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Abstract. We report numerical simulations of surface granular flows confined between two sidewalls. These
systems exhibit both very slow and very energetic flows. Zhu et al. [1] have shown that in energetic confined
systems, the Froude number at sidewalls and the sidewall effective friction coefficient are linked through a
unique relation. We show that this relation is also valid for creep flows. It is independent of the angle of the
flow but depends on the sidewall-grain friction coefficient. Our results shed light on boundary conditions that
have to be used at sidewalls in continuum theories aiming to capture the behavior of granular systems from
creeping to energetic flows.

1 Introduction

Granular flows confined between two sidewalls are an in-
teresting benchmark to study granular rheology for several
reasons. To mention one of them, the presence of sidewalls
may induce cooperative effects with a characteristic length
much greater than the grain size [2]. Also, steady and fully
developed (SFD) flows can be achieved at very important
flow angles [3–5], the base friction supplemented by the
sidewall friction being able to balance the driving com-
ponent of the weight. Such types of flows have been re-
cently studied by Brodu et al. [6] by means of discrete
element method simulations. These authors have indeed
shown that flows can be SFD at high angles and their re-
sults revealed the existence of new flow regimes character-
ized by (i) complex internal structures, (ii) secondary flows
and (iii) heterogeneous particle volume fraction [6, 7]. Re-
cently Zhu et al. [1] have revisited these types of flows and
obtained the following key result: the effective sidewall
friction can be described as a unique function of a dimen-
sionless number which is the analog of a Froude number.
This result is interesting to establish boundary conditions
for granular flows. Yet, the study of Zhu et al., [1] focused
on energetic flows so the validity of the aforementioned
relation to slow and creeping granular flows remains unan-
swered and deserves attention.
Here, by means of Discrete Element Method (DEM) sim-
ulations, we investigate the validity of Zhu’s relation be-
tween Froude number and sidewall friction for a large
range of the former quantity i.e. from creeping to ener-
getic flows. For that purpose we carry out numerical sim-
ulations of confined surface in the so-called sidewall stabi-
lized heap (SSH) flow geometry for which, creeping, flow-
ing and gazeous zones can be observed simultaneously.
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The outline of the paper is the following. First, we will
present both the geometry of the system and, briefly, the
numerical method (section 2). Section 3 will be devoted to
the study of the key parameters of the system at sidewall:
streamwise velocity and effective friction coefficient. In
section 4 we will probe the validity of Zhu’s relation for
SSH flows i.e. for small and large values of the Froude
number. Finally we will present our conclusions.

2 Geometry and Methods

As mentioned in the introduction, the geometry used in
this study aims to model so-called sidewall stabilized
heaps (SSH) initially introduced experimentally in [8].
They consist of a surface flow on a heap between two
flat and frictional sidewalls and driven by gravity. This
surface flow occurs above a quasistatic heap stabilized by
sidewall friction. Experimentally the flow angle increases
with the input flow rate and can be much steeper than
the angles for which a SFD flow can be achieved in an
unconfined flow geometry. Another important remark
should be mentioned here. These flows are influenced
by the confinement even at very large widths between
sidewalls [9]. To simulate numerically SSH flows we
use an inclined 3D cell (see Fig. 1) similar to those used
in [10–12]. The angle between the horizontal and the
main flow direction (x−direction) is called θ. In such
types of geometries, the angle of the flow and the flow rate
are related as long as there are enough grains in the system
to ensure the presence of a creep zone above which a flow
occurs [13]. Note that, in simulations, the angle is chosen
by the user and the system adapts its flow rate. In contrast,
in experiments, the user choose the input flow rate (which
in case of SFD flows is equal to the output flow rate) and
the system adapts the flow angle consequently. The size
of the cell in the x− direction is set to LX ≈ 25d with
periodic boundary conditions in this direction. In the
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Figure 1. Typical snapshot for SSH flows: W/d = 10 and N =

15, 000. The angle of the flow is θ = 45◦, the coefficient of
restitution en is equal to 0.88, and the grain-grain and grains-
sidewall friction coefficients (respectively fg and fw) are set to
0.5. Flow is directed down the incline along the x-axis. Two
sidewalls confining the system are parallel to the (xz) plane.

z−direction (i.e. normal to the free surface of the flow) the
size of the cell is set to large values and thus considered
as infinite. In the y−direction, the flow is confined by two
flat frictional sidewalls located at y = −W/2 and y = W/2
with W = 10d. The bottom of the cell, located at z = 0, is
made bumpy by pouring under gravity g a large number
of grains in the cell and by gluing those that are in contact
with the plane z = 0 and removing the others.

