
HAL Id: hal-03451085
https://hal.science/hal-03451085v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization Modulo k in Dynamic Networks
Louis Penet de Monterno, Bernadette Charron-Bost, Stephan Merz

To cite this version:
Louis Penet de Monterno, Bernadette Charron-Bost, Stephan Merz. Synchronization Modulo k in
Dynamic Networks. SSS 2021 - International Symposium on Stabilizing, Safety, and Security of
Distributed Systems, Nov 2021, Virtual Event, France. pp.425-439, �10.1007/978-3-030-91081-5_28�.
�hal-03451085�

https://hal.science/hal-03451085v1
https://hal.archives-ouvertes.fr


The mod k-synchronization Problem

Louis Penet de Monterno - Bernadette Charron-Bost

August 2020

1 Introduction

Distributed algorithms are often designed in a synchronous computing model, in which computation is divided into
communication closed rounds: any message sent at some round can be received only at that round. In this model it
is classically assumed that each run of an algorithm is started by all nodes simultaneously, i.e., at the same round,
or even at round one. For instance, most of synchronous consensus algorithms (e.g., [PSL80, DS83, ST87]), as
well as many distributed algorithms for dynamic networks (e.g., [KLO10, KMO11]) require synchronous starts.

This assumption makes the sequential composition of two distributed algorithms A;B – in which each node starts
executing B when it has completed the execution of A – quite problematic. Indeed, nodes start the algorithm B
asynchronously when the algorithm A terminates asynchronously, and the properties of B are no more guaranteed
in this context of asynchronous starts.

This leads to the problem of simulating synchronous starts, classically referred to as the firing squad problem:
Each node is initially passive and then become active at an unpredictable round. The goal is to guarantee that the
nodes, when all active, eventually synchronize by firing – i.e., entering a designated state for the first time – at the
same round.

Unfortunately, the impossibility result in [CBM18] demonstrates that the firing squad problem is not solvable
without a strong connectivity property of the network, namely, there exists some positive integer T such that
communication graph within every period of T consecutive rounds is strongly connected and the delay T is known. In
many situations, this connectivity property is not guaranteed: as an example, in the dynamic graphs corresponding
to any system model with benign failures, a node that experiments permanent and complete send omissions is
constantly a sink in the communication graph.

However, with a closer look at many distributed algorithms designed in the round-based model, we see that
these algorithms actually do not require perfect synchronous starts, and still work under the weaker condition that
all the nodes start executing the algorithms in rounds with numbers that are equal modulo k, for some positive
integer k. The corresponding synchronization problem, that we call mod k synchronization, is formally specified as
follows:

Termination: If all nodes are eventually active, then every node eventually fires.

modk-simultaneity: If two nodes fire at round t and t′, then t′ ≡ t mod k.

Indeed, let A be an algorithm organized into regular phases consisting of a fixed number k of consecutive rounds:
the sending and transition functions of every node at round t are entirely determined by the value of t modulo k.
Moreover, assume that A has been proved correct (with respect to some given specification) when all nodes start A
synchronously (at round one) and with any dynamic graph in a family G that is stable under addition of arbitrary
finite prefixes. For instance, the ThreePhaseCommit algorithm for non-blocking atomic commitment [BHG], as well
as the consensus algorithms in [DLS87] or the LastVoting algorithm [CBS09] – corresponding to the consensus
core of Paxos – fulfill all the above requirements for phases of length k = 3 and k = 4, respectively, and the family
G of dynamic graphs in which there exists an infinite number of “good” communication patterns (eg., a sequence of
2k − 1 consecutive communication graphs in which a majority of nodes is heard by all in each graph). The use of
a mod k-synchronization algorithm on the top of the algorithm A yields a new algorithm that executes exactly like
A does, after a finite preliminary period during which every node becomes active and fires. The above property on
the set of dynamic graphs G then guarantees this variant of A to be correct with asynchronous starts and dynamic
graphs in G.

1



Another typical example for which perfect synchronization can be weakening into synchronization modulo k is
the development of the basic rotating coordinator strategy in the context of asynchronous starts. Roughly speaking,
this strategy consists in the following: if nodes have unique identifiers in {1, . . . , n}, the coordinator at round t is the
node whose identifier is t modulo n. For that, each node u maintains a local counter cu whose current value is the
number of rounds where it has been active. At each round, the coordinator of u is the node with the identifier that
is equal to the current value of cu modulo n. Since there may be only one coordinator per round, such a selection
rule requires synchronous starts. Clearly, with the use of a modn-synchronization algorithm in a preliminary phase
and a counter for each node that now counts the number of rounds elapsed since the node fired, the above scheme
correctly1 implements the rotating coordinator strategy in the context of asynchronous starts,.

