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ABSTRACT
We introduce the Composable Involution Delay Model (CIDM) for

fast and accurate digital simulation. It is based on the Involution

Delay Model (IDM) [Függer et al., IEEE TCAD 2020], which has

been shown to be the only existing candidate model for faithful

glitch propagation. The IDM, however, has shortcomings that limit

its applicability. Our CIDM thus reduces the characterization effort

by allowing independent discretization thresholds, improves com-

posability and increases the modeling power by exposing canceled

pulse trains at the gate interconnect. We formally show that, despite

these improvements, the CIDM still retains the IDM’s faithfulness.

CCS CONCEPTS
• Hardware → Transition-based timing analysis; Compact
delay models; Simulation and emulation; Electrical-level simu-
lation;

KEYWORDS
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1 INTRODUCTION AND CONTEXT
Accurate prediction of signal propagation is a crucial task in mod-

ern digital circuit design. Although the highest precision is obtained

by analog simulations, e.g., using SPICE, they suffer from exces-

sive simulation times. Digital timing analysis techniques, which

rely on (i) discretizing the analog waveform at certain thresholds

and (ii) simplified interconnect resp. gate delay models, are hence

utilized to verify most parts of a circuit. Prominent examples of

the latter are pure (constant input-to-output delay ∆) and inertial

delays (constant delay ∆, pulses shorter than an upper bound are

removed) [14]. To accurately determine ∆, which stays constant

for all simulation runs, highly elaborate estimation methods like

CCSM [13] and ECSM [3] are required.

Single-history delay models, like the Degradation Delay Model
(DDM) [2], have been proposed as a more accurate alternative. Here,

the input-to-output delay δ (T ) depends on a single parameter, the

previous-output-to-input delay T (see Fig. 1). Still, Függer et al. [4]
showed that none of the existing delay models, including DDM,

can reliably predict the propagation of glitches. Függer et al. [5]
thus introduced the Involution Delay Model (IDM), with the distin-

guishing property that the delay functions for rising (δ↑) and falling
(δ↓) transitions form an involution, i.e., −δ↑(−δ↓(T )) = T , which
enables faithful short pulse propagation. The Involution Tool [15], a

simulation framework utilizing a digital simulation suite, has been

used to confirm the models accuracy.

Nevertheless, the IDM shows, at the moment, several shortcom-

ings which impair its composability:

(I) Ensuring the involution property requires specific (“matching”)

discretization threshold voltages V in∗
th and V out∗

th to discretize the

analog waveforms at in- and output. These are not only unique for

every single gate in the circuit but also difficult to determine.

(II) The discretization threshold voltages may vary among gates,

i.e., V out∗
th of a given gate G1 and V

in∗
th of the successor gate G2 in

a path are not necessarily the same. Consequently, just adding the

delay predictions for G1 and G2 cannot be expected to accurately

model the delay of their composition. This is particularly true for

circuits designs where different transistor threshold voltages [1]

are used for tuning the delay-power trade-off [11] or reliability [7].
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Figure 1: The delay δ↑ as function of T . Taken from [15].

(III) Intermediate voltages, caused by creeping or oscillatorymetasta-

bility, are expressed differently for various values of V out∗
th : Ulti-

mately, a single analog trajectory may result in either zero, one or

a whole train of digital transitions.

Main contributions: 1) We introduce the Composable Involution
Delay Model (CIDM), whose discretization threshold voltages can

be chosen arbitrarily. It enables the composition of successive gates,

simplifies their characterization, and exposes canceled transitions

at the gate interconnect. While CIDM is not strictly equivalent to

IDM, we are able to show that every CIDM circuit has an equivalent

IDM description. This allows a transfer of properties known to be

true for IDM to CIDM; in particular, faithful propagation of glitches.

2) We developed the theoretical foundations and a simulation frame-

work, which was incorporated into the Involution Tool [15].
1
A

suite of experiments on an inverter chain with varying matching

threshold voltages reveals an impressive increase in accuracy in

many cases, and confirms the ability to model sub-threshold pulses.

Paper organization: We start with some basic properties of the

IDM in Section 2. In Section 3, we empirically analyze the impact

of changingV out∗
th andV in∗

th on the delay functions. Section 4 intro-

duces and justifies the CIDM, while Section 5 proves its faithfulness.

In Section 6, we describe the CIDM timing simulation algorithm

and its implementation. Section 7 provides the results of our exper-

iments. Some conclusion in Section 8 round-off our paper.

2 INVOLUTION DELAY MODEL BASICS
In this section, we briefly discuss the IDM. For further details, the

interested reader is referred to the original publication [5].

The essential benefit of using involution delay functions is their

ability to perfectly cancel zero-time input glitches: Suppose that the

rising input transition in Fig. 1 is immediately, i.e., at the same time,

succeeded by a falling one. As this essentially constitutes no pulse at

all, the resulting output should also show no reaction. More specifi-

cally, the additional falling output transition has to be delayed back
in time to exactly hit the time of the previous falling output transi-

tion: Note carefully that just placing the falling output transition

at or before the rising one would not suffice, as the calculation of

the parameter T for the next transition references its position in

time. It is not difficult to verify that hitting the previous output

transition time is indeed achieved by satisfying −δ↑(−δ↓(T )) = T
and −δ↓(−δ↑(T )) = T .

