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Dire wolves were the last of an ancient New 
World canid lineage
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Audrey T. Lin7,9,10, Blaine W. Schubert11, Carly Ameen12, Ekaterina E. Antipina13, Pere Bover14, 
Selina Brace15, Alberto Carmagnini4, Christian Carøe16, Jose A. Samaniego Castruita16, 
James C. Chatters17, Keith Dobney5,18,19,20, Mario dos Reis4, Allowen Evin21, Philippe Gaubert22, 
Shyam Gopalakrishnan16, Graham Gower2, Holly Heiniger2, Kristofer M. Helgen23, 
Josh Kapp24, Pavel A. Kosintsev25,26, Anna Linderholm7,27, Andrew T. Ozga28,29,30, 
Samantha Presslee31, Alexander T. Salis2, Nedda F. Saremi24, Colin Shew3, Katherine Skerry29, 
Dmitry E. Taranenko32, Mary Thompson33, Mikhail V. Sablin34, Yaroslav V. Kuzmin35,36, 
Matthew J. Collins16,37, Mikkel-Holger S. Sinding16,38, M. Thomas P. Gilbert16,39, 
Anne C. Stone28,29,40, Beth Shapiro24,41, Blaire Van Valkenburgh3, Robert K. Wayne3, 
Greger Larson7, Alan Cooper42 & Laurent A. F. Frantz4,43

Dire wolves are considered to be one of the most common and widespread large 
carnivores in Pleistocene America1, yet relatively little is known about their evolution 
or extinction. Here, to reconstruct the evolutionary history of dire wolves, we 
sequenced five genomes from sub-fossil remains dating from 13,000 to more  
than 50,000 years ago. Our results indicate that although they were similar 
morphologically to the extant grey wolf, dire wolves were a highly divergent lineage 
that split from living canids around 5.7 million years ago. In contrast to numerous 
examples of hybridization across Canidae2,3, there is no evidence for gene flow 
between dire wolves and either North American grey wolves or coyotes. This suggests 
that dire wolves evolved in isolation from the Pleistocene ancestors of these species. 
Our results also support an early New World origin of dire wolves, while the ancestors 
of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America 
only relatively recently.

Dire wolves (Canis dirus) were large (around 68 kg) wolf-like canids and 
among the most common extinct large carnivores of the American Late 
Pleistocene megafauna1. Dire wolf remains are present in the North 
American palaeontological record from at least around 250,000 to 
about 13,000 years ago, at the end of the Pleistocene epoch, particularly 
in the lower latitudes4 (Fig. 1a). Other canid species that were present in 
Late Pleistocene North America include the slightly smaller grey wolf 
(Canis lupus), the much smaller coyote (Canis latrans) and the dhole 
(or Asiatic wild dog; Cuon alpinus), although dire wolves appear to have 
been more common overall1. For example, more than 4,000 individuals 
have been excavated from California’s fossil-rich Rancho La Brea tar 
seeps alone, where they outnumber grey wolves more than 100-fold5,6.

Despite the abundance of dire wolf fossils, their origins, taxonomic 
relationships and ultimate driver of their extinction remain unclear. 
Dire wolves are generally described as a sister species to7–10, or even 
conspecific with, the grey wolf11. The leading hypothesis to explain 
their extinction is that, owing to their larger body size compared 
with grey wolves and coyotes, dire wolves were more specialized for 
hunting large prey and were unable to survive the extinction of their 
megafaunal prey12–14. To test this hypothesis, we performed geomet-
ric morphometric analyses of more than 700 specimens. Our results 
indicate that although specimens of dire wolves and grey wolves can 

be differentiated, their morphology is highly similar (Fig. 1b, Supple-
mentary Information, Supplementary Figs. 1–6 and Supplementary 
Data 3–12). Although this morphometric similarity may be driven in 
part by allometry (Fig. 1b, Supplementary Information), the lack of dis-
tinctiveness between grey wolves and dire wolves has been interpreted 
to be a result of a close evolutionary relationship9,11. Alternatively, a 
competing hypothesis maintains that these morphological similari-
ties are the result of convergence, and that dire wolves instead are a 
species that belongs to a separate taxonomic lineage (classified in the 
monotypic genus Aenocyon, ‘terrible’ or ‘dreadful’ wolf15).

