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Abstract

The purpose of this paper is to develop a high-order shock-capturing scheme
capable of predicting flows where shock waves with high-temperature jumps
interact with multi-component real gas mixtures, assuming a local thermody-
namic equilibrium. We first propose a generalization of the Roe solver for dis-
tinct species with non-ideal thermodynamic properties that relies on the original
method proposed by Vinokur & Montagné [1]. This method uses an approxi-
mation of compressibility factors to estimate a coherent value of the speed of
sound at the Roe averaged state.

This Roe averaged state is introduced in the One-Step Monotonicity-Preserving
(OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an
extension to the high-order with Lax-Wendroff procedure adequate for dealing
with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evo-
lution of the Roe average state over a large stencil, we propose to reformulate
the discrete total energy flux of the initial solver. This new formulation uses
a combination of Riemann invariants related to the species mass fractions and
avoids the influence of the independent values of the compressibility factors in
the total energy flux computation. An additional M-P constraint on this new
combination allows dealing with discontinuities. Based on the averaged speed of
sound estimated by our proposed extension of the Vinokur & Montagné method,
we demonstrate that this new formulation is equivalent to selecting a new com-
bination of compressibility factors that completely fulfil the jump relationships
of the Riemann problem.

To properly capture discontinuities while optimizing the number of numerical
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cells, the new high-order OSMP scheme is combined with an Adaptive Mul-
tiresolution [3] procedure to automatically refine grid in regions where steep
gradients occur and coarsen grid elsewhere. The order of the numerical method
is evaluated on the convection of density and mass fraction waves. Its capabil-
ity of capturing discontinuities is validated on a 1-D shock tube problem with
a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that
smooth solutions, as well as discontinuities, are recovered with high accuracy.
The 2-D interaction between a shock wave in Air with a cylindrical bubble ini-
tially filled with dense refrigerant R22 gas is also considered. Present results
compare very well with both a recent fully resolved numerical solution of ideal
gases and experimental results obtained with real gases. Compared to ideal gas
solutions corresponding to calorically perfect gas, drastic changes are recorded
on the predicted temperature and the bubble flow patterns that fully justify the
use of relevant thermodynamics and the proposed numerical method to account
for real gas properties.

Keywords: High-order numerical scheme, Monotonicity-Preserving constraints,
Multi-component Real Gas Flow, Roe approximate Riemann solver

1. Introduction

Studying compressible multi-component real gas flows is of engineering interest
since they arise in numerous applications. They occur in the aerodynamic do-
main with supersonic and hypersonic flows [4], and in many combustion applica-
tions, [5] especially in the safety area dealing with reacting flows with potential
explosions. Simulation of such compressible multi-component flows is a chal-
lenging task since they generally involve shock waves interacting with contact
discontinuities or component interfaces that produce acoustic waves as well as
vortical structures through baroclinic effects. Unsteady flow phenomena then
occur at various time and length scales.

For predicting fast dynamic small-scale structures with accuracy, it is mandatory
to use high-order schemes on refined grids in regions where vortical phenomena
and discontinuities occur. However, high-order schemes are known to produce
spurious oscillations in the vicinity of stiff gradients (known as the Gibb’s phe-
nomenon). Shock-capturing procedures must be used to avoid such spurious
oscillations.

Riemann approximate solvers are known to solve hyperbolic problems where
discontinuities occur. The Roe solver [6] is often privileged since it is the less
diffusive among all Riemann solvers because it is based on the complete char-
acteristic waves of the exact Riemann problem. Originally, the Roe solver was
built for calorically perfect gas [6], based on an assumption of relatively small
temperature variations. However, in hypersonic flow or detonation cases, signifi-
cant temperature variations in mixtures with several species must be considered,
and an ideal gas assumption cannot be regarded. In fact, the vibrational degrees
of freedom of polyatomic molecules must be taken into account to get accurate
results. This is generally done by considering the dependency of the specific
heat capacities of the species with respect to the temperature. Therefore, ex-
tending the Roe solver to multi-component mixtures with specific and distinct
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physical and thermodynamic properties for each species is mandatory.

Introducing the assumption of local equilibrium, which considers that thermo-
dynamics of the gas mixture depends on two independent variables, for instance,
the density and the internal energy, several generalizations of the Roe approx-
imate Riemann solver have been proposed in cases with mono-component real
gases [7, 8, 9, 10, 11, 12]. Difficulties usually encountered in developing such
generalizations come from the non-uniqueness of the Roe averaged state at the
interface between right and left states of the Riemann problem when applied
to a non-ideal gas or a non-perfect equation of state. Indeed, the Roe averaged
state requires additional approximations for the compressibility factors, which
are pressure derivatives with respect to the independent variables (the density
and the internal energy, for instance). Several methods to approximate those
pressure derivatives have already been formulated in the literature. A solu-
tion proposed in [8] consists in considering arithmetic averages of the pressure
derivatives of fictitious intermediary states corresponding to the different pos-
sible paths between the left and right states. In [13], the solution is obtained
by neglecting some Riemann invariants. However, such methods generally give
poor results or even be out of the range of the equation of state. Since the end
of the 90s, a large part of the generalization of the Roe solver to real gases is
based on a projection of approximated pressure derivatives onto a subspace de-
fined by the jump relationships across the interface [9, 10, 11]. A Roe averaged
speed of sound is then deduced from the Roe average of pressure derivatives.
An evaluation of such methods has been performed by Mottura et al. [14],
who conclude that similar results with the different methods are obtained with,
however, a better numerical efficiency with the methods proposed by Vinokur
& Montagné [9] and Liou, Van Leer and Shuen [10]. More recently, contrary to
the usual strategy, Arabi et al. [12] proposed to first approximate the speed of
sound before computing interface averages of the corresponding compressibil-
ity factors. Later on, Arabi et al. [15] extended the proposed Roe scheme for
multi-component real gas flows by treating the mixture as a single equilibrium
gas to define the contact discontinuity and thus the density jump. Knowing
that the mass fractions are constant on both sides of the contact discontinuity,
the jump of the convective partial masses can be calculated using the classi-
cal resolution of a Riemann problem. The advantage of this formulation is to
guarantee the positivity of the mass fractions, but the mass flux computation
is at this point only first-order accurate. Extension to a higher-order numerical
scheme with quadratic reconstruction or MUSCL scheme [16] are evoked. How-
ever, the successive Roe average states can then become inconsistent with the
thermodynamic properties evolution along a large stencil, and the sum of the
mass fractions can differ from unity when using more than two species. Besides,
a solution to compute a real gas mixture with two distinct species was also
proposed in [17] with an extension to high-order approximations. Nevertheless,
this is only applicable to mixtures with at most two distinct species.

These previous studies are a strong motivation to develop a high-order accurate
numerical scheme based on a Roe scheme for multi-component real gas flows.
This paper aims to investigate the additional constraints needed to develop a
stable high-order Roe scheme capable of predicting flows where strong shock
waves with large temperature jumps interact with mixtures of several species.
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We here follow techniques introduced by Vinokur and Montagné [9] to evalu-
ate a Roe averaged value of compressibility factors in a non-thermally perfect
single gas. In this paper, we first propose extending these techniques to multi-
component real gas flows based on a similar prediction from an integral between
the left and the right states of the Riemann problem, followed by an orthogonal
projection onto a well-chosen subspace. It allows us to define an accurate Roe
averaged value of the speed of sound. Continuing the work done by Daru &
Tenaud [2, 18] in the development of high-order accurate schemes based on a
Lax-Wendroff approach for unsteady shocked thermally perfect gas flow predic-
tions, we secondly introduce the proposed averaged state of the compressibility
factors into the One-Step Monotonicity-Preserving (OSMP) scheme to obtain
an extension towards real gas flows. However, numerical artifacts appear in
the vicinity of contact discontinuity (interface between species), and potential
low order of convergence is observed in smooth solutions with large variations
of composition and temperature. Those issues are found to come from the
proposed compressibility factor averaged states of the Riemann problem that
do not seem consistent over the large stencil when using a high-order scheme.
By analyzing Riemann invariants, we propose a reformulation of the discrete
total energy flux using a linear combination of Riemann invariants associated
with the same characteristic wave to recover high-order accuracy. An additional
Monotonicity-Preserving constraint is applied to this linear combination to deal
with discontinuities. Knowing the averaged speed of sound evaluated by our
proposed extension of the Vinokur and Montagné method [9], this new formula-
tion gives a supplementary relation between compressibility factors. It enforces
the jump relationships to be satisfied across the interface between the left and
right states of the Riemann problem. The proposed approach is then validated
on well-documented 1-D and 2-D test cases.