Lemma 3 in [5], restated as Lemma 1 below, shows that strictly
causal involution channels, characterized by strictly increasing,

concave delay functions with δ↑(0) > 0 and δ↓(0) > 0, give raise to

1
The original Involution Tool is accessible via https://github.com/oehlinscher/

InvolutionTool, our extended version is provided at https://github.com/oehlinscher/

CDMTool.
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Figure 2: Analog channel model representation (upper part)
with a sample execution (bottom part). Adapted from [5].

a unique δmin > 0 that (i) resides on the 2
nd

median y = −x and

(ii) is shared by δ↑ and δ↓ due to the involution property.

Lemma 1 ([5, Lem. 3]). A strictly causal involution channel has a
unique δmin > 0 defined by δ↑(−δmin ) = δmin = δ↓(−δmin ).

In [5], Függer et al. have shown that self-inverse delay functions

arise naturally in a (generalized) standard analog model that con-

sists of a pure delay, a slew-rate limiter with generalized switching

waveforms and an ideal comparator (see Fig. 2). First, the binary-

valued input ui is delayed by δmin > 0, which assures causal

channels, i.e., δ↑/↓(0) > 0. For every transition on ud , the gener-
alized slew-rate limiter switches to the corresponding waveform

(f↓/f↑ for a falling/rising transition). Note that the value at ur (the

analog output voltage) does not jump, i.e., is a continuous function.

Finally, the comparator generates the output uo by discretizing the

value of this waveform w.r.t. the discretization threshold V out
th .

Using this representation, the need for δ↑(T ),δ↓(T ) < 0 can be

explained by the necessity to cover sub-threshold pulses, i.e., ones

that do not reach the output discretization threshold. In this case,

the switching waveform has to be followed into the past to cross

V out
th , resulting in the seemingly acausal behavior.

3 DISCRETIZATION THRESHOLD VOLTAGES
In this section, we will empirically explore the relation of gate

delays and discretization threshold voltages by means of simulation

results.
2
In most of the following observations, we assume that a

given physical (analog) gate is to be characterized as a zero-time

Boolean gate with a succeeding IDM channel that models the delay.

In order to accomplish concrete values, discretization threshold

voltages V in
th at the input and V out

th at the output of a gate have to

be fixed, and the pure delay component δmin of the IDM channel

as well as the delay functions δ↑ and δ↓ are determined accordingly.

Definition 2. The input and output discretization voltagesV in
th and

V out
th are called matching for a gate, if the induced delay functions

δ↑(T ), δ↓(T ) fulfill the condition δ↑(−δmin ) = δmin = δ↓(−δmin ).

To stress that a pair of input and output discretization threshold

voltages is matching, they will be denoted as V in∗
th and V out∗

th .

2
Our simulations have been performed for a buffer in the 15 nm NanGate library. How-

ever, since we are only reasoning about qualitative aspects common to all technologies,

the actual choice has no significance.
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Figure 3: The relationship among V in∗
th , δmin and V out∗

th .

We will now characterize properties of matching discretization

threshold voltages. They depend on many factors, including transis-

tor threshold voltages [1] and the symmetry of the pMOS vs. nMOS

stack. Since varying these parameters is commonly used in ad-

vanced circuit design to trade delay for power consumption [6, 11]

and reliability [7], as well as for implementing special gates (e.g.

logic-level conversion [12]), the range of suitable discretization

threshold voltages could differ significantly among gates.

Considering these circumstances it seems impossible that output

and input discretization values coincide among connected gates.

However, the following observation shows that there is an unlimited

number of matching discretization threshold pairs for IDM:

Observation 3. For every choice ofV in
th , there is exactly onematch-

ing V out
th . Fixing either of them uniquely determines the other and,

in addition, also the pure delay δmin .

Justification. Let us fix V out
th and investigate how V in

th and

δmin can be determined. For this purpose, we consider an analog

pulse at Vout that barely touches V out
th , i.e., results in a zero-time

glitch in the digital domain. There is a unique positive and a unique
negative analog output pulse with this shape, which is both con-

firmed by simulation results and analytic considerations on the

underlying system of differential equations [8]. Now shift the pos-

itive and negative pulses in time such that their output voltages

touch V out
th , one from below and the other from above, at time to

(see Fig. 3). Due to the condition δ↓(−δmin ) = δmin = δ↑(−δmin ),

this implies that the falling transition of the positive pulse and the

rising transition of the negative pulse at the input must both cross

V in
th at time ti = to −δmin . Thus, fixingV

out∗
th uniquely determines

the matching V in∗
th and δmin = to − ti . □

Observation 3 has a severe consequence for the simulation of

circuits in any model, like IDM, where Lemma 1 holds:

Observation 4. Fixing eitherV in
th orV out

th for a single gateG fixes

the threshold voltages of all gates in the circuit when it is simulated

in a model where Observation 3 holds.