To resolve the evolutionary history of dire wolves, we screened 46 
sub-fossil specimens for the presence of preserved genomic DNA 
(Supplementary Data 1). We identified five samples from Idaho (Dire-
AFR & DireGB), Ohio (DireSP), Tennessee (DireGWC) and Wyoming 
(DireNTC), dating to between 12,900 and more than 50,000 years ago, 
that possessed sufficient endogenous DNA to obtain both mitochon-
drial genomes (between around 1× and 31× coverage) and low-coverage 
nuclear genome sequences (approximately 0.01× to 0.23× coverage) 
using hybridization capture or shotgun sequencing methods (Supple-
mentary Information). All of these samples displayed molecular dam-
age profiles that are typical of ancient DNA (Supplementary Figs. 8, 9).  
Although we did not successfully sequence DNA from dire wolf 
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To resolve the phylogenetic relationships of dire wolves, we analysed 
the nuclear genomic data of the dire wolves together with previously 
published genomic data from eight extant canids: grey wolf, coyote, 
African wolf, dhole, Ethiopian wolf (Canis simensis), African wild dog 
(Lycaon pictus), Andean fox (Lycalopex culpaeus) and grey fox (Urocyon 
cinereoargenteus—an outgroup). Of these species, the geographical 
ranges of grey wolves, coyotes, dholes and grey foxes overlapped with 
that of dire wolves during the Pleistocene epoch (Fig. 1a). We also gener-
ated new nuclear genome sequences for a grey wolf from Montana and 
the two endemic African jackals—the black-backed and side-striped 
jackal (Canis mesomelas and Canis adustus, respectively)—to ensure 
representation of all extant members of the ‘wolf-like canid’ clade (com-
prising Canis, Lycaon, Cuon and their extinct relatives) (Supplementary 
Data 13). Supermatrix analyses, based on nuclear sequence alignments 
of 70 kb to 28 Mb (depending on overall coverage for each dire wolf 
genome; Supplementary Tables 5, 7) confirmed a distant evolutionary 
relationship between dire wolves and the other wolf-like canids (Fig. 2a, 
Supplementary Fig. 11 and Supplementary Figs. 15, 16). This analysis, 
however, could not definitively resolve whether dire wolves were the 
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Fig. 1 | Map of dire wolf remains and morphological differentiation with 
wolf-like canids. a, Right, map representing the geographical range of the 
canid species investigated in this study. The data (shape file) for this plot were 
obtained from the IUCN Red List database36 and plotted using R37. Left, map 
representing the distribution of sites in the Americas where dire wolf remains 
(Canis dirus) have been identified (Supplementary Data 1, 2). Coloured circles 
represent the locations and approximate ages of the remains, with crossed 
circles representing the five samples from Idaho (2), Ohio (1), Tennessee (1) and 
Wyoming (1) that yielded sufficient endogenous DNA to reconstruct both 
mitochondrial genomes and low-coverage nuclear genome sequences. b, 

specimens from the La Brea tar seeps, one specimen did contain 
type-I collagen (COL1) that was suitable for sequencing using pal-
aeoproteomic methods (Supplementary Data 1 and Supplementary 
Information).

Analyses of the dire wolf COL1 sequence suggested that they were not 
closely related to grey wolves, coyotes, African wolves (Canis lupaster) 
or dogs (Canis familiaris) (Supplementary Fig. 7). These data, however, 
could not confidently resolve the relationships between more distantly 
related canids owing to a lack of lineage-specific amino acid changes 
among these species16. Phylogenetic analyses of the mitochondrial 
genomes indicated that dire wolves form a well-supported monophyl-
etic group that is highly divergent from grey wolves and coyotes (Sup-
plementary Fig. 10; see Supplementary Data 13 and Supplementary 
Tables 2–4 for a list of the 13 species and their coverage used in this 
analysis), contradicting recent palaeontological analyses7–9 (Fig. 1b). 
Canid mitochondrial phylogenies, however, may not represent the 
true evolutionary relationships of the species as both admixture and 
incomplete lineage sorting have been shown to affect canid phyloge-
netic topologies3,17.

Procrustes distances between the combined mandible and M1 shape of dire 
wolf and other extant canid species. Pairwise Procrustes distances were 
calculated by superimposing landmarks from molar and mandibular shapes 
between pairs of specimens and by computing the square root of the squared 
differences between the coordinates of corresponding landmarks, with and 
without correction for allometry (Supplementary Information). The centre of 
the box represents the median, the box bounds represent the quartiles, the 
whiskers represent maximum and minimum values (±1.5× the interquartile 
range) and dots represent outliers.



basal members of the wolf-like canid clade or the second lineage to 
diverge after the common ancestor of the two African jackals.

