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Abstract (65 words)

Automating the extraction of meaningful temporal information from sequences of microscopy
images represents a major challenge to characterize dynamical biological processes. Here,
we have developed DetecDiv, a microfluidic-based image acquisition platform combined with
deep learning-based software for high-throughput single-cell division tracking. DetecDiv can
reconstruct cellular replicative lifespans with an outstanding accuracy and provides
comprehensive temporal cellular metrics using timeseries classification and image semantic
segmentation.
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Main
Yeast has a limited replicative lifespan (RLS, i.e., 20-30 divisions) before entering
senescence and dying (Mortimer and Johnston 1959). Over the last decades, this simple
unicellular has become a reference model for understanding the fundamental mechanisms
that control longevity (Denoth-Lippuner, Julou, and Barral 2014; Janssens and Veenhoff
2016). Several independent mechanistic models have been proposed to explain entry into
replicative senescence (Hughes and Gottschling 2012; Sinclair and Guarente 1997;
Aguilaniu et al. 2003). In this context, whether there are multiple parallel causes responsible
for senescence remains highly debated (Dillin, Gottschling, and Nyström 2014; C. He, Zhou,
and Kennedy 2018). A crucial difficulty in solving this puzzle lies in the very labor-intensive
nature of RLS assays (McCormick et al. 2015) and the limited information derived from them
regarding the dynamics of senescence entry. The initial development of microfluidic systems
for RLS assays has partially alleviated this problem by allowing continuous observation of
individual cell divisions and relevant fluorescent cellular markers under the microscope from
birth to death (Lee et al. 2012; Xie et al. 2012; Fehrmann et al. 2013). Recent efforts further
increased data acquisition throughput (Jo et al. 2015; Liu, Young, and Acar 2015) and
attempted to automate data analysis (Ghafari et al. 2021; Ghafari, Mailman, and Qin 2021).
Yet, retrieving individual cellular lifespans from large sets of image sequences so far
remained an insurmountable bottleneck to characterize senescence entry quantitatively or to
screen large numbers of mutants and environmental conditions.

To overcome this challenge, we have developed DetecDiv, an integrated platform that
combines high-throughput observation of cell divisions using a microfluidic device, a simple
benchtop image acquisition system, and a deep learning-based image processing software
with several image classification frameworks. The microscope was built using a rigid frame
with inverted epifluorescence optics, transmission (bright field) illumination, a camera, and a
motorized stage (Fig. S1A and B). The motorized frame carries the microfluidic device to
trap individual cells and follow their successive divisions from birth to death (Fig. 1A, S1C
and S1D). Even though its principle is similar to previously reported designs (Jo et al. 2015;
Liu, Young, and Acar 2015; Crane et al. 2014), we have brought significant improvements to
the trap geometry to improve cell retention, avoid replacement of a mother cell by its
daughter, and prevent device clogging and any source of contamination (see Fig S1E-G and
supplementary text for details). The device includes 16 independent chambers (with 2000
traps per chamber) to image different strains in parallel or to vary environmental conditions.
Altogether, this system allows following the successive divisions and the entry into
senescence of typically 30000 individual cells in parallel with a 5-min resolution (knowing
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that there are ~500 traps per field of view using a 20x objective), i.e., about 1 to 2 orders of
magnitude above the previously described techniques (Lee et al. 2012; Jo et al. 2015).

This image acquisition system generates a large amount of cell division data (on the
Terabytes scale depending on the number of channels, frames, and fields of view), only a
tiny part of which can be manually curated in a reasonable time. In particular, the
determination of replicative lifespans requires counting successive cell divisions until death,
hence, reviewing all images acquired for each cell in each field of view over time. In addition,
automating the division counting process is complicated by the heterogeneity in cell fate (i.e.
division times, cell shape), especially during the entry into senescence. To overcome this
limitation, we have developed an image classification pipeline to count divisions and
reconstruct the entire lifespan of individual cells dividing in the traps. For this, we have
trained a GoogleNet convolutional neural network (CNN) (Szegedy et al. 2015) to determine
the budding state of the trapped cells by assigning one of six possible classes (unbudded,
small-budded, large-budded, dead, empty trap, clogged trap) to each frame, see Fig. S2 and
S3A. In this framework, the alternation between the 'large budded' and the 'unbudded’/’small
budded' states revealed the successive cell divisions, and the occurrence of the ‘dead’ class
allowed us to reconstruct the cell’s lifespan (Fig. 1C)