As a basic synchronization abstraction, a mod k-synchronization algorithm can be used as a subroutine by some
parent algorithm. For instance, consider the use of a mod k-synchronization algorithm on the top of some algorithm
B that has been proved correct (with respect to some given specification) in the case of synchronous starts

In this case, a node is passive if it has not yet completed the execution of A, and the start signal on a node
corresponds to the completion of A by this node. In this example a passive node sends null messages, just indicating
that it has not completed the execution of A.

To cope with this problem, we propose to
obtained when implementing synchronous rounds

2 Preliminaries

2.1 The computational model

We consider a networked system with a fixed set V of n nodes. We assume a round-based computational model in
the spirit of the Heard-Of model [CBS09], in which point-to-point communications are organized into synchronized
rounds: each node can send messages to all nodes and can receive messages sent by some of the nodes. Rounds
are communication closed in the sense that no node receives messages in round t that are sent in a round different
from t. The collection of possible communications (which nodes can communicate to which nodes) at each round
t is modelled by a directed graph (digraph, for short) with a set of nodes equal to V . The digraph at round t is
denoted G(t) = (V,Et), and is called the communication graph at round t. The set of u’s incoming neighbors in the
digraph G(t) is denoted by Inu(t).

We assume a self-loop at each node in all these digraphs since every node can communicate with itself instan-
taneously. The sequence of such digraphs G = (G(t))t∈N is called a dynamic graph [CFQS12:TVG].

In round t (t = 1, 2, . . .), each node u successively (a) broadcasts messages determined by its state at the
beginning of round t (b) receives some of the messages sent to it, and finally (c) undergoes an internal transition to
a new state. A local algorithm for a node corresponds to a pair of a sending function that determines the messages
to be sent in step (a) and a transition function for state updates in step (c). An algorithm for the set of nodes V
is a collection of local algorithms, one per node.

We also introduce the notion of start schedules that are collections S = (su)u∈V , where each su is a positive
integer or is equal to ∞.

The execution of the algorithm A with the dynamic graph G and the start schedule S then proceeds as follows:
Each node u is initially passive. If su = ∞, then the node u remains passive forever. Otherwise, su is a positive
integer, and u becomes active at the beginning of round su, sets up its local variables. In round t (t = 1, 2 . . . ), a
passive node sends only heartbeats, corresponding to null messages, and cannot change its state. An active node
applies its sending function in A to its current state to generate the message to be sent to all nodes, then it receives
the messages sent by its incoming neighbors in the directed graph G(t), and finally applies its transition function
Tu in A to its current state and the list of messages it has just received, (including the null messages from passive
nodes) to go to a next state. Since each local algorithm is deterministic, an execution of the algorithm A is entirely
determined by the initial state of the network, the dynamic graph G, and the start schedule S.

The states “passive” and “active” do not refer to any physical notion, and are relative to the algorithm under
consideration: as an example, if two algorithms A and B are sequentially executed according to the order “A
followed by B”, then at some round, a node may be active w.r.t. A while it is passive w.r.t. B. In such a situation,

1With respect to a specification that lets a passive node to be a coordinator.

2



the node is integrally part of the system and can send messages, but these messages are empty with respect to the
semantics of B.

2.2 Network model and start model

A network model is any non-empty set of dynamic graphs with a permanent self-loop at each node. We will focus
on the specific network model of centered dynamic graphs G defined as follows: there exists some node γ in V such
that every digraph G(t) has a spanning star centered at γ, i.e.,

∃γ ∈ V, ∀u ∈ V, ∀t ∈ N, γ ∈ Inu(t).

Note that there may be several fixed centers for G.
As demonstrated in [CBS09], centered dynamic graphs in the Heard-Of model captures the classical model of

synchronous systems with a (fixed) complete communication graph and at most n− 1 faulty senders, including the
case of crashes.

Similarly, we define a start model as a non-empty set of start schedules. A start schedule S = (su)u∈V is complete
if every su is finite, i.e., no node is passive forever, yielding the model of complete start schedules. Synchronous
starts correspond to complete start schedules S = (su)u∈V with equal start rounds. The property of synchronous
starts can be relaxed into mod k-synchronous starts, where k is any positive integer: for every pair of nodes u and
v, it holds that su ≡ sv mod k.

