
HAL Id: hal-03451019
https://hal.science/hal-03451019

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grad Centroid Activation Mapping for Convolutional
Neural Networks

Baptiste Lafabregue, Jonathan Weber, Pierre Gançarski, Germain Forestier

To cite this version:
Baptiste Lafabregue, Jonathan Weber, Pierre Gançarski, Germain Forestier. Grad Centroid Ac-
tivation Mapping for Convolutional Neural Networks. IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), Nov 2021, Washington (virtual), United States. �10.1109/IC-
TAI52525.2021.00033�. �hal-03451019�

https://hal.science/hal-03451019
https://hal.archives-ouvertes.fr

Grad Centroid Activation Mapping for
Convolutional Neural Networks

Baptiste Lafabregue∗†, Jonathan Weber∗, Pierre Gançarski†, and Germain Forestier∗
∗IRIMAS

Université de Haute-Alsace, Mulhouse, France
Email: firstname.lastname@uha.fr

†ICube
Université de Strasbourg, Strasbourg, France

Email: lastname@unistra.fr

Abstract—An important research effort has been recently
dedicated to understand the decision mechanism of deep neural
networks. Among them, Class Activation Mapping (CAM) and
its variations have proved their capacity to obtain useful insights
about Convolutional Neural Network (CNN) models’ decisions.
However, these methods remain limited to the supervised case
regardless of CNN-based advances in unsupervised tasks such
as clustering. To fill this gap, we propose a new method called
Grad-CeAM for centroid-based clustering methods used on CNN
representation. Through an experimental study, we show that our
method has the capacity to localize discriminating features used
by a CNN model to create its representation and that it can be
used to explain the clusters assignment. We also show that this
method can be used in different application domains by providing
uses cases on time series and images clustering.

Keywords-Activation Map, Clustering, Deep Learning, Inter-
pretability, Time series, Image

I. INTRODUCTION

In the past few years, the development of clustering methods
based on Deep Neural Networks (DNNs) have resulted in
significant improvements, especially in the image domain [1]–
[3]. Among them, models based on Convolutional Neural
Networks (CNNs) achieved an unprecedented breakthrough in
supervised classification [4]–[6]. This performance of CNNs
was also confirmed more recently for clustering, where CNNs
have obtained significantly better results than other archi-
tectures [1], [7]–[10] making them a major tool for un-
supervised approaches. However, despite the high gain in
performance, CNNs, like other DNNs, lack of interpretability
as the produced models cannot be intuitively understood by
a human [11]. Therefore it is difficult, if not impossible, to
assert which features are the basis of the model’s decision.

Interpretability of a model is a major issue on different
levels. When the model fails to obtain the expected predictions,
we want to be able to identify major limitations to improve
the existing model. Alternatively, when a model reaches high
performance, we want to verify that the decision is based on
the proper features. This results in better reliability and trust
by the users, but it also allows them to learn information from

This work was supported by the ANR TIMES project (grant ANR-17-
CE23-0015) of the French Agence Nationale de la Recherche.

it (e.g. significant patterns, object similarities, etc.). Multiple
tools have been already proposed in the literature. This goes
from reduction dimension techniques, to better visualize the
capacity of the DNNs to separate each class or cluster (e.g.
t-SNE [12] or UMAP [13]), to CNNs’ activation maps that
consist of each layers’ filters outputs. For the latter, the infor-
mation remains limited as it displays the result of all filters
but it says little on which element was used in the decision
process. Class Activation Mapping (CAM) was proposed to
answer to this limitation by computing a heatmap based on the
degree of activation of layers’ outputs for a given predicted
class. First proposed by [14], this version is only applicable to
CNN models which do not contain any fully-connected layers
and required a specific architecture, or a modification of it with
supplementary training. [15] proposed another version, grad-
CAM, that could be used without any supplementary process
and that generalizes to all CNNs models.

