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Abstract Let S be a scheme such that 2 is not a zero divisor. In this paper, we address the
following question: given a quadratic algebra over S, how can we parametrize its Picard group
in terms of quadratic forms? In 2011, Wood established a set-theoretical bijection between
isomorphism classes of primary binary quadratic forms over S and isomorphism classes of pairs
(C,M) where C is a quadratic algebra over S andM is an invertible C-module. Unexpectedly,
examples suggest that a refinement of Wood’s bijection is needed in order to parametrize
Picard groups. This is why we start by classifying quadratic algebras over S; this is achieved
by using two invariants, the discriminant and the parity. Extending the notion of orientation of
quadratic algebras to the non-free case is another key step, eventually leading us to the desired
parametrization. All along the paper, we illustrate various notions and obstructions with a
wide range of examples.

1 Introduction

1.1 Historical background and motivations

The richness of the theory of integral binary quadratic forms has been proven many times since
the work of Gauss in his Disquisitiones Arithmeticae (1801). By integral binary quadratic form,
we mean a map q : Z2 −→ Z such that for all x, y ∈ Z, we have q(x, y) = ax2 + bxy + cy2 for
some a, b, c ∈ Z. Such a map is said to be primitive if gcd(a, b, c) = 1, and its discriminant
is the quantity ∆ = b2 − 4ac. We have a natural action of GL2(Z) and SL2(Z) on integral
quadratic forms, defined by µ · q := q ◦ µ where µ ∈ GL2(Z) or SL2(Z).

First studied in the framework of diophantine equations, quadratic forms appeared shortly
after to have strong connections with the ideal class group of quadratic orders over Z. The
induced parametrization of ideal classes by classes of primitive quadratic forms is still one of the
best tools to derive information about the ideal class group, such as its size [Coh93, Chapter 5].

The correspondence is deep and useful, nevertheless it requires a certain amount of work to
handle it properly. Gauss’ computations are particularly hard to follow, and lots of mathemati-
cians tried to simplify his arguments, making them clearer and at the same time more likely
to be generalized (cf. for instance [Cox13, p. 58 and 74], or [Tow80, p. 32, historical note]). A
natural question is to replace the base ring Z by another one, such that we still have nice results
on the associated quadratic forms, especially regarding the group structure and its link with
ideal classes. One important feature of that problem is to determine which quadratic algebra
corresponds to a given quadratic form. Over Z, the discriminant of an integral quadratic form

1



fully determines the corresponding quadratic order, but this is no longer true over more general
rings, as Example 2.12 shows.

The main motivation for the present note is to find a parametrization of the Picard group
of a given quadratic algebra by a well-chosen set of classes of quadratic forms, over a general
base scheme S instead of Z. To reach this goal, we shall start by establishing a classification
of quadratic algebras, making clear which quadratic algebra corresponds to a given quadratic
form.

In 1980, Towber made a thorough review of previous works extending the base ring to get a
group structure on quadratic forms [Tow80, introduction], with an extensive bibliography. To
generalize a step further, he enriched the definition of quadratic form over a ring R, considering
q : P −→ R where P is an oriented locally free rank 2 R-module such that Λ2P is free of rank
1 over R, instead of merely P = R2 [Tow80, Definition 1.8]. Therein, the orientation is nothing
but the choice of a generator of Λ2P . This definition of quadratic forms enabled Towber to
handle sheaves of quadratic forms (from page 85 of [Tow80]) by using localization arguments.

As before, we say that an oriented binary quadratic form is primitive if the ideal generated by
the image of q is the unit ideal. Towber considered the SL2-action, under which the orientation
and the discriminant are preserved. In order to endow the set of SL2-classes of primitive oriented
quadratic forms of given discriminant with a group structure, Towber introduced a new concept,
the parity of a quadratic form, which for an integral binary quadratic form ax2 + bxy + cy2 is
the class of b modulo 2. When 2 is not a zero divisor in the base ring R, this allowed Towber
to define a composition law on the set of SL2-classes of primitive oriented quadratic forms of
given type, that is, of given discriminant and parity. He showed directly that it is a group law,
hence his work is independent from any connection with some Picard group.

Almost at the same time (1982), Kneser ([Kne82]) managed to obtain a group structure
by selecting the quadratic forms whose associated even Clifford algebra C is given. He defined
a composition law on their GL2(R)-classes, without any condition on the base ring R. Then
he linked it to the Picard group of C, but the obtained homomorphism is neither injective
nor surjective in general. To recover an isomorphism with the full Picard group, he added the
information of a second R-module, so that what he called quadratic maps are triples (M,N, q)
where q : M −→ N with M locally free of rank 2 and N locally free of rank 1, instead of N = R
as previously. Requiring M to be a projective rank 1 C-module and q to be compatible with
the norm of C, Kneser obtained the desired isomorphism with the Picard group of C.

We will not use the even Clifford algebra point of view in this paper. However, the definition
of quadratic maps was Wood’s starting point for the generalisation of the theory to an arbitrary
scheme in place of our base ring R ([Woo11, 2011]). If (S,OS) is a scheme, then her linear
binary quadratic forms are triples (V,L, q) where V and L are locally free OS-modules of ranks
2 and 1 respectively. Here, q is not seen as a map but rather as a global section of Sym2 V⊗OS

L,
which is the dual point of view. To define equivalence classes, Wood considered the action of
GL2(V) × GL1(L), where the GL2-part acts on V and the GL1-one on L by change of bases.
She established a bijection ([Woo11, Theorem 1.4]) associating GL2×GL1-classes of linear
binary quadratic forms on the one hand to classes of pairs (C,M) on the other hand, where
C is a locally free OS-algebra of rank 2 and M is a traceable C-module (cf. [Woo11] for the
definition of traceable). Restricting to primitive forms corresponds to requiring M to be an
invertible C-module in that bijection [Woo11, Theorem 1.5]. Her motivations being related to
moduli problems, she gave neither a group law nor an isomorphism with some Picard group,
but rather a set-theoretical bijection with a disjoint union of quotient sets of Picard groups (in
the primitive case).
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1.2 Main ideas and results of this article

The spirit of this paper is to recover from Wood’s bijection an explicit bijection between the
Picard group of a given quadratic algebra and a well-chosen set of classes of primitive quadratic
forms over a general scheme S. Although it may seem straightforward, it is actually not obvious
how to properly extract it from Wood’s bijection. A natural approach is to restrict Wood’s
bijection to the case of primitive quadratic forms of fixed discriminant. But this leads to at
least four problems, illustrated by Examples 2.12 (the corresponding quadratic algebra is not
uniquely determined), 2.29 (2 must be a non-zero-divisor), 2.42 (automorphisms may identify
ideal classes) and 3.14 (the discriminant must be oriented).