However, the assignment of the cellular state based on the CNN, which processes the
images independently of one another, led to sporadic ambiguities and errors that
compromise the accuracy of the distribution of division times (Fig. 1D) and a fortiori of the
lifespans (Fig. 1C-E). These problems could be partially alleviated by post-processing the
predictions made by the CNN (see “CNN+PP” in Fig. 1C-E and supplementary text for
details). Yet, to improve the robustness of the method, we have combined the CNN with a
long short-term memory network (LSTM) (Venugopalan et al. 2015; Hochreiter and
Schmidhuber 1997), to take into account the time-dependencies between images (Fig. 1B).
Thus, by providing full image sequences rather than individual images (Fig. 1B), we obtained
an outstanding accuracy and recall for both division quantification and lifespan
reconstruction (Fig. 1D, 1E and Movie M1). Comparing the predictions by the classifier to the
manually annotated data (“ground truth”) revealed a non-significant difference in the
distributions (and an excellent correlation (R²=0.99 for both divisions and lifespans, Fig 1D
and 1E). To estimate the robustness of the classification model which was only trained on
images of WT cells, we measured the large-scale RLS in classical longevity mutants.
Remarkably, we recapitulated the increase (resp. decrease) in longevity observed in the
fob1Δ (resp. sir2Δ) mutant (Defossez et al. 1999; Lin, Defossez, and Guarente 2000) and we
could compute the related death rate with high accuracy (Fig 1F) (Morlot et al. 2019).
Importantly, only 200 manually annotated lifespans were necessary to achieve robust RLS
reconstruction. Thus, rapid user annotation of a small cohort of cells allows the model to be
deployed on larger datasets in different genetic contexts and/or environments.

We then sought to apply other classification schemes of DetecDiv to further characterize the
trajectories of the cells as they transition to senescence. First, we set up an LSTM
sequence-to-sequence classifier to detect the onset of cell-cycle slowdown during entry into
senescence (also referred to as the senescence entry point or SEP (Fehrmann et al. 2013)),
see Fig. 2A and S4. We thus trained the classifier to assign a ‘pre-SD’ or ‘post-SD’ label
(before and after cell-cycle slowdown, respectively) to each frame, using the sequence of
cellular state probabilities (i.e., the output of the CNN/LSTM image classifier described in
Fig. 1) as input. Using this method, we could successfully identify the transition to a slow
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division mode (Fig. 2A) and recapitulate the evolution of average division times after aligning
individual trajectories from that transition (Fig. S5).

Second, we used an encoder/decoder network based on a Resnet50 CNN (K. He et al.
2016) and the DeepLab v3+ architecture (Chen et al. 2018), see Fig. S6, to segment
brightfield and fluorescence images of cells carrying a histone-Neongreen fusion (see Fig
2B, Movie M2 and supplementary text) (Chen et al. 2018). After training the model on ~1500
manually segmented brightfield images using three output classes (i.e., ‘background,’
‘mother cell,’ ‘other cell’), we obtained accurate mother cells contours (Fig. 2B and Fig. S7).
This allowed us to quantify the cellular volume increase, as previously reported (Morlot et al.
2019). A similar training procedure with ~3000 fluorescence images yielded accurate nuclei
contours (see Fig. 2C and S8 ). It successfully recapitulated the sharp burst in histone
fluorescence that follows cell-cycle slowdown (Fig. 2C and S5) (Morlot et al. 2019), hence
further validating our methodology.

Overall, DetecDiv provides an integrated system to acquire and track cell division events
with high throughput, which unleashes the potential of microfluidic cell trapping devices to
perform fully automated replicative lifespan analyses. The imaging system was designed to
perform heavy duty image acquisition sequences (i.e, no filter wheel, fixed objective) to
generate high throughput microscopy datasets. The hardware could be easily assembled
from simple optical components -for a price of about one-third that of a commercial
automated microscope. By processing temporal sequences of images rather than individual
ones, our software demonstrated an outstanding accuracy that matches human capabilities
for image classification yet with a much higher throughput. The robustness of the imaging
pipeline benefited from improvements made in the design of the microfluidic device (see
supplementary text). Therefore, our framework now overcomes all intrinsic technical
limitations of conventional RLS assays and provides an unprecedented potential to perform
large screens for players and environmental perturbations that dynamically control
replicative longevity. More broadly, this work illustrates how temporal dependencies in image
sequences can be exploited using a combined CNN and LSTM architecture to accurately
reveal and quantify dynamic cellular processes. Despite large efforts to make deep-learning
models available to the community of microscopists, very little work has attempted to fully
exploit information encoded in image sequences. With its comprehensive set of generic
classification schemes that can be fully user-parameterized, DetecDiv may be used well
beyond the scope of the present study and applied to any biological context with complex
temporal patterns (cellular differentiation, cell division, organelles dynamics, etc).