However, both CAM and grad-CAM rely on the softmax
layers used for the class prediction to compute the heatmap
for each class. Therefore it cannot be applied directly to CNNs
models dedicated to clustering. Indeed, clustering models gen-
erally rely on a simple encoder, often trained with a decoder on
a reconstruction task. Some methods use a clustering layer [2],
[3], [8], but, with the exception of a few methods [1], it cannot
be directly considered as the equivalent of a softmax layer.

This paper aims to answer to this issue through the follow-
ing contributions:
• We propose a new method, Gradient-based Centroid

Activation Mapping (Grad-CeAM), that extends grad-
CAM to CNNs models dedicated to clustering;

• We evaluate our method by showing that it can highlight
discriminating features between different clusters and also
that it can be used to detect failures in the clustering
model;

• We show that our method can be used on standard image
datasets but we also that it can be easily applied to other
types of data such as time series;

• We provide the code to ensure the reproducibility and
reusability of the method on github 1.

1https://github.com/blafabregue/gradCeAM

The rest of this paper is organized as follows. We first
discuss related works and give more insights on the use of
activation maps and clustering CNN methods in Sec. II. In
Sec. III, we present our method. In Sec. IV we present the
tools used for the evaluation of our method and the results
obtained in Sec. V, on its capacity to localize (Sec. V-A) and
discriminate (Sec. V-B) clusters’ features. Then, we conclude
by a discussion on the current limitation of method and
perspective in Sec. VI.

II. BACKGROUND KNOWLEDGE AND RELATED WORKS

In this section, we will first present the CAM and Grad-
CAM approaches and, in a second time, the existing proposi-
tions to apply them in a clustering context. However, before
going further, we want to mention that we will take the image
domain as an application example, but similar reasoning can
be done for other types of data where CNN models are used,
such as time series.

A. CAM and Grad-CAM

The vast majority of clustering methods involving deep
learning rely on training an encoder, noted f(), to transform
the raw data into a latent space more suitable for the clustering
task.

Most of the time, the latent representation is a one-
dimensional vector that gets rid of specific dimensions of
the input. For a set of input images X = {x1, ..., xN}, with
xi ∈ Rw×h×c, where w is the width, h the height, and c the
number of channels in the image, this will result in its latent
representation Z = {z1, ..., zN} = {f(x1), ..., f(xN)}, with
zi ∈ Rm, where m is the number of feature of the latent space.
This may be an advantage in multiple tasks as we want to
be shift-invariant or scale-invariant, since the latent dimension
loses the link with the spatial localization of each latent feature
in the inputted image.

The encoder is composed of a set of layers of different types.
Among them, convolutional layers preserve the dimensional
nature of the data (i.e. spatial for images and temporal for
time series). Convolutional layers consist of a set of filters. The
output is obtained by convolving the filter over the input to
obtain a set of activation maps that will be fed to the next layer.
For a convolutional layer l, the output of the encoder after the
layer l can be seen as a new image, noted A ∈ Rw′×h′×f ,
where w′ is the width, h′ the height, and f the number of
channels/filters of the input. Hence, as the convolution is a
local operation, there is a spatial correspondence between the
original input and the layer output. Consequently, we can use
it to localize the activation degree in the previous layer output
but also in the original inputted image.

a) Class Activation Mapping (CAM):: The idea behind
this method is to find the linear combination of generated
activation maps, A, that resulted in the model prediction of
a class c. Their method is straightforward but requires that
the network is composed of convolutional layers followed by
a Global Average Pooling (GAP) layer and a softmax layer,
that we will note S. Thus, the softmax layer’s output for the

class c, Sc is a linear combination of the GAP output, which
is, by construction, the average activation of each filter of the
last convolutional layer A, hence :

Sc =

f∑
k=1

Wk ∗
w′∑
i=0

h′∑
j=0

Aki,j =

f∑
k=1

Wc,k, (1)

where f is the number of filters of layer A and Ak is the kth

filter of A, and Wk is the weight of the softmax layer. The
CAM is then computed as :