To get a sharp resolution of discontinuities and stiff gradient while saving grid
points in smooth regions, this high-order numerical scheme is combined with an
Adaptive Multiresolution procedure to automatically concentrate grid points in
regions where steep gradients occur and coarsen mesh elsewhere.

The paper is organized as follows. Governing equations are presented in section
§ 2. The formalism used for applying the Roe solver to real gases is described
in § 3, and an extension of the Roe scheme to multi-component real gases is
proposed. In section § 4, we present the high-order numerical scheme with flux
limiter based on Monotonicity-Preserving constraints. This OSMP scheme is
applied to a particular combination of the Riemann invariants involved in the
discrete total energy flux. Section § 5 is devoted to the validation of the proposed
approach. A convergence study is performed on the convection of mass fraction
and density waves to illustrate the efficiency of the new formulation. 1-D shock
tube problems with and without real gas effect are then applied. Comparisons
with the exact solution of the Riemann problem validate the present approach to
deal with discontinuities. Then, the 2-D interaction of a shock wave in Air with
a cylindrical bubble initially filled with dense refrigerant R22 gas is considered.
Present results are compared to a recent numerical solution of ideal gases as
well as results with real gas experiments. We finally performed simulations of a
real gas configuration with larger temperature variations that provide original
results we expect could constitute reference results. We conclude and draw up
some perspectives to this work (§ 6).
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2. Governing equations

We consider a multi-component fluid with ns different species. Under the con-
servative form, the Euler equation is written as:

∂U
∂t

+∇ · F(U). (1)

In the following, we will denote N the total number of equations solved; i.e.
N = ns + 2 in 1-D, and N = ns + 4 in 3-D.

U is the vector of the N conservative variables, and F(U) is the Euler flux
vector:

U =


ρ1
...
ρns

ρv
ρE

 , F(U) =


ρ1v
...

ρns
v

ρv⊗ v + pI
ρvH

 , (2)

ρ is the density, ρi = ρYi where Yi is the mass fraction of the ith species, v is
the velocity vector, p is the static pressure of the mixture, E the total energy
per unit of mass, and H = E + p/ρ is the total specific enthalpy.

We denote the specific internal energy e = E − Ec, where Ec is the kinetic
energy, i.e. Ec = 1

2v · v. In this study, we assume the local equilibrium state
and the pressure is related to the partial density and the internal energy density,
noted ε = ρe. A general form of the equation of state is:

p = p(ρ1, ρ2, ..., ρns , ε). (3)

Though a general form is employed, we assume the convexity of the equation of
state to guarantee the existence and unicity of the weak solution of the Euler
hyperbolic system of conservation laws.

The differential of p is written by using the compressibility coefficients κ and
χi, i = 1, ..., ns:

dp =
∑
i

χidρi + κdε, (4)

that are expressed as:

χi = ∂p

∂ρi

∣∣∣∣
ρk,k 6=i,ε

and κ = ∂p

∂ε

∣∣∣∣
ρi,i=1,...,ns

. (5)

If h = e+ p/ρ is the specific enthalpy, the sound speed cs can then be obtained
by:

c2
s =

∑
i

χiYi + κh, (6)

3. Extension of the Roe scheme for multi-component real gases
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3.1. Riemann approximated solver of Roe
The objective is to extend the Roe solver for multi-component real gases.

First, we would like to introduce the classic Roe solver to explain how the multi-
component nature of the gas comes into play. To ease reading, the Roe solver
is presented on a 1D Euler equation. The quasi-linear form of (1) is then as
follows:

∂U
∂t

+ A(U) · ∂U
∂x

= 0, (7)

A stands for the Jacobian matrix of the Euler flux.

Following an approximate Riemann problem, the principle of the Roe solver
is to find an intermediate state Ũ of the vector of the conservative variables
between the left (UL) and the right (UR) states. Then, the Jacobian matrix at
the intermediate state can be expressed as:

A(Ũ) = Ã(UL,UR). (8)

Based on the expression of the compressibility factors (5), the Jacobian matrix
Ã of the Euler flux at the Roe averaged state is:

A(Ũ) =



ũ(1−Ỹ1) −ũỸ1 ··· ··· −ũỸ1 Ỹ1 0
−ũỸ2 ũ(1−Ỹ2) −ũỸ2 ··· −ũỸ2 Ỹ2 0
...

. . . . . . . . .
...

...
...

...
. . . . . . −ũỸns−1 Ỹns−1 0

−ũỸns ··· ··· −ũỸns ũ(1−Ỹns ) Ỹns 0
χ̃1+κ̃Ẽc−ũ2 χ̃2+κ̃Ẽc−ũ2 ··· ··· χ̃ns +κ̃Ẽc−ũ2 (2−κ̃)ũ κ̃

ũ(χ̃1+κ̃Ẽc−H̃) ũ(χ̃2+κ̃Ẽc−H̃) ··· ··· ũ(χ̃ns +κ̃Ẽc−H̃) H̃−κ̃ũ2 ũ(1+κ̃)


.

(9)

According to [6], in order to apply the Roe solver, several properties must be
fulfilled by the Jacobian matrix Ã:

(i) Ã(UL,UR) is a mapping from the vector space U to the vector space
F(U);

(ii) The system must be hyperbolic, i.e. the eigenvalues λ̃k (k ∈ [1, N ]) are
real and the eigenvectors K̃(k) are linearly independent;

(iii) The approximation is consistent with the Jacobian matrix, i.e. as UL, UR

smoothly tends to U, Ã(UL,UR) smoothly tends to the Jacobian A(U);

(iv) The conservation must be satisfied across discontinuities,
i.e. Ã(UL,UR) · (UL −UR) = F(UL)− F(UR).

With such a Jacobian matrix, the numerical flux F̃(UL,UR) at the interface
between two consecutive cells then becomes:

F̃(UL,UR) = 1
2(F(UL) + F(UR))− 1

2

N∑
k=1

α̃k · |λ̃k|K̃(k), (10)
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with λ̃k = λ̃k(UL,UR) and K̃(k) = K̃(k)(UL,UR) are respectively the kth
eigenvalues and the corresponding kth eigenvectors of the matrix. Eigenvalues
λ̃k are arranged in a diagonal matrix Λ:

Λ =



ũ,
ũ

. . .
ũ

ũ+ c̃s
ũ− c̃s


. (11)

The corresponding eigenvectors are given by:

K(1) =
[
1, 0, ..., ..., 0, ũ, Ẽc − χ̃1/κ̃

]T
;

K(i) =
[
0, ..., 1, ..., 0, ũ, Ẽc − χ̃i/κ̃

]T
;

K(ns) =
[
0, ..., ..., 0, 1, ũ, Ẽc − χ̃ns

/κ̃
]T

;

K(N−1) =
[
Ỹ1, ..., Ỹi, ..., Ỹns

, ũ+ c̃s, H̃ + ũc̃s

]T
;

K(N) =
[
Ỹ1, ..., Ỹi, ..., Ỹns , ũ− c̃s, H̃ − ũc̃s

]T
.

(12)

The α̃k is the Riemann invariant corresponding to the kth component of (UR−
UL) in the eigenvector basis.