3 The SynchMod k algorithm

In the SynchMod k algorithm, each node maintains a local clock modulo k with values in {1, . . . , k}. It fires in the
first round at which all the local clocks it has just heard of are all equal to k (line 11). The first time a node receives
discrepant clocks from its neighbors, it tries to force firing by setting its clock to k (lines 16-17); thereafter, that
just leads it to roll back its clock to 1 (line 19). Otherwise, it receives agreed values with its own clock and then
increments it by one modulo k (line 13). Let us again stress on the fact that at each round t, every active node
receives the value of its local clock. The pseudo-code of the local code of the agent u is given in Algorithm 1.

As we will see below, the difficult point in the correctness proof of the SynchMod k algorithm is liveness. However,
right now, let us point out some properties of the algorithm that enable liveness. First, if all the nodes agree on the
same value for their local clocks – in which case the system will be said to be monovalent – and if they are all active,
then the system remains monovalent forever. Moreover, the common value of the local clocks is incremented by one
at every later round and thus eventually reaches the value k (cf. Lemma 3.4). The key point of the algorithm and
of its “forced firing procedure” lies in the fact that if all the communication graphs contain a star centered at γ,
then when γ is active, its local clock necessarily becomes equal to k, and every active node will eventually fire.

3.1 Notation and preliminary lemmas

In the rest of this section, we fix an execution σ of the SynchMod k algorithm associated to a complete activation
schedule A and a centered dynamic graph G ∈ Gc. Let smax = maxu∈Π s(u) <∞ and let γ denote one center of G.

For the correctness proof of SynchMod k , we now introduce some additional definitions. Let S be any subset of
Z/kZ. Round t in σ is said to be S-valent if S is the set of the clock values of active nodes at the end of round t,
i.e.,

S = {i ∈ Z/kZ : ∃u ∈ At, cu(t) = i }.

The system is said to be i-monovalent if the system is {i}-valent.
Let us define φ(u) to be the round number at which the node u fires, if any, and let φ(u) = ∞ otherwise.

Similarly, let us define τ(u) to be the round number at which the node u tries to force firing (line 16) if any, and
let τ(u) = 0 otherwise. It follows that τmax = maxu∈Π τ(u) <∞.

In the SynchMod k algorithm, the state of each node u is composed of three variables named cu, firedu and
triedu. For any round r, we denote cu(r), firedu(r) and triedu(r) respectively the values of these variables in the
execution σ.

Lemma 3.1. If cγ(t) = k, then the round t+ 1 is 1-monovalent.

3



Algorithm 1 The SynchMod k algorithm

1: Initialization:
2: cu ∈ Z/kZ ∪ {⊥}, initially ⊥
3: triedu ← false
4: firedu ← false

5: In each round t:
6: send 〈cu〉 to all
7: receive incoming messages
8: if all the received messages are equal to k and ¬firedu then
9: firedu ← true

10: if the received messages other than null and ⊥ are all equal to i ∈ {1, . . . , k} then
11: cu ← i+ 1
12: else
13: if ¬triedu and no received message is k then
14: cu ← k
15: triedu ← true
16: else
17: cu ← 1

Proof. If cγ(t) = k, then the node γ sends k to all nodes in round t + 1. Hence, any active node u at round t + 1
receives k in this round, and so updates its clock cu according either to line 13 of to line 19. In both cases, it holds
that cu(t+ 1) = 1.

Lemma 3.2. If the center γ is active in round t and round t is i-monovalent, then any subsequent round t+ h is
i+ h-monovalent.

Proof. The proof is by induction on h ∈ N.

1. The base case s = 0 corresponds to the assumption in the lemma.

2. Induction step: assume that the round t+h is i+ h-monovalent, and let u be any active node in round t+h+1.
The center γ is active in round t+ h, and thus sends the value i+ h to u in round t+ h+ 1. Therefore, the
node u can receive only this value (in addition of null and ⊥), and thus updates cu according to line 13. It
follows that cu(t+ h+ 1) = i+ h+ 1 as required.

Lemma 3.3. If the center γ is active at round t and cγ(t) = k, then every node fires no later than round
max(t, smax) + k.

Proof. Lemmas 3.1 and 3.2 show that the system is 1-monovalent in round t+1 and i-monovalent in every following
round t + i. It follows that there is a round r, with r ∈ [max(t, smax),max(t, smax) + k − 1], that is k-monovalent
and at which every node is active. In round r, every node, including γ, sends k. According to line 11, every node
fires no later than round r + 1.

