Luciano Da Fontoura Costa 
email: luciano@ifsc.usp.br
  
Multiset-Based Image Segmentation

Given an image, the identification of its constituent regions and components represents of the most challenging tasks in image analysis and pattern recognition, commonly known as image segmentation. In the present work, we show how recently developed concepts and methods based on the real-valued Jaccard and coincidence methods can be applied in order to achieve effective image segmentation. These concepts and methods are largely related to the generalization of multisets to real, possibly negative multiplicities. The two aforementioned coincidence indices are applied to quantify, in a strict and controllable manner, the similarity between every pair of pixes, yielding a respective complex network representation with enhanced modular structure. A parameter controlling the relative influence of pairs of pixels with the same or opposite signs on the overall result allows the selection of a suitable segmentation, which is then performed by using standard community finding algorithms. 'A picture is worth what we can understand from it.' LdaFC

Introduction

Image segmentation, namely the identification of the several regions and components of an image (e.g. [START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF]), corresponds to one of the most challenging operations in the areas of image analysis, computer vision, pattern recognition and artificial intelligence.

By extending multisets (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) to real, possibly negative values [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Generalized multiset operations[END_REF], it has been possible to derive a respectiveliy generalized Jaccard similarity index [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF]Jaccard index[END_REF]. Though extensively used for binary and categorical data, this index had not been commonly applied considering negative multiplicities. Given that the Jaccard index is not able to take into account the relative interiority between the compared sets, a respective extension has been proposed [START_REF] Da | Further generalizations of the Jaccard index[END_REF] which also takes into account the interiority (or overlap [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) index. More specifically, this gives rise to the coincidence index [START_REF] Da | Further generalizations of the Jaccard index[END_REF], corresponding to the product of the Jaccard and interiority indices.

The real-valued Jaccard and coincidence indices have been shown to be closely related to the generalized Kronecker delta function [START_REF] Da | On similarity[END_REF][START_REF] Da | Generalized multiset operations[END_REF][START_REF] Da | The classic cross-correlation and the real-valued jaccard and coincidence indices[END_REF], to the point of converging steadily to it when the numerator in the definition of the real-valued Jaccard index is taken to an increasing odd non-negative integer power [START_REF] Da | The classic cross-correlation and the real-valued jaccard and coincidence indices[END_REF].

The specific way in which the real-valued Jaccard and coincidence indices work, namely penalizing in a more effective manner values that are relatively more distinct one another than typically performed by product-based indices including the cosine similarity and Pearson correlation, the two aforementioned multiset indices pave the way to impressive performance in a wide range of tasks involving the quantification of similarities, including but not being limited to: template matching [START_REF] Da | Comparing cross correlationbased similarities[END_REF], neuronal pattern recognition [START_REF] Da | Multiset neurons[END_REF], hierarchical clustering [START_REF] Da | Real-valued jaccard and coincidence based hierarchical clustering[END_REF], and transforming datasets into networks with detailed interconnectivity and enhanced modularity [START_REF] Da | Coincidence complex networks[END_REF].

In the present work, we extend the application of the two considered multiset indices, namely the real-valued Jaccard and coincidence methods, to the particularly challenging task of image segmentation [START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF], with impressive results.

We start by presenting the real-valued Jaccard and coincidence methods, and then illustrate their respective potential for image segmentation.

The Real-Valued Jaccard and Coincidence Indices

Let the following binary operations (in the sense of taking two operands) related to multisets extended to real, possibly negative multiplicities [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Generalized multiset operations[END_REF][START_REF] Da | The classic cross-correlation and the real-valued jaccard and coincidence indices[END_REF]:

f g = ˆS s f g min {s f f, s g g} dz (1) 
f g = ˆS s f g max {s f f, s g g} dz (2) 
f -g = ˆS |s f -s g |/2 min {s f f, s g g} dz (3) 
f + g = ˆS |s f + s g |/2 min {s f f, s g g} dz (4) f ˜ g = ˆS min {s f f, s g g} dz (5) f ˜ g = ˆS max {s f f, s g g} dz (6) 
where f = f (z) and g = g(z) are real valued functions or fields, and s f = sign(f (z)), s y = sign(g(z)), and s f g = s f s g . The extension to discrete functions and fields is immediate. Observe that the above formulation also takes into account the generalization of multisets to real-valued functions and fields [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Generalized multiset operations[END_REF][START_REF] Da | The classic cross-correlation and the real-valued jaccard and coincidence indices[END_REF]. The operations 9 and 1 had also been considered previously, respectively in [START_REF] Mirkin | Mathematical Classification and Clustering[END_REF] and [START_REF] Akbas | L1 norm based multiplication-free cosine similiarity measures for big data analysis[END_REF], in the context of being possibly analogous to the inner product in the L1 space.

The above binary operations arise naturally when multisets are extended to possibly negative multiplicities as a consequence of the several ways in which combinations of the sign pairwise values can be taken while calculating the respective operations, through functionals over the free variable z. In particular, Equation 1 has been verified to correspond to the intersection between two signed multisets, required so that Φ A = Φ, with Φ being the empty multiset and A being a generic multiset.

Observe that the terms s xy , |s f + s g |, and |s f -s g |, here called conjoint sign functions, act as selectors of the portions of the functions to be integrated according to respective sign rules. For instance, in the case of Equation 8, only the intervals of z in which the signs of the two functions are opposite are considered in the respective integration required by the respective functional.