It may take a large effort to properly characterize every gate

such that the dependencies among discretization thresholds in a

heavily interconnected circuit are fulfilled; in case of feedback loops,

−50 50 150 250

85

170
δ↑

δ↑

previous-output-to-input delay (T ) [ps]

input-to-output delay [ps]

Figure 4: Characterizing a gate with V in
th = V

out
th = VDD/2.

this may even be impossible. By contrast, an ideally composable

delay model would use a uniform discretization threshold such as

V out
th = V in

th = VDD/2. To investigate whether IDM allows such a

uniform choice, we proceed with Observation 5:

Observation 5. Characterizing a gate with non-matching dis-

cretization thresholds V in
th and V out∗

th , where matching V in∗
th and

V out∗
th lead to an IDM channel with pure delay δmin , results in

delay functions δ↑(T ), δ↓(T ), which satisfy δ↑(−δ
↑

min ) = δ
↑

min and

δ↓(−δ
↓

min ) = δ
↓

min for δ
↑

min = δmin + ∆+ , δ
↓

min = δmin + ∆−.

∆+ and ∆− have opposite sign, with ∆+ > 0 for V in
th < V

in∗
th .

Justification. The observation follows from refining the argu-

ment used for confirming Observation 3, where it was shown how

matchingV in∗
th andV out∗

th are achieved. For the non-matching case,

we increase resp. decrease V in
th , starting from V in∗

th , while keeping

everything else, i.e., electronic characteristics, waveforms andV out
th ,

unchanged. As illustrated in Fig. 3 for V in
th < V in∗

th , it still takes

δmin from hitting V in∗
th (at time to − δmin ) to seeing a zero time

glitch (at time to ) at the output. The falling transition has already

crossed V in∗
th when it hits on V in

th , whereas the rising transition

still has some way to go: Denoting the switching waveforms of the

preceding gate (driving the input) by f↑ and f↓, the pure delay for

the rising resp. falling transition evaluates to δ
↑

min = δmin + ∆+

and δ
↓

min = δmin + ∆
−
with

∆+ = f −1
↑
(V in∗
th ) − f −1

↑
(V in
th ), ∆− = f −1

↓
(V in∗
th ) − f −1

↓
(V in
th ). (1)

Consequently, δ↑(−δ
↑

min ) = δ
↑

min and δ↓(−δ
↓

min ) = δ
↓

min indeed

holds. Finally, since f↑ must obviously rise and f↓ must fall, it

follows that if ∆+ > 0 (the case in Fig. 3) then ∆− < 0. □

Fig. 4 shows the derived delay function for non-matching dis-

cretization thresholds. Note the different pure delays δ
↑

min , δ
↓

min .

Finally, the dependency of the IDM on the particular choice of the

discretization threshold voltages also reveals a different problem:

Observation 6. Different choices ofV out
th can significantly change

the digital model prediction of the IDM.

Justification. An oscillatory output behavior within range

[V0,V1]would only be reflected in the digital discretization ifV
out
th ∈

(V0,V1). Otherwise they are automatically removed by the compara-

tor in Fig. 2, i.e., totally suppressed. □



4 COMPOSABLE INVOLUTION DELAYS
In this section, we define our Composable Involution Delay Model
(CIDM), which allows to circumvent the problems presented in the

previous section: According to Observation 5, using non-matching

thresholds introduces a pure delay shift. The major building blocks

of our CIDM are hence PI channels, which consist of a pure delay

shifter with different shifts ∆+ and ∆− for rising and falling tran-

sitions followed by an IDM channel. In order to also alleviate the

problem of invisible oscillations identified in Observation 6, we re-

shuffle the internal architecture of the original involution channels

shown in Fig. 2 in order to expose trains of canceled transitions on

the interconnecting wires.

Theorem 7 (PI channel properties). Consider a channel PI
formed by the concatenation of a pure delay shifter (∆+,∆−) with
∆+,∆− ∈ R followed by an involution channel c , given via δ ↑(.)

and δ ↓(.) with minimum delay δmin . Then PI is not an involution
channel, but rather characterized by delay functions defined as

δ↑(T ) = ∆+ + δ ↑(T + ∆
+) δ↓(T ) = ∆− + δ ↓(T + ∆

−). (2)

These functions satisfy

δ↑
(
−δ↓(T ) − (∆

+ − ∆−)
)
= −T + (∆+ − ∆−) (3)

δ↓
(
−δ↑(T ) + (∆

+ − ∆−)
)
= −T − (∆+ − ∆−) (4)

δ↑(−δ
↑

min ) = δ
↑

min (5)

δ↓(−δ
↓

min ) = δ
↓

min (6)

for δ ↑min = δmin + ∆
+ and δ ↓min = δmin + ∆

−.

Proof. Consider an input signal consisting of a simple negative

pulse, as depicted in Fig. 1. Let t ′i resp. ti be the time of the falling

resp. rising input transition, t ′p resp. tp the time of the falling resp.

rising transition at the output of the pure delay shifter, and t ′o resp.

to the time of the falling resp. rising transition after the involution

channel. With T = tp − t ′o , we get δ ↑(T ) = to − tp as well as

tp = ti + ∆
+
and t ′p = t ′i + ∆

−
.