Methods
Strains
All strains used in this study are congenic to S288C (see Supplementary Table 1 for details).
See supplementary methods for detailed protocols for cell culture.

Microfabrication and microfluidics
The designs were created on AutoCAD to produce chrome photomasks (jd-photodata, UK).
The microfluidic master molds were then made by standard photolithography processes (see
supplementary text for details).
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The microfluidic device is composed of geometric microstructures that allow mother cells
trapping and flushing of successive daughter cells (see Fig. S2 and supplementary text). The
cell retention efficiency of the traps is 99% after the five first divisions. We designed a
particle filter with a cutoff size of 5 µm to prevent dust particles or debris from clogging the
chip. The microfluidic chips were fabricated with PDMS using standard methods (PDMS,
Sylgard 184, Dow Chemical, USA, see supplementary text for detailed protocols). We
connected the chip using PTFE tubing (1mm OD), and we used a peristaltic pump to ensure
media replenishment (Ismatec, Switzerland). We used standard rich media supplemented
with 2% dextrose (YPD). See supplementary methods for additional details.

Microscopy

The microscope was built from a modular microscope system with a motorized stage (ASI,
USA, see the supplementary text for the detailed list of components), a 20x objective 0.45
(Nikon, Japan) lens, and an sCMOS camera (ORCA flash 4.0, Hamamatsu, Japan). A dual
band filter (#59022, Chroma Technology, Germany) coupled with a two-channel LED system
(DC4104 and LED4D067, Thorlabs, USA). Sample temperature was maintained at 30°C
thanks to a heating system based on an Indium Thin Oxide coated glass and an infrared
sensor coupled to an Arduino-based regulatory loop. Micromanager v2.0.
(https://micro-manager.org/) was used to drive all hardware, including the camera, the light
sources, and the stage and objective motors. We developed a custom autofocusing routine
to minimize the autofocus time (https://github.com/TAspert/DetecDiv_Hardware). The interval
between two frames for all the experiments was 5 min. We could image approximately 80
fields of view (0.65mmx0.65mm) in brightfield and fluorescence (using a dual-band
GFP-mCherry filter) with this interval.

Image processing

We developed Matlab software, DetecDiv, which provides different classification models :
image classification, image sequence classification, time series classification, and pixel
classification (semantic segmentation), see Fig. S9. DetecDiv was developed using Matlab,
and additional toolboxes (TB), such as the Computer Vision TB, the Deep-learning TB, and
the Image Processing TB. A graphical user interface was designed to facilitate the
generation of the training sets. The DetecDiv software is available for download on
github:https://github.com/gcharvin/DetecDiv

Image classification for division tracking and lifespan reconstruction:

DetecDiv was used to classify images into six classes after supervised training using a
GoogleNet (Szegedy et al. 2015) network combined with an LSTM network (Hochreiter and
Schmidhuber 1997). See supplementary text for details.

Image segmentation using pixel classification and fluorescence quantification.

DetecDiv was used to segment images using a pixel classification model called Deeplab v3+
(Chen et al. 2018), after supervised training based on 1000-3000 manually annotated
images. See supplementary text for details.

Statistics All experiments have been replicated at least twice. Data are presented in Results
and Figures as the mean ± SEM (curves) or median. Group means were compared using
the Two-sample t-test. A P value of < 0.05 was considered significant.
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Computing

Image processing was performed on a computing server with 8 Intel Xeon E5-2620
processors and 8 co-processing GPU units (Nvidia Tesla K80), each of them with 12Go
RAM. Under these conditions, the image classification of a single trap (roughly 60x60pixels)
with 1000 frames took between 3 and 5s for the CNN/LSTM classifier. For image
segmentation, it took about 30s to classify 1000 images.

