
HAL Id: hal-03450829
https://hal.science/hal-03450829v3

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient Benders decomposition for the p-median
problem

Cristian Durán Mateluna, Zacharie Alès, Sourour Elloumi

To cite this version:
Cristian Durán Mateluna, Zacharie Alès, Sourour Elloumi. An efficient Benders decomposition for
the p-median problem. European Journal of Operational Research, 2022, �10.1016/j.ejor.2022.11.033�.
�hal-03450829v3�

https://hal.science/hal-03450829v3
https://hal.archives-ouvertes.fr


An efficient Benders decomposition for the p-median problem

Cristian Duran-Matelunaa,b,c,∗, Zacharie Alesa,b, Sourour Elloumia,b

aUMA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France.
bCEDRIC, Conservatoire National des Arts et Métiers, 75003 Paris, France.

cLDSPS, Industrial Engineering Department, University of Santiago of Chile, 9160000 Santiago, Chile.

Abstract

The p-median problem is a classic discrete location problem with numerous applications. It aims to

open p sites while minimizing the sum of the distances of each client to its nearest open site. We

study a Benders decomposition of the most efficient formulation in the literature. We show that

the Benders cuts can be separated in linear time. The Benders reformulation leads to a compact

formulation for the p-median problem. We implement a two-phase Benders decomposition algorithm

that outperforms state-of-the-art methods on benchmark instances by an order of magnitude and

allows to exactly solve for the first time several instances among which are large TSP instances and

BIRCH instances. We also show that our implementation easily applies to the uncapacitated facility

location problem.

Keywords: location; p-median problem; Benders decomposition; integer programming formulation;

polynomial separation algorithm

1. Introduction

Discrete location problems aim at choosing a subset of locations from a finite set of candidates

in which to establish facilities in order to allocate a finite set of clients. The most common objective

for these problems consist in minimizing the sum of the fixed costs of the facilities and the allocation

costs of supplying the clients. Within these problems, the p-median problem (pMP ) is one of the

fundamental problems (Laporte et al. (2019)). In the (pMP ), we have to choose p locations from

the set of candidate sites, no fixed costs are considered and the allocation costs are equal to the

distance between clients and sites. More formally, given a set of N clients {C1, ..., CN} and a set

of M potential sites to open {F1, ..., FM}, let dij be the distance between client Ci and site Fj

and p ∈ N the number of sites to open. The objective is to find a set S of p sites such that the

∗Corresponding author
Email address: cristian.duran@ensta-paris.fr (Cristian Duran-Mateluna)

Preprint submitted to Elsevier November 21, 2022



sum of the distances between each client and its closest site in S is minimized. The (pMP ) is an

NP-hard problem (Kariv & Hakimi (1979)) and leads to applications where the sites correspond to

warehouses, plants, shelters, etc. This includes the contexts of emergency logistics and humanitarian

relief (An et al. (2014); Mu & Tong (2020); Takedomi et al. (2022)). Another important application

is a particular clustering problem, usually called k-medoids problem when the set of clients and sites

are identical. In this problem, sub-groups of objects, variables, persons, etc. are identified according

to defined criteria of proximity or similarity. (Klastorin (1985); Park & Jun (2009); Maŕın & Pelegŕın

(2019); Ushakov & Vasilyev (2021); Voevodski (2021))

A great interest in solving large location problems has led to the development of various

heuristics and meta-heuristics in the literature. However, the exact solution of large instances

remains a challenge. Some location problems have recently been efficiently solved using the Benders

decomposition method within a branch-and-cut approach (see e.g., Fischetti et al. (2017); Cordeau

et al. (2019); Gaar & Sinnl (2022)). Among them, the uncapacitated facility location problem (UFL)

is probably the most studied location problem. In the (UFL) the number of sites to be opened is

not fixed, but an opening cost is associated with each site.

1.1. Contribution and outline

In this paper, we explore a Benders decomposition for the (pMP ). We propose a polynomial

time algorithm for the separation of its Benders cuts. We implement an efficient two-phase Benders

decomposition algorithm which provides better results than the best exact solution method in the

literature Zebra (Garćıa et al. (2011)). We present our results on about 230 benchmark (pMP )

instances of different sizes (up to 238025 clients and sites) satisfying or not the triangle inequality.

We finally extend our implementation to solve the (UFL) and present some results.

The rest of the paper is organized as follows. Section 2 presents the literature review of the (pMP ).

Section 3 describes our Benders decomposition method. Section 4 presents the computational results.

In Section 5 we draw some conclusions together with research perspectives.

2. Literature review

The (pMP ) was introduced by Hakimi (1964) where the problem was defined on a graph such that

a client can only be allocated to an open neighbor site. Since then, exact and approximation methods

have been developed to solve the problem, as well as a wide variety of variants and extensions.

2



The following is a summary of the main formulations of this problem and its state-of-the-art exact

solution methods.

2.1. MILP formulations

The classical mathematical programming formulation for the (pMP ) was proposed by ReVelle

& Swain (1970) who formulated the problem with a binary variable yj for each sites Fj that takes

value of 1 if the site is open and 0 otherwise; and a binary variable xij that takes value of 1 if client

Ci is allocated to site Fj and 0 otherwise. In the following, we denote by [n] the set {1, 2, . . . , n} for

any n ∈ N∗.

(F1)



min

N∑
i=1

M∑
j=1

dijxij

s.t.
M∑
j=1

yj = p

M∑
j=1

xij = 1 i ∈ [N ]

xij ≤ yj i ∈ [N ], j ∈ [M ]

xij ≥ 0 i ∈ [N ], j ∈ [M ]

yj ∈ {0, 1} j ∈ [M ]

(1)

(2)

(3)

(4)

(5)

Constraint (2) fixes the number of open sites to p. Constraints (3) ensure that each client is allocated

to exactly one site and Constraints (4) ensure that no client is allocated to a closed site. The binary

variables xij can actually be relaxed as in Constraints (5).

An alternative formulation (F2) was proposed by Cornuejols et al. (1980) which orders for each

client all its distinct distances to the sites. More formally, for any client i ∈ [N ], let Ki ≤ M be

the number of different distances from i to any site. Let D1
i < D2

i < ... < DKi
i be these distances

sorted. Formulation (F2) uses the same y variables as in formulation (F1) and introduces new

binary variables z. For any client i ∈ [N ] and k ∈ [Ki], z
k
i = 0 if and only if there is an open site at

distance at most Dk
i from client i.

3



(F2)



min

N∑
i=1

(
D1

i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

)
s.t.

M∑
j=1

yj = p

zki +
∑

j:dij≤Dk
i

yj ≥ 1 i ∈ [N ], k ∈ [Ki]

zki ≥ 0 i ∈ [N ], k ∈ [Ki]

yj ∈ {0, 1} j ∈ [M ]

(6)

(7)

(8)

(9)

Objective (6) minimizes the sum of the allocation distances over all clients. Constraints (8)

ensure that variable zki takes the value 1 if there is no site at a distance less than or equal to Dk
i of

client i. In that case (Dk+1
i −Dk

i ) is added to the objective. Otherwise, given the positive coefficients

in the objective function, zki takes the value 0. Here again, the binary variables zki can be relaxed as

in Constraints (9).

Formulation (F2) can be much smaller than (F1) and both have the same linear relaxation

value (Cornuejols et al. (1980)). Formulation (F1) contains N ×M variables x and 1 +N +N ×M

constraints while (F2) contains K =
∑N

i=1Ki variables z and K + 1 constraints. As K ≤ N ×M , it

follows that (F2) has at most as many variables and constraints as (F1). Usually K is significantly

smaller than N ×M .

Elloumi (2010) introduced another formulation based on (F2). Given that, by definition, zk−1
i

equal to 0 implies that zki is also equal to 0, Constraints (8) can be replaced by (12) and (13).

(F3)



min
N∑
i=1

(
D1

i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

)
s.t.

M∑
j=1

yj = p

z1i +
∑

j:dij=D1
i

yj ≥ 1 i ∈ [N ]

zki +
∑

j:dij=Dk
i

yj ≥ zk−1
i i ∈ [N ], k = 2, ...,Ki

zki ≥ 0 i ∈ [N ], k ∈ [Ki]

yj ∈ {0, 1} j ∈ [M ]

(10)

(11)

(12)

(13)

(14)

(15)

4



Constraints (12) correspond to Constraints (8) for k = 1. Constraints (13) ensure that zki takes

the value 1 if zk−1
i = 1 and if there is no open site at distance Dk

i exactly from i. Formulations

(F2) and (F3) use the same set of variables y and z, have exactly the same objective function, and

have the same linear relaxation bound (Elloumi (2010)). However, (F3) has much more zeros in the

constraint coefficient matrix, which makes it perform significantly better than (F2). Therefore, we

consider (F3) for our Benders decomposition.

2.2. Solution methods

The literature contains many solution methods for the (pMP ). The main heuristics are presented

in the following surveys: Reese (2006); Mladenović et al. (2007); Basu et al. (2015); Irawan & Salhi

(2015a). In the following, we only mention the most relevant methods for the exact solution. We

refer to Maŕın & Pelegŕın (2019) for details and more references.

Galvão (1980) solved the (pMP ) within a branch-and-bound framework solving many linear

relaxations of sub-problems of size N = 30 using formulation (F1). He then devised a method to

efficiently obtain good lower bounds instead of optimally solving the relaxed continuous sub-problems.

Avella et al. (2007) designed a branch-and-cut-and-price algorithm also based on (F1) that was

able to solve instances up to N = 5535. Cuts were added based on valid inequalities called lifted

odd hole and cycle inequalities. Pricing was carried out by solving a master problem to optimality

and using dual variables to price out the variables of the initial problem that were not considered in

the master, adding new variables if necessary. The novelty of the approach was that Constraints (3)

were also relaxed and incorporated to the master problem when the corresponding column was.

Garćıa et al. (2011) considered a cut and column generation algorithm based on formulation

(F2). The main idea, also presented in Elloumi (2010) on formulation (F3) and implemented

in Elloumi & Plateau (2010), relies on the property that the z variables satisfy zki ≥ zk+1
i in any

optimal solution of (F2) or its LP relaxation. Therefore, it is enough to solve these problems on a

reduced subset of variables z, keep enlarging this subset, and stop as soon as one is sure that the

remaining z variables can be set to zero to get an optimal solution. This idea is implemented within

a branch-and-cut-and-price method that the authors name Zebra. It starts with a very small set of

z variables and constraints, and adds more when necessary. Zebra is an exact solution method that

performed well on instances up to N = 85900 with large values of p.