Thus, our unique assumption on S is that 2 must not be a zero divisor. Our global strategy
is first to determine which linear binary quadratic forms match to which quadratic algebras.
Since automorphisms of quadratic algebras are responsible for the identification of some Picard
classes, we then rigidify quadratic algebras with an adequate notion of orientation. This way, we
remove the identification problem, but we create extra copies of the Picard group, parametrized
by “twisted” quadratic forms. Classifying oriented quadratic algebras enables us to select exactly
one copy.

The first well-known invariant to determine which quadratic forms correspond to which
quadratic algebras is the discriminant. As previously said, over Z it is a complete invariant
for quadratic orders, but is not enough in general to characterize a quadratic algebra (Exam-
ple 2.12). Inspired by Towber’s notion of parity, we introduce a scheme-theoretic version of it,
for both quadratic algebras and linear binary quadratic forms (Definitions 2.13 and 2.36). Both
the discriminant ∆ and the parity Π rely on some OS-module N ∈ Pic(S), that is, ∆ and Π are
global sections of N⊗2 and N /2N respectively. The triple (∆,Π,N ) constitutes what we call
the type of a quadratic algebra or of a linear binary quadratic form. We characterize all triples
(∆,Π,N ) with ∆ ∈ Γ(S,N⊗2) and Π ∈ Γ(S,N /2N ) appearing as the type of some quadratic
algebra (Proposition 2.23). Our main result regarding classification of quadratic algebras by
their types is Theorem 2.25, which can be summarized as:

Theorem 1.1. When 2 is not a zero divisor, the isomorphism class of a quadratic algebra is
fully determined by the isomorphism class of its type.

In the case when S = Spec(R) and N is free, one can extract this classification from the
proof of [Voi16, Theorem 4.3]. Though not explicitly mentioned, the parity shows up in Voight’s
arguments. In another direction, he considered the situation when 2 is a zero divisor, giving a
partial answer to the classification by introducing the Artin-Schreier group.

Coming back to quadratic forms, we then show that Wood’s bijection is type-preserving
(Theorem 2.39), making possible the selection of the equivalence classes of linear binary
quadratic forms corresponding to a given quadratic algebra.

The remaining obstruction to reach the Picard group in that bijection is the existence
of non-trivial automorphisms of the corresponding quadratic algebra. Indeed, such automor-
phisms may identify for instance the Picard class of an invertible module with its inverse, as
Wood already noticed over Z (introduction of [Woo11]). More generally, the following dia-
gram summarizes Wood’s bijection in the primitive case, with the use of the parity, as given in
Theorem 2.39:















primitive linear binary
quadratic forms

of type isomorphic to
(∆,Π,N )













�GL2×GL1

Pic(C0)�∼1 : 1 (1.2)
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where C0 is a given quadratic algebra of type (∆,Π,N ), and ∼ is an equivalence relation defined
in Theorem 2.39. Our main idea to solve the problem is to introduce an N -orientation of our
quadratic algebra C, that is, to choose an isomorphism of C/OS (or equivalently of Λ2C) with
a fixed representative N ∨ of the isomorphism class of C/OS (Definition 3.2). When 2 is not a
zero divisor, the only remaining automorphism is the identity, as desired.

On the quadratic forms’ side, this amounts to a particular choice of the locally free module
L, namely L = Λ2V∨ ⊗OS

N . Wood already studied different choices of L, and the closest to
ours is L = Λ2V∨, corresponding to the case when C/OS is free ([Woo11, Theorem 5.2]). The
extra factor N enables us to treat the general case. Inspired by Wood’s terminology, we call
N -twisted quadratic forms the quadratic forms corresponding to our choice of L. This leads to
the twisted action of the linear group, which we denote by GLtw2 (Definition 3.9).

For N ∈ Pic(S), considering N -twisted quadratic forms and N -oriented quadratic algebras
removes the problem of identification of Picard classes, but has the side effect of duplicating
them. By Theorems 3.13 and 3.24, Diagram (1.2) becomes















primitive N -twisted
quadratic forms

of type isomorphic to
(∆,Π,N )













�GLtw2

⊔

i∈κ
Pic(C0)1 : 1

where κ denotes the (possibly infinite) cardinality of the set of different pairs (ε2∆, εΠ) for ε
varying in Γ(S,OS)×. To reach the Picard group of C0, we must refine the definition of type in
that context. Using specific representatives of the discriminant and the parity, which we refer
to as oriented or natural discriminants and parities, we prove that there is a unique oriented
quadratic algebra of given oriented type, up to isomorphism (Theorem 3.23). Our main result,
using definitions detailed after, is Theorem 3.24, which can be stated as follows:

Theorem 1.3. Let S be a scheme such that 2 is not a zero divisor. Let N ∈ Pic(S). Then
the set of GLtw2 -classes of primitive N -twisted binary quadratic forms over S of fixed natural
discriminant δ and natural parity π is in bijection with the Picard group of the unique (up
to isomorphism) N -oriented quadratic algebra C0 of the same oriented discriminant ∆ and
oriented parity π.







primitive N -twisted
quadratic forms of
natural type (δ, π,N )





�GLtw2

Pic(C0)1 : 1

Notice that the bijection can be made explicit, as in Corollary 3.25 for instance.

When 2 is a zero divisor, one may wonder what kind of definitions or invariants one should
consider to preserve such a parametrization of the Picard group. In the affine case, a partial
answer is given by the aforementioned Artin-Schreier group [Voi16]. On another side, still
in the affine case, one can check carefully that Wood’s construction of the quadratic algebra
attached to a linear binary quadratic form (V,L, q) corresponds to the even Clifford algebra
of q, described by Kneser. Without any assumption on the base ring R, Kneser managed to
derive a bijection with the Picard group of a given quadratic algebra over R by fixing the even
Clifford algebra, but the definitions and actions were different; in particular, the group acting
on his quadratic maps was GL2(R).
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Our notations are chosen to be as close as possible to Wood’s in [Woo11]. Parts of the present
article can be seen as a complement to [Woo11], and would be more easily understandable with
it nearby.

The organization of this article is as follows: in Subsection 2.1, we recall Wood’s definitions
we will work with, especially the discriminant. In Subsection 2.2, we introduce the parity.
When 2 is not a zero divisor, we prove the main results regarding the classification of quadratic
algebras in Subsection 2.3, in particular Theorem 1.1. Then, we recall Wood’s definition of lin-
ear binary quadratic forms and we relate them to quadratic algebras in Subsection 2.4. Next,
Subsection 3.1 is devoted to the notion of orientation, together with twisted quadratic forms. In
Subsection 3.2, we define the oriented and natural discriminants and parities. Finally, Subsec-
tion 3.3 completes the proof of Theorem 1.3 by proving the uniqueness of an oriented quadratic
algebra of given oriented type, when 2 is not a zero divisor, and the resulting correspondence
with the Picard group of this quadratic algebra.