We use soft-sphere molecular dynamics simulations
developed internally [10] for which N = 15, 000 may over-
lap slightly slightly. The normal force between grains,
Fn, is classically modelled by a spring and a dashpot:
Fn = knδ − γnδ̇ where kn and γn are respectively the stiff-
ness of the spring and the viscosity of the dashpot, δ the
overlap between grains and δ̇ its derivative with respect to
time. The stiffness is set to 5.6 × 106 mg/d and γn is cho-
sen such as the normal restitution coefficient is equal to
0.88 [13]. The tangential force is modelled by a spring,
Ft = ktut, where kt = 2kn/7. Its deformation ut (i.e. the
elastic tangential displacement between grains) is bounded
to satisfy Coulomb law Ft = µFn, where µ is the friction
coefficient which, in the remainder of the paper, is set to
µ = fg = 0.5 for a grain-grain contact. The walls are
treated like spheres of infinite mass and radius. The nor-
mal restitution coefficient of the grain-wall interaction is

the same than that used for the grain-grain interactions. In
contrast the value of the friction coefficient between the
grains and the walls, fw, will be varied to study its effect.
To avoid any structural ordering the diameter of the grains
is uniformly distributed between 0.8〈d〉 and 1.2〈d〉 where
〈d〉 is the average grain diameter. Initially, the kinetic en-
ergy of the system is set to an important value [13] such
as the SFD state obtained after a transient does not show
any sign of the initial structure. More details on the the
simulation procedure can be found in [13, 14].

3 Velocity and effective friction at
sidewalls

To characterize the flow we first focus on the streamwise
velocity of the particle at sidewalls, Vx,w, and report its ver-
tical profile on Fig. 2. Note also that this quantity will be
used latter (Sect. 4) to determine the Froude number. In
agreement with the literature, the system displays a wide
range of behaviors from creep in the vicinity of the bot-
tom, characterized by an exponential variation of the ve-
locity (see inset of Fig. 2), to very energetic flows in the
vicinity of the free surface. In [14] we have shown that
in such systems four zones can be defined from the ve-
locity profile (from bottom to free surface): (i) a creeping
zone, (ii) a buffer zone, (iii) a flow zone and (iv) a gazeous
zone. It should be pointed out that the volume fraction
(not shown here) varies from ≈ 0.6 close to the bottom to
0 at the free surface and that this variation, in contrast to
that observed for unconfined flows, is very smooth. A full
study of the characteristic length of this variation can be
founded in [13]. As mentioned in the introduction and in
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Figure 2. The velocity in the streamwise direction and at side-
walls, Vx,w increases with flow angle and displays an exponential
variation characteristic of creeping in the vicinity of the bottom
(inset).

section 3, we have a system for which the range of vari-
ation of the grains’ velocity is huge and so is the range
of Froude numbers. Thus those systems are indeed an in-
teresting benchmark to verify if Zhu’s relation holds for
small Froude numbers. It should also be pointed out that,
obviously, the angle of the flow has an influence on the



sidewall velocity, the latter being found to increase with
the former. Yet the shape of the profiles is similar [13, 14].
To understand confined granular flows and more precisely
how they interact with the confining sidewalls, a key ob-
servable is the effective sidewall friction coefficient. It is
defined as µτ ≡ ||τw||/||σwyy||, where σwαβ is the stress at side-
walls and τw ≡ σwyxex + σwyzez with ex and ez being unit
vectors along the x− and z−directions, respectively.
We have reported on Fig. 3 the vertical profiles of the side-
wall friction for several flow angles but constant fg and
fw (0.5 and 0.7 respectively). The effective friction co-
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Figure 3. The effective friction coefficient on sidewalls, µτ, is
strongly influenced by confinement. In the vicinity of the free
surface, it is close to the grain-sidewall friction coefficient, fw
Then, it weakens and, in the creep zone, reaches a constant value.

efficient, µτ, is found to be close to microscopic friction
coefficient between sidewalls and grains in the flow zone,
fw (Fig. 3). In contrast, in the creep zone, the Coulomb
threshold is far from being reached and the correspond-
ing ratios tangential force to normal force remains below
fw. This phenomenon is known as the friction weaken-
ing phenomenon [2, 10]. The effective friction seems to
tends towards a constant value deep in the creep zone and
is equal to zero only at the bottom. The length required
for the effective friction coefficient to weaken to the afore-
mentioned constant value increases with the flow angle.