Data Availability
The custom MATLAB software DetecDiv, used to analyze imaging data with deep-learning
algorithms, is available on https://github.com/gcharvin/DetecDiv . Information regarding the
microfluidic device and the custom imaging system are available on
https://github.com/TAspert/DetecDiv_Hardware
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Figures legends

Figure 1 - DetectDiv division tracking and RLS reconstruction pipeline

A) Left: Sketch of the microfluidic device, featuring 16 independent channels with 2000 individual
cell traps in each; Top right: zoom on the cellular traps, scale bar, 20µm; Bottom right: brightfield
image of a budding yeast cell in a trap, scale bar, 5µm.

B) Principles of the DetecDiv division tracking and lifespan reconstruction pipeline; Brightfield
images are processed by a convolutional neural network (CNN) to extract representative image
features. The sequence of image features is then processed by a long short-term memory
network (LSTM) that assigns one of the 6 predefined classes (‘unbud’, ‘small’, ‘large’, ‘dead’,
‘clog’, ‘empty’), taking into account the the time dependencies. Temporal oscillations between
“large” and “small” or “large” and “unbudded” indicate the completion of the division cycle. The
appearance of the “dead” class marks the end of the lifespan.

C) Comparison of the different methods used for 6 sample cells. The gray bars represent the
ground truth data made from manually annotated image sequences. Colored lines indicate the
corresponding predictions made by CNN/LSTM (orange), the CNN + post-processing (magenta),
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and the CNN (blue) networks (see Methods and supplementary text for details). The red
segments indicate the position of division events.

D) Left: histogram of division times representing ground truth data and predictions using different
processing pipelines). The p-value indicates the results of a ranksum test comparing the
predictions to the ground truth for the different pipeline variants. The total number of division
events annotated in the ground truth or detected by the networks are indicated in the legend.
Right: Scatter plot in log scale representing the correlation between ground-truth-calculated
division times and those predicted by the CNN/LSTM network. R2 represents the coefficient of
correlation between the two datasets. Accuracy and recall are defined in the supplementary text.

E) Left: cumulative distribution showing the survival of cells as a function of the number of
divisions (N=50 cells). The numbers in the legend indicate the median replicative lifespans. The
p-value indicates the results from a statistical ranksum test. Right: Scatter plot showing the
correlation of the replicative lifespans of individual cells obtained from the ground truth with that
predicted by the CNN/LSTM architecture (N=50). Inset: same as the main plot, but for the CNN
and CNN with post-processing pipelines. R2 indicates the coefficient of correlation between the
two datasets.

F) Replicative lifespans obtained using the CNN/LSTM network for longevity mutants (solid
colored lines, genotype indicated). The shading represents the 95% confidence interval
calculated using the Greenwood method (Pokhrel, Dyba, and Hakulinen 2008). The median RLS
and the number of cells analyzed are indicated in the legend. The dashed lines with shading
represent the hazard rate and its standard deviation estimated with a bootstrap test (N=100).
Results from logrank tests (comparing WT and mutants distributions) are indicated on the left of
the legend.

Figure 2- Deep learning-based measurement of the entry into senescence dynamics
and semantic segmentation of cell and nuclear contours

A) Left: Sketch depicting the detection of the time of slow division (SD) state. The temporal
sequence of classes probabilities (ie, unbud, small, large, dead) is fed into an LSTM network
that predicts the onset of cell-cycle slowdown by assigning one of the two predefined classes
pre-SD or post-SD to each frame. Middle: correlogram showing the correlation between the
onset of cell-cycle slowdown predicted by the LSTM network and the ground truth data,
obtained as previously described (Fehrmann et al. 2013). The color code indicates the local
density of the points using arbitrary units as indicated by the colorbar. Right: sample
trajectories indicating the successive divisions of individual cells (red lines) along with the
division times (color-coded as indicated).

B) Left: Principles of semantic cell contours segmentation based on brightfield images ; Top and
middle row) Individual brightfield images were processed by the DeeplabV3+ network that
was trained to perform pixel classification using three predefined classes representing the
background (black), the mother cell of interest (orange), or any other cell in the image (blue).
Bottom row: overlay of brightfield images with segmented cellular contours . Middle:
correlogram showing the correlation between individual cell area predicted by the
segmentation pipeline and the ground truth data, obtained by manual annotation of the
images. The color code indicates the local density of the points using arbitrary units. Right:
same as in A), but representing the cell surface using a color-code.
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C) Left: Principles of semantic cell nuclei segmentation based on fluorescent images of cells
expressing a histone-Neongreen fusion. The semantic segmentation network was trained to
classify pixels between two predefined classes (‘background’ in black, ‘nucleus’ in green).
Middle/Right: same as in B, but with nuclear surface.
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