Notations Throughout this paper, we let S be a scheme, and we denote by OS its structure
sheaf. It is unital and associative, as are all other rings and schemes we shall consider.

The Picard group of S is denoted by Pic(S). When we assume that 2 is not a zero divisor
on S, we mean that 2 is not a zero divisor in Γ(U,OS) for any open subset U ⊆ S.

Given a sheaf of OS-modules M, we write M∨ for the sheaf H om(M,OS) of homomor-
phisms of OS-modules fromM to OS. If U is an open subset of S, and ifM is a sheaf of rings
or modules, we denote by Γ(U,M) the ring or Γ(U,OS)-module of sections ofM over U .

Let R be a ring, and let r1, . . . , rm ∈ R. We denote by 〈r1, . . . , rm〉 the ideal generated by
r1, . . . , rm.

Let R be a ring and let M be a free R-module. If (x1, . . . , xn) is an R-basis of M , then
(x∨1 , . . . , x

∨
n) is its dual basis, and in particular a basis of M∨.

Acknowledgements. This work is part of my PhD at the Institut de Mathématiques de
Toulouse. I particularly thank Jean Gillibert and Marc Perret for their support all along this
work, both mathematically and on a personal level. I am grateful to them and to the anonymous
referee for their careful reading and for the numerous improvements they suggested.

2 Classification of quadratic algebras when 2 is not a zero

divisor

2.1 Definitions

All the definitions of this Subsection are extracted from [Woo11].

Definition 2.1. A quadratic algebra over S is a locally free OS-algebra of rank 2.

Example 2.2. Over a scheme S, the sheaf C = OS[τ ]�〈τ 2 + rτ + s〉 where r, s ∈ Γ(S,OS) is a

free quadratic algebra.

Example 2.3. Let R be an integral domain, let I be an invertible ideal of R. Let ρ, σ ∈ R and
define

C(I, ρ, σ) := R⊕ xI

as a subring of R[x]�〈x2 + ρx+ σ〉. Then C(I, ρ, σ) is a quadratic algebra, since there exists an

open covering (Ui)i of Spec(R) such that I|Ui
is free of rank 1, hence C(I, ρ, σ)|Ui

is free of rank
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2. If αi denotes a generator of I|Ui
, then

C(I, ρ, σ)|Ui
= R|Ui

⊕ xαiR|Ui
≃ R|Ui

[τi]�〈τ 2i + ραiτi + σα2
i

〉.

More generally, one can take ρ ∈ I−1 and σ ∈ I−2 to get a richer family of examples.

Proposition 2.4. Let C be a quadratic algebra over S. Then C/OS is a locally free OS-module
of rank 1. Moreover, if C is free as an OS-module, then there exists τ ∈ Γ(S, C) such that
C ≃ OS ⊕ τOS as OS-modules. In particular, C/OS ≃ τOS is free.

Proof. The fact that C/OS is locally free of rank 1 follows from the second part of the statement,
whose proof is a straightforward generalization of [Voi16, Lemma 3.2]. Let us detail it here.

If C is free, then there exist α, β ∈ Γ(S, C) such that C ≃ αOS ⊕ βOS as OS-modules.
This implies that there exist r, s, t, u, v, w ∈ Γ(S,OS) such that 1 = rα + sβ, α2 = tα + uβ and
αβ = vα+ wβ.

Multiplying the first equation by α, we get

α = rα2 + sαβ = (rt+ sv)α + (ru+ sw)β.

Since (α, β) is an OS-basis of C, we infer that 1 = rt+ sv. Therefore, the matrix

(

r s
−v t

)

has

determinant 1, and
(

r s
−v t

)

·
(

α
β

)

=

(

1
τ

)

where τ := −vα + tβ. Thus, (1, τ) is another OS-basis, hence αOS ⊕ βOS = OS ⊕ τOS.
Remark 2.5. In the affine case, it is true that a quadratic algebra C over a ring R is isomorphic
to R⊕ C/R as R-modules. This can be proved with Nakayama’s Lemma ([Voi11, Lemma 1.3]).

However, it does not extend to schemes, as Example 2.6 shows. The obstruction can be
viewed as the fact that the following exact sequence

0 −→ OS −→ C −→ C/OS −→ 0

induces the long exact sequence

0 −→ H0(S,OS) −→ H0(S, C) −→ H0(S, C/OS) −→ H1(S,OS) −→ . . .

In general, there is no reason for H1(S,OS) to be trivial, although it does when S is an affine
scheme, by the vanishing of sheaf cohomology in the affine case [Gro60, Lemma 5.1.9.2].

Example 2.6. Let E be an elliptic curve over F2 with a 2-torsion point P (for example the curve
defined by the equation y2 + xy = x3 + x2 + 1 with the point P = (0, 1)). The multiplication-
by-2 map [2] : E −→ E is a finite morphism of degree 4, and it induces the multiplication-by-2
map on H1(E,OE) ≃ F2, which is zero in our setting. It follows that the quartic algebra
OE −→ [2]∗OE has no linear splitting. This was pointed out by Bhatt [Bha12, Example 2.11].

Quotienting out E by 〈P 〉 yields a 2-isogeny ϕ : E −→ E ′ := E/ 〈P 〉. It has been well-
known [Sil09, Theorem III.6.1] that the dual isogeny ϕ∨ : E ′ −→ E satisfies ϕ∨ ◦ ϕ = [2]. Hence,
multiplication by 2 on the cohomology factors as

H1(E,OE) H1(E ′,OE′) H1(E,OE)H1ϕ H1ϕ∨

where all H1 are 1-dimensional F2-vector spaces. The composite map being zero, at least one of
the maps is zero. By the same reasoning as above, one of the corresponding quadratic algebras
has no linear section.
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Proposition 2.4 implies that every free quadratic algebra C over a scheme S can be written as
in Example 2.2. A change of basis on such an algebra corresponds to another choice of generator
τ ′, which modifies the defining equation of C. We will often use it so we make it explicit:
if τ ′ = ετ + α for some ε ∈ Γ(S,OS)× and α ∈ Γ(S,OS), then the equation τ 2 + rτ + s = 0
becomes

τ ′2 + (rε− 2α)τ ′ + α2 − rαε+ sε2 = 0. (2.7)

Moreover, if U ⊆ S is an open subset such that C|U is free of rank 2, then we can choose
an OU -basis of the shape (1, τ) for some quadratic section τ ∈ Γ(U, C). It induces the OU -basis
(τ ) of (C/OS)|U , where τ is the image of τ in (C/OS)|U .