UR−UL =
N∑
k=1

α̃k ·K̃(k) or equivalently

 α̃1
...
αN

 = K̃−1 ·(UR−UL),

(13)
with K̃−1 the inverse matrix of K̃

3.2. Roe averaged operator
At this step, no assumption is made on the equation of state except on the
general form described by (3). However, if the equation of state is such that
pressure derivatives (5) exist, then the first two properties of the linearized Ja-
cobian matrix Ã(UL,UR) at the Roe averaged state are satisfied. For the last
two properties, Roe [6] suggests using a parameter vector Q such that compo-
nents of U and of the Euler flux vector F(U) can be expressed as quadratic
compositions of the Q components. In the case of multi-component flow, this
corresponds to:

Q = (q1, q2, ..., qN )T = √ρ(Y1, ..., Yns
, u,H)T . (14)

The averaged vector Q̃ is obtained with a simple arithmetic averaging Q̃ =
1
2 (QR + QL). The corresponding variable of mass fraction Ỹ1, ..., Ỹns

, velocity
ũ and enthalpy H̃ at the Roe averaged state are then computed with the Roe
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averaged operator, where r stands for each component of (Y1, ..., Yns
, u,H)T :

r̃ = θ rL + (1− θ) rR, (15)

with
θ =

√
ρL√

ρL +√ρR
, (16)

and the value of the density at the interface becomes:

ρ̃ = √ρLρR. (17)

Let us consider φ and ψ two arbitrary variables. The Roe averaged operator
respects the following identities for the variation across interface ∆(·) = (·)R −
(·)L :

∆(ρφ) = ρ̃ ∆φ+ φ̃ ∆ρ; (18a)

∆(ρψφ) = ρ̃ φ̃ ∆ψ + ρ̃ ψ̃ ∆φ+ φ̃ ψ̃ ∆ρ. (18b)

3.3. Expression of the compressibility factors at the Roe averaged state
In the multi-component case with non-ideal gases, to completely define the Jaco-
bian matrix (9), we need to determine intermediate values of the compressibility
factors at the Roe averaged state. Combining the property (iv) of the Roe solver
and identities (18), a new relationship between the variation of conservative vari-
ables and the compressibility factors is established through the use of the Roe
averaged operator:

∆p =
ns∑
i=1

χ̃i ∆ρi + κ̃ ∆ε. (19)

We here extend to the case of multi-component real gas flow the procedure
introduced by Montagné et al. [1] and modified by Liou et al. [10]. It consists
in obtaining at first predicted values of the compressibility factors by using the
left and right thermodynamic states, then correct secondly these predictions by
projection onto the (ns − 1) hyperplane defined by the relationship (19).

Following Vinokur and Montagné, the prediction (χ̂i, κ̂) of the compressibility
factors is fulfilled by integrating themselves along a straight-line path between
the two left and right thermodynamic states:

χ̂i =
∫ 1

0
χi[ε(ζ), ρ1(ζ), ..., ρns(ζ)]dζ, (20a)

κ̂ =
∫ 1

0
κ[ε(ζ), ρ1(ζ), ..., ρns

(ζ)]dζ. (20b)

where the parameter ζ is normalized such that ζL = 0 and ζR = 1 and the
straight line path is defined with:

ρi(ζ) = ρi,L + ζ ∆ρi, i = 1, ..., ns; (21a)
ε(ζ) = εL + ζ ∆ε. (21b)

8



χ1/(ŝκ)

χ2/(ŝκ)

1/κ

P̂

P̃
H

Figure 1: Illustration with 2 species of the projection P̃ of the first approximation P̂ on the
hyperplane H defined by (19)

Depending on the gap magnitude between the left and right states, several
approximate quadrature formulae can be used for evaluating integrals. We here
privileged the Simpson rule, which is mainly adapted for large variation between
two states. For the approximation of κ, this gives:

κ̂ = 1
6 (κL + 4κ(εM , ρ1,M , ..., ρns,M ) + κR) , (22)

with εM = 1
2 (εL + εR) and ρi,M = 1

2 (ρi,L + ρi,R)

Finally, in order to satisfy the properties (iv) of the Roe solver, an orthogonal
projection is carried out from the predicted values κ̂ and χ̂i, i = 1, ..., ns on
the ns − 1 hyperplan defined by the equation (19). In order to be independent
of the arbitrary constant present in the definition of ε and to be close to a
dimensionless orthonormal framework, we perform the orthogonal projection in
the following system of coordinates:(

1
κ
,
{χi
ŝκ
, i = 1, ..., ns

})
. (23)

ŝ is a normalization factor with the dimension of χi chosen as ŝ = ĉ2 =
ns∑
i=1

χ̂iYi + κ̂h, where the symbol (̂.) corresponds in this last expression to the

Simpson rule (22). The configuration with two species where the hyperplane
(19) corresponding to a 2D plane is illustrated Figure 1.

The orthogonal projection in the space of coordinates (23) from the predicted
values κ̂ and χ̂i, i = 1, ..., ns on the hyperplane defined by (19) gives the com-
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pressibility factors:

κ̃ = Dκ̂

D −∆pδp χ̃i = Dχ̂i + ŝ2∆ρiδp
D −∆pδp , (24)

with

D = ŝ2
N∑
i=1

(∆ρ2
i ) + ∆p2, (25)

and the error on pressure δp that, finally by construction, satisfies the precision
up to machine accuracy after the projection step:

δp = ∆p− κ̂∆ε−
N∑
i=1

χ̂i∆ρi. (26)

The celerity of sound at the Roe averaged state then becomes:

c̃s =

√√√√ ns∑
i=1

χ̃iỸi + κ̃h̃. (27)

This procedure allows us to obtain a combination of compressibility factors and
an approximation of the sound speed that is coherent with the Roe properties
at the intermediate state. The present procedure generalizes the Roe scheme
for multi-component gas flow with an arbitrary convex equation of state.

It can be noted that the existence of c̃s from (27) is not guaranteed since nothing
constrains the variation of the compressibility factors to avoid the negative value
of the sum inside the square root. However, this numerical scheme is robust
enough in the cases studied here with non-calorically perfect gas. Indeed, the
Simpson rule gives a quite precise estimation of the compressibility factors, so
their variations are small during the projection. Moreover, the normalization
factor ŝ brings the basis used for the projection (23) close to an orthonormal
basis which prevents significant variation of one factor compared to the other
during the orthogonal projection. The final value for the sound speed is then
generally close to the initial left and right values. Some additional constraints
may be necessary in very low density cases, but this aspect is not in the scope
of this paper and therefore has not been investigated here.

4. Numerical approach

The resolution of the Euler equation (1) is based on a finite volume approach on
a Cartesian grid. As pointed out previously, to recover a high-quality solution of
the compressible multi-component flow, numerical approximations must satisfy
three properties:

(i) a high-order accuracy in smooth regions of the solution;

(ii) solutions free from spurious oscillations around discontinuities;

(iii) a sharp resolution of discontinuities, which means there are only few cells
within discontinuities (compare to low order simulation).
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To fulfill these three properties with multicomponent real gases, we continue
the work done by Daru & Tenaud [2, 18] in the development of high-order accu-
rate schemes based on a Lax-Wendroff approach for unsteady shocked ideal gas
flow predictions. We extend the proposed One-Step Monotonicity-Preserving
(OSMP) scheme to tackle real gas flow prediction with modification of the to-
tal energy flux formulation. We also combined this scheme with an Adaptive
Multiresolution procedure to automatically tighten grid points in regions where
steep gradients occur.

Continuing the work done by Daru & Tenaud [2, 18] in the development of high-
order accurate schemes based on a Lax-Wendroff approach for unsteady shocked
ideal gas flow predictions, we extend the One-Step Monotonicity-Preserving
(OSMP) scheme able to tackle real gas flow predictions.

