inverse problems

Goal: Estimate the flow field from limited wall-mounted sensors
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Standard approach — ROM-based state estimation

Derive a reduced-order model: y ≈ ŷ = D x . D typically are PCA modes.

From a correlation kernel or a “training” (unsorted) sequence Y :=
(

y (1) . . . y (nsnap)
)

:

Y
thin SVD
≈ D Σ V∗.

For a given number nD of retained modes, leads to the best approximation in the following sense:

Ŷ = D X̂ ∈ arg min
rank

[
Ỹ
]
≤nD

∥∥∥Y − Ỹ
∥∥∥

F
with X̂ = Σ V∗.

y ∈ Rn field of interest,

D ∈ Rn×nD the approximation basis [Dictionary],

x ∈ RnD the basis coefficients as estimated from the ns sensors,

s ∈ Rns , sensor information.
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Standard approach — ROM-based state estimation

On site, what is measured is s = G y only.
G : y 7→ s: forward operator.

Observer such that
x̂ ∈ arg min

x̃∈RnD

∥∥s − G D x̃
∥∥

2, [data misfit]

or simply x̂ = (G D)+ s. ←− requires ns ≥ nD (if no additional hyp.)

The reconstructed field is finally:

ŷ = D x̂ = D (G D)+ s.
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A dictionary learning algorithm

Without additional hypotheses, impossible to estimate nD > ns modes

−→ derive an over-complete dictionary D for sparse representation of the field
y ∈My to be infered

y ≈
ε

D x , x ∈ RnD

−→ ns-sparse approximation

y ≈
ε

D x with ‖x‖0 ≤ ns, ∀y ∈My

Find {D,X} ∈ arg min
D̃,X̃

∥∥∥Y − D̃ X̃
∥∥∥

F
s.t.

∥∥∥x̃(i)
∥∥∥

0
≤ ns , ∀i , X :=

(
x(1) . . . x(nsnap)

)
.
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A dictionary learning algorithm

−→ use K-SVD algorithm

Repeat

Sparse Coding : X ∈ arg min
X̃

∥∥∥Y − D X̃
∥∥∥

F
s.t.

∥∥∥x̃(i)
∥∥∥

0
≤ ns , ∀i .

CodeBook Update : Update D and X in order to lower ‖Y − D X‖F while maintaining the
support of

{
x(i)}

i .

But typically x(i) ∈ RnD cannot be estimated from measurements: Observability issue

−→ determine D for estimating x(i) from s(i) instead of y (i) .

−→ dictionary D both accurate and observable: D (Y ,S).
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Recovery performance
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Beyond the linear realm. . .

B Measurements may not be linearly related to the flow field,

B The flow data may not live in a linear subspace.

Followed approach

Embed the measurements to improve the quality of the
state vector proxy sinst−→s (lower Bayes risk),

Unfold measurements to disentangle the information −→ Φ,

Discover the manifold the flow data lie on −→ Ψ.
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Measurement features Φ

Multi Kernel Learning technique, Ki,j :=
〈

Φsi ,Φsj

〉
,

Kµ (·, ·) =
∑

l

µl Kl (·, ·).

optimally aligned with flow features
{

Ψyi

}
i :

µ ∈ arg max
µ̃

〈
H Kµ̃ H M

〉
F∥∥H Kµ̃

∥∥
F

, H := I − n−1
snap1 1T, M := ΨT

Y ΨY .

The Lagrangian writes (Bayes risk):

L := ‖ΨY −ΨY W Φ (S)‖2
F + λ ‖W‖2

F ,

∝ Tr
[
λW W T + Ξ ΞT + αT (ΨY −ΨY W ΦS − Ξ)

]
, [Dual formulation]

with Ξ := ΨY −ΨY W ΦS .

The adjoint variable matrix α satisfies a Sylvester equation:

λ
(

ΨY ΨT
Y

)−1
α+ α Kµ = ΨY .
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Flow features Ψ

Nonlinear manifold learning: Diffusion Maps

Kernel NDM to quantify the connectivity between snapshots {yi}i :

NDM
(
yi , yj

)
= exp

(
−dist2

(
yi , yj

))
.

With Deg the degree matrix, the Markov matrix quantifies the transition probabilities:

P = D−1
eg NDM,

−→ t-step (diffusion “time”) transition matrix:

P t = R Γt LT.

Flow features ΨY are coordinates on diffusion map:

ΨY = Γt RT.

Original space — High dimensional

−→

Feature space — Lower dimensional
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Beyond L2. . .
The Euclidean distance is a poor metric for reconstruction quality!

A motivation with 1-D point vortices:

Large L2 error, as soon as the two vortices are disjoint −→ inconsistent.

Euclidean distance is not suited for quantifying the quality of the reconstruction and interpolating.

−→ Optimal transport
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OT in a nutshell
Transport a measure α to another measure β minimizing some transport cost c.
One can define the cost c of moving an elementary amount of measure from x to y as a function
of the Euclidean distance d : c = d (x, y)p .
The minimal total cost is a distance:

W p
p (α, β) := min

π

∫
Ω

d (x, y)p dπ (x, y).

Very different geometry from standard information divergences (KL, Euclidean).

Peyré & Cuturi, 2020

Computationally involved but tractable thanks, e.g., to entropic regularization
−→ Sinkhorn algorithms.
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Strategies for predicting

Generative Adversarial Network −→ Not necessarily enough training examples,
little control upon prediction manifold

Wasserstein dictionary −→ Wrong subspace,
blurry prediction

Wasserstein barycenter −→ Computationally intensive,
blurry prediction

OT-based Diffusion Map −→ ∈ simplex of neighbors in the OT-sense,
preserves divergence-free fields

The feature kernel NDM relies on (entropy-regularized) Wasserstein distances dWass estimated with
Sinkhorn iterations:

NDM i,j ∼ exp
(
−d2

Wass
(
yi , yj

))
.
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Reconstruction (fluctuating part)
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Reconstruction error

Regularized PCA: 22 % error OT-DM: 0.1 % error
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Required information

−→ significantly outperforms PCA-based reconstruction.
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Concluding remarks

Offline/Online strategy for inference. First learn about the system at hand, then exploit,

Need to enforce representation accuracy and observability,

OT allows a consistent estimation strategy.

Future efforts:
Assessment on more complex systems,

Observability of the flow features to be enforced,

Physically-consistent OT barycenters.
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Wrapping-up. . .

Finally
sinst −→ s −→ Ψy ≈ α̃ KS (s) .

How to recover y from Ψy ? −→ pre-image kernel problem

Approximation of the transition probabilities p (y , yi ) −→ the distances D
(
Ψyi ,Ψy

)
.

−→ easy to relate to distances d (yi , y).

−→ can then estimate ŷ ≈ y from knowning its distance to each training samples {yi}i .

At the end of the day:
sinst −→ s −→ Φ (s) −→ Ψ̂

(
ŷ
)
−→ ŷ
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Embedding from 1 sensor
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	Basis learning for inference