CAM =

f∑
k=1

Ak ∗Wc,k (2)

b) grad-CAM:: In this approach, the heatmap is also
computed with respect to a class, c. It uses the cth value
of the softmax layer, Sc, to compute the gradient value at
the last convolutional layer’s feature map A. Note that in this
case this layer may not necessarily be followed only by the
combination of a Global Average Pooling and a softmax layer.
Each filter weight is computed for each A’s weights Wc,k and
is global-average-pooled:

Wc,k =
1

D

w′∑
i=0

h′∑
j=0

∂Sc

∂Aki,j
(3)

where D = h′×w′ is the input dimension. Note that depending
on the inputted data it may have more or only one dimension
(e.g. the time dimension for time series), but the equation is
given for 2D-convolutions.
We obtain from this weights the degree of activation for each
layer’s filter. The heatmap consists of the weighted sum of all
the filter’s output with their degree of activation:

Lcgrad−CAM = ReLU(
∑
k

Wc,kA
k) (4)

Thus, this emphasises the convolution filters that are both
highly activated by the input and that contribute to the compu-
tation of the gradient. Note that the ReLU function is added to
only keep positive contributions to Sc. Therefore by restricting
the gradient computation to Sc we only select the convolution
results that contribute to this specific class.

B. Clustering application

The adaptation of CAM to clustering methods remains
highly limited. This is explained by the absence of a softmax
layer in these methods. Therefore, it is difficult to find a way of
computing the contribution of each filter to the cluster choice
separately.

[16] proposed the first adaptation of CAM for clustering,
called CLustering Activation Mapping (CLAM). They used a
variation of grad-CAM, Score-CAM [17], that uses a further
forward pass with a masked input based on each filter of the
last convolutional layer A. It allows to better fix the weight
of each filter in the decision based on the softmax output of
the evaluated class. However, to apply it to a clustering task,
[16] solved the issue by using a framework based on Deep

Embedded Clustering (DEC) [3]. DEC framework consists in
pretraining a DNNs encoder and obtaining a initial clustering
with K-Means method into K clusters. Then, a clustering layer
is added to the encoder, composed of a fully connected layer of
size K (the number of clusters), noted q. These layer weights
are initialized with centroids values. Therefore, for an input
i, the output of the clustering layer at index k, with 1 ≤
k ≤ K, qi,k can be seen as the likelihood that it belongs to
cluster k. Based on the similarity of the clustering layer and
a softmax layer, they just transposed the Score-CAM method
by replacing the Sc by qk.

However, this approach still requires to have a clustering
DNN based on the DEC method or that includes a layer with
a purpose similar to a softmax layer. Even if such layers are
often used, this is not always the case. Several methods are
still proposed that only use a simple autoencoder [18].

III. GRAD-CEAM: AN ADAPTATION OF GRAD-CAM TO
CENTROID BASED CLUSTERING

In the clustering case, we do not have a softmax layer with
a neuron matching each class as in the classification case.
Thus, we want to replace the use of softmax class value
Sc with a value that will help to select convolutions that
contribute to making the input belong to the analysed cluster.
However, instead of classes we have clusters that are often
represented by their centroids. The proposed method focuses
on clustering methods that involve centroids (e.g. K-Means,
EM, DEC, etc.) on top of the CNN’s learned representation.
Hence, the derivative used to compute the gradient should
be done on a loss that is higher when the input is close to
the analysed centroid but also lower for other centroids. To
do so, we identify which features of the latent representation
z contribute the most to obtain the weights weightz,c with
respect to the cluster c. Then, we compute a weighted value of
the input’s latent representation. The weights weightz,c need
to emphasize features that contribute the most to making z
close to the centroid µc of cluster c. To do so, the weights
have to:

1) discriminate between all clusters. For example, some
of the latent space features may be low or high for
all clusters and therefore do not contribute a lot in the
cluster choice. This is computed independently of z by
the following formula:

centroids weightsc =

∥∥∥∥∥∥
∑

µk∈M\{µc}

|µk − µc|

∥∥∥∥∥∥
0−1

,

(5)
where M is the set of all centroids, ‖.‖p−q is the
normalization between p and q, and |.| is the absolute
value.