The Benders decomposition has been of great interest in the literature. A survey of this

method can be found in Rahmaniani et al. (2017). This approach showed good results on discrete

5



location problems. It was already studied on formulation (F1) presented previously and to a similar

formulation of the (UFL) in Cornuejols et al. (1980) and Magnanti & Wong (1981). Most recently,

Fischetti et al. (2017) propose a Benders decomposition method within a branch-and-cut approach

to solve efficiently very large size instances of the (UFL). Cordeau et al. (2019) described Benders

decomposition for two problems: the maximal covering location problem (MCLP ), which requires

finding a subset of facilities that maximizes the amount of client demand covered while respecting a

budget constraint on the cost of the facilities; and the partial set covering location problem (PSCLP ),

which minimizes the cost of the opened facilities while forcing a certain amount of client demand

to be covered. They study a decomposition approach of the two problems based on a branch-and-

Benders-cut reformulation. Their approach is more efficient when the number of clients is much

larger than the number of potential facility locations. Gaar & Sinnl (2022) perform a Benders

decomposition on the p-center problem (pCP ). The (pCP ) is closely related to the (pMP ). The only

difference is that instead of minimizing the sum of the allocation distances, the largest allocation

distance is minimized.

3. Benders decomposition for the (pMP)

The Benders Decomposition was introduced by Benders (1962). The method splits the opti-

mization problem into a master problem and one or several sub-problems. The master problem and

the sub-problems are solved iteratively and at each iteration each sub-problem may add a cut to

the master problem. In this section, we present a Benders decomposition for the (pMP) based on

formulation (F3). We show that there is a finite number of Benders cuts and that they can be

separated using a polynomial time algorithm.

3.1. Formulation

For a fixed value of the y variables, the problem decomposes into N sub-problems. Each one

computes the allocation distance of a client. In the master problem, we remove all zki variables and

we introduce a new set of continuous variables θi representing the allocation distance of each client

i ∈ [N ]:

6



(MP )



min
N∑
i=1

θi

s.t.

M∑
j=1

yj = p

θi satisfies BDi i ∈ [N ]

yj ∈ {0, 1} j ∈ [M ]

where BDi is the set of benders cuts associated to client i. This set is initially empty and grows

through the iterations.

The sub-problem for each client i ∈ [N ] associated to a feasible solution ȳ of (MP ) is defined by:

(SPi(ȳ))



min D1
i +

Ki−1∑
k=1

(Dk+1
i −Dk

i )z
k
i

s.t. z1i ≥ 1−
∑

j:dij=D1
i

ȳj

zki − zk−1
i ≥ −

∑
j:dij=Dk

i

ȳj k ∈ {2, ...,Ki}

zki ≥ 0 k ∈ [Ki]

and its corresponding dual sub-problem is:

(DSPi(ȳ))



max D1
i + v1i (1−

∑
j:dij=D1

i

ȳj)−
Ki∑
k=2

vki
∑

j:dij=Dk
i

ȳj

s.t. vki − vk+1
i ≤ Dk+1

i −Dk
i k ∈ [Ki − 1]

vki ≥ 0 k ∈ [Ki]

Note that (SPi(ȳ)) and (DSPi(ȳ)) are feasible for any ȳ. From an extreme point v̄ of (DSPi(ȳ)),

we obtain the following optimality Benders cut:

θi ≥ D1
i + v̄1i (1−

∑
j:dij=D1

i

yj)−
Ki∑
k=2

v̄ki
∑

j:dij=Dk
i

yj (16)

7



3.2. Separation problem

The performance of Benders decomposition lies on how we solve the master problem and the

sub-problems. In our decomposition, we can have a large number of sub-problems to solve since it

is equal to the number of clients at each iteration. Below, we show that the sub-problems can be

solved efficiently.

Let ȳ either be a solution of the master problem (MP ) or of its LP-relaxation. Since (SPi)

minimizes an objective function with non-negative coefficients, the z̄ki variables are as small as

possible in an optimal solution. Thus, an optimal solution z̄i for (SPi(ȳ)) can be obtained by setting

z̄ki = max
k∈[Ki]

(
0, 1−

∑
j:dij≤Dk

i

ȳj
)

i ∈ [N ] (17)

We observe that the optimal values of variables zki in (SPi(ȳ)) are decreasing when k increases.

In order to obtain a dual solution, we identify the last strictly positive term of this sequence.

Definition 1. Given a solution ȳ of the master problem (MP ) or of its LP-relaxation. Let k̃i be

the following index:

k̃i =


0 if

∑
j:dij=D1

i

ȳj ≥ 1

max{k ∈ [Ki] :
∑

j:dij≤Dk
i

ȳj < 1} otherwise
i ∈ [N ]

Note that, if ȳ is binary, then the allocation distance of client i in the feasible solution ȳ is Dk̃i+1
i .

Given the indices k̃i, the optimal value of SPi(ȳ) for i ∈ [N ] is:

OPT (SPi(ȳ)) =



D1
i if k̃i = 0

Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)ȳj otherwise

(18)

Furthermore, considering the complementary slackness conditions, an optimal solution v̄i for

DSPi(ȳ) can be obtained by setting :

v̄ki =


Dk̃i+1

i −Dk
i , if k ≤ k̃i

0, otherwise
i ∈ [N ] k ∈ [Ki] (19)

8



Consequently, the Benders cuts (16) can be written as follows:



θi ≥ D1
i if k̃i = 0

θi ≥ Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)yj otherwise

(20)

We observe that these inequalities are the same as those obtained in Cornuejols et al. (1980) and

Magnanti & Wong (1981) for (pMP ) on formulation (F1). This was quite unexpected, since we used

the formulation (F3), even though the master problems are the same in the two decompositions, the

sub-problems are different. These same inequalities were also presented in Fischetti et al. (2017) for

the (UFL) on a similar formulation to (F1).

3.3. Polynomial separation algorithm

Since a Benders cut can be obtained in polynomial time by computing k̃i, we use Algorithm 1 to

separate Constraints (20). For each client i ∈ [N ], we first compute k̃i and OPT (SPi(ȳ)) from the

current (MP ) solution (ȳ, θ̄) (steps 3 and 4) thus updating the upper bound UB of (MP ) (step 5).

Then, if the value of the allocation distance in the current (MP ) solution is underestimated (step 6),

we directly construct the corresponding Benders cuts (20) (step 7).

Algorithm 1: Separation algorithm

input :

• Instance data ([N ], [M ], [Ki], distances D
0
i , ..., D

Ki
i and dij for each i ∈ [N ], j ∈ [M ])

• Current (MP ) solution (ȳ, θ̄)

output :

• Upper bound of (MP).

1 UB ← 0

2 for i ∈ [N ] do

3 Compute k̃i with Algorithm 2

4 Compute OPT (SPi(ȳ)) through (18)

5 UB ← UB +OPT (SPi(ȳ))

6 if θ̄i < OPT (SPi(ȳ)) then

7 Add the corresponding cut (20) to (MP)

8 return UB

9



The memory management of the distances between the clients and the sites can be challenging

for large-scale instances. For example, in the work of Cornuejols et al. (1980); Magnanti & Wong

(1981); Fischetti et al. (2017), the increasingly ordered distances {dij}j∈[M ] of each client i ∈ [N ] are

considered as an input.

In our approach, the complexity of Algorithm 1 is determined by the computation of index k̃i.

We show that it can be computed in O(M) by Algorithm 2. This algorithm takes as an input a

vector Si ∈ [M ]M such that Sir is the rth closest site to client i ∈ [N ]. Hence, diSir is the distance

between i and its rth closest site. Afterwards, given index k̃i, steps 4 and 5 of Algorithm 1 can be

computed in O(M) and O(1), respectively. Then, considering the N clients, a complexity in O(NM)

is obtained for Algorithm 1. As in Garćıa et al. (2011), the distances {dij}j∈[M ] of each client i ∈ [N ]

are calculated as they are needed.

Consequently, the N ×M matrix S is built only once in a preprocessing step in O(NMlog(M))

using the QuickSort algorithm. The computation time of this matrix may be longer than the runtime

of the solution method depending on the size of the instances. For example, for instances with

5000, 13000, 27000, 85000 clients and sites, the computer described below in Section 4 builds the

matrix on average in 5, 25, 90 and 1100 seconds, respectively. Furthermore, to reduce the memory

requirements for storing this matrix S, we considered the fact that a client will never be allocated to

one of its furthest p sites. Therefore, the size of the matrix S is reduced to N × (M − p).

Algorithm 2: Computing k̃i
input :

• Instance data ([N ], [M ], [Ki], S matrix, and distances dij for i ∈ [N ], j ∈ [M ])

• Current (MP ) solution ȳ

• i ∈ [N ]

output :

• The index k̃i associated to ȳ

1 k̃i ← 0

2 r ← 1

3 val← 1− ȳSir

4 while val > 0 and r < M do

5 if di(Si(r+1)) > diSir then

6 k̃i ← k̃i + 1

7 r ← (r + 1)

8 val← val − ȳSir

9 return k̃i

10



3.4. Compact Benders reformulation

The Bender cuts (20) lead to the following compact formulation for (pMP ):

(F4)



min

N∑
i=1

θi

s.t.
M∑
j=1

yj = p

θi ≥ D1
i i ∈ [N ]

θi ≥ Dk+1
i −

∑
j:dij≤Dk

i

(Dk+1
i − dij)yj i ∈ [N ], k ∈ [Ki − 1]

yj ∈ {0, 1} j ∈ [M ]

(21)

(22)

Constraints (22) ensure that each variable θi is larger than Dk+1
i unless a site is opened at a

smaller distance than Dk
i from i. This formulation (F4) has (N +M) variables which is less than

(F2) and (F3) but it has the same number of constraints. Nevertheless, the constraint matrix is

roughly as dense as (F2) and it has the same continuous relaxation.

Table 1 presents the results of four formulations of the (pMP ) on five instances from OR-Library

described in Section 4.1. A time limit of 600 seconds is considered. For each formulation the relative

optimality gap and the runtime in seconds are presented.