Definition 2.8. The discriminant of a quadratic algebra C is the pair (∆(C), (C/OS)∨) where
∆(C) is the global section of ((C/OS)∨)⊗2 locally defined as follows. Let U ⊆ S be some
open subset such that C|U is free; take an OU -basis (1, τ) where τ 2 + rτ + s = 0 for some
r, s ∈ Γ(U,OS), then ∆(C)|U := (r2 − 4s)(τ∨ ⊗ τ∨), with τ the image of τ in (C/OS)|U . By
abuse of language, we often refer to ∆(C) as the discriminant of C.

A discriminant is a pair (∆,N ) where N is a locally free OS-module of rank 1 and ∆ is a
global section of N⊗2. We say that two discriminants (∆,N ) and (∆′,N ′) are isomorphic if
there exists an isomorphism of OS-modules f : N ∼−→ N ′ such that ∆′ = f⊗2(∆).

Remark 2.9. Let r, s ∈ Γ(S,OS) and ε ∈ Γ(S,OS)×. Notice that the two quadratic algebras
OS [τ ]�〈τ 2 + rτ + s〉 andOS[τ ]�〈τ 2 + εrτ + ε2s〉 are isomorphic through the ring homomorphism

sending τ to ε−1τ , but the discriminant is multiplied by ε2 when passing from the first to the
second one. Therefore, we must allow flexibility on discriminants, so that we can multiply them
by the square of any unit. This is why we shall deal with isomorphism classes of discriminants
instead of the discriminants themselves. Over Z, this does not make a difference, but for more
general rings or schemes, we must take care of this.

Proposition 2.10. The discriminant ∆ of a quadratic algebra is well-defined, and two isomor-
phic quadratic algebras have isomorphic discriminants.

This Proposition was already pointed by Wood, but as other results will be proved in a
similar way in this paper, we give a detailed proof.

Proof. Let C be a quadratic algebra. Assume first that C is free. By Proposition 2.4, we can

write C = OS [τ ]�〈τ 2 + rτ + s〉 for some r, s ∈ Γ(S,OS). If τ ′ := ετ + α for some ε ∈ Γ(S,OS)×
and α ∈ Γ(S,OS), then Equation (2.7) enables us to compute that

∆(C) = ((rε− 2α)2 − 4(α2 − rαε+ sε2))τ ′
∨ ⊗ τ ′∨

= (r2ε2 − 4sε2)(ε−1τ∨ ⊗ ε−1τ∨) = (r2 − 4s)τ∨ ⊗ τ∨,

which proves that the discriminant does not depend on the choice of τ , hence is well-defined.
In the general case, the above reasoning is valid over C|U for every open subset U ⊆ S such
that C|U is free. Taking an open covering, we must check the compatibility on overlaps, but
this essentially amounts to a change of basis, a case we have just treated. Thus, ∆ is globally
well-defined.

Finally, given an isomorphism of OS-algebras ψ : C ∼−→ C′, we need to check that the dis-
criminants of C and C′ are isomorphic. Let U ⊆ S be some open subset such that C|U is free. If
(1, τ) is an OU -basis of C|U , then C′|U has OU -basis (1, ψ(τ)). In particular, τ and ψ(τ) satisfy
the same equation, leading to the same local computation of the discriminant. We infer that
ψ induces an isomorphism of OS-modules ψ : C/OS ∼−→ C′/OS such that ∆(C) = ψ

∨⊗2
(∆(C′)),

as desired.
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Example 2.11. Let us consider again the quadratic algebra C = C(I, ρ, σ) from Example 2.3.
Then ∆(C) is a global section of ((xI)∨)⊗2, which is locally given on Ui by α2

i (ρ
2−4σ)τi

∨⊗τi∨.
One can check that the family (αiτi

∨)i is compatible on overlaps; indeed, on Ui ∩ Uj , both
αi and αj are generators of I|Ui∩Uj

, hence there exists εi,j ∈ R×
|Ui∩Uj

such that αj = εi,jαi. We

also have τj = xαj = xεi,jαi = εi,jτi, hence τj∨ = ε−1
i,j τi

∨, leading to αjτj
∨ = αiτi

∨ as desired.
Therefore, there exists a linear form ϕ ∈ (xI)∨ such that ∆(C) = (ρ2 − 4σ)ϕ⊗ ϕ.

Over Z, it has been well-known that isomorphism classes of quadratic orders are
parametrized by the discriminant. However, the following example shows that it is not neces-
sarily the case over more general base rings.

Example 2.12. Let R = Z[
√
8], let ∆ ∈ R be a nonsquare element such that 4 divides ∆.

Then the two quadratic algebras

C1 :=
R[τ1]�〈τ 21 −

∆

4
〉 and C2 :=

R[τ2]�〈τ 22 +
√
8τ2 −

∆− 8

4
〉

have isomorphic discriminants ∆(C1) = ∆τ1
∨ ⊗ τ1∨ and ∆(C2) = ∆τ2

∨ ⊗ τ2∨, whereas they are
not isomorphic; the obstruction being the fact that 2 does not divide

√
8 in R.

2.2 The parity of a quadratic algebra

The notion of parity of a quadratic form seems to have appeared first in Towber’s work
([Tow80]). This enabled him to get rid from a previous condition that the base ring R should
satisfy to preserve a group structure on quadratic forms, which can be formulated as the impli-
cation x2 ≡ y2 (mod 4R) =⇒ x ≡ y (mod 2R). Clearly, this condition is not satisfied in Exam-

ple 2.12, since
√
8
2 ≡ 22 (mod 4Z[

√
8]), but

√
8 6≡ 2 (mod 2Z[

√
8]). The parity of a quadratic

form consists in the parity of its middle coefficient; it is a quite simple invariant which, sur-
prisingly, is enough to solve the problem of classification of quadratic algebras, at least when
2 is not a zero divisor (an assumption we shall not make in this Subsection). In [Voi16, Theo-
rem 4.3], Voight implicitly used the parity to classify quadratic algebras C over S = Spec(R)
such that C/OS is free.

Working over a general scheme S, there may be a small issue with the reduction
modulo 2. For any open subset U ⊆ S and for any OS-module N , we denote by

χU,N : Γ(U,N )�2Γ(U,N ) −→ Γ(U,N /2N ) the canonical homomorphism of rings. Then χU,N
is always injective, but when U is not affine, it may fail to be surjective. Concretely, the parity
will be locally defined in the image of this homomorphism.

Definition 2.13. Let C be a quadratic algebra. The parity of C is the pair (Π(C), (C/OS)∨)
where Π(C) is the global section of (C/OS)∨�2(C/OS)∨ locally defined as follows. If U ⊆ S

is an open subset such that C|U is free of rank 2, then C|U ≃ OU [τ ]�〈τ 2 + rτ + s〉 for some

r, s ∈ Γ(U,OS), and we define Π(C)|U to be the image under χU,(C/OS)∨ of the class of rτ∨

modulo 2Γ(U, (C/OS)∨). Most of the time, we refer to Π(C) as the parity of C, by abuse of
language.