For the delay function δ↑(T ) of the PI channel, if we set T =

ti − t
′
o = ti − tp + tp − t

′
o = −∆

+ +T , we find

δ↑(T ) = to − ti = to − tp + tp − ti = ∆+ + δ ↑(T )

= ∆+ + δ ↑(T + ∆
+) (7)

as asserted. By setting T = −δmin − ∆+ and using δ ↑(−δmin ) =

δmin the equality δ↑(−δmin −∆
+) = ∆+ +δmin is achieved, which

confirms (5).

By analogous reasoning for an up-pulse at the input, which

results in the same equations as above with ∆+ exchanged with ∆−

and δ ↑(T ) with δ ↓(T ), we also get

δ↓(T ) = to − ti = to − tp + tp − ti = ∆− + δ ↓(T )

= ∆− + δ ↓(T + ∆
−) (8)

as asserted. Setting T = −δmin − ∆
−
and using δ ↓(−δmin ) = δmin

confirms (6) as well.

Using a simple parameter substitution allows to transform (7)

and (8) to

δ ↑(T ) = δ↑(T − ∆
+) − ∆+ (9)

δ ↓(T ) = δ↓(T − ∆
−) − ∆−. (10)

Utilizing these in the involution property of δ ↑ and δ ↓ provides

T = −δ ↑
(
−δ ↓(T )

)
= −δ↑

(
−δ ↓(T ) − ∆

+) + ∆+
= −δ↑

(
−
(
δ↓(T − ∆

−) − ∆−
)
− ∆+

)
+ ∆+

= −δ↑
(
−δ↓(T − ∆

−) + ∆− − ∆+
)
+ ∆+.

If we substitute T = T − ∆− in the last line, we arrive at

T − (∆+ − ∆−) = −δ↑
(
−δ↓(T ) − (∆

+ − ∆−)
)
, (11)

which confirms (3).

Doing the same for the reversed involution property of c , pro-
vides

T = −δ ↓
(
−δ ↑(T )

)
= −δ↓

(
−δ ↑(T ) − ∆

−
)
+ ∆−

= −δ↓
(
−
(
δ↑(T − ∆

+) − ∆+
)
− ∆−

)
+ ∆−

= −δ↓
(
−δ↑(T − ∆

+) + ∆+ − ∆−
)
+ ∆−.

If we substitute T = T − ∆+ in the last line, we arrive at

T + (∆+ − ∆−) = −δ↓
(
−δ↑(T ) + ∆

+ − ∆−
)
, (12)

which confirms (4).

□

Eq. (2) implies that δ↑(.) resp. δ↓(.) are the result of shifting δ ↑(.)

resp. δ ↓(.) along the 2
nd

median by ∆+ resp. ∆−. It is apparent from

Fig. 4, though, that the choice of ∆+, ∆− cannot be arbitrary, as it

restricts the range of feasible values for T via the domain of δ ↑(.)

resp. δ ↓(.) (see Definition 10 for further details).

Applying the analog channelmodel Fig. 2 to a PI channel suggests

the following changes to the internal architecture: First, we add

a (single-input, single-output) zero-time Boolean gateG followed

by a pure delay shifter ∆+/− before the pure delay unit δmin , and

split the comparator at the end into a thresholder unit Th and a

cancellation unit C . The former outputs, for each transition on ud ,
a correspondingVth -crossing time of ur , independently of whether

it will actually be reached. For subthreshold pulses, the transition

might even be scheduled in the past. The cancellation unit C only

propagates transitions that are in the correct temporal order.

Unfortunately, in the usual case of ∆+ < 0 or ∆− < 0, the output

of ∆+/− may reverse the temporal order of two consecutive input

transitions. The slope delimiter, however, is only defined on traces

encoded via the alternating Boolean signal transitions’Waveform
Switching Times (WST), which must be strictly increasing.

Our solution is to move both ∆+/− and C to the front of our PI

channel. Whereas this solves the above problem, it requires that

transitions exchanged between PI channels must use the Threshold
Crossing Times (TCT) encoding. It provides, in sequential order,

the points in time when the analog switching waveform would

have crossed Vth (it is not required that it actually does). Since a
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signal in TCT format also exposes canceled transitions, this archi-

tectural change inherently solves challenge (III) described in the

introduction.

Now we are finally ready to formally define a Composable Invo-

lution Delay Model (CIDM) channel (see Fig. 5). Note that, although

a PI channel differs by its internal structure significantly from the

CIDM channel, they are equivalent with respect to Theorem 7.

Definition 8. A CIDM channel is the succession of one pure delay

shifter ∆+/− and cancellation unit C per input, a Boolean gate G, a

pure-delay unit δmin , a shaping unit and a thresholding unit Th.

The main practical advantage of a CIDM channel, which is a

generalization of an IDM channel (just set ∆− = ∆+ = 0), is the ad-

ditional degree of freedom for gate characterization in conjunction

with the fact that a single channel encapsulates a single gate.