2) contribute to making z closer to µc than the other
centroids. Indeed, we only want features that contribute
positively to making z assigned to cluster c. This is done

based on the representation z by the following formula:

representation weightsc(z) = ‖|µc − z|‖minM−maxM
,

(6)
where minM = reduce min(

∑
µk∈M\{µc}|µk − z|)

and maxM = reduce max(
∑
µk∈M\{µc}|µk − z|).

From these two elements, we obtain weightz,c and the final
loss:

weightz,c = representation weightsc(z)∗centroids weightsc,
(7)

Lccentroid(z) = z ∗ weightz,c, (8)

The activation maps are then obtained by:

W c
k =

1

D

w′∑
i=0

h′∑
j=0

∂Lccentroid(z)

∂Ak
(9)

The heatmap is then computed as:

Lcgrad−CeAM =
∑
k

ReLU(W c
k)A

k, (10)

For classical grad-CAM, ReLU function is also applied to
Ak, but in our case, some negative/masking values may still
contribute to the centroid choice. The overall model is sum-
marized in Fig. 1. In the following, we evaluate our method
on two aspects: the localization and the discriminability.

IV. EXPERIMENTAL SETUP

A. Datasets

To validate our method we decided to use both image and
time series datasets to show that our method is not restricted
to one type of data.

For the image domain we selected:
• MNIST: A dataset of 28-by-28 grayscale images. It

consists of 70000 handwritten digits, 10000 in the train
set, and 60000 in the test set equally distributed. The
digits are centered and size-normalized [19]. Examples
of these classes are presented in Fig. 2.

• STL-10: A dataset of 96-by-96 color images. There are
10 classes, with 13000 examples, 5000 in the train set,
and 8000 in the test set equally distributed. It consists
in classifying the images of the following elements,
airplane, bird, car, cat, deer, dog, horse, monkey, ship,
truck [20]. Examples of these classes are presented in
Fig. 3.

And for the time series domain:
• Coffee: A dataset of univariate time series of length 286.

It consists of 56 food spectrographs, 28 in the train set
and 28 in the test set equally distributed. It is composed
of two classes, each corresponding to a type of coffee
beans [21]. Examples of the two classes are presented in
Fig. 4.

• Trace: A dataset of univariate time series of length 286.
It is a 4 classes synthetic dataset designed to simulate
instrumentation failures in a nuclear power plant that are

C
O

N
V

C
O

N
V

C
O

N
V

* ▽n* ▽2 + ... +* ▽1 +

...

Latent
representation

...

Other layers

>0
...▽2 ▽n▽1

ReLU + GAP

 =

Input image

grad-CeAM

...

...

...

Centroids

Wc

*

0.0
0.2
0.0

0.9

...

Foward pass

Backward pass (gradient)

Fig. 1. Grad-CeAM model that combines the last convolutional layer output with the thresholded backpropagated gradient

Fig. 2. Examples of MNIST dataset classes

Fig. 3. Examples of STL-10 dataset classes

(a) class 1 (b) class 2

Fig. 4. Examples of Coffee dataset classes, the red squares display the area
of decision between the two classes

(a) class 1 (b) class 2 (c) class 3 (d) class 4

Fig. 5. Examples of Trace dataset classes

differentiated by their temporal patterns. [22] Examples
of the four classes are presented in Fig. 5.

• CBF: A dataset of univariate time series of length 128. It
is a 3 classes synthetic dataset designed to discriminate
between three shapes, Cylinder (class 1), Bell (class 2),
and Funnel (class 3) [23]. Examples of the three classes
are presented in Fig. 6.

The three time series datasets are extracted from the UCR

(a) class 1 (b) class 2 (c) class 3

Fig. 6. Examples of CBF dataset classes

archive [24]2.

B. Convolutional Neural Networks models

To learn the latent representation we used Convolutional
AutoEncoders (CAEs).