Lemma 3.4. If round t is a monovalent round in which the center γ is active, then every node fires before round
max(t, smax) + k + 1.

Proof. Lemma 3.2 guarantees that for every non negative integer i, the round t + i is monovalent. Hence, there
exists some round r, with r ∈ [max(t, smax),max(t, smax) + k− 1] that is k-monovalent. In this round, every node,
including γ, sends k. According to line 11, every node fires no later than round r + 1.

Lemma 3.5. Any round t > max(s(γ), τmax) + 1 is either monovalent or S-valent with S = {1, i }.

4



Proof. Let t ≥ max(ts(γ), τmax) + 1, and let u be an active node at round t. Since t ≥ s(γ) + 1, we have
cγ(t− 1) = i− 1 ∈ Z/kZ, and the node u receives the value i− 1 at round t. There are two cases to consider.

1. The node u receives no value else than i− 1 and ⊥ at round t. Then u executes line 13, and cu(t) = i, i.e.,
round t is i-monovalent.

2. Otherwise, u executes line 19 since it has already tried to force firing (t > τ(u)). Therefore, cu(t) = 1, which
shows that round t is {1, i }-valent.

3.2 Correctness proof

We are now in position to prove the correctness of the SynchMod k algorithm for any integer k greater than 2 under
the conditions of a complete activation schedule and a centered dynamic graph. The safety property is a direct
consequence of the above lemmas. For the liveness property, Lemmas 3.3 and 3.4 lead us to define the notion of a
good round as either a monovalent round or a round in which the counter of any center reaches the value k: liveness
is then enforced by the existence of a good round.

Theorem 1. Under the conditions of complete activation schedules and centered dynamic graphs, the SynchMod k algorithm
solves the mod k-synchronization problem for any integer k greater than 2.

Proof. Let α be an execution of the SynchMod k algorithm with a dynamic graph centered at γ and a complete
activation schedule.

For the safety property, let us assume that some nodes fire in α, and let u be the first node that fires in round
φ(u). Since γ is an incoming neighbor of u, the firing rule (line 11) implies that γ is active and has sent the value k
in round φ(u). By Lemma 3.1, round φ(u) is 1-monovalent, and Lemma 3.2 shows that for every round φ(u) + i is
i-monovalent. If a node v fires in a later round φ(v) > φ(u), the round φ(v)− 1 is k-monovalent (line 11); and thus
φ(u) and φ(v) are congruent modulo k.

For the liveness property, it suffices to prove that α contains a good round. Let us first observe that if γ tries to
force firing (line 17) at round t, then cγ(t) = k and round t is a good round. Thus let us assume τ(γ) = 0, and let
t ≥ max(s(γ), τmax) + 1. Lemma 3.5 shows that either (1) round t is monovalent, or (2) cγ(t) = i 6= 1 and round t
is {1, i }-valent, or (3) cγ(t) = 1 and round t is {1, i }-valent.

1. In case (1), round t is a good round.

2. In case (2), the center γ only receives the value cγ(t) = i at round t + 1 since it never tries to force firing.
Hence, we have cγ(t + 1) = i+ 1 , and round t + 1 is {1, i+ 1 }-valent. Repeating this argument yields
cγ(t+ k − i) = k. Hence, round t+ k − i is a good round.

3. For case (3), we consider the following two subcases:

(a) Node γ does not receive the value i at round t + 1, and so cγ(t + 1) = 2. Since t > τmax, we have
cu(t + 1) = 1 or cu(t + 1) = 2 for every node u. Moreover, round t + 1 is {1, 2 }-valent and meets the
above case (2). It follows that round t+ k − 1 is a good round.

(b) Node γ receives the value i at round t + 1. Since τ(γ) = 0, this case may occur only if i = k. In this
case, cu(t + 1) = 1, and round t + 1 is either {1}-monovalent or {1, 2 }-valent. In the latter situation,
round t+ 1 meets case (3) with i = 2, and hence case (3.a) when k > 2. Therefore, either round t+ 1 or
round t+ k is a good round.

It follows that if k > 2, then the execution α contains a good round, and Lemmas 3.3 and 3.4 imply the liveness
property of the SynchMod k algorithm.