4.1. One-step Monotonicity Preserving scheme
In the following, we denote by Un

j the discrete quantity U(x, t) estimated at a
grid point xj = (j δx)T and at a time t(n) = n δt (δt, δx being, respectively, the
time step and the grid spacing and j the index of the position in the particular
dimension).

The Euler equations are discretized using a high-order one-step Monotonicity
Preserving scheme, called the OSMPp scheme [2], based on a Lax-Wendroff
approach, which ensures a pth-order accuracy in both time and space in regular
regions.

We first present the unlimited scheme on the one dimensional Euler equation:

∂U
∂t

+ ∂F(U)
∂x

= 0, (28)

which is discretized using the following conservative approximation:

Un+1
j = Un

j −
δt

δx
(F̃j+1/2 − F̃j−1/2). (29)

The numerical flux Fj+1/2 is approximated by a pth-order One-Step scheme
(OSp) developed in [2] :

F̃j+1/2 = F̃Roej+1/2 + 1
2

N∑
k=1

(
Φpk(1− |νk|)α̃k

∣∣∣λ̃k∣∣∣ .K̃(k)
)
j+1/2

, (30)

where F̃Roej+1/2 is the Roe flux at the cell interface given by (10) following the

Roe solver expressed in the previous section (§ 3.1). νk,j+1/2 = δt

δx
λ̃k,j+1/2 is

the local CFL number evaluated at cell interfaces.

Φkpj+1/2 are the pth-order accuracy functions that are split into even and odd
contributions corresponding to respectively, even derivatives, expressed using
centered approximations, and odd derivatives that are based on upwind ap-
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proximations. They can be found in [2], and are recalled here for completeness:

Φkpj+1/2 =
m∑
n=1

Ψk
2n
j+1/2 − js

m1∑
n=1

Ψk
2n+1
j+1/2−js/2, (31)

where m = bp/2c, m1 = b (p− 1)
2 c (b c is the integer division symbol), and

js = sign(λ̃k,j+1/2). The even and odd functions Ψk
2n
j+1/2 and Ψk

2n+1
j+1/2−js/2

are given by the recurrence formula (for n ≥ 1):

Ψk
2n
j+1/2 =

2n−2∑
l=0

(−1)lCl2n−2.(ck(2n)α̃k)j+1/2+n−1−l, (32)

Ψk
2n+1
j+1/2 =

2n−1∑
l=0

(−1)lCl2n−1.(ck(2n+1)α̃k)j+1/2+(n−1−l).js; (33)

where Clr = r!
(r − s)!s! .

The coefficients ck(q) depend on the local CFL number (νkj+1/2), and are given
by:

(ck(q+1))j+1/2 =
|νk|j+1/2 + (−1)qb (q+1)

2 c
q + 1 .(ck(q))j+1/2, q > 2, (34)

with
ck

(2)
j+1/2 = |λk|j+1/2 (1− |νk|j+1/2). (35)

Using the accuracy function Φp (31), the scheme is pth-order accurate in both
space and time by using the solution at only p+ 2 grid cells.

To overcome the drawback of spurious oscillations in the vicinity of steep gra-
dient, we employ Monotonicity-Preserving (MP) constraints that locally relax
the TVD constraints near extrema. These constraints have been first developed
by Suresh and Huynh [19] and further extended by Daru and Tenaud [2]. As,
for each k-wave, accuracy functions Φpk are based on the Riemann invariants α̃k,
the numerical flux at cell interfaces can be recast into:

F̃j+1/2 = 1
2 (Fj+1 + Fj)−

1
2

N∑
k=1

(
α̃M−P
k

∣∣∣λ̃k∣∣∣ .K̃(k)
)
j+1/2

, (36)

where α̃M−P
k are function of the Riemann invariants:

α̃M−P
k =

[(
1− Φpk

M−P (1− |νk|)
)
α̃k

]
j+1/2

, k ∈ [1, N ]. (37)

Daru and Tenaud [2] proposed to apply the M-P constraints for each k-wave on
the accuracy functions (Φpk) to recover a scheme that is pth-order in time and
space everywhere except near discontinuities where the scheme is Monotonicity-
Preserving.
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In the following, accuracy functions of the 7th-order that can be found in Daru
& Tenaud [2], have been used for computing test-cases.

The extension in the multidimensional case is delicate as far as a coupled time
and space approach is used since cross derivative terms that appear in the
second and higher-order terms are left uncontrolled if one applies a direction
by direction MP correction to a Lax-Wendroff unsplit scheme. We also need
to guarantee that the resulting scheme is non-oscillatory. The simplest way
to avoid solving cross derivatives and to recover good properties of the one-
dimensional scheme is to use a Strang directional splitting strategy [20, 21].
While the order of accuracy is lowered compared to the tensorial multistage
approach, the OSMP scheme with the Strang algorithm provides results with a
very small error level at low-cost [2, 18].

In two dimensions, the splitting of the system of equations can be constructed
to give an accurate symmetric solution every two time-steps:

Un+2
j = (Lδx(δt) · Lδy(δt)) · (Lδy(δt) · Lδx(δt)) ·Un

j . (38)

Here Lδx, and Lδy are discrete approximations of the Euler operators in each
space direction. For instance, Lδx denotes the Euler operator of the following
problem:

Lδx(δt) ·
(
Um
j

)
= Um

j −
δt

δx

(
Fmj+1/2 − Fmj−1/2

)
.

In three dimensions, the splitting operator arrangement can be found in [22].

4.2. Proposed modification of the total energy flux formulation for the general-
ization of the multi-component real gas Roe solver

In § 3.3, we introduced how to calculate an averaged state of the compressibility
factors that respects the properties of the Jacobian matrix of the Euler flux.
This is carried out through an orthogonal projection on the ns − 1 hyperplane
defined by (19). However, through the use of several test cases, numerical
artifacts close to discontinuities and poor order of convergence may be observed
(some examples will be provided in the section devoted to results; see § 5).

Indeed in some configurations, despite the orthogonal projection procedure,
there is an infinite number of solutions that respect the Roe solver proper-
ties, especially when the dimension of the problem is high in multicomponent.
Thus, most of the time, the Roe averaged state obtained does not necessarily
correspond to a realistic thermodynamic state. This problem does not appear
when a first-order scheme, i.e. the original Roe scheme, for instance (10), is
used, but this drawback only occurs when a high-order scheme is employed be-
cause of the large extent of the stencil. In fact, when a wide stencil is required,
the evolution of the averaged compressibility factors can become inconsistent
with the evolution of the mass fraction. Thus, inaccurate approximation of the
compressibility factors at the Roe average state can reduce the effective order
of convergence of the scheme around a large variety of composition and/or ther-
modynamic variables in a smooth solution. In the same way, numerical artifacts
are also introduced when significant variations of species occur in the vicinity
of contact discontinuities.

13



By analyzing the problem, we found that it is coming from the relationship used
to reconstruct the numerical flux related to the total energy (10). The ratio of
compressibility factors explicitly appears through a linear combination of the
Riemann invariants associated to the same eigenvalue u attributed to contact
waves:

∆FρE = ∆(ρuH) =
ns∑
i=1

α̃i

(
Ẽc −

χ̃i
κ̃

)
|ũ|+ α̃N−1

(
H̃ + ũc̃s

)
|ũ+ c̃s|

+ α̃N

(
H̃ − ũc̃s

)
|ũ− c̃s| .