INSTANCE F1 F2 F3 F4

name N=M p OPT gap t(s) gap t(s) gap t(s) gap t(s)

pmed26 600 5 9917 0% 228 0% 40 0% 8 0% 57

pmed31 700 5 10086 0% 282 0% 36 0% 7 0% 58

pmed35 800 5 10400 0% 527 0% 104 0% 9 0% 95

pmed38 900 5 11060 74,1% 600 0% 75 0% 19 0% 115

pmed39 900 5 11069 10,7% 600 0% 66 0% 19 0% 105

pmed40 900 5 12305 0% 579 0% 60 0% 10 0% 104

Table 1: Comparison between different (pMP) formulations with a time limit of 600 seconds.

Results in Table 1 confirm the expected performance between formulations (F1), (F2) and (F3)

already described in Section 2.1. Moreover, we see that (F4) takes more time than (F2) and (F3).

11



3.5. Decomposition algorithm implementation

To improve the performance of the Benders decomposition, we implement a two-phase algorithm.

Let (MP ) be the master problem without the integrity constraints. We solve first the Benders

decomposition for (MP ) (Phase 1 ). Then, we add the integrity constraints to the obtained master

problem to solve it through a branch-and-cut algorithm (Phase 2 ).

3.5.1. Phase 1: Solving the linear relaxation of the master problem

Phase 1 is summarized in Algorithm 3. The current master problem MP is solved at step 4

through a linear programming solver and provides a candidate solution (ȳ, θ) while the sub-problems

are solved at steps 2 and 6 using Algorithm 1. To enhance the performance this phase includes the

following improvements:

• Initial solution: Providing a good candidate solution to the initial (MP ) can significantly

reduce the number of iterations. Consequently, as Garćıa et al. (2011), we compute a first

solution using the PopStar heuristic (Resende & Werneck (2004)) which, to the best of our

knowledge, is the best heuristic for the (pMP ). PopStar is a hybrid heuristic that combines

elements of several metaheuristics. It uses a multi-start method in which a solution is built at

each iteration as in a GRASP algorithm. It is followed by an intensification strategy, with a

tabu search and a scatter search. And in a post-optimization phase, they use the concept of

multiple generations, a characteristic of genetic algorithms. The solution yh provided by this

heuristic and its objective value UBh are inputs of Algorithm 3. The latter is used to initialize

UB1 at step 1.

• Rounding heuristic: Since in Phase 1 most of the solutions provided by (MP ) are fractional,

we use a primal heuristic to try to improve the upper bound of the problem. At each iteration

we open the sites associated to the p largest values of ȳ (steps 7 to 11 in Algorithm 3).

The objective value of (MP ) and the sub-problem optimal value OPT (SP ) allow us to update

the optimality bounds on the value of the linear relaxation of the problem. In each iteration the

rounding heuristic tries the improve UB1. The iterative algorithm is terminated when no more

violated Benders cuts are found for the current solution y and hence we have obtained the value of

the linear relaxation of the problem.

12



Algorithm 3: Phase 1 - Solving (MP )

input :

• Instance data (N , M , p , Distances D0
i , ..., D

Ki
i and dij with i ∈ [N ], j ∈ [M ])

• Heuristic (pMP ) solution yh with value UBh

output :

• Lower bound LB1 and a feasible integer solution y1 with value UB1

1 (y1, UB1)← (yh, UBh)

2 Use Algorithm 1 to generate violated Benders cuts associated with yh to (MP )

3 while violated cut has been found do

4 (ȳ, θ)← Solve (MP )

5 LB1 ←
N∑
i=1

θi

6 Use Algorithm 1 to generate violated Benders cuts associated with ȳ to (MP )

7 if ȳ is fractional then

8 (yr, UBr)← Get a rounded heuristic solution from ȳ

9 if UBr < UB1 then

10 UB1 ← UBr

11 y1 ← yr

12 return LB1, y1, UB1

3.5.2. Phase 2: Solving the master problem with branch-and-Benders-cut approach

Once the continuous relaxation of (MP ) is solved by Phase 1, we add the integrity constraints on

variables y and we use a branch-and-cut algorithm to solve the problem. We solve the sub-problems

at each node which provides an integer solution in order to generate Benders cuts. The solution

of the sub-problems is performed through callbacks which is a feature provided by mixed integer

programming solvers. In order to enhance the performance of Phase 2, we implement the following

improvements:

• Constraint reduction: At the end of Phase 1, most of the generated Benders cuts are not

saturated by the current fractional solution. We remove most of them to reduce the problem

size. The cuts of a client i are related to indexes k̃i obtained at different iterations. Let k̂ be the

highest of these indexes associated with a saturated constraint. We remove all constraints of

client i which associated index is higher than k̂. This reduction performs better than removing

all unsaturated constraints.

13



• Reduced cost fixing: At the end of Phase 1, given the bounds LB1 and UB1, we can perform

an analysis of the reduced costs rc of the last fractional solution y provided by Algorithm 3.

For any site j such that LB1 + rcj > UB1, yj can be set to 0. Similarly, for any site j such

that LB1 − rcj > UB1, yj can be fixed to 1. We computationally observed that that these

rules are efficient in instances where p is small (i.e., when the ratio p/M is less than 20%). At

higher values of p, there may exist many equivalent solutions. Therefore, opening or closing a

site often does not have a strong impact on the objective value.

4. Computational study

In this section, we compare the results of our Benders decomposition method with those of the

state-of-the-art methods described in Section 2.2.

4.1. Benchmark instances

We study the same instances used in Garćıa et al. (2011) that is the p-median instances from

OR-Library (Beasley (1990)) and TSP-Library (Reinelt (1991)). In all these instances, the sites are

at the same location as the clients and thus N = M . The set of OR-Library contains instances with

100 to 900 clients, and the value of p is between 5 and 500. The set of TSP-Library selected contains

between 1304 and 238025 clients. Following previous works such as Garćıa et al. (2011), all client

points are given as two-dimensional coordinates, and the Euclidean distance rounded down to the

nearest integer is used as distance.

Another set of symmetric instances that satisfy triangle inequality are the BIRCH instances,

usually solved by heuristics algorithms (see e.g Hansen et al. (2009); Avella et al. (2012); Irawan

et al. (2014)). These instances consist of p clusters of two-dimensional data points generated in a

square. We considered instances with sizes from 10000 to 20000 points and from 25000 to 89600

points for two types of instances, named Type I and Type III. These instances were kindly provided

by the authors of Avella et al. (2012). For the comparison we have considered the results presented

in Avella et al. (2012), in which it is proposed an aggregation heuristic. We denote this heuristic

as AvellaHeu. We considered for large BIRCH instances the results presented in Irawan & Salhi

(2015b), in which is proposed a hybrid heuristic combining aggregation and variable neighborhood

search. We denote this heuristic as IrawanHeu.

We also consider the RW instances originally proposed by Resende & Werneck (2004) with the

PopStar heuristic. They correspond to completely random distance matrices. The distance between

14



each site and each client is an integer value taken uniformly in the interval [1, n]. Moreover, the

distance between client i and site j is not necessarily equal to the distance between site j and client

i. Four different values of N = M are considered: 100, 250, 500, and 1000.

Finally, we include in our experimentation the ODM instances which were introduced by Briant

& Naddef (2004) and are used in Avella et al. (2007) with a branch-and-cut-and-price algorithm. We

name this algorithm AvellaB&C. These instances correspond to the optimal diversity management

problem which can be treated as a p-median problem in which certain allocations between clients

and sites are not allowed. For this problem there exist instances with N equal to 1284, 3773, and

5335. It was already observed by Avella et al. (2007) that instances with N equal to 1284 and 5335

are easy to solve. Therefore, we have only considered the instances with the value of N = 3773.

4.2. Technical specifications

Our study was carried out on an Intel XEON W-2145 processor 3,7 GHz, with 16 threads,

but only 1 was used, and 256 GB of RAM. IBM ILOG CPLEX 20.1 was used as branch-and-cut

framework. We apply the described separation algorithm in the GenericCallback of CPLEX, which

gets called whenever a feasible integer solution is found. We set the absolute tolerance to the

best integer objective (EpGap) to 10−10, and the tolerance to the best remaining node, also called

absolute MIP gap (EpAGap), to 0.9999. Considering that our Benders decomposition can easily

find feasible solutions, we have set the MIP emphasis switch to BestBound in order to prove the

optimality as fast as possible. We set the branch-up-first parameter BRDIR to 1, since this tends to

produce branching trees with fewer nodes. We use a time limit of 10 hours for Phase 2, indicated by

TL in the tables when this is reached.

We were able to run the Zebra and PopStar methods on our computer. Zebra code was provided

by the authors of Garćıa et al. (2011) and PopStar code is available online1. On the other hand,

we do not report an updated time for the heuristic algorithms: AvellaB&C was originally carried

out on a Compaq EVO W4000 Personal Computer with Pentium IV-1.8 GHz processor with 1 GB

of RAM using the LP solver IBM ILOG CPLEX 8.0 with a time limit of 100 hours per instance

(indicated by TL2 in the corresponding table), AvellaHeu was carried out on an Intel Core 2 Quad

CPU 2.6 GHz workstation with 4 GB of RAM with a single core, and IrawanHeu was carried out on

a PC Intel Core i5 CPU 650@ 3.20 GHz of processor with 4 GB of RAM. In order to compare more

objectively the computation times of our method with the ones of these approaches, we consider

1http://mauricio.resende.info/popstar/

15



the benchmark score of each computer from the geekbench website2. To obtain a solution time for

these three methods which is closer to the one that would have been obtained if we had executed

them, one can multiply the time reported in their articles by the ratio between the score of our

computer and the score of the computer on which they were obtained (i.e., 3 for AvellaHeu, 2.5 for

IrawanHeu, and 6 for AvellaB&C).

4.3. Performance analysis

The results for the different instances are presented below. The information in the tables is

organized as follows:

• Instance data

– name: name of the instance.

– N = M : size of the instance (number of clients equal to the number of sites).

– p: number of sites to open.

– OPT/BKN : optimal value of the instance (in bold) if it is known or the best-known

solution value obtained given the time limit, otherwise. If the value is underlined, it

means that it is the first time the instance is solved to optimality or that we improve the

best-known value.

• Our Phase 1 results:

– LB1: lower bound of the (pMP ) obtained at the end of Phase 1.