Given the above multiset binary operations, we can now define the real-valued Jaccard index [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Generalized multiset operations[END_REF] between two functions (or multisets) f and g as:

J R (f, g) = ´S s f g min {sf f , s g g} dz ´S max {sf f , s g g} dx = f g f ˜ g ( 7 
)
where S is the combined support underlying both f and g.

In order to have a parameter controlling the respective contributions of the pairs of values with the same or op-posite signs, we make:

s -= s -(f, g) = ˆS |s f -s f | min {s f f, s g g} dz (8) 
s + = s + (f, g) = ˆS |s f + s f | min {s f f, s g g} dz (9) (10) 
and then take:

s ± (f, g, α) = [α] s --[1 -α] s + (11) 
which yields the following α-controlled real-valued Jaccard index:

J R (f, g) = ´S s ± (f, g, α) dz ´S max {sf f , s g g} dx (12) 
Because the Jaccard index is not able to take into account the relative interiority between the two functions [START_REF] Da | Further generalizations of the Jaccard index[END_REF], it has been complemented by considering the interiority index (also overlap [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]). When adapted to real, possibly negative values, the interiority index becomes:

I R (f, g) = ´S min {sf f , s g g} dz min {S f , S g } = f g min {S f , S g } (13) 
where:

S f = ˆS s f f (z)dz (14) 
S g = ˆS s g g(z)dz (15) 
The coincidence index can now be expressed [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Generalized multiset operations[END_REF] as corresponding to the product between the realvalued Jaccard and interiority indices:

C R (f, g) = [f g] [f ˜ g] [f ˜ g] min {S f , S g } (16) 
or, in expanded form:

C R (f, g) = = ´S s ± (f, g, α)dz ´S min {s f f, s g g} dz ´S max {s f f, s g g} dz [min {S f , S g }] (17) 
3 Multiset Image Segmentation Though we will henceforth limit our attention to graylevel images, all the proposed concepts and methods can be immediately extended to colored, multi-spectral or even multi-dimensional images.

A gray-level image (e.g. [START_REF] Schalkoff | Digital Image Processing and Computer Vision[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF]) can be understood as a matrix A [i, j], with i = 1, 2, . . . , N i and j = 1, 2, . . . , N j , therefore having dimension N x ×N y . Each of the elements of the image matrix are called pixels, their value being related to the respective level of luminosity.

Figure 1 illustrates a small gray-level image of a flower. Before the coincidence-based methodology proposed in [START_REF] Da | Coincidence complex networks[END_REF] can be applied as a means to transform the image into a network with enhanced modularity, it is first necessary to associate suitable features to each of its constituent pixels. Among the several (actually infinite) possibilities of doing so, here we adopt the positions (or coordinates) i and j of the pixel, its intensity value A [i, j] as well as the average intensity in a square region of radius 1 centered at the pixel position (i.e. a 3 × 3 window).

Therefore, each of the image pixels becomes associated to the following feature vector:

f A[i,j] = [i, j, A [i, j] , W [i, j]] (18) 
where W [i, j] corresponds to the average pixel value in the 3 × 3 windos. Other features can be eventually assigned, including those related to color, texture, etc. Another interesting possibility is to take some transformation of the coordinate values i and j, e.g. by weighting them according to density, homogeneity, etc.

In order to get a more commensurate, non-dimensional representation of the above features, we perform their respective statistical standardization, which consists of making:

fi = f i -µ fi σ fi (19) 
where µ and σ stand for the respective mean and standard deviation [START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF][START_REF] Johnson | Applied multivariate analysis[END_REF]. After standardization, the features will have null means and unit standard deviation, and most of the resulting values will be comprised in the interval [-2, 2].

Figure 2 depicts the image segmentation obtained by using the fast greedy method [START_REF] Clauset | Finding community structure in very large networks[END_REF] considering α = 0.5 and T = 0.7. 

Concluding Remarks

Image segmentation has represented a substantial challenge in the areas of image processing, image analysis, computer vision, pattern recognition and artificial intelligence.

In the present work, we proposed a methods for image segmentation that is based on the representation of datasets into networks with detailed and enhanced modularity obtained by using the coincidence index [START_REF] Da | Coincidence complex networks[END_REF]. Features are extracted and associated to each of the image pixels, including their position and local luminosity. These datasets are then transformed into respective networks. A suitable value of the parameters α is then selected so as to make the communities well-defined, which is then followed by the application of some community finding methodology.

The impressive potential of the reported methodology for image segmentation is illustrated respectively to a simple gray-level image.

Several further developments are possible, including but not being limited to the following possibilities: (i) to consider larger and diverse images; (ii) to verify the effect of other possible features for characterization of each pixel including those related to color and texture; (iii) develop automated methods for selecting the a proper value of α, e.g. by considering entropy maximization; and (iv) to apply the methodology to multi-spectral and multidimensional images. Related research is being developed and results are expected to be communicated opportunely.
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 1 Figure 1: A small gray-scale image considered for illustrating the multiset-based segmentation method.

Figure 2 :

 2 Figure 2: The segmentation of the image in Fig. 1 by using the proposed methodology considering α = 0.5 and T = 0.7.

Figure 3 :

 3 Figure 3: The modular network obtained for the considered image. Each of the communities define a respective segmented image region, shown in different arbitrary colors in Fig. 2.

Figure 4

 4 Figure 4 depicts the histogram of coincidence values obtained for the considered example, which define a smooth distribution with a peak near 0.

Figure 4 :

 4 Figure 4: The segmentation of the image in Fig. 1 by using the proposed methodology considering α = 0.5 and T = 0.7.

Acknowledgments.

Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and FAPESP (grant 15/22308-2).