(39)

Considering the definition of the speed of sound, given by (27), and the rela-
tionship (19) linking the pressure jump to the density and the internal energy
jumps through the compressibility factors, the first term of the total energy flux
(39), noted α̃N+1, can be expressed using variations of several variables:

α̃N+1 =
ns∑
i=1

α̃i

(
Ẽc −

χ̃i
κ̃

)
= ∆(ρE)− H̃∆p

c̃2
s

− ρ̃ũ∆u, (40)

Let us note that the proposed term (α̃N+1) follows an advection equation sim-
ilarly to the classical Riemann invariants (α̃k, k ∈ [1, N ]). This additional
advection equation is then solved using a specific accuracy function ΦpαN+1

as
described in § 4.1. Then, the total energy flux is expressed without being ex-
plicitly connected to the independent values of the compressibility factors but
only using the value of the sound speed obtained from the combination (27). We
then apply an MP condition on the supplementary accuracy function ΦpαN+1

to
avoid spurious oscillations. The total energy component of the high-order M-P
limited Euler flux then reads:

F̃ p−MP
ρE = 1

2 (FL(ρE) + FR(ρE))− 1
2

(
α̃M−P
N+1 |ũ|+ α̃M−P

N−1 (H̃ + ũc̃s)|ũ+ c̃s|+

α̃M−P
N (H̃ − ũc̃s)|ũ− c̃s|

)
,

(41)
with α̃N−1, and α̃N given by (37).

From a mathematical point of view, applying the OSMP scheme on α̃N+1 inde-
pendently of the ns first α̃i is actually equivalent to define a constraint on the
compressibility factors which results in corrected effective values χi, i = 1, ..., ns
and κ that are solutions of the set of equations:

∆p =
ns∑
i=1

χi,j+1/2∆ρi + κj+1/2∆ε

c̃2
s,j+1/2 =

ns∑
i=1

χi,j+1/2Ỹi,j+1/2 + κj+1/2h̃j+1/2;

α̃M−P
N+1,j+1/2 =

ns∑
i=1

α̃M−P
i,j+1/2

(
Ẽcj+1/2 −

χi,j+1/2

κj+1/2

)
.

(42)

The first two relationships correspond to the properties that must be preserved
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to fulfill the jump relationships of the Riemann problem and the definition of the
sound speed predicted by our proposed extension of the Vinokur and Montagné
algorithm (see § 3.3). The third one corresponds to the relation that must be
verified once applied the OSMP scheme on the additional Riemann invariant
α̃N+1. Since the expression of the flux (41) no longer requires explicit values
for the compressibility factors, then we have to guarantee the existence of the
solution.

Equations (42) correspond to a linear system with ns + 1 unknowns and three
equations. The existence of a set of compressibility factors consistent with the
Roe solver properties and the N + 1 accuracy functions and their associated
M-P constraints is then guaranteed. In the case of two species, there is even a
unique solution corresponding to the sound speed value previously predicted.

That way, we thus obtain a stable high-order scheme based on a Roe solver
for multi-component real gases that preserves conservation through jump re-
lations and properly capture discontinuities on the mass fraction of species.
An overview of the different steps leading to the final high-order Euler flux is
proposed in the following algorithm 2.

4.3. Adaptive Multiresolution procedure for grid refinement
Compressible multi-component flows are known to exhibit spatial multi-scales
that need to be resolved in the DNS approach. That is why we here employ a grid
refinement technique to tighten grid points in regions where physical phenomena
occur and coarsen them elsewhere. As we stressed previously, simulations of
compressible multi-component flow need to use an accurate numerical scheme
coupled with refined grids in regions where physical phenomena occur. We then
employed an Adaptive Multiresolution procedure to automatically refine the
grid locally in regions where steep gradients as well as unsteady flow phenomena
occur and save grid points elsewhere. To be combined with high-order schemes,
the mesh refinement must be based on a technique that provides error estimates
to control the solution error, and we based our grid refinement strategy on a
Multiresolution Analysis (MRA), originally introduced by A. Harten[23], and
theoretically developed by A. Cohen and co-authors [24, 3].

As we follow a finite volume approach, the cell-averaged multiresolution analysis
[23] has been employed. In the context of adaptive mesh refinement, the mul-
tiresolution analysis represents data on a set of nested dyadic grids. A tree data
structure is used to generate embedded grids and to encode the multiresolution
analysis procedure. A projection operator allows computing the cell-average so-
lution at a coarse grid level, knowing cell-average values at a finer grid level. This
projection operator is exact and unique. A prediction operator maps the cell-
average solution at a fine grid level to an approximation at a coarser grid level,
using centered linear polynomial interpolation that is chosen consistent with
the projection operator to satisfy conservation [24]. The refinement criterion
is based on a measure of details that are prediction error estimates, calculated
with the difference between the known numerical solution at a grid level and its
interpolated value at the same grid level. If the measure of details in a cell is
less than a threshold value (namely σ), this one is discarded from the tree data
structure, and the tree is pruned. Harten heuristic criterion ([25] for details)
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Riemann problem

ρ̃, Ỹi, H̃, ũk

χ̂i, κ̂

χ̃i, κ̃, c̃s

FRoe

α̃i, i = 1, ..., N

c̃s, α̃N+1 −→ (χi, κ)

F

Roe averaged operator (eq. 3.2)

Prediction of pressure derivatives
(eq. 20)

Projection on hyperplan (eq. 24),
computation of sound speed
(eq. 27)

Roe flux

OSMP scheme on Riemann in-
variants (eq. 37)

OSMP scheme on αN+1 (eq. 40)
and reformulation of the total
energy flux (eq. 39)

Final flux (eq. 36, 41)

Figure 2: Successive steps for building a stable OSMP scheme for multi-component real gas
flow
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also based on the measure of details is employed to refine the mesh when neces-
sary. In the following results, the threshold is set at a classical value: σ = 10−3.
We do not further describe the method since the principle of MRA coupled with
OSMP scheme has already been presented in detail in Tenaud et al. [25]. In this
work, capabilities to recover elementary physical mechanisms of the MRA cou-
pled with OSMP scheme have been assessed, showing that the solution quality
has been clearly improved with significant gains in both CPU time and memory
usage, compared to single grid computations. However, let us add that if con-
secutive cells have not the same grid refinement, the numerical flux at the cell
interface has been evaluated at the highest grid refinement between these two
consecutive cells, using adjacent virtual cells. A special attention is devoted to
calculating ingoing and outgoing fluxes at an interface between consecutive cells
at different grid levels to ensure strict conservation of fluxes at this interface.
See [25] for more details.

5. Numerical results

5.1. Mixture of non-calorically perfect gas with temperature-dependent heat ca-
pacities

In the following simulations, mixtures of non-calorically perfect gases are con-
sidered. The general gas equation is used:

p = ρrT, (43)

with r = r(Y1, ..., Yns
) the constant of the mixture of gases. To reproduce the

behavior of real gases, vibrational degrees of freedom of polyatomic molecules are
taken into account by considering the dependency of the specific heat capacities
of the species with respect to the temperature.

de = cv(T )dT dh = cp(T )dT. (44)

Temperature polynomials are used to approximate the value of the heat capac-
ities of the species. Coefficients of these polynomials are available in Appendix
D of [26]. This formalism induces that the heat capacity ratio γ and the com-
pressibility factors are not constant and depend on the temperature and the
composition of the mixture. It implies that the classical expression of the Roe
average is no more valid for this thermodynamic model because compressibility
factors are involved in the Jacobian matrix 9. To illustrate the temperature de-
pendence, we plot in Figure 3 the heat capacities at constant pressure versus the
temperature for the three species involved (N2, O2, and R22) in the following
simulations.

While significant variations with the temperature are clearly recorded, let us
notice that CpR22 shows a drastic change in the range of temperature T ∈
[300., 1000.], leading to relevant changes of the heat capacity ratio (γR22) as
well as the speed of sound (cR22).

We noticed that the coefficients of the polynomes allow us to keep a convex
hyperbolic system [27] and preserve the assumption made on the equation of
state (3).
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Figure 3: Distribution versus temperature of heat capacities at constant pressure (Cp) fol-
lowing temperature polynomials found in [26] for Nitrogen (N2), Oxygen (O2), and R22.