We investigated canid phylogenetic relationships in greater detail 
using a range of species tree analyses18,19 and D-statistics (Supplemen-
tary Information). These approaches produced concordant trees that 
support the monophyly of three primary lineages: dire wolves, African 
jackals and a clade comprising all other extant wolf-like canids (Fig. 2a, 
Supplementary Tables 6–8 and Supplementary Figs. 11–16). Although 

our species tree analyses provided equivocal results regarding the 
relationships among these lineages, grey wolves (genus Canis) are more 
closely related to African wild dogs (genus Lycaon) (Supplementary 
Fig. 19), dholes (genus Cuon) (Supplementary Fig. 21) and Ethiopian 
wolves (Supplementary Fig. 22) than to either dire wolves or African 
jackals (both genus Canis). This finding is consistent with previously 
proposed designations of the genera Lupulella20 for the African jackals 
and Aenocyon15 for dire wolves.
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Fig. 2 | Relationships among living and extinct wolf-like canids.  
a, Time-scaled nuclear phylogeny generated in MCMCtree based on the 
best-scoring maximum likelihood species tree topology obtained from BPP 
and SNAPP. Values associated with nodes are mean age estimates (millions of 
years before present) and bars represent 95% highest posterior densities. The 
inset table shows the levels of support for the three possible arrangements of 
the dire wolf (red), the African jackals (orange) and the remaining wolf-like 
canids (blue) that we obtained using different analytical frameworks when 
including either one or both of our two highest coverage dire wolf samples 
(DireSP and DireGB). Although only one dire wolf branch is depicted in the tree, 
multiple dire wolf individuals were included in some analyses as they form a 
monophyletic clade (for example, Supplementary Figs. 12, 13, 15). b, Results of 
D-statistics used to assess the possibility of gene flow between the dire wolf 
and extant North American canids. Each dot represents the mean D calculated

along the genome and the error bar represents 3 standard deviations 
computed using a weighted block jackknife procedure over 5-Mb blocks across 
the genome. Z values of |Z| > 3 were considered significant. These plots show 
that the dire wolf genomes do not share significantly more derived alleles with 
extant North American canids compared to Eurasian wolves (values of D were 
not significantly different from zero), suggesting that no hybridization 
occurred between the dire wolf and the ancestor of extant North American 
canids. Non-significant D-statistics were also obtained using an alternative 
reference genome and using the African wolf as P2 (Supplementary Fig. 18 and 
Supplementary Data 14). c, Results of D-statistics showing the existence of an 
ancient gene flow event between the ancestor of the dhole, Ethiopian wolf, 
African wolf, grey wolf and coyotes and the lineage of the dire wolf (consistently 
non-zero values of D regardless of P1). P1, P2 and P3 in the tree schematic 
represent genomes that are used in the admixture test.



To assess the timing of divergence among the major wolf-like canid 
lineages, we performed a Bayesian clock-dating analysis using MCMC-
tree21. Although the dire wolf sequences are low coverage and include 
post-mortem damage, extensive simulations indicated that this is 
unlikely to affect the time of divergence estimates inferred by MCMC-
tree (Supplementary Information, Supplementary Tables 9–11 and Sup-
plementary Fig. 17). This analysis confirmed that the initial divergences 
of the three primary wolf-like canid lineages occurred rapidly, which 
contributes to the poor resolution of the tree as a result of incomplete 
lineage sorting (Fig. 2a). The dire wolf lineage last shared a common 
ancestor with extant wolf-like canids around 5.7 million years ago (95% 
highest posterior density (HPD), 4.0–8.5 million years ago) (Fig. 2a), 
followed by the divergence of African jackals around 5.1 million years 
ago (95% HPD, 3.5–7.6 million years ago) (Fig. 2b).