As for the discriminant, a parity is of the form (Π,N ), with N a locally free OS-module
of rank 1 and Π a global section of N /2N . We say that two parities (Π,N ) and (Π′,N ′) are
isomorphic if there exists an isomorphism of OS-modules f : N ∼−→ N ′ such that f(Π) = Π′,
where f : N /2N −→ N ′/2N ′ is induced by f .

Proposition 2.14. The parity of a quadratic algebra is well-defined, and two isomorphic
quadratic algebras have isomorphic parities.
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Proof. The proof follows the same arguments as the one of Proposition 2.10. In particular, if

C = OS[τ ]�〈τ 2 + rτ + s〉 for some r, s ∈ Γ(S,OS), and if τ ′ := ετ + α for some ε ∈ Γ(S,OS)×

and α ∈ Γ(S,OS), then we have Π(C) ≡ (rε− 2α)τ ′
∨ ≡ rτ∨ (mod 2Γ(S,OS)).

Example 2.15. Continuing with C = C(I, ρ, σ) from Example 2.3, for all i we have
Π(C)|Ui

≡ ραiτi
∨ (mod 2(xI|Ui

)∨). In that case, since ρ is globally defined, one can check
that we have a global lift of the parity given by Π(C) ≡ ρϕ (mod 2(xI)∨) where ϕ ∈ (xI)∨ is
the glueing of the αiτi∨’s.

Remark 2.16. Proposition 2.14 fixes the problem encountered in Example 2.12. Although the
two non-isomorphic quadratic algebras C1 and C2 have isomorphic discriminants, they have
non-isomorphic parities since Π(C1) ≡ 0 and Π(C2) ≡

√
8τ2

∨ 6≡ 0 (mod 2Z[
√
8]∨).

2.3 Discriminant and parity as a complete invariant when 2 is not a

zero divisor

The goal of this Subsection is to prove Theorem 1.1.

Definition 2.17. The type of a quadratic algebra C is the triple (∆(C),Π(C), (C/OS)∨).
A type is a triple (∆,Π,N ) with N a locally free OS-module of rank 1, ∆ a global section

of N⊗2 and Π a global section of N /2N . We say that two types (∆,Π,N ) and (∆′,Π′,N ′) are
isomorphic if there exists an isomorphism of OS-modules f : N ∼−→ N ′ such that f⊗2(∆) = ∆′

and f̄(Π) = Π′, where f̄ : N /2N −→ N ′/2N ′ is induced by f .
A triple (∆,Π,N ) is valid if it is isomorphic to the type of some quadratic algebra.

We shall give a characterization of valid triples independent from quadratic algebras. This
will be done in Proposition 2.23.

Proposition 2.18. Two isomorphic quadratic algebras have isomorphic types.

Proof. Let ψ : C ∼−→ C′ be an isomorphism of quadratic algebras. Following the proofs of
Propositions 2.10 and 2.14, one can check that ψ induces an isomorphism of OS-modules
(C/OS)∨ ∼−→ (C′/OS)∨ sending (∆(C),Π(C)) to (∆(C′),Π(C′)).

The remaining part of this Subsection is devoted to showing that two quadratic algebras
having isomorphic types are themselves isomorphic, when 2 is not a zero divisor. This will be
done in several steps.

Lemma 2.19. Let (∆,Π,N ) be a valid triple. Then there exists an open covering (Ui)i of S
such that for all i,

1. N|Ui
is free of rank 1;

2. the section Π|Ui
∈ Γ(Ui,N /2N ) can be lifted to some Π̃i ∈ Γ(Ui,N );

3. for any such Π̃i, we have the congruence relation ∆|Ui
≡ Π̃⊗2

i (mod 4Γ(Ui,N⊗2)).

Proof. Since the triple (∆,Π,N ) is valid, it comes from a quadratic algebra C. First, assume

that C is free. Then C = OS[τ ]�〈τ 2 + rτ + s〉 for some r, s ∈ Γ(S,OS) and τ ∈ Γ(S, C), as seen

in Proposition 2.4. In particular, C/OS = τOS ≃ N ∨, hence N is free. Moreover, Π coincides
with the class of rτ∨ modulo 2Γ(S, (C/OS)∨), by definition of the parity of C. Hence, Π̃ := rτ∨

is a lift of Π to Γ(S, (C/OS)∨).

9



The definition of the discriminant ∆(C) = ∆ enables us to conclude that

∆ = (r2 − 4s)τ∨ ⊗ τ∨ ≡ r2τ∨ ⊗ τ∨ = Π̃⊗2 (mod 4Γ(S, (C/OS)∨⊗2)).

Thus, when C is free, we proved the result with S being the sought open covering of itself. In
the general case, there exists an open covering (Ui)i of S such that C|Ui

is free of rank 2 for all
i. The previous arguments show that this open covering satisfies the desired conditions.

Remark 2.20. The fact that N is free does not necessarily imply that C is free: as seen in
Remark 2.5, a potential obstruction to this lies in H1(S,OS). In particular, the open covering
(Ui)i of Lemma 2.19 may be finer than the one expected to satisfy the weaker condition that
N|Ui

is free.

Let us focus on the free case.

Lemma 2.21. Let S be a scheme such that 2 is not a zero divisor and let
C = OS[τ ]�〈τ 2 + rτ + s〉 be a free quadratic algebra over S. Let d := r2 − 4s and p̃ ∈ Γ(S,OS)
be such that p̃ ≡ r (mod 2Γ(S,OS)).

Then C is isomorphic to Ω := OS[ω]�〈
ω2 + p̃ω − d−p̃2

4

〉 through the isomorphism of sheaves

of rings

ψ :







C −→ Ω

τ 7−→ ω +
p̃− r
2

.

Proof. The fact that 2 is not a zero divisor ensures us that if 2 divides some x ∈ Γ(S,OS),
then there is a unique α ∈ Γ(S,OS) such that 2α = x. Thus, the quantity d−p̃2

4
makes sense in

Γ(S,OS), and we denote it by α. Likewise, we write β := p̃−r
2

.
We check that ψ is a homomorphism of rings, that is, that ψ(τ 2) = ψ(τ)2. We have

ψ(τ 2) = −rψ(τ)− s = −rω − s− rβ,

whereas
ψ(τ)2 = −p̃ω + α + 2βω + β2 = (−p̃ + 2β)ω + (α + β2).

Furthermore, 2β = p̃− r, hence r = p̃− 2β and the ω-terms in the above two equations are
equal. For the constant terms, we compute their difference:

α+ β2 + rβ + s =
d− p̃2

4
+

(p̃− r)2
4

+ r
p̃− r
2

+ s

=
d− 2p̃r + r2 + 2p̃r − 2r2 + 4s

4

=
d− r2 + 4s

4
= 0.