5.2. Convection of mass fraction and density waves
This first case performs a grid-convergence analysis. The high-order scheme is
applied on a smooth case of convection of mass fraction and density waves in a
flow with uniform pressure. This case has previously been treated in [28]. We
consider a mass fraction wave in a flow with uniform velocity u0 = 100 m/s and
pressure p0 = 1 Bar. The mixture is composed of two gases with specific heat
ratio of γ1 = 1.6 and γ2 = 1.4. The specific isochore heat capacity is set in order
to have Cv1 = 2Cv2. The computational domain corresponds to Ω = [0, 1] with
periodic conditions. The initial mass fraction of the first species and the initial
density are:

Y1(x) = 1
2 + 1

4 sin(4πx), ρ0(x) = 1 + 1
2 sin(2πx) ∀x ∈ Ω. (45)

Computation is performed using the OSMP scheme of 7th-order with and with-
out the modification on the discrete total energy flux using the αN+1 term
described in (40) and (41). The exact solution is the passive convection of the
waves. Errors in the L1-norm relative to the exact solution are reported in
Figure 4 at t = 0.05s after five periods of convection.

It is found that in this case, with significant variations in composition and tem-
perature leading to relevant variation of sound speed, the initial estimation of
the compressibility factors with the extension of Vinokur and Montagné method
described in § 3.3 provides a scheme which is only second-order accurate. Their
successive values are effectively inadequate with the physical mixture and pres-
sure variations are generated, impacting the flow velocity and the density profile.
The introduction of α̃N+1 in the first term of the total energy flux (39) avoids
the independent influence of the different compressibility factors and allows to
recover the seventh-order accuracy of the OSMP scheme. We also noticed that
the M-P condition does not influence results in this smooth test case except in
low resolution with only 32 grid points by differentiating extrema from discon-
tinuities.
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Figure 4: Convergence curves using the OSMP7 scheme on a advection of mass fraction
wave. Comparison with the initial formulation of the total energy flux and the new one with
and without M-P limiter flux.

5.3. One-dimensional shock-tube problem
We consider classical cases of shock tube problems corresponding to exact Rie-
mann problems. The tube length is Lx = 50 m, and the computational domain
extent is x ∈ [0, Lx]. We initially consider two states of different mixtures, sep-
arated by a diaphragm located at the middle of the tube (x = 25 m). At the
initial time (t = 0), the diaphragm is broken. Classically, a shock moves towards
the low-pressure side while a rarefaction fan goes to the high-pressure side. In
between, a contact discontinuity associated with the three species moves at the
fluid velocity.

The initial conditions at the left state UL and right state UR are given in table 1.
The first one corresponds to the classical Sod shock tube test case and the second
corresponds to the Lax shock tube test case that is generally subject to more
spurious oscillations. Each mixture is composed of three species, the species O2
stays constant across the shock wave. The use of three species is significant to
test the robustness of our method because this additional dimension increases
the possible solutions at the Roe intermediate state. A constant value sensitive
to the numerical error with high-order simulation illustrates the accuracy of the
estimation and the correction around the contact wave.

In the following, simulations are performed with 640 grid cells with a CFL
number CFL = 0.9. No adaptive refinement is used on those cases to evaluate
only the effects of the MP correction. The final times are chosen so that extreme
waves do not have time to reach the domain boundaries and keep the values of
conservative variables unchanged at the computational domain limits.

Results of the Sod shock tube obtained after 30 ms are presented in Figure 5.
The solution obtained with the proposed corrected high-order OSMP scheme
is compared to the original (uncorrected) OSMP solution and the first-order
Roe solver. As usual, these distributions clearly show, from right to left, the
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Sod shock tube Lax shock tube
Left Right Left Right

N2 (%) 70 20 70 20
R22 (%) 20 70 20 70
O2 (%) 10 10 10 10
P (bar) 1 0.1 10 1
ρ (kg/m3) 1. 0.125 1.602 1.222
γ 1.35 1.20 1.26 1.19

Table 1: Initial condition of pressure, density and species mass fraction for the Sod shock
tube (left) and the Lax shock tube (right) problems

shock wave, the contact discontinuity and the rarefaction fan, separated with
constant solution values. The use of a high-order scheme with a monotonic-
ity preserving feature significantly reduces the numerical diffusion and more
properly captures discontinuities and rarefaction waves compared to a classic
first-order Roe solver, as illustrated in Figure 5. However, when the original
(uncorrected) OSMP scheme is applied, numerical artifacts appear in the con-
tact discontinuity mainly due to the evaluation of compressibility factors that
do not necessarily correspond to a realistic thermodynamic state. Using the
additional M-P criteria on the combination of Riemann invariants (37), the re-
sulting intermediary state is closer to a physically realistic state, and the mass
fraction contact discontinuity is captured with robustness (see Figure 5).

To validate the solution obtained with the proposed modified OSMP scheme,
we compare it (Figure 6) to the exact solution of the Riemann problem obtained
with the same thermodynamic data. These solutions are also compared to the
exact solution with constant heat capacities for each species corresponding to the
ideal gas problem. Thus, we could judge the high quality of the real gas solution
obtained since it perfectly fits the exact solution. Discrepancies are clearly
registered with the exact solution for an ideal gas, with differences in the wave
speeds and the intermediary states between these waves. These discrepancies are
coming from the variation of heat capacities of the species and then the difference
of predicted speed of sound with the real gas treatment. These are mainly visible
in the high-temperature region where the thermodynamics coefficient for R22
exhibits drastic variations (See Figure 3). These results justify the proposed
approach for real gas flow predictions.

Similar results for the Lax shock tube are presented after 15 ms in Figure 7.
A comparison with and without the corrected OSMP scheme illustrates the
method’s efficiency in reducing numerical artifact and capturing contact waves
with minimal numerical diffusion. We noticed that pressure and velocity are
constant within the contact discontinuity.

5.4. The 2D test case: a shock wave interacting with a R22 bubble
The interaction between a shock wave propagating in the air with a bubble
of high-density gas is a classic test case often used to validate numerical ap-
proaches. It presents elementary physical mechanisms as the production of
acoustic waves and vorticity through the baroclinic process. This test case, first
introduced experimentally by J.-F. Haas [29], consists of a cylindrical bubble
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Figure 5: Distribution of the temperature, the velocity, the density, the pressure, the mass
fraction of N2, O2 and R22 and the heat capacity ratio γ for a 1D Sod shock tube at t = 30
ms. Comparisons between the proposed corrected high-order OSMP scheme (bold blue line)
with the original (uncorrected) OSMP scheme (bold green line) and the first-order Roe solver
(black dashed line).
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Figure 6: Comparison of the temperature, the velocity, the density, the pressure, and the
mass fraction distributions for the 1D Sode shock tube at t = 30 ms. Comparisons between
results using calorically perfect gas (black dashed line) and Equilibrium real gas (bold blue
line) with the exact solution obtained for real gases (red dashed line).
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Figure 7: Comparison of the temperature, the velocity, the density, the pressure, the mass
fraction, and specific heat ratio distributions for the 1D Lax shock tube at t = 15 ms, obtained
with (bold blue line) and without (green line) the modified OSMP scheme and with the exact
solution however for ideal gases (black dashed line).
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Figure 8: Sketch of the computational domain: initial configuration and boundary condi-
tions.

filled with a dense hydrochlorofluorocarbon refrigerant R22 gas, initially located
in ambient air at atmospheric pressure. A planar shock wave moving in ambient
air at a Mach number Ms = 1.22 towards the R22 bubble interacts with it. In
the past, numerous numerical studies tackled this test case until recently with
studies from [30] and [31].

The sketch of the initial configuration is given in Figure 8 where the computa-
tional domain is also illustrated. Only the upper half of the experimental con-
figuration is simulated. A symmetric boundary condition is applied at the lower
bound of the domain. At inlet and outlet boundaries, non-reflecting boundary
conditions based on the work of Poinsot and Lele [32] are prescribed, although
extreme waves do not reach these boundaries at the final simulation time. A
solid wall is located at the top boundary, where slip condition is prescribed
(u ·nwall = 0, with nwall the wall normal vector) as well as symmetry condition
for scalars.