– UB1: upper bound of the (pMP ) obtained at the end of Phase 1.

– T 1: CPU time in seconds required to complete Phase 1.

• Our Phase 1 + Phase 2 results:

– gap: relative optimality gap between the lower and upper bound obtained at the end of

Phase 2.

– iter: number of total iterations required for the Benders decomposition, i.e., the number

of times a fractional solution or an integer solution was separated in Phase 1 and Phase 2,

respectively.

– nodes: number of the explored nodes of the branch-and-cut.

2https://browser.geekbench.com

16



– T tot: the total CPU time in seconds required to exactly solve the instance.

• Zebra, AvellaHeu, IrawanHeu, PopStar, and AvellaB&C results:

– gap / UBh: relative optimality gap when available or the solution value obtained at the

end of the corresponding method.

– T : total CPU time time in seconds required to complete the algorithms of Garćıa et al.

(2011), Avella et al. (2012), Irawan & Salhi (2015b), Resende & Werneck (2004) or Avella

et al. (2007) respectively. A diamond (♦) means that the computer ran out of memory

while solving the problem.

• Average total time

– the average total time by our method and Zebra is presented in the corresponding tables.

This average is calculated considering only the instances where both methods solve the

instances to optimality.

OR-Library and TSP-Library instances

Similarly to Zebra, we reach the optimal value of all the OR-Library instances in few seconds.

Consequently, we only present the results on TSP-Library instances in Tables 2, 3, 4 and 5 for small,

medium, large, and huge instances, respectively. Our method reaches the optimal solution in most

instances. Very good LB1 and UB1 bounds are quickly found at the end of Phase 1.

In Tables 2 and 3 we can observe that 10 small and medium instances are not solved optimally

by Zebra due to a lack of memory or for reaching the time limit. However, our method does not

face any memory problem and only 2 small and 2 medium instances reach the time limit of 10 hours

with an optimality gap lower than 0, 1%.

Regarding the large and huge instances in Tables 4 and 5, we solve 57 out of the 68 instances

whereas Zebra only solves 16 instances due to a lack of memory. For the huge instances, the rounding

heuristic step of Phase 1, the reduced cost fixing step, and the constraint reduction step of Phase 2

are not used as they take too much time. Nevertheless, we use the rounding heuristic once at the

end of Phase 1 to update UB1. Moreover, for the huge instances, we use a randomly generated

solution instead of PopStar which takes a long time. We can provide for the first time the optimal

values for 7 instances with N = M = 115455 and 10 instances with N = M = 238025.

17



INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot gap T

rl1304 1304 5 3099073 3099073 3099073 2,70 0% 9 0 2,8 0% 1233

rl1304 1304 10 2134295 2131788 2134295 2,90 0% 12 160 15,4 0% 1060

rl1304 1304 20 1412108 1412108 1412108 2,25 0% 8 0 2,3 0% 61

rl1304 1304 50 795012 795012 795012 1,46 0% 9 0 1,5 0% 8,3

rl1304 1304 100 491639 491507 491788 0,90 0% 19 37 2,4 0% 3,6

rl1304 1304 200 268573 268573 268573 0,35 0% 11 0 0,5 0% 0,9

rl1304 1304 300 177326 177318 177339 0,31 0% 12 0 0,5 0% 0,5

rl1304 1304 400 128332 128332 128332 0,23 0% 10 0 0,2 0% 0,1

rl1304 1304 500 97024 97018 97034 0,27 0% 14 0 0,4 0% 0,2

fl1400 1400 5 174877 174877 174877 0,82 0% 7 0 0,9 0% 245

fl1400 1400 10 100601 100601 100601 0,40 0% 6 0 0,4 0% 72

fl1400 1400 20 57191 57191 57191 0,38 0% 8 0 0,4 0% 10

fl1400 1400 50 28486 28486 28486 0,36 0% 8 0 0,4 0% 2,5

fl1400 1400 100 15962 15961 15962 0,82 0% 12 5 2,1 0% 5,0

fl1400 1400 200 8806 8793 8815 0,66 0% 20 570 26,9 0% 305

fl1400 1400 300 6109 6092 6157 0,76 0% 28 12599 385 9% TL

fl1400 1400 400 4648 4636 4659 0,56 0% 51 6716041 32655 8% TL

fl1400 1400 500 3764 3756 3773 0,53 0,09% 44 4987858 TL 8% TL

u1432 1432 5 1210126 1210126 1210126 1,65 0% 7 0 1,8 0% 324

u1432 1432 10 849759 849759 849759 3,47 0% 7 0 3,5 0% 71

u1432 1432 20 588766 588720 588767 3,86 0% 12 3 5,8 0% 18

u1432 1432 50 362072 361724 362072 4,28 0% 25 1493 161,0 0% 128

u1432 1432 100 243793 243758 243850 1,86 0% 12 0 3,0 0% 7,3

u1432 1432 200 159887 159867 160084 0,72 0% 13 8 2,0 0% 1,9

u1432 1432 300 123689 123674 123876 0,63 0% 15 0 1,0 0% 2,2

u1432 1432 400 103979 103411 104102 0,91 0,11% 29 5806518 TL 0% TL

u1432 1432 500 93200 93200 93200 0,16 0% 8 0 0,3 0% 0,1

vm1748 1748 5 4479421 4479421 4479421 2,36 0% 7 0 2,5 0% 4955

vm1748 1748 10 2983645 2983048 2983645 4,67 0% 14 11 10,9 0% 1364

vm1748 1748 20 1899680 1899588 1899681 4,76 0% 15 5 9,5 0% 309

vm1748 1748 50 1004331 1004325 1004339 2,23 0% 12 0 2,8 0% 21

vm1748 1748 100 636515 636418 636541 1,57 0% 15 3 3,2 0% 13

vm1748 1748 200 390350 390350 390350 0,79 0% 11 0 0,8 0% 1,6

vm1748 1748 300 286039 286037 286080 0,63 0% 13 0 1,0 0% 1,0

vm1748 1748 400 221526 221523 221545 0,53 0% 13 0 0,8 0% 1,0

vm1748 1748 500 176986 176977 177103 0,54 0% 14 0 0,8 0% 0,5

Average total time 9 320

Table 2: Results on small TSP instances for our method and Zebra on our computer. TL=36000 seconds. The average total time
is calculated with the instances in which both methods solve the instances to optimality.

18



INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot gap T

d2103 2103 5 1005136 1005136 1005136 4 0% 8 0 4 0% 4268

d2103 2103 10 687321 687264 687321 8 0% 11 7 12 0% 1085

d2103 2103 20 482926 482798 482926 9 0% 12 71 18 0% 448

d2103 2103 50 302219 301592 302219 18 0,04% 34 149711 TL 0% 7203

d2103 2103 100 194664 194408 194994 17 0% 39 95993 10363 0% 16022

d2103 2103 200 117753 117736 117778 2 0% 16 3 5 0% 5

d2103 2103 300 90471 90424 90510 2 0% 21 0 3 0% 29

d2103 2103 400 75324 75291 75425 1 0% 19 2 4 0% 6209

d2103 2103 500 64006 63952 64315 1 0% 27 477 8 0% 2568

pcb3038 3038 5 1777835 1777665 1777835 29 0% 12 13 55 0% TL

pcb3038 3038 10 1211704 1211704 1211704 18 0% 8 0 18 0% 19526

pcb3038 3038 20 839494 839233 839499 50 0% 18 188 146 0% 7329

pcb3038 3038 50 506339 506205 506339 24 0% 12 194 85 0% 1134

pcb3038 3038 100 351500 351404 351648 28 0% 22 390 96 0% 346

pcb3038 3038 150 280128 280058 280423 16 0% 24 640 269 0% 148

pcb3038 3038 200 237399 237328 237578 11 0% 13 734 84 0% 130

pcb3038 3038 300 186833 186793 186906 6 0% 19 73 17 0% 60

pcb3038 3038 400 156276 156268 156307 3 0% 10 0 6 0% 22

pcb3038 3038 500 134798 134774 134866 2 0% 17 0 4 0% 17

fl3795 3795 5 1052627 1052627 1052627 14 0% 7 0 14 ∞ ♦

fl3795 3795 10 520940 520940 520940 8 0% 8 0 8 0% 4410

fl3795 3795 20 319722 319722 319722 6 0% 11 0 6 0% 2671

fl3795 3795 50 150940 150940 150940 5 0% 13 0 5 0% 193

fl3795 3795 100 88299 88299 88299 6 0% 12 0 6 0% 45

fl3795 3795 150 65868 65840 65904 14 0% 52 1833 221 0% 1825

fl3795 3795 200 53928 53913 54013 11 0% 68 46730 2633 0% 2501

fl3795 3795 300 39586 39578 39661 6 0% 47 127800 2548 0% 3061

fl3795 3795 400 31354 31348 31472 5 0% 57 14566 559 0% 527

fl3795 3795 500 25976 25976 25976 6 0% 15 0 6 0% 2

rl5934 5934 10 9792218 9786688 9792218 405 0% 17 329 1864 ∞ ♦

rl5934 5934 20 6716215 6713214 6716228 437 0% 27 1381 14725 ∞ ♦

rl5934 5934 50 4029999 4026936 4029999 362 0,03% 32 8068 TL 0% TL

rl5934 5934 200 1805530 1805030 1807763 67 0% 27 1353 967 0% 3816

rl5934 5934 300 1392419 1392304 1392709 38 0% 15 25 58 0% 235

rl5934 5934 400 1143940 1143649 1145342 20 0% 33 1809 303 0% 1110

rl5934 5934 500 972799 972741 973712 17 0% 20 117 44 0% 70

rl5934 5934 600 847301 847233 847769 12 0% 16 0 18 0% 77

rl5934 5934 700 751131 751054 751569 7 0% 15 0 14 0% 88

rl5934 5934 800 675958 675884 676248 7 0% 20 175 21 0% 58

rl5934 5934 900 612629 612574 612879 7 0% 17 35 14 0% 33

rl5934 5934 1000 558167 558088 558311 7 0% 28 603 45 0% 731

rl5934 5934 1100 511192 511138 511453 7 0% 22 43 15 0% 20

rl5934 5934 1200 469747 469712 469943 8 0% 18 0 11 0% 11

rl5934 5934 1300 433060 433015 433300 7 0% 19 5 12 0% 27

rl5934 5934 1400 401370 401356 401597 7 0% 15 0 9 0% 6

rl5934 5934 1500 373566 373566 373566 7 0% 17 0 7 0% 2

Average total time 467 2022

Table 3: Results on medium TSP instances for our method and Zebra on our computer. TL=36000 seconds. ♦ means that the
computer ran out of memory. The average total time is calculated with the instances in which both methods solve the instances
to optimality.