5 GLITCH PROPAGATION IN THE CIDM
Since CIDM channels do not satisfy the involution property, the

question about faithful glitch propagation arises. After all, the proof

of faithfulness of IDM [5] rests on the continuity of IDM channels,

which has been proved only for involution delay functions. In this

section, we will show that, for every modeling of a circuit with our

CIDM channels, there is an equivalent modeling with IDM channels.

Consequently, faithfulness of the IDM carries over to the CIDM.

For this purpose, we consider two successive CIDM channels and

investigate the logical channel, i.e., the interconnection between two
gatesG1 andG2 as shown in Fig. 6. For conciseness, we integrate

δmin , the slew-rate limiter and the scheduler S in a new block DSS ,
and ∆+/− followed byTh in the new block PTh. Using this notation,
the logical channel consists of the DSS block of the predecessor

gate G1 and the PTh block of the successor gate G2. Overall, this is

just an IDM channel followed by a pure delay shifter, which will

be denoted in the sequel as IP channel. The following Theorem 9

proves the somewhat surprising fact that every IP channel satisfies

the properties of an involution channel:

Theorem 9 (IP channel properties). Consider an IP channel
formed by an involution channel given via δ ↑(.), δ ↓(.), followed by a
pure delay shifter (∆+,∆−) with ∆+,∆− ∈ R. Then, it is an involution
channel, characterized by some delay functions δ↑(.), δ↓(.).

Proof. Consider an input signal consisting of a single negative

pulse, as depicted in Fig. 1. Let t ′i resp. ti be the time of the falling

resp. rising input transition, t ′c resp. tc the time of the falling resp.

rising transition at the output of the involution channel, and t ′o
resp. to the time of the falling resp. rising transition after the pure

delay shifter. With T = ti − t
′
c , we get δ ↑(T ) = tc − ti as well as

t ′o = t ′c + ∆
−
and to = tc + ∆

+
.

By setting T = ti − t
′
o = ti − t

′
c + t

′
c − t

′
o = T − ∆

−
for the delay

function δ↑(T ) of the IP channel we find

δ↑(T ) = to − ti = to − tc + tc − ti = ∆+ + δ ↑(T )

= ∆+ + δ ↑(T + ∆
−). (13)

By analogous reasoning for a an up-pulse at the input, which

results in the same equations as above with ∆+ exchanged with ∆−

and δ ↑(T ) with δ ↓(T ), we also get

δ↓(T ) = to − ti = to − tc + tc − ti = ∆− + δ ↓(T )

= ∆− + δ ↓(T + ∆
+). (14)

Equations (13) and (14) are equivalent to

δ ↑(T ) = δ↑(T − ∆
−) − ∆+ (15)

δ ↓(T ) = δ↓(T − ∆
+) − ∆− (16)

which can be used in the involution property of δ ↑ and δ ↓ to achieve

T = −δ ↑
(
−δ ↓(T )

)
= −δ↑

(
−δ ↓(T ) − ∆

−
)
+ ∆+

= −δ↑
(
−
(
δ↓(T − ∆

+) − ∆−
)
− ∆−

)
+ ∆+

= −δ↑
(
−δ↓(T − ∆

+)
)
+ ∆+ (17)

which confirms that the IP channel is indeed an involution channel.

□

We note that δmin of the IP channel is usually different from

δmin of the constituent IDM channel. Indeed, (13) above shows

that δmin is defined by δmin − ∆
+ = δ ↑(−δmin + ∆

−), for example,

which reveals that we may (but need not) have δmin , δmin . In

addition, the IP channel is strictly causal only if ∆+, ∆− satisfy

certain conditions: From (13) and (14) and the required conditions

δ↑(0) > 0⇔ δ↓(0) > 0, we get

δ↑(0) = ∆+ + δ ↑(∆
−) > 0⇔ δ↓(0) = ∆− + δ ↓(∆

+) > 0. (18)

At this point, the question arises whether it can be ensured

that the logical channels in Fig. 6 are strictly causal. The answer

is yes, provided the interconnected gates are compatible, in the

sense that the joined PTh block of G2 and the DSS block of G1 are

compatible w.r.t. Observation 5. More specifically, the pure delays

∆+, ∆− embedded in PTh ofG2 should ideally match (the switching

waveforms of) the DSS block in G1: According to (1), −∆+ is the

time the rising input waveform ofG2 requires to change fromV in∗
th

to the actual threshold voltageV in
th , while −∆

−
denotes the same for

the falling input. Assuming ∆+ > 0 and ∆− < 0, it can be seen from

(14) that the overall delay function for falling transitions is derived

by shifting the original one to the left and downwards (cp. Fig. 4).

Note that the 2
nd

median is crossed at the same location since

δ ↓(δmin + ∆
+) = δmin − ∆

−
, and thus results in δmin = δmin > 0

(which implies causality). The case of ∆+ < 0 and ∆− > 0 can be

argued analogously, starting from (13).

These considerations justify the following definition:

Definition 10 (Compatibility of CIDM channels). Two intercon-

nected CIDM channels are called compatible, if the logical channel
between them is strictly causal.
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Figure 6: Channel model for proofs of the CIDM. Signals in
blue have data type WST, those in green VCT.