For the image datasets, we used a simple encoder-decoder
architecture. The encoder is composed of d 2D-convolutional
layers, followed by a Global Average Pooling layer (GAP)
and a dense layer of size 10 for the embedding layer. The
decoder is constructed as a mirror of the d 2D-convolutional
layers and ended with a final convolutional layer to fit the input
dimension. For STL-10 we used d = 3 with parameters set at
[32, 64, 64] for filters, with [3, 5, 5] for kernel sizes, and [2,
2, 2] for strides. For MNIST we used d = 2 with parameters
set at [32, 64] for filters, with [3, 5] for kernel sizes, and [2,
2] for strides.

For the time series datasets, we also used an encoder-
decoder architecture. The encoder is based on the ResNet
architecture proposed in [25]. The encoder is composed of
three residual blocks followed by a GAP and the embedding
layer as a dense layer of size 10. Each residual block is first
composed of three convolutional layers with a fixed filter size
of 64. The filter’s length is set to 8, 5, and 3 respectively for
the first, second, and third convolution. A ReLU activation
function, preceded by a batch normalization operation, is then
added at the end of the block. The decoder is constructed as

2https://timeseriesclassification.com/

a mirror of the three residual blocks and ended with a final
convolutional layer to fit the input dimension.

All CAEs are trained with a classical reconstruction loss:

Lr =
1

n

n∑
i=1

(xi − g(f(xi)))2, (11)

where f() is the encoder and g() the decoder.
The centroids are computed with the K-Means method

executed on the latent representation outputted by the encoder.
Before going into the evaluation, it should be mentioned that

for all the experiments we want to evaluate the interpretability
and correctness of the results provided by our visualization
method. Thus, whether the actual CNN model obtains good
or bad clustering performance, we want that to be reflected in
the visualization.

V. EVALUATION

A. Localization and model analysis

The localization denotes the capacity of the method to
correctly identify the features and regions in the input that
were used in the decision process. For supervised methods, it
is usual to use bounding boxes evaluation on network trained
for classification to evaluate if the localization, obtained with
CAM tools, manages to highlight the proper area in the image.
However, this implies having the data labels and the matching
bounding boxes, and furthermore, that the CNN model makes
coherent decision. This is not realistic in an unsupervised
setup, where the datasets used are often simplified with only
one centered element per image or one general pattern for
time series, making irrelevant the use of bounding boxes.
Moreover, it also assumes that the algorithm bases its decision
on the proper part of the input, but given the results obtain by
clustering methods we can assume that it is not necessarily the
case. To summarize, we do not want to evaluate the capacity
of our method to highlight the expected area of interest but
the one used by the CNN model. Consequently, we want that
the localization proposed by our method matches the frequent
patterns among the objects grouped in the same cluster. This
will also evaluate the quality of insights outputted by our
method.

For the MNIST dataset (Fig. 7), we took two examples, one
of the cluster matching the class 6 and one matching class
9. For class 6, the Grad-CeAM is actually showing a high
activation on vertical bar of digits 6 and also on the bottom
right of the loop. Therefore the assignment of the last sample,
which should be grouped with other digits 0, can be better
understood as it is not completely rounded on the left side
and has a narrow shape on the right side. For class 9, we can
observe a symmetric activation (i.e. on the vertical bar and
left of the loop). The two most left figures are actually close
to the centroid (so more representative) than the two others.
For the third sample, it can be observed that the bottom of the
digit 9 is not highlighted as it does not match the straight bar
from other samples. For the last sample, which is a digit 8,
the activation localization is similar to the two first samples,

(a) cluster 6 (b) cluster 9

Fig. 7. Grad-CeAMs heatmap on MNIST dataset. Fig. 7a contains samples
from the cluster matching the class 6, and Fig. 7b the one matching the
class 9. Red regions correspond to high contribution and blue to almost no
contribution to matching the centroid.

(a) cluster 6 (b) cluster 9

Fig. 8. Grad-CeAM heatmap on STL-10 dataset. Fig. 8a contains samples
from the cluster mostly matching the class boat, and Fig. 8b the one mostly
matching the class plane. Red regions correspond to high contribution and
blue to almost no contribution to matching the centroid.

as the bottom loop of digit 8 is confused with the bottom bar
of digit 9 without taking into consideration the bottom hole.
This partially show that the model learned is still sensible to
a small rotation.