19



INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot gap T

usa13509 13509 10 398561730 398561600 398561730 288 0% 10 0 755 ∞ ♦

usa13509 13509 25 234600221 234600221 234600221 455 0% 10 0 455 ∞ ♦

usa13509 13509 50 157819849 157815657 157819849 431 0% 11 45 646 ∞ ♦

usa13509 13509 100 108002205 107983102 108002411 523 0% 23 605 4043 ∞ ♦

usa13509 13509 200 74220726 74213328 74229411 426 0% 25 969 2269 ∞ ♦

usa13509 13509 300 59340915 59334913 59346783 473 0% 23 984 1744 0% 18760

usa13509 13509 400 50538905 50533013 50575463 319 0% 24 874 2556 0% 23677

usa13509 13509 500 44469860 44463038 44499566 278 0% 36 2883 3945 0% 25105

usa13509 13509 600 39952138 39944049 39991088 295 0% 34 49175 23712 0% TL

usa13509 13509 700 36469603 36463603 36512930 202 0% 24 6060 2551 0% TL

usa13509 13509 800 33635127 33631192 33672848 210 0% 21 796 1215 0% 6007

usa13509 13509 900 31275114 31269089 31299760 182 0% 31 27272 11851 0% TL

usa13509 13509 1000 29268216 29262339 29309009 154 0% 31 942 1382 0% TL

usa13509 13509 2000 18230856 18229432 18238229 47 0% 21 202 125 0% 584

usa13509 13509 3000 13098935 13097929 13101469 49 0% 28 9 72 0% 1674

usa13509 13509 4000 9905715 9905071 9910848 37 0% 17 0 50 0% 166

usa13509 13509 5000 7608605 7608242 7611958 45 0% 22 0 61 0% 86

sw24978 24978 10 22670073 22670073 22670073 1037 0% 12 0 1037 ∞ ♦

sw24978 24978 25 14085626 14085352 14085626 6651 0% 11 15 9447 ∞ ♦

sw24978 24978 50 9652817 9652817 9652817 4136 0% 10 0 4136 ∞ ♦

sw24978 24978 75 7766486 7765106 7766486 6310 0,010% 12 457 TL ∞ ♦

sw24978 24978 100 6660424 6657806 6660424 9634 0,031% 14 228 TL ∞ ♦

sw24978 24978 250 4034554 4034055 4036558 2413 0,003% 14 699 TL ∞ ♦

sw24978 24978 500 2747215 2746498 2751695 1866 0,015% 20 2621 TL ∞ ♦

sw24978 24978 1000 1841723 1841613 1844801 621 0% 23 1061 3814 0% 30796

sw24978 24978 2000 1197278 1197231 1198464 208 0% 17 132 476 0% TL

sw24978 24978 3000 911361 911308 911988 145 0% 17 16 344 0% 3614

sw24978 24978 4000 737645 737602 738045 92 0% 15 0 190 0% TL

sw24978 24978 5000 617637 617593 618096 76 0% 18 0 127 0% TL

sw24978 24978 6000 527336 527307 527716 72 0% 17 0 112 0% 5188

sw24978 24978 7000 455716 455696 456074 63 0% 16 0 99 0% 3973

sw24978 24978 8000 397217 397153 397540 44 0% 20 0 97 0% TL

sw24978 24978 9000 347376 347322 347621 44 0% 20 13 92 0% TL

sw24978 24978 10000 305998 305932 306094 33 0% 17 0 60 0% TL

Average total time 1178 9969

Table 4: Results on large TSP instances for our method and Zebra on our computer. TL=36000 seconds. ♦ means that the
computer ran out of memory. The average total time is calculated with the instances in which both methods solve the instances
to optimality

20



INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot gap T

ch71009 71009 10000 4274662 4273680 4424131 6326 0,006% 36 18585 TL ∞ ♦

ch71009 71009 20000 2377760 2377409 2419539 681 0% 40 474 3581 ∞ ♦

ch71009 71009 30000 1464151 1464015 1473517 431 0% 27 0 819 ∞ ♦

ch71009 71009 40000 879336 879272 881997 220 0% 17 0 465 ∞ ♦

ch71009 71009 50000 463553 463544 463904 133 0% 24 0 258 0% 653

ch71009 71009 60000 167565 167558 167789 49 0% 31 0 135 0% 331

pla85900 85900 10000 166853134 166627292 182428500 2841 0,12% 30 2113 TL ∞ ♦

pla85900 85900 20000 109007210 107246411 120645337 3975 1,58% 27 618 TL ∞ ♦

pla85900 85900 30000 86944862 86944715 87547287 1411 0,0002% 84 28033 TL ∞ ♦

pla85900 85900 40000 69944715 69944715 69965668 1006 0% 12 0 1006 ∞ ♦

pla85900 85900 50000 52944715 52944715 52945623 921 0% 12 0 921 ∞ ♦

pla85900 85900 60000 35944715 35944715 35945105 858 0% 11 0 858 ∞ ♦

pla85900 85900 70000 18977475 18977475 18977475 73 0% 13 0 73 0% 122

pla85900 85900 80000 4512752 4512752 4512752 12 0% 20 0 13 0% 97

usa115475 115474 20000 5287343 5286659 5383798 3366 0,001% 36 11102 TL ∞ ♦

usa115475 115474 30000 3815620 3815143 3861590 1494 0% 41 589 11581 ∞ ♦

usa115475 115474 40000 2876909 2876603 2904492 1353 0% 32 459 4431 ∞ ♦

usa115475 115474 50000 2189144 2188903 2200969 1122 0% 28 480 3189 ∞ ♦

usa115475 115474 60000 1651400 1651234 1657118 795 0% 25 0 1588 ∞ ♦

usa115475 115474 70000 1214299 1214177 1217251 612 0% 17 0 1045 ∞ ♦

usa115475 115474 80000 851481 851422 852851 435 0% 24 0 788 ∞ ♦

usa115475 115474 90000 548097 548076 548560 270 0% 18 0 544 ∞ ♦

ara238025 238025 10000 1354335 1345698 1446100 5197 0,64% 19 0 TL ∞ ♦

ara238025 238025 20000 857553 857453 878372 5582 0,004% 42 696 TL ∞ ♦

ara238025 238025 30000 630969 630872 643171 5123 0% 33 663 33687 ∞ ♦

ara238025 238025 40000 494842 494804 498378 4135 0% 18 0 10028 ∞ ♦

ara238025 238025 50000 401835 401795 404218 2675 0% 19 0 8327 ∞ ♦

ara238025 238025 60000 334279 334236 335807 2969 0% 17 0 7240 ∞ ♦

ara238025 238025 70000 283627 283592 286065 3058 0% 28 509 19298 ∞ ♦

ara238025 238025 80000 244233 243936 248742 2578 0% 36 378 14615 ∞ ♦

ara238025 238025 90000 214233 213936 219673 1548 0% 27 507 28391 ∞ ♦

ara238025 238025 100000 184233 184069 188556 1973 0% 44 613 18473 ∞ ♦

ara238025 238025 150000 88025 88025 88334 1532 0% 27 0 6057 ∞ ♦

ara238025 238025 200000 38025 38025 38025 319 0% 11 0 319 ∞ ♦

Average total time 120 300

Table 5: Results on huge TSP instances for our method and Zebra on our computer. TL=36000 seconds. ♦ means that the
computer ran out of memory. The average total time is calculated with the instances in which both methods solve the instances
to optimality

BIRCH instances

The results on BIRCH instances are summarized in Tables 6 and 7. Almost all of these instances

were solved in our first phase either by finding an integer solution directly or by our rounding

heuristic. Consequently, we obtain the optimal values of all of these instances quickly. Even when

multiplying the solution time of AvellaHeu and IrawanHeu by their benchmark ratio (2.5 and 3,

respectively), our approach remains the best for most instances.

21



INSTANCE PHASE 1 PHASE 1 + 2 AvellaHeu

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot UBh T

ds1x1 10000 100 12428,5 12428,5 12428,5 9 0% 6 0 9 12428,5 47

ds1x2 15000 100 18639,3 18639,3 18639,3 29 0% 7 0 29 18639,3 101

ds1x3 20000 100 24840,3 24840,3 24840,3 38 0% 7 0 38 24840,3 210

ds1x4 9600 64 11934,8 11934,8 11934,8 13 0% 6 0 13 11934,8 56

ds1x5 12800 64 15863,8 15863,8 15863,8 25 0% 7 0 25 15863,8 84

ds1x6 16000 64 20004,5 20004,5 20004,5 31 0% 6 0 31 20004,6 129

ds1x7 19200 64 24018,3 24018,3 24018,3 55 0% 6 0 55 24018,3 219

ds1x8 10000 25 12455,7 12455,7 12455,7 28 0% 6 0 28 12455,7 82

ds1x9 12500 25 15597,1 15597,1 15597,1 43 0% 6 0 43 15597,1 115

ds1x0 15000 25 18949,3 18949,3 18949,3 67 0% 7 0 67 18949,3 175

ds1xA 17500 25 21937,4 21937,4 21937,4 116 0% 6 0 116 21937,4 241

ds1xB 20000 25 25096,8 25096,8 25096,8 108 0% 6 0 108 25096,8 365

ds3x1 10000 100 9624,8 9624,8 9624,8 16 0% 9 0 16 9624,8 60

ds3x2 15000 100 15898,2 15895,9 15899,1 39 0% 10 88 142 15904,1 121

ds3x3 20000 100 19976,2 19974,6 19977,6 97 0% 10 13 260 19989,0 222

ds3x4 9600 64 8225,6 8224,1 8225,7 24 0% 12 5 65 8225,6 57

ds3x5 12800 64 10210,4 10210,4 10210,4 36 0% 10 0 36 10210,4 98

ds3x6 16000 64 13335,4 13335,4 13335,4 62 0% 10 0 62 13340,5 170

ds3x7 19200 64 15207,6 15207,1 15207,6 176 0% 18 0 400 15207,6 229

ds3x8 10000 25 7203,4 7203,4 7203,4 61 0% 11 0 61 7203,4 94

ds3x9 12500 25 8576,1 8576,1 8576,1 68 0% 7 0 68 8576,1 144

ds3x0 15000 25 9513,6 9513,6 9513,6 135 0% 13 0 136 9513,6 192

ds3xA 17500 25 12535,7 12535,7 12535,7 224 0% 16 0 224 12535,7 250

ds3xB 20000 25 13022,2 13022,2 13022,2 244 0% 11 0 244 13052,8 364

Table 6: Results on BIRCH instances for our method and the results of AvellaHeu reported in Avella et al. (2012).