The computational domain length is Lx = 445 × 10−3 m and its height is
Ly = 44.5× 10−3 m. The R22 cylindrical bubble which initially has a diameter
of d0 = 25 × 10−3 m, is initially centered on the bottom symmetry line at
x = 220 × 10−3 m from the inlet. The shock wave is initially located at x =
170× 10−3 m, and the state in front of the moving shock wave (noted region I,
Figure 8) is prescribed to be at the atmospheric conditions with TI = 298 K,
and PI = 101325 Pa. The fluid is initially at rest, so we have uI = 0 m.s−1

In the case of an ideal gas, Air is taken to have a heat capacity ratio of γ0,Air =
1.4, and a heat capacity ratio of γ0,R22 = 1.249 for the dense R22 gas, which
correspond, respectively, to heat capacity for Air of CpAir = 1005.5 J.kg−1.K−1

and CpR22 = 455.89 J.kg−1.K−1 for R22. With a moving shock wave at Ms =
1.22, the post-shock conditions (region noted II) become TII = 339.88 K, uII =
115.64 m/s and pII = 159060 Pa.

Simulations was also performed for a real gas configuration with a mixture
of 79 % of N2 and 21 % of O2 in Air leading to, respectively, mass fraction
YN2 = 0.767 and YO2 = 0.233, while the bubble is filled with pure R22 dense
gas. In this real gas case, non constant heat capacity ratio (γAir and γR22)
as well as compressibility factors depend on temperatures that are calculated
through polynomials found in [26]. At the initial state, heat capacity ratios in
the region I corresponds to γAir,I = 1.399 and γR22,I = 1.175. The post-shock
conditions become TII = 339.74 K, uII = 115.85 m/s and pII = 159117 Pa
however rather close to the ideal case.

All the simulations are performed on a structured grid using, however, an adap-
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Figure 9: Solution obtained for the ideal gas configuration at a time t = 287.5µs (dimen-
sionless time t cR22,I/d0 = 1.15): Adapted grid obtained using 9 grid levels per tree (i.e.
the finest mesh includes 512 grid points in each direction) and 10 trees distributed over the
domain in the streamwise direction, colored by density values.

tive mesh refinement based on MRA technique rapidly described in § 4.3. To get
cells with an aspect ratio of unity, the computational domain is composed of 10
roots of tree data structure along the streamwise direction. Each tree comprises
nine grid levels that lead to 5120 × 512 grid points in (x × y) directions if the
solution is coded at the finest grid level. This finest grid resolution is equivalent
to have 575 grid points along the initial bubble diameter d0 (δx = d0/575).
Denner and Wachem [30] performed a grid convergence study on the ideal gas
configuration and showed that grid convergence is obtained on the finest grid
they used with δx = d0/500. In the following, present simulations are performed
with a CFL number of 0.5, and a threshold MRA parameter σ = 10−3.

The solution of the ideal gas configuration, obtained at a time t = 287.5× 10−6

s (corresponding to a dimensionless time based on the R22 initial speed of
sound cR22,I of t cR22,I/d0 = 1.15) is presented in Figure 9 where we can see the
adapted grid colored by the density field. Regions where high gradients occur are
clearly evidenced by the presence of a high grid level. On the opposite, in regions
where a regular solution occurs, the grid is coarsened, and cells are discarded
from the graded tree, leading to a drastic memory compression compared to the
finest unique grid, with a reduction of 85 % of the number of cells compared to
the finest mesh at the final dimensionless time t cR22,I/d0 = 1.15.

When the incident shock wave interacts with the R22 bubble, reflection and
diffraction of the shock wave occur on the bubble interface as well as wave
transmission through the bubble interface. To better describe the flow patterns
observed in Figure 9, a schematic flow organization is proposed in Figure 10.
When the incident shock wave hits the upstream interface (UI) of the bubble, a
part of the pressure jump is transmitted inside the bubble while another part is
reflected upstream. Let us mention that this reflection of the incident shock wave
on the upstream bubble interface (UI) has been omitted in this schematic view
but is clearly visible in front of the bubble in Figure 9. The incident shock wave
passing in Air around the bubble is diffracted along the bubble surface while the
refracted shock wave (RR) moves inside the bubble. This refracted shock wave
interacts with the downstream bubble interface (DI), creating both a shock wave
transmitted inside Air (TR) downstream the bubble and a reflected shock wave
moving upstream inside the bubble. As the speed of sound of R22 is lower than
in Air, the transmitted shock wave (TR) finally stays upstream of the incident
shock wave (INC) (See Figure 10). Finally, the diffracted shock wave reflects
on the symmetry line creating two branches of the incident shock wave (DIF),
mimicking branches of the diffracted shock wave coming from the lower and
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Figure 10: Schematic organization of flow patterns in shock wave/bubble interaction: UI
= upstream bubble interface; DI = downstream bubble interface; RR = regular shock wave
reflection on DI; INC = incident shock wave; TR = transmitted shock wave; DIF = wave
diffraction, crossing of the two branches of the incident shock

the upper sides of the bubble, crossing the symmetry plane as experimentally
recorded [29].

As the high-pressure jump imposed by the incident shock wave interacts with the
density jump located at the bubble interface, Richtmyer–Meshkov instabilities
are distinctly visible in Figure 9 along the bubble interface. These instabili-
ties are characteristic of the acceleration of an interface between two fluids at
different densities. By comparing present results on the density field with re-
sults obtained from [30], we can see that 7th-order OSMP scheme coupled with
the MRA technique produces very accurate results with a high quality of the
solution mainly in the Richtmyer–Meshkov instability development.

To better assess present results, we compare them to converged results obtained
by Denner and Wachem [30] on streamwise distributions of the density recorded
at y = 5× 10−3 m (See Figure 11), and at several times t = 170× 10−6, 222.5×
10−6, and 287.5 × 10−6 s (corresponding to dimensionless times t cR22,I/d0 =
0.68, 0.89, and 1.15). We can see that a perfect agreement is achieved on the
ideal gas configuration between our results obtained with the 7th-order OSMP
scheme and those obtained by Denner and Wachem [30].

We also performed simulations of the real gas configuration to provide original
results that we expect could constitute reference results. These simulations have
been run with and without the proposed modified OSMP scheme. A comparison
of the temperature fields obtained with and without the proposed modification is
presented in Figure 12. Without the proposed modification, spurious oscillations
appear on the temperature field at the upstream interface of the R22 bubble
(Figure 12). One more time, we notice that the new M-P criterion on α̃N+1
with equations (40), and (41) cure these spurious oscillations, and improve the
resolution of the mass fraction discontinuities. This confirms that the M-P
condition on the supplementary invariant α̃N+1 is needed to recover a stable
solution with a unique value of the compressibility factors.
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Figure 11: Streamwise distributions of the density recorded at the altitude y = 5× 10−3 m
and at several times t = 170× 10−6, 222.5× 10−6, and 287.5× 10−6 s: ideal gas simulation
(blue bold line) is compared to results obtained by Denner and Wachem [30] (black dashed
line).

Figure 12: Temperature fields obtained with the 7th-order OSMP scheme with (at the top),
and without (at the bottom) the proposed modification of the OSMP scheme.
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Figure 13: Streamwise distributions of the density recorded at the altitude y = 5×10−−3 m
at several times t = 170× 10−6, 222.5× 10−6, and 287.5× 10−6 s: ideal gas simulation (bold
blue line) is compared to results for real gas configuration obtained with proposed corrected
OSMP scheme (bold red line).

Although the solution for real gas flow looks like the ideal gas one, some dis-
crepancies may be observed. Comparing real gas and ideal gas configurations at
several computational times t = 170× 10−6, 222.5× 10−6, and 287.5× 10−6, on
streamwise density distributions at y = 5× 10−3 m (See Figure 13), we outline
these differences although, as we pointed out earlier, weak differences exist be-
tween initial states. In fact, these discrepancies are concentrated in the bubble
where R22 gas is present because thermodynamics coefficients of R22 real gas
are strongly sensitive to the temperature (See Figure 3) leading to significant
changes in the speed of sound for instance.