For the STL-10 dataset, we displayed two clusters’ exam-
ples in Fig. 8. It can be observed on both datasets that the
assignment is actually based on the general image’s layout and
not on the object itself. The cluster 6 is grouping images where
the horizon is dividing the image into two parts and the cluster
9 groups objects centred in a monochrome background (i.e.
the sky). The Grad-CeAMs clearly validate this interpretation.
For this dataset, the interpretation of the results are not
straightforward. However, the Grad-CeAM heatamps on STL-
10 clearly show that the network does not focus on the objects
themselves, especially for the cluster 6, showing that the
features learned by the network are not meaningful for this
clustering task.

For the Trace dataset, in Fig. 9, the clusters 1 and 2
are perfectly matching the classes 1 and 2 and Grad-CeAM
precisely highlights the two different time patterns. However,
there is a confusion of the classes 3 and 4. On this two classes,
the clustering seems based on whether the jump happens early
or late in the time series and not on the presence of the small
variation at the top plateau. This is validated by the Grad-
CeAM where the small variation is not highlighted.

For the Coffee dataset, as we have only two classes and
we obtain good results (0.82 of NMI score), there is little
to conclude by only comparing the two clusters. Therefore,
we compare the Grad-CeAM localization with a CAEs with a

(a) cluster 1 (b) cluster 1 (c) cluster 2 (d) cluster 2

(e) cluster 3 (f) cluster 3 (g) cluster 4 (h) cluster 4

Fig. 9. Grad-CeAM heatmap on Trace dataset. Two samples are displayed per cluster. Red regions correspond to high contribution and blue to almost no
contribution to matching the centroid (colors are smoothed for visual clarity and better reflect filters’ size).

lower clustering performance, measured by their Normalized
Mutual Information (NMI) score. The low model is obtained
by selecting the worst model among multiple executions. In
Fig. 10, we can easily identify the difference between the two
models. The high model catches the area of discrimination,
whereas the low model focus on the end of the time series
(low or high bump) that has no involvement in the class
discrimination.

For the CBF dataset, in Fig. 11, we displayed the com-
parison of heatmap generated from the three centroids on the
same time series to show the differences between the three
centroids’ Grad-CeAMs. For the Grad-CeAMs of the cluster
1 (Fig. 11a to 11c), the activation is strong when the signal
is stable, and especially low when there is an increase in the
signal. At the opposite, the Grad-CeAMs of the cluster 3 are
clearly focusing on strong increase of the signal. It should
be noted that the heatmaps’ colors are normalized, hence the
highly red part in Fig.11c is just telling that this part of the
time series contributes more to the decision, but overall the
degree of activation/contribution is lower than in the red part
of the Fig. 11a.

The results obtained on these 5 datasets illustrate that
our method localization help to understand the clustering
assignment and therefore seems coherent with the obtained
clustering.

B. Cluster discrimination

In this section, we want to evaluate if the features high-
lighted by Grad-CeAM are specific to each cluster and allow
to understand the choice between clusters.

If the previous assertion is true, amplifying (or reduce)
the values of the selected feature should respectively have
a positive (or negative) effect on the choice of the analyzed
cluster. To evaluate this, we have to use the gradient computed
for Grad-CeAM to weight the output of the last convolutional

layer A. The new output is computed as:

Ac−graded = ‖ReLU(ack)‖0−2A
k (12)

The ack weights are normalized between 0 and 2 to amplify
the high values. Then, Ac−graded is used as input of the
CAE’s next layer to obtain the modified representation Zc =
{zc1, ..., zcN}. Finally, a new clustering is computed on Zc but
based on the original centroids, M , used to compute the Grad-
CeAM model. Thus, by measuring the proportion of objects
assigned to the cluster c, we can asses if the modification
added improved the likelihood of an input to be assigned to
the cluster c.