4 Relation between effective sidewall
friction and Froude number

Following Zhu et al. [1], we have computed the quantity
Fr = Vx,w/

√
σwyy/ρ where ρ is the material density of the

grains. This quantity can be seen as a Froude number in
the vicinity of sidewalls. The flows being SFD, the Froude
number is determined for each height within the flow. We
first present in Fig. 4(a) the evolution of the ratio of the
effective sidewall friction to the grain-sidewall friction co-
efficient, i.e. µτ/ fw, versus the Froude number for constant
values of fg and fw and several angles. Remarkably, all the
data collapse reasonably on a single master curve whereas,
as seen previously in Fig. 3, the effective friction coeffi-
cient depends on the angle. We also report the same data
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Figure 4. For a given system, the relation between the effective
sidewall friction coefficient µτ and the Froude number at side-
walls is unique (a). This is true even at small Froude numbers
(b).

in loglin scale (Fig. 4(b)) to investigate more carefully the
data at low Froude numbers. Three remarks deserve to be
pointed out. First, these curves show that the relation be-
tween µτ and the Froude number reported in [1] remains
valid at low Froude number. Consequently it seems such
Zhu’s relation can indeed be used to derive boundary con-
ditions for a large range of types of flows (including creep-
ing flows), at least for flat and frictional sidewalls. Second,
Zhu et al. [1] have propose an exponential functional form
to model their data. For important Froude number the evo-
lution of µτ is indeed compatible with an exponential be-
havior. However, for small Froude number the exponen-
tial behavior is no more valid. It is thus tempting to define
two regimes, one for large values of Froude number with
an exponential functional form, and another one for small
values. Third, it should be pointed out that the effective
friction coefficient does not tend towards zero for small
Froude number but seems to reach a constant value. This
is consistent with the results reported in Sect. 3
To go deeper in our understanding, we have studied the
evolution of the relationship between the effective friction
coefficient and the Froude number with the grain-sidewall
friction coefficient fw. For that purpose we report on Fig. 5
µτ/ fw versus the Froude number for a constant flow angle
but several grain-sidewall friction coefficients. We found
that the aforementioned relation depends on fw. For a
given Froude number, the effective friction coefficient in-
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Figure 5. Zhu’s relation (ratio of the effective friction coefficient
at sidewalls to the microscopic grain-sidewall friction coefficient
versus the Froude number at sidewalls Vx,w/

√
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xx/ρ) is found to
depend on the grain-sidewall microscopic friction coefficient.

creases with increasing fw. This means that Zhu’s rela-
tion is unique for a given system but depends on the grain
properties. Note that when fw tends towards zero, the func-
tional form representing the evolution of µτ/ fw versus the
Froude number tends towards a step function. The next
step of this study consists in finding a functional form for
the latter relation valid both or large and small Froude
numbers. Our result show that this functional has to de-
pend on the grain and sidewall properties.

5 Conclusion
We have studied the properties of granular surface flows
driven by gravity and confined between two flat but fric-
tional sidewalls. In such systems a continuum is observed
between quasistaitc flow where creeping occurs and very
energetic flows. We have shown that the unique relation
established in [1] between the sidewall effective friction
coefficient and the Froude number remains valid even at
small Froude number. For a given system, this relation is
unique. Yet it depends on the system properties (e.g. the
microscopic friction coefficient between grains and side-
walls which is a parameter of the simulations). This results

suggest that the Froude number should be used to derive
boundary conditions at sidewalls, at least for flat and fric-
tional sidewalls.
As mentioned above the next step of this study is to find a
functional form able to fit the numerical data or both small
and large values of Froude numbers and link the parame-
ters of this form to observables. Also it should be interest-
ing to investigate other confined geometries to strengthen
the results presented here.
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