5



3.3 The mod 2-synchronization

Unfortunately, the SynchMod k algorithm does not work when k = 2, as demonstrated by its execution with three
nodes and the two-periodic dynamic graph G,H,G,H · · · , G,H, · · · , where G is the communication graph in every
even round, and H is the communication graphs in every odd round. G and H are given in Figure below. The starts
schedule is defined by A0 = ∅, A1 = {u1} and Ai = Π for any i > 1. The system cycles between two configuration
and no node ever fire. That violates the termination property.

However, the mod k-synchronization is trivially reducible to the mod k′-synchronization if k divides k′. Hence,
the mod 2-synchronization is solvable with the SynchMod 4 algorithm in the class of dynamic graphs with a fixed
center.

Then, a natural question is whether there exists a better and more direct algorithm for the mod 2-synchronization
problem in the class of centered dynamic graphs, using a different algorithmic approach.

4 A possible optimisation

There exist some scenarios where the majority of nodes are active, and some of them have already fired. Because
of some remaining passive node, some active nodes refrain from firing. In the worst case, a single passive node can
prevent some active node from firing, during an arbitrary long time. In this section, we propose an optimisation
which improves time-complexity in the average case. When a node fires, it learns that the system is monovalent.
During the subsequent rounds, it tries to share this knowledge using gossip. A node knowing that the system is
monovalent may fire as soon as its counters is equal to 1, in spite of the null messages it might receive.

Algorithm 2 The SynchMod k algorithm

1: Initialization:
2: cu ∈ Z/kZ ∪ {⊥}, initially ⊥
3: triedu ← false
4: firedu ← false
5: monovalentu ← false

6: In each round t:
7: send 〈cu,monovalentu〉 to all
8: receive incoming messages
9: monovalentu ← monovalentu∨ all the received messages are equal to k ∨ one true flag received

10: if monovalentu ∧ cu = k then
11: firedu ← true
12: if the received messages other than null and ⊥ are all equal to i ∈ {1, . . . , k} then
13: cu ← i+ 1
14: else
15: if ¬triedu and no received message is k then
16: cu ← k
17: triedu ← true
18: else
19: cu ← 1

Theorem 2. Under the conditions of complete activation schedules and centered dynamic graphs, the optimized
SynchMod k algorithm solves the mod k-synchronization problem for any integer k greater than 2. Moreover, in any
execution of the optimized algorithm, no node can fire later than in the corresponding execution of the non-optimized
algorithm.

The proof of the first part of this theorem is exactly the same as the proof of the non-optimized algorithm.
Moreover, the proof of the second part results from a simple observation of the line 9.

6



5 Use-cases of modn-synchronization

5.1 Algorithms without safety assumption

Let us consider the LastVoting algorithm, which is a round-based adaptation of Paxos. As pointed out in the intro-
duction, this algorithm is incorrect with asynchronous starts, for structural reasons. A prior mod 4-synchronization
can solve the main structural issue. The question is now how should the algorithm deal with null messages, and
whether the algorithm is still correct with mod 4-synchronization instead of full synchronization.

The proof of liveness relies on an assumption on the communication graph. However, no assumption is required
for safety, and that makes the above questions easy to answer. We define the SynchMod4♦LastV oting algorithm
with the following construction:

A passive node sends null to all, until it gets active. Then it executes SynchMod k algorithm. It proceeds
SynchMod k -related messages, and ignores LastVoting-related messages. If it fires in round r, then, in round
t + 1 it starts LastVoting algorithm in parallel with SynchMod k . If a node u sends to v a message related to
SynchMod k without message related to LastVoting, v learns that u has not fired yet. The LastVoting instance of v
must interpret that absence of message as a null message from u. Without adaptation of LastVoting algorithm, the
LastVoting instances proceeds null message as a message loss. With this construction, the execution of LastVoting
is equivalent to an execution where the outgoing edges of passive nodes have been removed from the communication
graphs.

Since the safety does not relies on any assumption on the dynamic graph, the safety proof written with syn-
chronous starts is still valid with this construction. If we assume that no node remains passive forever, the liveness
proof written with synchronous starts is still valid, at least from a round where every node is active. Thus, we can
prove that the SynchMod4♦LastV oting algorithm solves the consensus problem in an asynchronous-starts-tolerant
way.

The literature provides an algorithm called ThreePhaseCommit – in short 3PC – with solves the database
commit problem. Using the same construction, we can prove that the SynchMod3♦3PC solves the database
commit problem in an asynchronous-starts-tolerant way.