Therefore, ψ(τ 2) = ψ(τ)2, which proves that ψ is a homomorphism of sheaves of rings. Clearly,
ψ is invertible, with inverse map ω 7→ τ − p̃−r

2
, hence ψ is an isomorphism.

Remark 2.22. The isomorphism ψ from Lemma 2.21 is a generalization of the following ob-
servation. Over R, consider two polynomial equations x2 + rx+ s = 0 and y2 + r′y + s′ = 0

with the same (usual) discriminant ∆ ≥ 0, and denote by x± := −r±
√
∆

2
and y± := −r′±

√
∆

2
their

respective roots. Then, we have x+ = y+ + r′−r
2

.
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The next Proposition characterizes valid types (∆,Π,N ), and if a valid type is given, it
constructs a representative of the isomorphism class of quadratic algebras of that type. By the
way, it also gives a converse to Lemma 2.19.

Proposition 2.23. Let S be a scheme such that 2 is not a zero divisor. Let N be a locally free
OS-module of rank 1, let ∆ be a global section of N⊗2 and let Π be a global section of N /2N .
Then

1. the triple (∆,Π,N ) is valid if and only if there exists an open covering (Ui)i such that for
all i:

(a) N|Ui
= νiOUi

is free;

(b) the section Π|Ui
∈ Γ(Ui,N /2N ) can be lifted to some Π̃i ∈ Γ(Ui,N );

(c) for any such lift Π̃i, we have ∆|Ui
≡ Π̃⊗2

i (mod 4Γ(Ui,N⊗2)).

2. If (∆,Π,N ) satisfies conditions (1a), (1b) and (1c), then one obtains a quadratic algebra
Ω over S of type (∆,Π,N ) by glueing of the Ωi’s, where Ωi := OUi

⊕ ν∨i OUi
is a free

OUi
-module whose algebra structure is defined by ω2

i + p̃iωi − di−p̃2i
4

= 0 with 1 := (1, 0),
ωi := (0, ν∨i ), and p̃i, di ∈ Γ(Ui,OS) are given by Π̃i = p̃iνi, ∆|Ui

= diνi ⊗ νi.

Proof. The implication ((∆,Π,N ) valid) ⇒ ((1a), (1b) and (1c)) of the first assertion comes
from Lemma 2.19, whereas the converse one follows from the second assertion about Ω. There-
fore, we focus on the latter.

The Ωi’s are well-defined since 2 is not a zero divisor, and because condition (1c) ensures that
d2i ≡ p̃2i (mod 4Γ(Ui,OS)). In order to glue the Ωi’s together, we need to define isomorphisms
ψi,j : Ωi|Ui∩Uj

∼−→ Ωj|Ui∩Uj
for all i, j. To lighten the notation, if xi ∈ Γ(Ui,Ωi), we still denote

by xi its restriction to Ωi|Ui∩Uj
. The free algebra Ωi|Ui∩Uj

is generated by the OUi∩Uj
-basis (1, ωi)

with ω2
i + p̃iωi − di−p̃2i

4
= 0, and Ωj|Ui∩Uj

by (1, ωj) with ω2
j + p̃jωj − dj−p̃2j

4
= 0. On Ui ∩Uj , the

free module N|Ui∩Uj
is both generated by νi and νj , hence there exists εi,j ∈ Γ(Ui ∩ Uj,OS)×

such that νj = εi,jνi. Since ωj = ν∨j , we infer that ωj = ε−1
i,j ωi. Likewise, p̃jνj = p̃jεi,jνi and

djνj ⊗ νj = djε
2
i,jνi ⊗ νi, leading to p̃i ≡ p̃jεi,j (mod 2Γ(Ui ∩ Uj,OS)) and di = djε

2
i,j. Inspired

by the ψ from Lemma 2.21, we set

ψi,j :











Ωi|Ui∩Uj
−→ Ωj|Ui∩Uj

ωi 7−→ εi,j

(

ωj +
p̃j − p̃iε−1

i,j

2

)

.

Following the proof of Lemma 2.21, one can check that ψi,j is an isomorphism of quadratic
algebras.

It remains to check the glueing condition for the ψi,j . Given three indices i, j, k, we must
check that the following diagram

Ωi|Ui∩Uj∩Uk
Ωk|Ui∩Uj∩Uk

Ωj|Ui∩Uj∩Uk

ψi,k

ψi,j ψj,k

commutes. We have

ψi,k(ωi) = εi,k

(

ωk +
p̃k − p̃iε−1

i,k

2

)

,
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and it is straightforward to compute that

ψj,k ◦ ψi,j(ωi) = εi,jεj,k

(

ωk +
p̃k − p̃iε−1

i,j ε
−1
j,k

2

)

.

By definition of the ε’s, on Ui ∩ Uj ∩ Uk we have νk = εj,kνj = εj,kεi,jνi, but at the same
time νk = εi,kνi, hence εi,k = εi,jεj,k. Therefore, ψi,k = ψj,k ◦ ψi,j and the above diagram indeed
commutes. By virtue of [Gro60, (3.3.1)], we can glue all the Ωi’s together to obtain a sheaf of
OS-algebras Ω. By constrution, Ω is a quadratic algebra over S which has discriminant ∆ and
parity Π.

Remark 2.24. Actually, if we consider any open affine covering of S, then condition (1b) in
Proposition 2.23 is always satisfied, by the vanishing of sheaf cohomology in the affine case.

We now turn to Theorem 1.1, which we state in detail.

Theorem 2.25. Let S be a scheme such that 2 is not a zero divisor. Then we have the following
bijection:

{

isomorphism classes
of valid triples

}

1:1←→
{

isomorphism classes
of quadratic algebras

}

[(∆,Π,N )] 7−→ [Ω(∆,Π,N )]

[(∆(C),Π(C), (C/OS)∨)] ←−[ [C]

where Ω(∆,Π,N ) is the quadratic algebra constructed in Proposition 2.23.

Proof. We already saw that two isomorphic quadratic algebras C and C′ have isomorphic types
(Proposition 2.18). By definition of valid triples, the map sending quadratic algebras to their
types is surjective. For injectivity, we shall show that any quadratic algebra of type isomorphic
to (∆,Π,N ) is isomorphic to Ω(∆,Π,N ).

Let (∆,Π,N ) be a valid triple. Let (Ui)i be an open covering satisfying conditions
(1a), (1b) and (1c) from Proposition 2.23, and let Ω := Ω(∆,Π,N ) be the quadratic alge-
bra defined in this same Proposition. Then for all i, the restriction of Ω to Ui is given by

Ωi :=
OUi

[ωi]�
〈

ω2
i + p̃iωi − di−p̃2i

4

〉, where ∆|Ui
= diωi

∨ ⊗ ωi∨ and Π ≡ p̃iωi
∨ (mod 2Γ(Ui,N )),

with ωi the image of ωi in Ωi/OUi
.