INSTANCE PHASE 1 PHASE 1 + 2 IrawanHeu

name N = M p
OPT/

BKN
LB1 UB1 T 1 gap iter nodes T tot UBh T

ds1n01 25000 25 31229,4 31229,4 31229,4 153 0% 7 0 153 31282,6 447

ds1n02 36000 36 45115,6 45115,6 45115,6 311 0% 7 0 311 45115,6 780

ds1n03 49000 49 61384,1 61384,1 61384,1 388 0% 7 0 388 61569,7 1216

ds1n04 64000 64 80053,9 80053,9 80053,9 675 0% 7 0 675 80377,4 2258

ds1n05 30000 25 37563,6 37563,6 37563,6 305 0% 7 0 305 37617,1 559

ds1n06 43200 36 54191,4 54191,4 54191,4 320 0% 7 0 320 54305,8 1003

ds1n07 58800 49 73626,8 73626,8 73626,8 683 0% 7 0 683 73854,7 1691

ds1n08 76800 64 96039,4 96039,4 96039,4 949 0% 7 0 949 96393,4 2834

ds1n09 35000 25 43902,1 43902,1 43902,1 385 0% 7 0 386 42972,1 758

ds1n10 50400 36 63169,2 63169,2 63169,2 533 0% 7 0 533 63329,2 1472

ds1n11 68600 49 85833,5 85833,5 85833,5 910 0% 8 0 910 86082,0 2441

ds1n12 89600 64 112059,2 112059,2 112059,2 1332 0% 7 0 1332 112485,2 4501

ds3n01 25000 25 17696,2 17696,2 17696,2 112 0% 6 0 112 17718,6 527

ds3n02 36000 36 27423,0 27423,0 27423,0 237 0% 7 0 237 27476,1 913

ds3n03 49000 49 44149,0 44149,0 44149,0 294 0% 10 0 295 44282,5 1760

ds3n04 64000 64 58832,6 58832,6 58832,6 807 0% 11 0 807 58991,5 2624

ds3n05 30000 25 21829,9 21829,9 21829,9 258 0% 7 0 258 21865,1 832

ds3n06 43200 36 32339,4 32339,4 32339,4 337 0% 9 0 337 32391,6 1873

ds3n07 58800 49 50857,9 50857,9 50857,9 831 0% 12 0 831 50857,9 2692

ds3n08 76800 64 66561,4 66561,0 66655,7 1490 0% 17 9 4587 66944,7 4393

ds3n09 35000 25 24810,9 24810,9 24810,9 869 0% 10 0 869 24833,7 972

ds3n10 50400 36 38102,6 38102,6 38102,6 504 0% 8 0 504 38162,3 2297

ds3n11 68600 49 61850,6 61850,6 61850,6 1065 0% 14 0 1065 62007,4 2556

ds3n12 89600 64 78777,0 78777,0 78777,0 1548 0% 19 0 1548 79245,3 5779

Table 7: Results on large BIRCH instances for our method and the results of IrawanHeu reported in Irawan & Salhi (2015b)

22



RW instances

The results on RW instances are summarized in Table 8. Even small RW instances can be very

difficult to solve as previously observed by Elloumi & Plateau (2010). We think that it is mainly

due to the fact that the instances are non-Euclidean. Furthermore, the total number of distances K

is closer to N ×M , leading to more variables and constraints in Formulations (F2) and (F3). For

large values of p, our decomposition can quickly solve the instances to optimality. These instances

were not considered by either Avella et al. (2007) or Garćıa et al. (2011). Moreover, the code of

Zebra cannot handle non-symmetric instances. Consequently, we only report the computation time

and value UBh of the solution computed by the heuristic PopStar.

INSTANCE PHASE 1 PHASE 1 + 2 PopStar

name N = M p OPT LB1 UB1 T 1 gap iter nodes T tot UBh T

rw100 10 100 10 530 475 530 0,02 0%% 46 4817 6,82 530 0,05

rw100 20 100 20 277 274 277 0,01 0% 9 0 0,20 277 0,03

rw100 30 100 30 213 213 213 0,01 0% 9 0 0,01 213 0,02

rw100 40 100 40 187 187 187 0,01 0% 7 0 0,01 187 0,03

rw100 50 100 50 172 172 172 0,01 0% 7 0 0,01 172 0,02

rw250 10 250 10 3691 2811 3698 0,26 0% 71 4072666 31099 3698 0,31

rw250 25 250 25 1360 1216 1364 0,14 0,4% 64 5003894 TL 1364 0,34

rw250 50 250 50 713 699 713 0,07 0% 23 2050 7,31 713 0,15

rw250 75 250 75 523 523 523 0,02 0% 11 0 0,02 524 0,09

rw250 100 250 100 444 444 444 0,02 0% 9 0 0,02 444 0,08

rw250 125 250 125 411 411 411 0,02 0% 8 0 0,02 411 0,07

rw500 10 500 10 16108 11012 16144 1,35 21,5% 81 211046 TL 16144 2,53

rw500 25 500 25 5683 4403 5716 0,85 16,3% 73 506777 TL 5716 1,80

rw500 50 500 50 2627 2321 2627 0,52 6,5% 44 1290135 TL 2627 1,03

rw500 75 500 75 1757 1672 1757 0,36 1,1% 31 2436992 TL 1757 0,84

rw500 100 500 100 1379 1353 1382 0,25 0% 45 209745 1482 1382 0,47

rw500 150 500 150 1024 1024 1024 0,05 0% 8 0 0,05 1024 0,30

rw500 250 500 250 833 833 833 0,03 0% 9 0 0,03 833 0,25

rw1000 10 1000 10 68136 44697 68136 10,35 36,2% 61 19577 TL 68136 8,65

rw1000 25 1000 25 24964 17387 25042 6,22 34,1% 77 32697 TL 25042 7,60

rw1000 50 1000 50 11328 8760 11328 5,18 23,2% 65 94037 TL 11328 7,09

rw1000 75 1000 75 7207 5998 7223 4,20 16,2% 70 151511 TL 7223 3,15

rw1000 100 1000 100 5233 4631 5233 3,22 9,7% 42 285579 TL 5233 4,45

rw1000 200 1000 200 2710 2664 2710 0,94 0,5% 31 1310025 TL 2710 3,27

rw1000 300 1000 300 2018 2017 2018 0,20 0% 12 0 0,28 2018 1,99

rw1000 400 1000 400 1734 1734 1734 0,08 0% 9 0 0,09 1734 1,68

rw1000 500 1000 500 1614 1614 1614 0,07 0% 8 0 0,08 1614 1,35

Table 8: Results on RW instances for our exact method and PopStar heuristic in our computer. TL=36000 seconds.

23



ODM instances

The results on ODM instances are summarized in Table 9. To solve these instances, we need

to add N constraints to ensure that each client is allocated to one of its non-forbidden neighbors.

This generates a more complex master problem to solve. The rounding heuristic could not be used

directly with these instances, so in order to save computation time, it was not used.

Obtaining a solution for these instances is hard since PopStar does not support their format

and since random solutions may not be feasible due to the sparsity of the graphs. Consequently, to

obtain an initial solution, we solve its corresponding formulation (F3) by CPLEX and stop it once it

has found 3 feasible solutions. This approach empirically proved to be a good compromise between

computation time and optimality gap. We were also unable to use Zebra for these instances. We

solve to optimality all these instances. Our results remains the best on all instances even after

multiplying AvellaB&Csolution times by its benchmark ratio of value 6.

INSTANCE PHASE 1 PHASE 1 + 2 AvellaB&C

name N = M p OPT LB1 UB1 T 1 gap iter nodes T tot gap T

BD3773 3773 5 726954998,4 715785543,5 748669824,0 6 0% 123 59 58 0% 1540

BD3773 3773 6 685812258,0 673317265,9 720632505,6 10 0% 318 221 158 0% 41551

BD3773 3773 7 651930471,0 636565701,5 727428978,0 11 0% 1165 627 589 0% 216851

BD3773 3773 8 620886605,4 606599816,1 1157543276,4 20 0% 2520 1153 1434 1,7% 329053

BD3773 3773 9 595955799,0 581022150,3 649313415,0 18 0% 4028 1981 2385 2,6% TL2

BD3773 3773 10 574634206,8 559096162,3 633383307,0 24 0% 8229 4848 4372 2,8% TL2

BD3773 3773 11 554972029,2 539810124,3 603741870,0 29 0% 10139 5940 5832 2,9% TL2

BD3773 3773 12 536700087,0 522614063,7 605415767,4 30 0% 13951 5898 8083 3,1% TL2

BD3773 3773 13 521375065,2 507136693,1 581851884,6 31 0% 22500 9471 12581 3,2% TL2

BD3773 3773 14 507756740,4 493051932,7 550267457,4 35 0% 52705 30275 31651 3,1% TL2

Table 9: Results on ODM instances for our method and the results of AvellaB&C reported in Avella et al. (2007). TL2=360000
seconds.

4.4. Adaptation for the Uncapacitaded Facility Location problem

Given the closeness of the (pMP ) and the (UFL) we want to compare our two-phase decom-

position algorithm with the approach proposed in Fischetti et al. (2017) for the (UFL). They

solve the problem in a branch-and-cut approach in which they search for violated Benders cuts for

both the integer solutions and the fractional solutions of the linear relaxations with a polynomial

time algorithm. This approach is also known as branch-and-Benders-cut. They also consider some

stabilization techniques and heuristics for the cut loop at the root and at the branching nodes. We

denote their method as BBC.

24



We have considered the same set of KG instances from UFLLIB3 to compare the performance on

the linear formulation. These instances can be divided into three groups, withN =M ∈ {250, 500, 750}.