It follows that every chain of gates properlymodeled in the CIDM

can be represented by a chain of Boolean gates interconnected by

strictly causal IDM channels, with a “dangling” PTh block at the

very beginning and a DSS block at the very end. Whereas the latter

is just an IDM channel, the former only forms a valid channel

when combined with the DSS block of the gate that drives the

input port. For an “outermost” input port of a circuit, we can just

require that the connected gate must have a threshold voltage

matching the external input signal, such that δ
↑

min = δ
↓

min = 0

for the dangling PTh component. As a consequence, all the results

and all the machinery developed for the original IDM [5] could, in

principle, be also applied to circuits modeled with CIDM channels.

6 SIMULATING EXECUTIONS OF CIRCUITS
In this section, we provide Algorithm 1 for timing simulation in the

CIDM. Since our algorithm is supposed to be run in the Involution

Tool [15], which utilizes Mentor
®
ModelSim

®
(version 10.5c), our

implementation had to be adapted to its internal restrictions.

The general idea is to replace the gates from standard libraries by

custom gates represented by CIDM channels. According to Fig. 5,

a custom gate C consists of three main components: (i) a pure

delay shifter PI = ∆+/− for each input I (cancellation is done

automatically by ModelSim), (ii) a Boolean function representing

the embedded gate G, and (iii) an IDM channel c . Note that the

output of G is in WST format, which facilitates direct comparison

of the events (evGO) occurring in our CIDM simulation with the

gate outputs obtained in classic simulations based on standard

libraries.

Unfortunately, the input and output of a CIDM channel, i.e., the

input of component PI and the output of component c , is of type
TCT, which is incompatible with discrete event simulations: In

ModelSim signal transitions are represented by events, which are

processed in ascending order of their scheduled time. Consequently,

they cannot be scheduled in the past, which may, however, be

needed for a transition (tn ,xn ,on ) with on < 0.

Therefore, for every CIDM channel C we maintain a dedicated

file F (C), in which the simulation algorithm writes all the transi-

tions (tn ,xn ,on ) generated byC . The event evT I (C) that ModelSim

inherently assigns to the output signal ofC is only used as a transi-
tion indicator : For every edge (C, I , Γ), it instantaneously triggers

the occurrence of the “duplicated” ModelSim event evT I (C, I , Γ),
which signals to I of Γ the event that there is a new transition in

the file F (C). For an input port i , exactly the same applies, except

that the input transitions in F (i) and the transition indicator are

externally supplied.

By contrast, both the inputs and output of the gateG embedded

in a CIDM channel C , i.e., the output of component PI and the

input of component c , are of type WST. Consequently, we can di-

rectly use the ModelSim events evGI (I ,C) resp. evGO(C) assigned
to the output of PI for input I of C resp. the output of G of C for

conveying WST transitions. Still, cancellations that would cause oc-

currence times t ′ < tnow must be prohibited explicitly (see Line 24

in Algorithm 1).

Our simulation algorithm uses the following functions:

• (t , ev, Par ) ← дetNextEvent(): Returns the event ev with the

smallest scheduled time t and possibly some additional param-

eters Par . If t ′ denotes the time of the previous event, then

t ≥ t ′ is guaranteed to hold. The possible types of events are

ev ∈ {evT I (Γ, I ,C), evGI (I ,C), evGO(C)}, where C is the chan-

nel the event belongs to, I one of its inputs, and Γ the vertex that

feeds I . If multiple different events are scheduled for the same

time t , they occur in the order first evT I (Γ, I ,C), then evGI (I ,C)
and finally evGO(C). If multiple instance of the same event are

scheduled for the same time t , then only the event that has been

scheduled last actually occurs.

• sched(ev, (t ,x)): Schedules a new event ev signaling the tran-

sition x ∈ {0, 1, toддle} at time t ; the case x = toддle means

x = 1 − x ′ for x ′ denoting the last (= previous) transition. If the

current simulation time is tnow , only t ≥ tnow is allowed.

• init(ev, (−∞,x)): Initializes the initial state of the event ev , with-
out scheduling it.

• value ← s(ev, t): Returns the value of the state function for

event ev ∈ {evGI (I ,C), evGO(C)} at time t .
• F (C) ← (t ,x ,o): Adds a new TCT transition (t ,x ,o) generated by
the output ofC to the file F (C), which buffers the TCT transitions

of C .
• (t ′,x) ← F (Γ) reads the most recently added TCT transition

(t ,x ,o) from the file F (Γ) and returns it as (t ′,x) = (t + o,x).
• Init(Γ): For both channels and input ports, the a fixed initial

value (−∞, Init(Γ)).
• x ← G . f (x1, . . . ,xG .d ): Applies the combinatoric function G . f
(of theG .d-ary gateG embedded in some channel C) to the list

of logic input values x1, . . . ,xG .d , and returns the result x .
• δmin ← calcDelta(G . f ,x ,∆+,∆−) calculates the delay to be

applied by the pure delay shifter. Note that it depends both on

the gate’s function G . f and the transition type x .