Let C be a quadratic algebra of type isomorphic to (∆,Π,N ). Note that if (Vj)j is an open
covering of S such that C|Vj is free for all j, then Wi,j := Ui ∩ Vj is an open subset such that
C|Wi,j

and N|Wi,j
are free. In particular, the open covering (Wi,j)i,j satisfies conditions (1a), (1b)

and (1c) as well as (Ui)i. Therefore, up to refining the covering (Ui)i, we assume without loss
of generality that C|Ui

is free for all i.
Let (1, τi) be an OUi

-basis of C|Ui
, where τ 2i + riτi + si = 0. Fix an isomorphism

θ : C/OS ∼−→ N ∨ sending the type of C to (∆,Π,N ). Since both θ(τi) and ωi are generators of
N ∨

|Ui
, there must exist a unit εi ∈ Γ(Ui,OS)× such that θ(τi) = εiωi. Inspired by the previous

isomorphisms of rings we defined in Lemma 2.21 and Proposition 2.23, let Ψi be defined as
follows:

Ψi :











C|Ui
−→ Ωi

τi 7−→ εi

(

ωi +
p̃i − riε−1

i

2

)

.

Proceeding as in the proof of Lemma 2.21, the verification that the map Ψi is an isomorphism
of quadratic algebras over Ui ends with the equation diε

2
i − (r2i − 4si) = 0, which is true since

di = (r2i − 4si)ωi
∨(θ(τi))−2.

12



Now that the setting is clear, we prove that C is globally isomorphic to Ω by glueing together
the Ψi’s. Following [Gro60, (3.3.2)], it is sufficient to check that for all i, j, the following diagram

Ωi|Ui∩Uj

C|Ui∩Uj

Ωj|Ui∩Uj

ψi,j

Ψi

Ψj

commutes, where ψi,j is the isomorphism constructed in the proof of Proposition 2.23, given by

ψi,j(ωi) = εi,j

(

ωj +
p̃j−p̃iε−1

i,j

2

)

where εi,j is a unit defined by ωi = εi,jωj . We have

ψi,j ◦Ψi(τi) = ψi,j

(

εi

(

ωi +
p̃i − riε−1

i

2

))

= εiεi,j

(

ωj +
p̃j − riε−1

i ε−1
i,j

2

)

,

but to compute Ψj(τi) we need to express τi as a function of τj . The units previously introduced
enable us to establish the link: we have

θ(τi) = εiωi = εiεi,jωj = εiεi,jε
−1
j θ(τj),

hence τi = ητj with η := εiεi,jε
−1
j , since θ is an isomorphism. Writing τi = ητj + α for some

α ∈ Γ(Ui ∩ Uj ,OS) to determine, Equation (2.7) tells us that ri = rjη − 2α, hence α =
rjη−ri

2

(since 2 is not a zero divisor by hypothesis), so that

τi = εiεi,jε
−1
j

(

τj +
rj − riε−1

i ε−1
i,j εj

2

)

.

Thus, we can compute

Ψj(τi) = Ψj

(

εiεi,jε
−1
j

(

τj +
rj − riε−1

i ε−1
i,j εj

2

))

= εiεi,j

(

ωj +
p̃j − rjε−1

j

2

)

+ εiεi,jε
−1
j

rj − riε−1
i ε−1

i,j εj

2

= ψi,j ◦Ψi(τi),

as desired. Therefore, the quadratic algebra C is isomorphic to Ω, concluding the proof.

Given some discriminant, we may wonder when the parity is necessary to preserve the
uniqueness of the corresponding quadratic algebra. Here is a partial answer.

Proposition 2.26. Given a valid triple, its parity is completely determined by its discriminant
at least in the three following cases:

- S is a scheme such that 2 is a unit;

- S is a scheme such that 2 generates a prime ideal sheaf;

- S is a normal scheme.
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Proof. Let (∆,Π,N ) be a valid triple. If 2 is a unit, then the quotient N /2N is trivial, hence
the parity must be 0.

For the two other cases, let Π,Π′ ∈ Γ(S,N /2N ) be two parities, such that the triples
(∆,Π,N ) and (∆,Π′,N ) are valid. Let (Ui)i be an open covering of S such that N|Ui

is free.
Fix U , one of the Ui’s. As seen in Proposition 2.23, if Π̃U and Π̃′

U denote lifts of Π|U and
Π′

|U to Γ(U,N ), then Π̃⊗2
U ≡ ∆|U ≡ Π̃′⊗2

U (mod 4Γ(U,N⊗2)). Writing ∆|U = dν ⊗ ν, Π̃U = p̃ν

and Π̃′
U = p̃′ν for some d, p̃, p̃′ ∈ Γ(U,OS) and for ν a generator of N|U , we have the relation

p̃2 ≡ p̃′2 (mod 4Γ(U,OS)).
In particular, (p̃− p̃′)2 ≡ 0 (mod 2Γ(U,OS)), hence if 2 generates a prime ideal sheaf in OS,

we get p̃ ≡ p̃′ (mod 2Γ(U,OS)).
Now, suppose that S is normal. If U is not affine, let (Vj)j be an open affine covering of

S. For all j, there is an open covering of U ∩ Vj by open affine subsets Wj,k. Considering the
Wj,k’s instead of U enables to assume that U is affine. Therefore, the ring Γ(U,OS) is integrally
closed, hence integral. On the other hand, we know that there exists s ∈ Γ(U,OS) such that
p̃2 − p̃′2 = 4s. If 2 = 0 in OU , then (p̃− p̃′)2 = 0, but Γ(U,OS) is an integral domain, hence
p̃ = p̃′ and we are done. Otherwise, let t := p̃−p̃′

2
∈ Frac(Γ(U,OS)). A direct computation shows

that we have the equation
t2 + p̃′t− s = 0,

hence t ∈ Γ(U,OS) by normality, that is, p̃ ≡ p̃′ (mod 2Γ(U,OS)). Since Π and Π′ coincide
locally on an open covering of S, they must be equal.

Remark 2.27. The normality condition was already known by Butts and Estes ([BE68, Corol-
lary 2.6]). Actually, one can check carefully that it is enough for S to be normal over points of
residual characteristic 2.

Example 2.28. Let R = Z[
√
8], then R does not satisfy any of the conditions of Proposi-

tion 2.26 (one can check that
√
2 /∈ R〈2,√8〉 ⊂ Q(

√
2)). In fact, the parity is necessary in that

case to distinguish two quadratic algebras with the same discriminant, in view of Example 2.12.

In Theorem 2.25, it is necessary to assume that 2 is not a zero divisor in OS, otherwise the
triple (∆,Π,N ) might not be enough to characterize isomorphism classes of quadratic alge-
bras! We give below two examples of non-isomorphic free quadratic algebras with isomorphic
types, one in characteristic 2 with ∆ 6= 0 (Example 2.29), the other over Z/8Z with ∆ = 0
(Example 2.30).