To better emphasize discrepancies in the field, isocontours of the temperature
are plotted (See Figure 14) for both ideal (at the top) and real (at the bot-
tom) gas obtained with the proposed modification of the OSMP scheme. As
previously mentioned, differences are mainly concentrated within the R22 bub-
ble and on its interface since the heat capacity ratio and the sound speed are
significantly modified during the shock wave/bubble interaction compared to
the ideal gas configuration. The modification of the sound speed also impacts
the speed of the transmitted shock wave (TR) that stays upstream of the one
predicted in ideal gas flow.

To validate present results for real gas flow, we compare them to experimental
data coming from [29] on the x − t diagram (See Figure 15). To follow all the
wave motions along time, we keep the same symbols like the ones used in the
schematic view of flow patterns (See Figure 10). Although there is unavoidable
variability in measurements, we can claim that a very good agreement is achieved
by using the 7th-order MP scheme with the proposed modification on α̃N+1.

Finally, to better highlight differences between ideal and real gas configurations,
we increased the traveling Mach number of the incoming shock wave toMS = 2.5
to enhance the temperature variations. Discrepancies on isocontours of the
temperature are shown in Figure 16 where the real gas solution is at the top
and the ideal one at the bottom. One more time, discrepancies are condensed
within the bubble with a drastic change of the predicted temperature and the
bubble flow pattern. At this point, the bubble has been compressed by the
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Figure 14: Isocontours of the temperature for ideal gas (at the top) and real gas (at the
bottom) for Ms = 1.22 at t = 287.5µs.

Figure 15: x − t diagram of the shock wave / R22 bubble interaction. Black dots are for
experiments and lines with colored dots for simulations. Symbols related to the different waves
are given in Figure 10.
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Figure 16: Isocontours of the temperature for ideal gas (at the top) and real gas (at the
bottom) for Ms = 2.5 at t = 250µs.

shock along the x-direction while the extremities have drifted forward with the
generation of vorticity accentuated by interaction with numerous acoustic waves
induced by the refracted shock inside the bubble.

Figure 17 presents the evolution of the integrated value of the vorticity (∇× ~u)
and the baroclinic torque term (∇P×∇ρ) on the upper half of the computational
volume along time. We distinguish several phases in the evolution of these
terms. At t = 0 s, corresponding to the first interaction between the shock and
the bubble, negative vorticity is created in the upper half. The baroclinic term
becomes positive when the shock comes out of the bubble and reduces vorticity.
We then observe a progressive decrease of the vorticity generation disturbed by
multiple refracted shock waves in the computational volume, which still interacts
with the bubble. We observe those vorticity productions in Figure 18 with the
evolution of the isocontours of R22 mass fraction at different times. Multiple
vortex sizes resulting from successive interactions with shock and acoustic waves
are visible. It should be noted that because of the absence of viscosity in the
2D simulation, the size of the smaller vortex is only limited by the size of the
mesh.

All those different aspects are visible in Figure 19 representing the density iso-
lines after 250 µs of simulation. We can observe the main shock waves, the
perturbations induced by the multiple reflected shock waves through the bubble
and the vortex, and the region of mixing between the high-density R22 gas and
the air.

6. Conclusions

In this paper, we developed a stable high-order Roe scheme capable of predicting
multicomponent real gas flows devoted to applications in hypersonic aerodynam-
ics or detonation configurations where shock waves with high-temperature jumps
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Figure 17: Baroclinic torque (left) and vorticity (right) as a function of time integrated on
the computational volume corresponding to the upper half of the total volume.

Figure 18: Isocontours of mass fraction of R22 gas for a Ms = 2.5 shock wave at t = 100 µs,
t = 150 µs, t = 200 µs and t = 250µs. Symmetry is applied from the computation on the
upper half to obtain image of the full bubble.
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Figure 19: Isocontours and Isolines of density from 1.2 to 10 kg/m3 with level every 0.2
kg/m3 for a Ms = 2.5 shock wave at t = 250 µs.

interact with mixtures of several species. We first proposed a generalization of
the Roe solver for distinct species with multiple thermodynamic properties for
a mixture of non-ideal gases that relies on the original method proposed by
Vinokur & Montagné [9]. It first consists in obtaining a predicted Roe averaged
value of the compressibility factors using the left and right thermodynamic states
of the Riemann problem, then corrects these predictions by orthogonal projec-
tion onto the hyperplane defined by the relationship between the pressure jump
and the compressibility factors of all species. Our proposed method allows us to
approximate an averaged speed of sound that is coherent with the Roe average
of the Riemann problem. We secondly introduce the proposed Roe averaged
state of the compressibility factors into the One-Step Monotonicity-Preserving
(OSMP) scheme to obtain an extension of the high-order Lax-Wendroff proce-
dure towards real gas flows. However, the Roe averaged compressibility factors
calculated at cell interfaces can be inconsistent with the mass fraction along
the wide stencil required by the high-order approximation. This can lead to
a low order of convergence and to numerical artifacts that appear when large
variations of species occur, for instance, in the vicinity of contact discontinu-
ities. To overcome those drawbacks, we proposed a new formulation of the
total energy flux based on a combination of the Riemann invariants relative to
the multispecies. This new formulation has the advantage of not using the in-
dependent values of the compressibility factors and avoiding error dependency
with approximation created in the extension of Vinokur and Montagné method
for multispecies. Knowing the averaged speed of sound estimated by our pro-
posed extension of the Vinokur & Montagné method, we demonstrate that the
proposed new formulation is equivalent to defining a constraint on the com-
pressibility factors that completely fulfill the jump relationships of the Riemann
problem. We also showed on well-documented 1-D and 2-D test cases that this
proposed modification avoids numerical artifacts and enforces uniqueness of the
averaged value of the compressibility factors.

To properly resolve discontinuities while optimizing the number of numerical
cells, the high-order Monotonicity-Preserving numerical scheme equipped with

32



the proposed constraint on compressibility factors is combined with an Adaptive
Multiresolution procedure to automatically refine grid points in regions where
steep gradients occur and coarsen grid points elsewhere. The present numer-
ical method is validated with mixtures of non-calorically perfect ideal gases
with temperature-dependent heat capacities. OSMP scheme applies on the new
combination of Riemann invariants allows preserving high-order of accuracy in
smooth solutions despite large variations of composition and temperature. In
classical shock tube problem applied to non-ideal gas, it efficiently captures the
mass fraction contact discontinuities with robustness and avoids numerical arti-
facts. Non-ideal gas effects are then pointed out mainly on the modification of
the speed of sound with the temperature that induces discrepancies on the wave
speeds as well as on the constant states between waves, compared to ideal gas
configuration. A 2-D interaction between a shock wave in Air with a cylindrical
bubble initially filled with dense refrigerant R22 gas is also considered. Present
results accurately recover the fully resolved recent numerical solution of calori-
cally perfect gases. They also compare well with experimental results obtained
with (of course) real gases. We finally performed simulations of a real gas con-
figuration with a higher Mach number leading to higher temperature variations.
Results clearly exhibit discrepancies between ideal and real gas configurations
condensed within the bubble since the R22 refrigerant gas has thermodynamics
properties that are mainly sensitive to temperature variations. Thus, drastic
changes are recorded on the predicted temperature and the bubble flow pat-
terns that fully justify the use of relevant thermodynamics and the proposed
numerical method to account for real gas properties.

This study constitutes a first step towards the development of numerical tools
able to predict shocked reacting flows encountered, for instance, in Deflagration-
Detonation Transition problems. Therefore, in the near future, the proposed
numerical procedure will be integrated into a Navier-Stokes code capable of
predicting with both robustness and high accuracy multicomponent reactive
flows with compressible effects.
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