Algorithm 1 conceptually starts at time t = −∞ and first takes

care of ensuring a clean initial state. The simulation of the actual

execution commences at t = 0, where the conceptual “reset” that

froze the initial state is released: Every channel whose initial state

differs from the computation of its embedded gate in the initial

state causes a corresponding transition of the gate output at t = 0,

which will be processed subsequently in the main simulation loop.

The algorithm uses the procedure calcDelta for computing the

actual ∆+, ∆− employed in the PI component of a channel, which

unfortunately depend on the embedded gate G: For an inverter, for

example, a rising transition at the input leads to a falling transition

at the output, so δ
↓

min must be used. This is unfortunately not

as easy for multi-input gates G, since the effect of any particular

input transition on the output needs to be known in advance. This

is difficult in the case of an XOR gate, for example, as it depends

on the (future) state of the other inputs. Currently, we hence only

support ∆+ = ∆− for multi-input gates in our simulation algorithm.



Algorithm 1 CIDM circuit simulation algorithm

1: ▷ Executed at simulation time t = −∞:
2: for all channels C do
3: F (C) ← (−∞, Init (C), 0) ▷ init file

4: init (evT I (C), (−∞, 0)) ▷ init toggle indicator

5: init (evGO (C), (−∞, Init (C))) ▷ init gate output

6: for all incoming edges (Γ, I, C) of C : do
7: init (evGI (I, C), (−∞, Init (Γ))) ▷ init gate inputs

8: end for
9: end for
10: ▷ Executed at simulation time t = 0:

11: for all channels C , with d -ary gate G and incoming edges

(Γ1, I1, C), . . . , (Γd , Id , C) do
12: x = G .f (s(evGI (I1, C), 0), . . . , s(evGI (Id , C), 0))
13: if x , Init (C) then
14: sched (evGO (C), (0, x )) ▷ add reset transition

15: end if
16: end for
17: ▷ Main simulation loop:

18: (t, ev, Par ) ← дetN extEvent ()
19: while t ≤ τ do
20: if ev = evT I (Γ, I, C) then ▷ evT I go first

21: (∆+, ∆−, G) ← Par
22: (t ′, x ) ← F (Γ)
23: δmin ← calcDelta(G .f , x, ∆+, ∆−)
24: sched (evGI (I, C), (max{t, (t ′ + δmin )}, x )
25: else if ev = evGI (I, C) then ▷ evGI come next

26: (G) ← Par
27: x ← s(evGO (C), t ) ▷ Current gate output

28: y ← G .f (s(evGI (I1, C), t ), . . . , s(evGI (IG .d , C), t ))
29: if x , y then
30: sched (evGO (C), (t, y))
31: end if
32: else if ev = evGO (C) then ▷ and finally evGO
33: (x, δ↑(.), δ↓(.), ∆+, ∆−) ← Par
34: (t ′, x ′) ← F (C)
35: T ← t − t ′
36: if x = 1 then
37: o ← δ↑(T − ∆+) − ∆+

38: else
39: o ← δ↓(T − ∆−) − ∆−

40: end if
41: F (C) ← (t, x, o)
42: sched (evT I (C), (t, toддle)) ▷ triggers evT I (C, I, Γ′)
43: end if
44: (t, ev, Par ) ← дetN extEvent ()
45: end while
46: postprocess()
47:

48: procedure calcDelta(f unc, x, ∆+, ∆−)
49: if f unc = not then
50: if x = 1 then return ∆−

51: else return ∆+

52: end if
53: else if f unc = id then
54: if x = 1 then return ∆+

55: else return ∆−

56: end if
57: else
58: assert(∆+ = ∆−)
59: return ∆+

60: end if
61: end procedure

Theorem 11 shows that Algorithm 1 indeed computes valid ex-

ecutions for a circuit, provided all its logical channels are strictly

causal. As argued in Section 5, this is the case if all interconnected

CIDM channels are compatible. Its proof relies on a formal model

of signals, circuits and executions and a suite of technical lemmas,

which had to be omitted here due to lack of space but can be found

in the extended version of our paper [9].

Theorem 11 (Correctness of simulation). For any 0 ≤ τ < ∞,
the simulation Algorithm 1 applied to a circuit with compatible CIDM
channels always terminates with a unique execution up to time τ .

7 EXPERIMENTS
In this section, we validate our theoretical results by means of

simulation experiments. This requires two different setups: (i) To

validate the CIDM, we incorporated Algorithm 1 in our Involution

Tool [15] and compared its predictions to other models. (ii) To

establish the mandatory prerequisite for these experiments, namely,

an accurate characterization of the delay functions, we employed a

fairly elaborate analog simulation environment.

Relying on the 15 nm Nangate Open Cell Library featuring

FreePDK15
TM

FinFET models [10] (VDD = 0.8V), we developed

a Verilog description of our circuits and used the Cadence
®
tools

Genus
TM

and Innovus
TM

(version 19.11) for optimization, place-

ment and routing. We then extracted the parasitic networks be-

tween gates from the final layout, which resulted in accurate SPICE

models that were simulated with Spectre
®
(version 19.1). These

results were used both for gate characterization and as a golden

reference for our digital simulations.

