Flow reconstruction using manifold learning and structure-preserving metrics

L. MATHELIN¹, A.A. GORODETSKY² & B. PODVIN¹

¹: U. Paris-Saclay, CNRS, LISN, France ²: Dpt. Aerospace Eng., U. Michigan, USA

SIAM CSE 2021

Motivation: Inverse problems

Goal: Estimate the flow field from limited wall-mounted sensors

Standard approach — ROM-based state estimation

Derive a reduced-order model: $\mathbf{y} \approx \hat{\mathbf{y}} = D \mathbf{x}$. D typically are PCA modes.

From a correlation kernel or a "training" (unsorted) sequence $\mathbf{Y} := (\mathbf{y}^{(1)} \dots \mathbf{y}^{(n_{snap})})$:

 $Y \stackrel{\text{thin SVD}}{\approx} D\Sigma V^*.$

For a given number n_D of retained modes, leads to the best approximation in the following sense:

$$\widehat{Y} = D\,\widehat{X} \in \underset{\operatorname{rank}\left[\widetilde{Y}\right] \le n_{D}}{\operatorname{arg\,min}} \left\| Y - \widetilde{Y} \right\|_{F} \quad \text{with} \quad \widehat{X} = \Sigma \, V^{*}$$

- $y \in \mathbb{R}^n$ field of interest,
- $D \in \mathbb{R}^{n \times n_D}$ the approximation basis [Dictionary],
- $\mathbf{x} \in \mathbb{R}^{n_D}$ the basis coefficients as estimated from the n_s sensors,
- $\boldsymbol{s} \in \mathbb{R}^{n_s}$, sensor information.

Standard approach — ROM-based state estimation

On site, what is measured is $\mathbf{s} = G \mathbf{y}$ only. $G: \mathbf{y} \mapsto \mathbf{s}$: forward operator.

Observer such that $\widehat{\mathbf{x}} \in \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^{n_D}}{\arg \min} \|\mathbf{s} - GD\widetilde{\mathbf{x}}\|_2, \quad \text{[data misfit]}$ or simply $\widehat{\mathbf{x}} = (GD)^+ \mathbf{s}. \quad \longleftarrow \text{ requires } n_s \ge n_D \quad \text{(if no additional hyp.)}$

The reconstructed field is finally:

 $\widehat{\boldsymbol{y}} = D\,\widehat{\boldsymbol{x}} = D\,(G\,D)^+\,\boldsymbol{s}.$

A dictionary learning algorithm

Without additional hypotheses, impossible to estimate $n_D > n_s$ modes

 $\begin{array}{l} \longrightarrow \text{ derive an over-complete dictionary } D \text{ for sparse representation of the field} \\ \textbf{\textit{y}} \in \mathcal{M}_{\textbf{\textit{y}}} \text{ to be infered} \\ \\ \textbf{\textit{y}} \approx D \textbf{\textit{x}}, \quad \textbf{\textit{x}} \in \mathbb{R}^{n_{D}} \\ \\ \longrightarrow \quad n_{\textbf{s}} \text{-sparse approximation} \\ \textbf{\textit{y}} \approx D \textbf{\textit{x}} \quad \text{with} \quad \|\textbf{\textit{x}}\|_{0} \leq n_{\textbf{s}}, \quad \forall \textbf{\textit{y}} \in \mathcal{M}_{\textbf{y}} \end{array}$

Find
$$\{D, X\} \in \operatorname*{arg\,min}_{\widetilde{D}, \widetilde{X}} \left\| Y - \widetilde{D} \widetilde{X} \right\|_{F}$$
 s.t. $\left\| \widetilde{\mathbf{x}}^{(i)} \right\|_{0} \leq n_{s}, \quad \forall i, \quad X := \left(\mathbf{x}^{(1)} \dots \mathbf{x}^{(n_{\mathsf{Snap}})} \right).$

A dictionary learning algorithm

• CodeBook Update : Update D and X in order to lower ||Y - DX||_F while maintaining the support of {x⁽ⁱ⁾}_i.

A dictionary learning algorithm

CodeBook Update : Update *D* and *X* in order to lower ||*Y* − *DX*||_F while maintaining the support of {*x*⁽ⁱ⁾}_i.

But typically $\mathbf{x}^{(i)} \in \mathbb{R}^{n_D}$ cannot be estimated from measurements: Observability issue

 \longrightarrow determine *D* for estimating $\mathbf{x}^{(i)}$ from $\mathbf{s}^{(i)}$ instead of $\mathbf{y}^{(i)}$.

 \rightarrow dictionary *D* both accurate and observable: D(Y, S).

Recovery performance

Prediction SBL

MATHELIN, GORODETSKY & PODVIN

Beyond the linear realm...

Measurements may not be linearly related to the flow field,

 \bigwedge The flow data may not live in a linear subspace.

Beyond the linear realm...

Measurements may not be linearly related to the flow field,

 \bigwedge The flow data may not live in a linear subspace.