TABLE I
COMPARISON OF CLUSTER CARDINALITY BEFORE AND AFTER APPLYING

GRADIENTS WEIGHTS TO THE LAST CONVOLUTIONAL LAYER.

Dataset STL-10 MNIST Trace Coffee CBF

Median 1.1 1.4 1.5 1.2 1.7
Average 1.2 1.4 1.7 1.2 1.4
Minimum 0.0 0.5 1.0 0.0 0.8
Maximum 3.1 5.8 2.8 2.3 1.8

In Tab. I, we have reported the median, average, minimal,
and maximal proportion change of cluster assignations. It can
be observed that the cluster used to set the weights largely
benefits from the amplification. Hence, this shows that, on
average, Grad-CeAM selects the correct features for each
centroid. However, we can also point that, even though the
median gain is positive (1.3 in average, i.e. 30% cardinality
gain), some clusters do not benefit from the modification. For
all dataset, except Trace, there is at least one cluster that loses
in cardinality or even disappears (i.e. no object is assigned
to this cluster). For MNIST and CBF, this seems marginal,
as it is limited to one cluster, all the others having at least
a stable cardinality. For Coffee, one cluster absorbs the other

(a) cluster 1 - NMI 0.82 (b) cluster 1 - NMI 0.82 (c) cluster 2 - NMI 0.82 (d) cluster 2 - NMI 0.82

(e) cluster 1 - NMI 0.03 (f) cluster 1 - NMI 0.03 (g) cluster 2 - NMI 0.03 (h) cluster 2 - NMI 0.03

Fig. 10. Grad-CeAM heatmap on Coffee dataset, where 10a,10b,10c and 10d are samples of each cluster from clustering with 0.82 of NMI score and 10e,10f,
10g and 10h are samples of each cluster with a representation with 0.03 of NMI score. Red regions correspond to high contribution and blue to almost no
contribution to matching the centroid (colors are smoothed for visual clarity and better reflect filters’ size).

(a) Sample 1
cluster 1 Grad-CeAM

(b) Sample 2
cluster 1 Grad-CeAM

(c) Sample 3
cluster 1 Grad-CeAM

(d) Sample 1
cluster 2 Grad-CeAM

(e) Sample 2
cluster 2 Grad-CeAM

(f) Sample 3
cluster 2 Grad-CeAM

(g) Sample 1
cluster 3 Grad-CeAM

(h) Sample 2
cluster 3 Grad-CeAM

(i) Sample 3
cluster 3 Grad-CeAM

Fig. 11. Grad-CeAM heatmap on CBF dataset, where 11a,11b, and 11c are samples from respectively cluster 1, 2 and 3 colorized with the Grad-CeAM of
cluster 1’s centroid, 11d,11e, and 11f are the same samples but with the Grad-CeAM of cluster 2’s centroid colorization, and 11g,11h, and 11i for cluster 3.
Red regions correspond to high contribution and blue to almost no contribution to matching the centroid (colors are smoothed for visual clarity and better
reflect filters’ size).

regardless of the centroid used for the Grad-CeAM. This is
explained by one cluster being defined by a lower value on
some discriminating features. Therefore, when we amplify the
feature its value increases instead of being lowered (to be
closer to the centroid), resulting in favoring the other cluster.
These low values usually mean a weak activation from the
CNN layer coming from either a small signal amplitude or its
absence, e.g. a smaller spike for the Coffee dataset. For STL-
10, the explanation is more difficult to find from observing
the learned representation. However, this may be partially
explained by two elements. First, similar to the Coffee dataset
we have a cluster defined by lower values on some features.
Secondly, the low results of the CAEs representation (only 0.2
of NMI score) may suppose that centroids are not well defined
or that they rely on degenerated features. A similar behavior
was also observed for MNIST dataset when the NMI score
was too low. Nevertheless, this shows that our method has
difficulty identifying all elements used by the CNN model to
generate the prediction, especially to translate the absence of
a specific pattern (i.e. low activation map’s values).