Within each KG group, there are two classes of instances, symmetric and asymmetric ones, denoted

by “gs” and “ga”, respectively. Additionally, each class contains three sub-classes, “a”, “b,” and “c,”

representing different cost settings: in subclass a, allocation costs are an order of magnitude higher

than the facility opening costs; in subclass b, these costs are of the same order; and in subclass c,

facility opening costs are an order of magnitude higher than the allocation costs.

The computational study in Fischetti et al. (2017) was conducted on a cluster of identical

machines each consisting of an Intel Xeon E3-1220V2 CPU running at 3.10 GHz, with 16 GB of

RAM each. They reported the wall-clock times and referred to four-thread runs with a time limit of

2 hours per instance (indicated by TL3 in the corresponding table).

KG Instances

The results on KG instances are summarized in Appendix A. To solve these instances we need

to modify our master problem to consider the open cost of the sites and remove the constraint of

limiting the number of open sites to p. This generates a harder master problem to solve. Let cj be

the cost of to open the site j.

(MPUFL)



min
N∑
i=1

θi +
M∑
j=1

cjyj

s.t.
M∑
j=1

yj = p

θi satisfies BDi i ∈ [N ]

yj ∈ {0, 1} j ∈ [M ]

We must also modify the heuristics used in Phase 1 since PopStar does not take into account the

opening costs of the sites and we do not have the parameter p. We consider a greedy heuristic to get

the initial solution. As the rounding heuristic, we set to 1 all the sites which yj > 0.4 for j ∈ [M ].

Our results are consistent with those presented in Fischetti et al. (2017) since within the 2-hour

limit we also are not able to optimally solve the considered instances. Fischetti et al. (2017) do not

report lower bounds on the optimal value. We observe here that the final gap is relatively small

3https://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/index.html

25



since its maximal value is 1.7%. However, Fischetti et al. (2017) have a better upper bound for all

the instances which is probably due to the stabilization technique and their primal heuristics used

at each node.

5. Conclusions

The p-median problem is a well-studied discrete location problem in which we have to choose

p sites among M to allocate N clients in order to minimize the sum of their allocation distances.

This problem has various applications and several heuristic methods have been proposed to solve

it. However, its exact solution remains a challenge for large-scale instances. The previously most

effective approach in the literature was able to solve instances up to 85900 clients and sites.

We performed a Benders decomposition of the most efficient formulation of the p-median problem.

The efficiency of our decomposition comes from a fast algorithm for the solution of the sub-problems

in conjunction with improvements in a two-phase solution implementation. In the first phase, the

integrity constraints are relaxed and in the second phase, the problem is solved in an efficient

branch-and-cut approach.

Our approach outperforms other state-of-the-art methods. We solve for the first time to

optimality instances having up to 89600 and 238025 clients and sites from the BIRCH and TSP

libraries, respectively. We tested our decomposition algorithm on other p-median instances: RW

instances which do not satisfy triangle inequality and ODM instances in which there are allocations

that are not allowed between certain clients and sites. For the RW instances. we were able to solve

instances of up to 1000 clients with a large value of p. For ODM instances with 3773 clients, we

solve previously unsolved instances within 10 hours. We also adapt our approach to test it on the

difficult KG instances of the (UFL) problem obtaining relatively small optimality gaps.

One of the perspectives of this research is to exploit these results on other families of location

problems. It is also expected to use other branching strategies that allow a greater efficiency during

the development of the branch-and-cut algorithm.

Acknowledgments

The authors would like to thank Sergio Garcia for providing the code used in Garćıa et al. (2011).

This work was funded by the National Agency for Research and Development of Chile - ANID

(Scholarship Phd. Program 2019-72200492).

26



Appendix A. Detailed results for the UFL instances

INSTANCE PHASE 1 PHASE 1 + 2 BBC

name N = M BKN LB1 UB1 T 1 UB2 gap iter nodes T tot UBh T

ga500a-1 500 511383 510589,0 514040 2,0 511474 0,11% 65 227655 TL3 511383 TL3

ga500a-2 500 511255 510472,2 514397 1,8 511367 0,11% 69 217453 TL3 511255 TL3

ga500a-3 500 510810 510139,0 513356 1,9 510965 0,09% 78 264644 TL3 510810 TL3

ga500a-4 500 511008 510382,6 512694 1,7 511082 0,08% 35 369649 TL3 511008 TL3

ga500a-5 500 511239 510487,7 513475 2,0 511425 0,11% 74 237491 TL3 511239 TL3

ga500b-1 500 538060 533338,6 545628 1,6 538452 0,49% 66 119621 TL3 538060 TL3

ga500b-2 500 537850 533087,6 619389 1,6 538457 0,60% 84 87311 TL3 537850 TL3

ga500b-3 500 537924 532735,7 626127 1,7 538264 0,63% 77 76708 TL3 537924 TL3

ga500b-4 500 537925 532841,9 670237 1,5 538385 0,58% 90 86797 TL3 537925 TL3

ga500b-5 500 537482 532968,8 597360 1,5 537662 0,44% 71 124594 TL3 537482 TL3

gs500a-1 500 511188 510409,9 513472 3,4 511314 0,10% 95 233059 TL3 511188 TL3

gs500a-2 500 511179 510448,7 514006 1,9 511354 0,11% 82 165089 TL3 511179 TL3

gs500a-3 500 511112 510321,4 513779 2,3 511287 0,12% 85 141758 TL3 511112 TL3

gs500a-4 500 511137 510369,6 513787 2,2 511278 0,11% 66 159787 TL3 511137 TL3

gs500a-5 500 511293 510494,5 513990 2,0 511532 0,13% 83 145791 TL3 511293 TL3

gs500b-1 500 537931 533026,7 659721 1,4 538418 0,57% 76 84363 TL3 537931 TL3

gs500b-2 500 537763 533096,1 662841 1,4 538160 0,51% 67 113638 TL3 537763 TL3

gs500b-3 500 537854 532832,2 678990 1,7 538457 0,63% 91 76097 TL3 537854 TL3

gs500b-4 500 537742 532717,2 664753 1,5 538422 0,66% 97 74407 TL3 537742 TL3

gs500b-5 500 538270 533098,2 669016 1,6 538618 0,59% 80 83721 TL3 538270 TL3

ga750a-1 750 763528 762464,5 766540 5,8 763869 0,15% 93 50507 TL3 763528 TL3

ga750a-2 750 762653 762520,2 767067 9,2 763973 0,15% 89 46602 TL3 762653 TL3

ga750a-3 750 763697 762568,5 766608 6,2 763930 0,14% 79 43302 TL3 763697 TL3

ga750a-4 750 763945 762738,5 767839 6,6 764240 0,16% 77 36036 TL3 763945 TL3

ga750a-5 750 763786 762637,0 767096 7,3 764159 0,16% 75 40176 TL3 763786 TL3

ga750b-1 750 796454 790121,9 897053 4,6 797090 0,62% 66 26275 TL3 796454 TL3

ga750b-2 750 795963 789512,4 938670 4,5 796498 0,62% 82 25485 TL3 795963 TL3

ga750b-3 750 796130 789618,5 929140 4,6 796640 0,63% 79 23499 TL3 796359 TL3

ga750b-4 750 797013 790345,1 926574 4,7 797935 0,69% 90 22494 TL3 797013 TL3

ga750b-5 750 796387 789647,3 930851 4,0 796934 0,66% 89 23036 TL3 796549 TL3

ga750c-1 750 902026 875624,7 1018182 2,2 903292 1,59% 87 23967 TL3 902026 TL3

ga750c-2 750 899651 873946,7 1017899 2,8 902368 1,70% 84 22481 TL3 899651 TL3

ga750c-3 750 900010 874108,9 1012861 3,1 902099 1,66% 82 24265 TL3 900019 TL3

ga750c-4 750 900044 875565,9 1028964 2,4 901809 1,42% 76 23248 TL3 900044 TL3

ga750c-5 750 899235 873191,5 1028543 2,6 900541 1,55% 87 24812 TL3 899235 TL3

gs750a-1 750 763671 762564,9 767232 6,5 763925 0,14% 84 43430 TL3 763671 TL3

gs750a-2 750 763548 762529,4 766414 6,1 763666 0,11% 90 57546 TL3 763548 TL3

gs750a-3 750 763727 762568,1 765552 6,6 764031 0,16% 82 41309 TL3 763727 TL3

gs750a-4 750 763887 762788,3 766768 7,5 764208 0,15% 81 36651 TL3 763922 TL3

gs750a-5 750 763614 762528,9 766741 6,4 763947 0,15% 92 44013 TL3 763614 TL3

gs750b-1 750 797026 790349,4 994689 4,7 797713 0,68% 82 20525 TL3 797329 TL3

gs750b-2 750 796170 789669,9 895766 4,1 796843 0,66% 80 26652 TL3 796170 TL3

gs750b-3 750 796589 789935,6 996019 4,5 797357 0,69% 84 22153 TL3 796589 TL3

gs750b-4 750 796734 790080,8 997279 4,2 797176 0,65% 69 26574 TL3 797020 TL3

gs750b-5 750 796365 789902,8 930041 4,6 797026 0,63% 63 23510 TL3 796365 TL3

gs750c-1 750 900363 875363,9 1020684 2,9 903801 1,64% 80 22196 TL3 900363 TL3

gs750c-2 750 897886 874186,6 1004896 2,5 900668 1,49% 70 27230 TL3 897886 TL3

gs750c-3 750 901656 874762,5 1019498 2,5 902767 1,61% 89 21335 TL3 901656 TL3

gs750c-4 750 901239 875410,6 1007402 2,6 902591 1,61% 81 24195 TL3 901239 TL3

gs750c-5 750 900216 875956,4 1017315 3,4 903719 1,65% 78 20022 TL3 900216 TL3

Table A.10: Results on KG instances for our method and the results of BBC reported in Fischetti et al. (2017) TL3=72000 seconds.

27



References

An, Y., Zeng, B., Zhang, Y., & Zhao, L. (2014). Reliable p-median facility location problem:

two-stage robust models and algorithms. Transportation Research Part B: Methodological , 64 ,

54–72. doi:https://doi.org/10.1016/j.trb.2014.02.005.