Given the tendency for sympatric canid species to interbreed2,3,22, 
we tested for genomic signals of admixture between extant North 
American canids and dire wolves using D-statistics23 (Supplementary 
Information) on a dataset that included 22 modern North American 
grey wolves and coyotes, three ancient dogs24–26 and a Pleistocene wolf27 
(Supplementary Data 13). Specifically, we computed statistics of the 
form D(outgroup (grey fox); dire wolf; North American canid (grey 
wolf or coyote); African wolf/Eurasian wolf) and found no significant 
excess of shared derived alleles between dire wolves and any extant 
North American canid (Fig. 2b, Supplementary Fig. 18 and Supple-
mentary Data 14). This result indicates that the dire wolves sequenced 
in this study did not possess ancestry from grey wolves, coyotes or 
their recent North American ancestors. Although we cannot exclude 
the possibility that some unsampled canid population has some dire 
wolf hybrid ancestry, the lack of a hybridization signal in our broad 
set of genomes suggests that admixture is unlikely to have occurred. 
Although we did not find evidence of recent admixture, we did find 
that African wild dogs share fewer derived alleles with dire wolves than 
with grey wolves, coyotes, African wolves, dholes or Ethiopian wolves 
(Fig. 2c, Supplementary Fig. 20 and Supplementary Data 15, 16). This 
indicates that an episode of ancient admixture between the ancestor of 
dire wolves and the ancestor of wolves, coyotes and dholes occurred at 
least around 3 million years ago (based on the lower bound of the 95% 
HPD on the age of their common ancestor) (Fig. 2a), which may have 
contributed to the challenge of resolving the branching order of the 
basal wolf-like canid lineages (Fig. 2a).

Hybridization is common among wolf-like canid lineages when their 
ranges overlap. For example, modern grey wolves and coyotes hybridize 
readily in North America2. Genomic data also suggest that gene flow 
occurred between dholes and African wild dogs during the Pleistocene 
epoch3, millions of years after their divergence. Consequently, our 
finding of no evidence for gene flow between dire wolves and grey 
wolves, coyotes or their common ancestor—despite substantial range 
overlap with dire wolves during the Late Pleistocene—suggests that 
the common ancestor of grey wolves and coyotes probably evolved 
in geographical isolation from members of the dire wolf lineage. This 
result is consistent with the hypothesis that dire wolves originated in 
the Americas1,6,28,29, and probably belonged to the same lineage as the 
extinct Armbruster’s wolf (Canis armbrusteri)7.

Long-term isolation of the dire wolf lineage in the Americas implies 
that other American fossil taxa, such as the Pliocene Canis edwardii, 
a proposed relative of the coyote7, may instead belong to the dire 
wolf lineage. Thus, the diversification of the extant wolf-like canids 
probably occurred in parallel outside of the Americas, and perhaps 
began earlier than hypothesized. The living Canis species may have 
descended from Old World members of the extinct genus Eucyon, 
which first appeared in the fossil record of Africa and Eurasia at the 
end of the Miocene epoch30. Geographical isolation since the late 
Miocene is consistent with our molecular estimates for the age of the 
dire wolf lineage, and may have allowed dire wolves to evolve some 
degree of reproductive isolation before the arrival of grey 
wolves, 

coyotes, dholes and Xenocyon (another extinct wolf-like canid) in 
North America during the Late Pleistocene.

Despite their overall phenotypic similarities, grey wolves and coy-
otes survived the Late Pleistocene megafaunal extinctions whereas 
dire wolves did not. One possible reason may be that both grey wolves 
and coyotes possessed greater morphological plasticity and dietary 
flexibility, thus allowing them to avoid extinction and become the 
dominant terrestrial predators in North America14,31. This scenario is 
supported by the date that we obtained from the DireGWC specimen 
(12,820–12,720 calibrated years before present), which suggests that 
dire wolves survived until at least the Younger Dryas cold reversal, a 
period that also witnessed the latest known dates for other specialized 
North American mega-carnivores such as the American lion (Panthera 
atrox) and giant short-faced bear (Arctodus simus)32,33. Alternatively, 
grey wolves and coyotes may have survived as a result of their ability 
to hybridize with other canids. Through adaptive introgression with 
dogs, North American grey wolves are known to have acquired traits 
related to coat colour, hypoxia and immune response34,35. Specifically, 
enhanced immunity may have allowed grey wolves to resist diseases 
carried by newly arriving Old World taxa. Because our results demon-
strate that dire wolves did not derive any ancestry from other wolf-like 
canid species, it is plausible that reproductive isolation prevented dire 
wolves from acquiring traits that may have allowed them to survive 
into the Holocene epoch.
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