Like in [5], our main target circuit is a custom inverter chain.

In order to highlight the improved modeling accuracy of CIDM,

it consists of seven alternating high- and low-threshold inverters.

They were implemented by increasing the channel length of p-

respectively nMOS transistors, which varies the transistor thresh-

old voltages [1, Fig. 2]. For comparison purposes, we conducted

experiments with a standard inverter chain as well.

Regarding gate characterization for IDM, we used two differ-

ent approaches. Recall from Observation 4 that fixing a single dis-

cretization threshold pins the value of all consistent δmin , V
in
th and

V out
th throughout the circuit. In the variant of IDM called IDM*,

we chose V out∗
th = VDD/2 for the last inverter in the chain, and

determined the actual value of its matching V in∗
th by means of ana-

log simulations. To obtain consistent discretization thresholds for

the whole circuit, we repeated this characterization, starting from

V out∗
th = V in∗

th for the next inverter up the chain. We thereby ob-

tained values in the range [0.301, 0.461] V, with V in∗
th = 0.455V

for the first gate. Obviously, characterizing a circuit in this fash-

ion is very time-consuming, as only a single gate in a path can be

processed at a time.

Alternatively, we also separately characterized every gate for

V out∗
th = VDD/2 and determined the matching V in∗

th , which we will

refer to as IDM+. Note carefully that the discretization thresholds

of connected gate out- and inputs differ for IDM+, such that an

error is introduced at every interconnecting edge.

Although it is typically small and may even out, it can add up for

larger circuits. Indeed, for the gates in our library, we recognized

a clear bias towards V in∗
th < VDD/2 for V out∗

th = VDD/2. Finally,

characterizing gates for CIDM was simply executed for V out
th =

V in
th = VDD/2.
The results for stimulating the standard inverter chain, with 2,500

normally distributed pulses of average duration µ and standard

deviation σ , obtained by the Involution Tool for IDM*, IDM+, CIDM

and the default inertial delay model, are shown in Fig. 7 (top).
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Figure 7: Accuracy, expressed as the normalized total devi-
ation area of the digital predictions, relative to SPICE for
the standard inverter chain (top) and high/low threshold in-
verter chain (bottom). Lower bars indicate better results.

The accuracy of the model predictions are presented relative to

our digitized SPICE simulations, which gets subtracted from the

trace obtained with a digital delay model. Summing up the area

(without considering the sign), we obtain a metric that can be used

to compare the similarity of two traces. Since the absolute values

of the area are inexpressive, we normalize the results and use the

inertial delay model as baseline.

For short pulses, IDM*, IDM+ and CIDM perform similarly. We

conjecture that this is a consequence of the narrow range forV out∗
th

and V in∗
th ([0.39156, 0.4] V), and therefore the induced error due to

non-perfect matchings in IDM+ is negligible. For broader pulses, we

observe a reduced accuracy of IDM* and IDM+, which is primarily

an artifact of the imperfect approximation of the real delay function

by the ones supported by the Involution Tool. We even observed

settings, where CIDM does not even beat the inertial delay model,

which can also be traced to this cause.

For our custom inverter chain [Fig. 7 (bottom)], CIDM outper-

forms, as expected, the other models considerably, whereas IDM+

occasionally delivers poor results, even compared to inertial delays.

This is a consequence of the non-matching threshold values and

the accumulating error. IDM* achieves much better predictions, but

still falls short compared to CIDM. For broader pulses, CIDM and

the inertial delay model perform similar, since they use the same

maximum delay δ↑(∞) and δ↓(∞). The degradation of IDM* is once

again a result of the imperfect delay function approximations.

Finally, analog simulations shown in Fig. 8 reveal, that sub-

threshold pulses at some stage S1 can recover at the subsequent

stage (S2) and even later in the chain (S4). Note that such a behavior
is only faithfully modeled by CIDM, since IDM cannot propagate

canceled transitions on signal S1 (dashed lines).

To summarize the results of our experiments, we highlight that

the characterization procedure for IDM either requires high effort

(IDM*) or may lead to modeling inaccuracies (IDM+). The CIDM

clearly outperforms all other models w.r.t. modeling accuracy for

our custom inverter chain, and is also the only model that can

faithfully predict the “de-cancellation” of sub-threshold pulses.

0 30 60 90

time [ps]

S1 S2 S4 VDD/2

0 35 70 105

time [ps]

Figure 8: Recovering sub-threshold waveforms in an in-
verter chain using the CIDM.

8 CONCLUSIONS
We presented the Composable Involution Delay Model (CIDM), a

generalization of the Involution Delay Model (IDM) that retains its

faithful glitch-propagation properties. Its distinguishing properties

are wider applicability, composability, easier characterization of

the delay functions, and exposure of canceled pulse trains at inter-

connecting wires. Despite this considerable step forward towards a

faithful delay model, there is still some room for improvement, in

particular, for accurately modeling the delay of multi-input gates.
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