Followed approach

- Embed the measurements to improve the quality of the state vector proxy s_{inst}→s (lower Bayes risk),
- Unfold measurements to disentangle the information $\longrightarrow \Phi$,
- Discover the manifold the flow data lie on $\longrightarrow \Psi$.

Beyond the linear realm...

Measurements may not be linearly related to the flow field,

The flow data may not live in a linear subspace.

Followed approach

- Embed the measurements to improve the quality of the state vector proxy s_{inst}→s (lower Bayes risk),
- Unfold measurements to disentangle the information $\longrightarrow \Phi$,
- Discover the manifold the flow data lie on $\longrightarrow \Psi$.

y

Measurement features Φ

Multi Kernel Learning technique, $K_{l,j} := \left\langle \Phi_{\mathbf{s}_l}, \Phi_{\mathbf{s}_j} \right\rangle$, $K_{\boldsymbol{\mu}}(\cdot, \cdot) = \sum_{l} \mu_l K_l(\cdot, \cdot).$

optimally aligned with flow features $\{\Psi_{\mathbf{y}_i}\}_i$:

$$\boldsymbol{\mu} \in \operatorname*{arg\,max}_{\widetilde{\boldsymbol{\mu}}} \frac{\langle \boldsymbol{H} \boldsymbol{K}_{\widetilde{\boldsymbol{\mu}}} \boldsymbol{H} \boldsymbol{M} \rangle_{\boldsymbol{F}}}{\left\| \boldsymbol{H} \boldsymbol{K}_{\widetilde{\boldsymbol{\mu}}} \right\|_{\boldsymbol{F}}}, \qquad \boldsymbol{H} := \boldsymbol{I} - \boldsymbol{n}_{\operatorname{snap}}^{-1} \mathbf{1} \mathbf{1}^{\mathsf{T}}, \qquad \boldsymbol{M} := \boldsymbol{\Psi}_{\boldsymbol{Y}}^{\mathsf{T}} \boldsymbol{\Psi}_{\boldsymbol{Y}}.$$

Measurement features Φ

Multi Kernel Learning technique, $K_{l,j} := \left\langle \Phi_{\mathbf{s}_l}, \Phi_{\mathbf{s}_j} \right\rangle$, $K_{\boldsymbol{\mu}}(\cdot, \cdot) = \sum_{l} \mu_l K_l(\cdot, \cdot).$

optimally aligned with flow features $\{\Psi_{y_i}\}_i$:

$$\boldsymbol{\mu} \in \operatorname*{arg\,max}_{\widetilde{\boldsymbol{\mu}}} \frac{\langle H K_{\widetilde{\boldsymbol{\mu}}} H M \rangle_{F}}{\|H K_{\widetilde{\boldsymbol{\mu}}}\|_{F}}, \qquad H := I - n_{\operatorname{snap}}^{-1} \mathbf{1} \mathbf{1}^{\mathsf{T}}, \qquad M := \Psi_{Y}^{\mathsf{T}} \Psi_{Y}.$$

The Lagrangian writes (Bayes risk):

$$\mathscr{L} := \|\Psi_{Y} - \Psi_{Y} W \Phi(S)\|_{F}^{2} + \lambda \|W\|_{F}^{2},$$

$$\propto \operatorname{Tr} \left[\lambda W W^{\mathsf{T}} + \Xi \Xi^{\mathsf{T}} + \alpha^{\mathsf{T}} (\Psi_{Y} - \Psi_{Y} W \Phi_{S} - \Xi) \right], \qquad \text{[Dual formulation]}$$

with $\Xi:=\Psi_{\it Y}-\Psi_{\it Y}\, \textit{W}\, \Phi_{\it S}$.

The adjoint variable matrix α satisfies a Sylvester equation:

$$\lambda \left(\Psi_{Y} \Psi_{Y}^{\mathsf{T}} \right)^{-1} \alpha + \alpha \, \mathcal{K}_{\boldsymbol{\mu}} = \Psi_{Y}.$$

Flow features Ψ

Nonlinear manifold learning: Diffusion Maps

Flow features Ψ

Nonlinear manifold learning: Diffusion Maps

Kernel $N_{\rm DM}$ to quantify the connectivity between snapshots $\{y_i\}_i$:

$$N_{\text{DM}}\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right) = \exp\left(-\text{dist}^{2}\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right)\right).$$

With D_{eg} the degree matrix, the Markov matrix quantifies the transition probabilities:

$$P=D_{\rm eg}^{-1}N_{\rm DM},$$

 \rightarrow *t*-step (diffusion "time") transition matrix:

$$P^t = R \Gamma^t L^T.$$

 $\Psi_{Y} = \Gamma^{t} B^{T}$

Flow features Ψ_Y are coordinates on diffusion map:

$$final space - High dimensional$$

MATHELIN, GORODETSKY & PODVIN

Ori

Flow reconstruction using manifold learning

Beyond L^2 ... The Euclidean distance is a poor metric for reconstruction quality!