5.2 Algorithms with safety assumption

When the safety proof of an algorithm relies on some assumption, the above-mentioned procedure may be incorrect.
In that case,

5.3 mod k-synchronization and coordinated algorithms

Some algorithms like Paxos rely on the existence of a shared coordinator in each round. A simple implementation
consists in setting a rotating coordinator: each node holds the list of nodes. In the first round, the chosen coordinator
is the first node in the list. In the ith round, the chosen coordinator is the i mod kth node on the list. This works
out-of-the box when the starts are assumed to be synchronous. However, when the starts are asynchronous, a prior
modn-synchronization is required, where n is the number of nodes in the shared list. This is another typical use
case of the SynchMod k algorithm.

6 Conclusion and future work

As any complex reasoning by cases, the correctness proof of the SynchMod k algorithm, and more specifically the
proof of the liveness property, is very error prone. This is a typical example of the relevance of formal verification
for distributed algorithms. Indeed, in a later work [], we used the interactive theorem prover Isabelle to encode the
complete proof of Theorem 2, and thus obtained a certificate for SynchMod k’s correctness when k is greater than 2.

Since mod 2-synchronization is reducible to mod 4-synchronization, our algorithm solves the mod k-synchronization
problem for any positive integer k in the class of dynamic graphs with a fixed center. This class of dynamic graphs
plays a crucial role regarding benign failures as it captures the synchronous model with at most n−1 faulty senders,
including the one with at most n−1 crashes. In the wilder context of dynamic graphs, a natural question is whether
the problem is still solvable under weaker connectivity assumptions, in particular, in the class of dynamic graphs
with a fixed root, i.e., with a time-varying spanning tree at each round rooted at a fixed node.

7



7 Appendix: Non-uniform firing-squad algorithm

The goal of this section is to provide an adaptation of the firing-squad algorithm to solve the relaxed problem called
non-uniform synchronization. A subset S ⊆ Π is the subset of correct nodes. A correct node cannot crash, and any
messages sent by u ∈ S always reach its destination. An incorrect node u ∈ Π \ S which crashes in round t must :

• be correct until round t− 1. All of its outgoing messages reach their destination.

• fail in round t : only a subset of its outgoing messages reach their destination.

• be quiet in round t+ 1 and later.

We define the non-uniform synchronization problem as the conjunction of two properties:

Safety: If a correct node fires in round t, every correct node do so.

Liveness: At least one correct node fires.

We define below the firing-squad algorithm adapted for a system with at most f failures. In this algorithm, each
node maintains a counter. When every correct node is active, no node can receive a null message, and the nodes
start incrementing their counters. In the case where a node crashes in round smax, there might be a discrepancy of
one unit between the counter of the nodes. This discrepancy might be preserved if a node crashes in round smax+1.
However, the upper bond on the number of crash, and the sharing of counter values between nodes in each round
guarantee that the counter values of every node will eventually be synchronized.

Algorithm 3 The firing-squad algorithm

1: Initialization:
2: iu ∈ N, initially 0

3: In each round t:
4: send iu to all
5: receive incoming messages
6: if no null received then
7: iu ← 1 +min {iv(t− 1), v ∈ HO(u, t)}
8: else
9: iu ← 0

10: if iu ≥ f + 2 then
11: fire

7.1 Proof

Lemma 7.1. If no node crash during a round r ≥ smax, every correct node must hold the same counter value.

Proof. In such a round r, every correct node sends to all its counter. Since no crash happen, the remaining node
stays quiet. Then, every node receive the same sets of values. The line 7 guarantees that, at the end of the round,
every node holds the same set.

Lemma 7.2. If at a round r ≥ smax, every correct node hold the same counter value, in every subsequent round,
every node will hold the same counter value.

Proof. This property can be proved by induction over the round number. Initially, we assume that every correct
node hold the same counter value. In every subsequent round, the set of received values will be the same singleton
for every node. Then, using the 7, the induction holds.

Theorem 3. The firing-squad algorithm solves the non-uniform synchronization problem if no node remains passive
forever, and at most f crash happen.

8



Proof. If no node remains passive forever, smax is finite.

Safety: Since at most f crash may happen, there exists a round r between smax and smax + f + 1 in which no
crash happen. Then, using lemmas 7.1 and 7.2, we obtain that, in round smax + f + 1, every node holds the
same counter value. Moreover, no node can reach iu ≥ f + 2 before round smax + f + 1. That proves safety.

Liveness: Beyond round smax + 1, no node can receive a null message. We can prove that, in round smax + k,
the value k is a lower bound of the counter values in the system. Thus, nodes must reach a counter value of
f + 2. That proves liveness.

9