Avella, P., Boccia, M., Salerno, S., & Vasilyev, I. (2012). An aggregation heuristic for large scale

p-median problem. Computers & Operations Research, 39 , 1625–1632. doi:https://doi.org/10.

1016/j.cor.2011.09.016.

Avella, P., Sassano, A., & Vasil’ev, I. (2007). Computational study of large-scale p-median problems.

Mathematical Programming , 109 , 89–114. doi:10.1007/s10107-005-0700-6.

Basu, S., Sharma, M., & Ghosh, P. S. (2015). Metaheuristic applications on discrete facility location

problems: a survey. OPSEARCH , 52 , 530–561. doi:10.1007/s12597-014-0190-5.

Beasley, J. E. (1990). Or-library: Distributing test problems by electronic mail. The Journal of the

Operational Research Society , 41 , 1069–1072. URL: http://www.jstor.org/stable/2582903.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik , 4 , 238–252. doi:10.1007/BF01386316.

Briant, O., & Naddef, D. (2004). The optimal diversity management problem. Operations research,

52 , 515–526. doi:10.1287/opre.1040.0108.

Cordeau, J.-F., Furini, F., & Ljubić, I. (2019). Benders decomposition for very large scale partial set

covering and maximal covering location problems. European Journal of Operational Research,

275 , 882 – 896. doi:10.1016/j.ejor.2018.12.021.

Cornuejols, G., Nemhauser, G. L., & Wolsey, L. A. (1980). A canonical representation of simple

plant location problems and its applications. SIAM Journal on Algebraic Discrete Methods, 1 ,

261–272. doi:10.1137/0601030.

Elloumi, S. (2010). A tighter formulation of the p-median problem. Journal of Combinatorial

Optimization, 19 , 69–83. doi:10.1007/s10878-008-9162-0.

Elloumi, S., & Plateau, A. (2010). A computational study for the p-median problem. Electronic

Notes in Discrete Mathematics, 36 , 455–462. doi:10.1016/j.endm.2010.05.058.

28

http://dx.doi.org/https://doi.org/10.1016/j.trb.2014.02.005
http://dx.doi.org/https://doi.org/10.1016/j.cor.2011.09.016
http://dx.doi.org/https://doi.org/10.1016/j.cor.2011.09.016
http://dx.doi.org/10.1007/s10107-005-0700-6
http://dx.doi.org/10.1007/s12597-014-0190-5
http://www.jstor.org/stable/2582903
http://dx.doi.org/10.1007/BF01386316
http://dx.doi.org/10.1287/opre.1040.0108
http://dx.doi.org/10.1016/j.ejor.2018.12.021
http://dx.doi.org/10.1137/0601030
http://dx.doi.org/10.1007/s10878-008-9162-0
http://dx.doi.org/10.1016/j.endm.2010.05.058


Fischetti, M., Ljubic, I., & Sinnl, M. (2017). Redesigning benders decomposition for large-scale

facility location. Management Science, 63 , 2146–2162. doi:10.1287/mnsc.2016.2461.

Gaar, E., & Sinnl, M. (2022). A scaleable projection-based branch-and-cut algorithm for the p-center

problem. European Journal of Operational Research, . doi:https://doi.org/10.1016/j.ejor.

2022.02.016.

Galvão, R. D. (1980). A dual-bounded algorithm for the p-median problem. Operations Research,

28 , 1112–1121. doi:10.1287/opre.28.5.1112.

Garćıa, S., Labbé, M., & Maŕın, A. (2011). Solving large p-median problems with a radius formulation.

INFORMS Journal on Computing , 23 , 546–556. doi:10.1287/ijoc.1100.0418.

Hakimi, S. (1964). Optimum locations of switching centers and the absolute centers and medians of

a graph. Operations Research, 12 , 450–459. doi:10.1287/opre.12.3.450.

Hansen, P., Brimberg, J., Urošević, D., & Mladenović, N. (2009). Solving large p-median clustering

problems by primal–dual variable neighborhood search. Data Mining and Knowledge Discovery ,

19 , 351–375. doi:10.1007/s10618-009-0135-4.

Irawan, C., & Salhi, S. (2015a). Aggregation and non aggregation techniques for large facility

location problems: A survey. Yugoslav Journal of Operations Research, 25 , 1–1. doi:10.2298/

YJOR140909001I.

Irawan, C. A., & Salhi, S. (2015b). Solving large p-median problems by a multistage hybrid

approach using demand points aggregation and variable neighbourhood search. Journal of Global

Optimization, 63 , 537–554. doi:10.1007/s10898-013-0080-z.

Irawan, C. A., Salhi, S., & Scaparra, M. P. (2014). An adaptive multiphase approach for large

unconditional and conditional p-median problems. European Journal of Operational Research,

237 , 590–605. doi:https://doi.org/10.1016/j.ejor.2014.01.050.

Kariv, O., & Hakimi, S. L. (1979). An algorithmic approach to network location problems. ii: The

p-medians. SIAM Journal on Applied Mathematics , 37 , 539–560. URL: http://www.jstor.org/

stable/2100911.

Klastorin, T. D. (1985). The p-Median Problem for Cluster Analysis: A Comparative Test Using the

Mixture Model Approach. Management Science, 31 , 84–95. URL: https://doi.org/10.1287/

mnsc.31.1.84. doi:10.1287/mnsc.31.1.84.

29

http://dx.doi.org/10.1287/mnsc.2016.2461
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.02.016
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.02.016
http://dx.doi.org/10.1287/opre.28.5.1112
http://dx.doi.org/10.1287/ijoc.1100.0418
http://dx.doi.org/10.1287/opre.12.3.450
http://dx.doi.org/10.1007/s10618-009-0135-4
http://dx.doi.org/10.2298/YJOR140909001I
http://dx.doi.org/10.2298/YJOR140909001I
http://dx.doi.org/10.1007/s10898-013-0080-z
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.01.050
http://www.jstor.org/stable/2100911
http://www.jstor.org/stable/2100911
https://doi.org/10.1287/mnsc.31.1.84
https://doi.org/10.1287/mnsc.31.1.84
http://dx.doi.org/10.1287/mnsc.31.1.84


Laporte, G., Nickel, S., & Saldanha-da Gama, F. (2019). Location Science (2nd ed). Springer

International Publishing. doi:10.1007/978-3-030-32177-2.

Magnanti, T. L., & Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic

enhancement and model selection criteria. Operations Research, 29 , 464–484. URL: http:

//www.jstor.org/stable/170108.

Maŕın, & Pelegŕın, M. (2019). The p-median problem. In Location Science (pp. 25–50). Springer

International Publishing. doi:10.1007/978-3-030-32177-2_2.

Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Pérez, J. A. (2007). The p-median problem: A

survey of metaheuristic approaches. European Journal of Operational Research, . doi:10.1016/j.

ejor.2005.05.034.

Mu, W., & Tong, D. (2020). On solving large p-median problems. Environment and Planning B:

Urban Analytics and City Science, 47 , 981–996. URL: 10.1177/2399808319892598. doi:10.1177/

2399808319892598.

Park, H.-S., & Jun, C.-H. (2009). A simple and fast algorithm for K-medoids clustering. Expert

Systems with Applications, 36 , 3336–3341. doi:10.1016/j.eswa.2008.01.039.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The benders decomposition

algorithm: A literature review. European Journal of Operational Research, 259 , 801 – 817.

doi:10.1016/j.ejor.2016.12.005.

Reese, J. (2006). Solution methods for the p-median problem: An annotated bibliography. Networks ,

48 , 125–142. doi:10.1002/net.20128.

Reinelt, G. (1991). TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on Computing ,

3 , 376–384. doi:10.1287/ijoc.3.4.376.

Resende, M. G. C., & Werneck, R. F. (2004). A Hybrid Heuristic for the p-Median Problem. Journal

of Heuristics, 10 , 59–88. doi:10.1023/B:HEUR.0000019986.96257.50.

ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical Analysis, 2 , 30–42.

doi:10.1111/j.1538-4632.1970.tb00142.x.

30

http://dx.doi.org/10.1007/978-3-030-32177-2
http://www.jstor.org/stable/170108
http://www.jstor.org/stable/170108
http://dx.doi.org/10.1007/978-3-030-32177-2_2
http://dx.doi.org/10.1016/j.ejor.2005.05.034
http://dx.doi.org/10.1016/j.ejor.2005.05.034
10.1177/2399808319892598
http://dx.doi.org/10.1177/2399808319892598
http://dx.doi.org/10.1177/2399808319892598
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1016/j.ejor.2016.12.005
http://dx.doi.org/10.1002/net.20128
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1023/B:HEUR.0000019986.96257.50
http://dx.doi.org/10.1111/j.1538-4632.1970.tb00142.x


Takedomi, S., Ishigaki, T., Hanatsuka, Y., & Mori, T. (2022). Facility location optimization with pMP

modeling incorporating waiting time prediction function for emergency road services. Computers

& Industrial Engineering , 164 , 107859. doi:10.1016/j.cie.2021.107859.

Ushakov, A. V., & Vasilyev, I. (2021). Near-optimal large-scale k-medoids clustering. Information

Sciences, 545 , 344–362. doi:10.1016/j.ins.2020.08.121.

Voevodski, K. (2021). Large Scale K-Median Clustering for Stable Clustering Instances. In

A. Banerjee, & K. Fukumizu (Eds.), Proceedings of The 24th International Conference on Artificial

Intelligence and Statistics (pp. 2890–2898). PMLR volume 130 of Proceedings of Machine Learning

Research. URL: https://proceedings.mlr.press/v130/voevodski21a.html.

31

http://dx.doi.org/10.1016/j.cie.2021.107859
http://dx.doi.org/10.1016/j.ins.2020.08.121
https://proceedings.mlr.press/v130/voevodski21a.html

	Introduction
	Contribution and outline

	Literature review
	MILP formulations
	Solution methods

	Benders decomposition for the (pMP) 
	Formulation 
	Separation problem 
	Polynomial separation algorithm 
	Compact Benders reformulation
	Decomposition algorithm implementation 
	Phase 1: Solving the linear relaxation of the master problem
	Phase 2: Solving the master problem with branch-and-Benders-cut approach


	Computational study 
	Benchmark instances 
	Technical specifications 
	Performance analysis 
	Adaptation for the Uncapacitaded Facility Location problem

	Conclusions 
	Detailed results for the UFL instances