A motivation with 1-D point vortices:

Large L^2 error, as soon as the two vortices are disjoint \longrightarrow inconsistent.

Beyond L^2 ... The Euclidean distance is a poor metric for reconstruction quality!

A motivation with 1-D point vortices:

Large L^2 error, as soon as the two vortices are disjoint \longrightarrow inconsistent.

Beyond L^2 ... The Euclidean distance is a poor metric for reconstruction quality!

A motivation with 1-D point vortices:

Large L^2 error, as soon as the two vortices are disjoint \longrightarrow inconsistent.

Euclidean distance is not suited for quantifying the quality of the reconstruction and interpolating.

 \rightarrow Optimal transport

OT in a nutshell

Transport a measure α to another measure β minimizing some transport cost *c*.

One can define the cost *c* of moving an elementary amount of measure from **x** to **y** as a function of the Euclidean distance $d: c = d(\mathbf{x}, \mathbf{y})^{\rho}$.

The minimal total cost is a distance:

$$W^{p}_{\rho}(\alpha,\beta) := \min_{\pi} \int_{\Omega} d(\mathbf{x},\mathbf{y})^{\rho} d\pi(\mathbf{x},\mathbf{y}).$$

Very different geometry from standard information divergences (KL, Euclidean).

Computationally involved but tractable thanks, *e.g.*, to entropic regularization \longrightarrow Sinkhorn algorithms.

MATHELIN, GORODETSKY & PODVIN

Strategies for predicting

Generative Adversarial Network	\longrightarrow	Not necessarily enough training examples, little control upon prediction manifold
Wasserstein dictionary	\rightarrow	Wrong subspace, blurry prediction
Wasserstein barycenter	\rightarrow	Computationally intensive, blurry prediction
OT-based Diffusion Map	\longrightarrow	\in simplex of neighbors in the OT-sense, preserves divergence-free fields

Strategies for predicting

Generative Adversarial Network	\rightarrow	Not necessarily enough training examples, little control upon prediction manifold
Wasserstein dictionary	\rightarrow	Wrong subspace, blurry prediction
Wasserstein barycenter	\rightarrow	Computationally intensive, blurry prediction
OT-based Diffusion Map	\rightarrow	\in simplex of neighbors in the OT-sense, preserves divergence-free fields

The feature kernel N_{DM} relies on (entropy-regularized) Wasserstein distances d_{Wass} estimated with Sinkhorn iterations:

$$N_{\mathrm{DM}\,i,j} \sim \exp\left(-d_{\mathrm{Wass}}^2\left(\boldsymbol{y}_i, \boldsymbol{y}_j\right)
ight).$$

Reconstruction (fluctuating part)

Prediction

Wasserstein barycenter

MATHELIN, GORODETSKY & PODVIN

Flow reconstruction using manifold learning

0.30

0.24

0.18

0.12

0.06

0.00

-0.06

-0.12

-0.18

-0.24

Reconstruction error

Regularized PCA: 22 % error

OT-DM: 0.1 % error

Required information

 \rightarrow significantly outperforms PCA-based reconstruction.

Concluding remarks

- Offline/Online strategy for inference. First learn about the system at hand, then exploit,
- Need to enforce representation accuracy and observability,
- OT allows a consistent estimation strategy.

Future efforts:

- Assessment on more complex systems,
- Observability of the flow features to be enforced,
- Physically-consistent OT barycenters.

Wrapping-up...

Finally

$$\mathbf{s}_{\mathrm{inst}} \longrightarrow \mathbf{s} \longrightarrow \Psi_{\mathbf{y}} \approx \widetilde{\alpha} \ K_{\mathcal{S}}(\mathbf{s})$$
.

How to recover y from Ψ_y ? \longrightarrow pre-image kernel problem

Wrapping-up...

Finally

$$\mathbf{s}_{\text{inst}} \longrightarrow \mathbf{s} \longrightarrow \Psi_{\mathbf{v}} \approx \widetilde{\alpha} K_{S}(\mathbf{s}).$$

How to recover y from Ψ_y ? \longrightarrow pre-image kernel problem

Approximation of the transition probabilities $p(\mathbf{y}, \mathbf{y}_i) \longrightarrow$ the distances $D(\Psi_{\mathbf{y}_i}, \Psi_{\mathbf{y}})$.

 \rightarrow easy to relate to distances $d(\mathbf{y}_i, \mathbf{y})$.

 \rightarrow can then estimate $\hat{y} \approx y$ from knowning its distance to each training samples $\{y_i\}_i$.

At the end of the day:

$$\boldsymbol{s}_{\mathrm{inst}} \longrightarrow \boldsymbol{s} \longrightarrow \Phi\left(\boldsymbol{s}\right) \longrightarrow \widehat{\Psi}\left(\widehat{\boldsymbol{y}}\right) \longrightarrow \widehat{\boldsymbol{y}}$$

Embedding from 1 sensor