VI. CONCLUSION

In this work, we proposed a new method, Grad-Centroid
Activation Mapping (Grad-CeAM), to visualize activation lo-
calization for any CNN-based model in the context of cluster-
ing for centroid-based algorithms. We state that our method
can provide a good representation of the importance of each
activation map. We support this statement experimentally by
showing that our method outputs relevant activation heatmaps
that are both localized discriminating between each cluster. We
also show that our method can provide useful insight on the
clustering assignment that can help the researcher to analyze
their model. Finally, even if we obtain good overall results,
we also show that our method struggles to completely catch
the characteristics discriminating features for some centroids,
especially if they result from a weak activation in the CNN
model.

ACKNOWLEDGMENT

This work was supported by the ANR TIMES project (grant
ANR-17-CE23-0015) of the French Agence Nationale de la
Recherche.

REFERENCES

[1] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang,
“Deep clustering via joint convolutional autoencoder embedding and
relative entropy minimization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5736–5745.

[2] R. McConville, R. Santos-Rodriguez, R. J. Piechocki, and I. Craddock,
“N2d:(not too) deep clustering via clustering the local manifold of an
autoencoded embedding,” arXiv preprint arXiv:1908.05968, 2019.

[3] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning,
2016, pp. 478–487.

[4] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data mining
and knowledge discovery, vol. 33, no. 4, pp. 917–963, 2019.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[6] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE international
symposium on circuits and systems. IEEE, 2010, pp. 253–256.

[7] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and I. Išgum,
“End-to-end unsupervised deformable image registration with a convo-
lutional neural network,” in Deep learning in medical image analysis
and multimodal learning for clinical decision support. Springer, 2017,
pp. 204–212.

[8] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolu-
tional autoencoders,” in International conference on neural information
processing. Springer, 2017, pp. 373–382.

[9] B. Lafabregue, J. Weber, P. Gançarski, and G. Forestier, “Deep
constrained clustering applied to satellite image time series,” in
ECML/PKDD Workshop on Machine Learning for Earth Observation
Data (MACLEAN), 2019.

[10] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent
space clustering in generative adversarial networks,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4610–
4617.

[11] Z. C. Lipton, “The mythos of model interpretability: In machine
learning, the concept of interpretability is both important and slippery.”
Queue, vol. 16, no. 3, pp. 31–57, 2018.

[12] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[13] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[14] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2921–
2929.

[15] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[16] S. Ryan, N. Carlson, H. Butler, T. Fingerlin, L. Maier, and F. Xing,
“Cluster activation mapping with applications to medical imaging,”
arXiv preprint arXiv:2010.04794, 2020.

[17] H. Wang, M. Du, F. Yang, and Z. Zhang, “Score-cam: Improved
visual explanations via score-weighted class activation mapping,” arXiv
preprint arXiv:1910.01279, 2019.

[18] T. A. Geddes, T. Kim, L. Nan, J. G. Burchfield, J. Y. Yang, D. Tao, and
P. Yang, “Autoencoder-based cluster ensembles for single-cell rna-seq
data analysis,” BMC bioinformatics, vol. 20, no. 19, pp. 1–11, 2019.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[20] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2011, pp. 215–223.

[21] R. Briandet, E. K. Kemsley, and R. H. Wilson, “Discrimination of
arabica and robusta in instant coffee by fourier transform infrared
spectroscopy and chemometrics,” Journal of agricultural and food
chemistry, vol. 44, no. 1, pp. 170–174, 1996.

[22] D. Roverso, “Multivariate temporal classification by windowed wavelet
decomposition and recurrent neural networks,” in 3rd ANS international
topical meeting on nuclear plant instrumentation, control and human-
machine interface, vol. 20. Citeseer, 2000.

[23] N. Saito, “Local feature extraction and its applications using a library
of bases,” Ph.D. dissertation, Yale University, 1994.

[24] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1293–1305,
2019.

[25] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
joint conference on neural networks (IJCNN). IEEE, 2017, pp. 1578–
1585.