Example 2.29. Let R = F2[X ]/〈X2 +X + 1〉 ≃ F4 and let S = Spec(R). To sense the prob-
lem, notice that since the characteristic of R is 2, the parity is an element of R and the
discriminant is its square, hence the information is redundant. Consider the two quadratic
algebras defined by

C1 =
R[τ1]�〈τ 21 + τ1 + 1〉 ≃ F4 × F4 and C2 =

R[τ2]�〈τ 22 + τ2 +X〉 ≃ F8.

Both C1 and C2 have types isomorphic to (1, 1, R), but they are not isomorphic.

Example 2.30. Let R = Z/4Z and Cs =
R[τ ]�〈τ 2 − s〉 for s ∈ R. Then the four quadratic

algebras Cs all have type (0, 0, R), but one can check that they are not isomorphic.
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2.4 Linear binary quadratic forms and Wood’s bijection

We now focus on linear binary quadratic forms. Defining the parity in that context will complete
the bridge between them and quadratic algebras.

All definitions, except those about the parity and the type, are extracted from [Woo11].

Definition 2.31. A linear binary quadratic form over S is a triple (V,L, q) where V is a locally
free OS-module of rank 2, L is a locally free OS-module of rank 1, and q is a global section of
Sym2 V ⊗OS

L.
Let U ⊆ S be an open subset such that V|U and L|U are free. Let (x, y) be an OU -basis of V|U

and (z) be an OU -basis of L|U . Omitting the tensor products by abuse of notation, q can then be
expressed locally on U as ax2z + bxyz + cy2z for some a, b, c ∈ Γ(U,OS), which we sometimes
denote by [a, b, c], omitting the underlying bases. Then (V,L, q) is said to be primitive if, for
every such U , the ideal generated by a, b, c in Γ(U,OS) is the whole ring Γ(U,OS).
Definition 2.32. Two linear binary quadratic forms (V,L, q) and (V ′,L′, q′) are equivalent if
there exist two isomorphisms of OS-modules f : V ∼−→ V ′ and g : L ∼−→ L′ such that Sym2 f⊗g
sends q to q′. This can be seen as a right action of GL2(V)×GL1(L), which we refer to as the
GL2×GL1-action.

Locally, we can describe this action explicitly. Let U ⊆ S be some open subset such that
V|U and L|U are free. Since every q ∈ Γ(U, Sym2 V ⊗OS

L) is a linear combination of tensors,
it is enough to compute (µ, ε) · x1 ⊗ x2 ⊗ z for every x1, x2 ∈ Γ(U,V) and every z ∈ Γ(U,L).
Then a pair (µ, ε) ∈ Γ(U,GL2(OS)×GL1(OS)) acts on x1 ⊗ x2 ⊗ z via

(µ, ε) · x1 ⊗ x2 ⊗ z := µx1 ⊗ µx2 ⊗ εz. (2.33)

Definition 2.34. The discriminant ∆ of a linear binary quadratic form (V,L, q) is the pair
(∆(V,L, q),Λ2V ⊗OS

L) where ∆(V,L, q) is the global section of (Λ2V ⊗OS
L)⊗2 locally de-

fined as follows. Let U ⊆ S be some open subset such that V|U ≃ O2
U and L|U ≃ OU ; we

can write q = ax2z + bxyz + cy2z in some OU -bases (x, y) of V|U and (z) of L|U , and we set
∆(V,L, q)|U := (b2 − 4ac)((x ∧ y)⊗ z)⊗2.

Remark 2.35. The effect of some matrix µ in GL2(OS) (acting on V) on the discriminant is to
multiply it by det(µ)2, while the GL1-part, acting on L, multiplies it by the square of some
unit. Therefore, considering GL2×GL1-classes necessitates weakening the usual invariance of
the discriminant, as we did for quadratic algebras.

As for Definition 2.13, we denote by χU,N : Γ(U,N )�2Γ(U,N ) →֒ Γ(U,N /2N ) the canonical

homomorphism of rings, for any open subset U ⊆ S and OS-module N .

Definition 2.36. The parity of a linear binary quadratic form (V,L, q) is the pair

(Π(V,L, q),Λ2V ⊗OS
L) where Π(V,L, q) is the global section of Λ2V ⊗OS

L�2(Λ2V ⊗OS
L)

locally defined as follows. Let U ⊆ S be an open subset such that V|U and L|U are free. Let
(x, y) and (z) be respective OU -bases of V|U and L|U , and write q = ax2z + bxyz + cy2z for
some a, b, c ∈ Γ(U,OS). Then we define Π(V,L, q)|U to be the image under χU,Λ2V⊗L of the
class of b(x ∧ y)⊗ z modulo 2Γ(U,Λ2V ⊗OS

L).
Definition 2.37. Let (V,L, q) be a linear binary quadratic form. Then its type is the triple
(∆(V,L, q),Π(V,L, q),Λ2V ⊗OS

L).
We say that two types are isomorphic if they are in the sense of Definition 2.17.

One can prove the following Proposition by applying the same reasoning as in the context
of quadratic algebras (Propositions 2.10 and 2.14). One can also derive it from the bijection of
Theorem 2.39.
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Proposition 2.38. The discriminant and the parity of a linear binary quadratic form are
well-defined, and two equivalent linear binary quadratic forms have isomorphic types.

One of the main features of the type is that Wood’s bijection ([Woo11, Theorem 1.5]) is
type-preserving, meaning that if a linear binary quadratic form matches to a pair (C,M), then
they have isomorphic types. This is proved in the following Theorem, stating the obtained
bijection when we fix the type and when 2 is not a zero divisor on the base scheme S.

Theorem 2.39. Let S be a scheme such that 2 is not a zero divisor, and let C0 be a quadratic
OS-algebra. For all M, M′ ∈ Pic(C0), we write M∼M′ if there exists an automorphism ψ
of C0 over S such that M′ ≃ ψ∗M as C0-modules. Then there is a set-theoretical bijection







GL2×GL1-equivalence classes of primitive
linear binary quadratic forms whose type
is isomorphic to (∆(C0),Π(C0), (C0/OS)∨)







1:1←→ Pic(C0)�∼

By ψ∗M, we mean the C0-module M whose structure is locally given by λ · x = ψ−1(λ)x.

Proof. We start from Wood’s Theorem 1.5 in [Woo11]. The bijection she established links
equivalence classes of primitive linear binary quadratic forms and classes of pairs of the form
(C,M) where C is a quadratic algebra andM is an invertible C-module. Two such pairs (C,M)
and (C′,M′) are isomorphic if there exists an isomorphism of quadratic algebras ψ : C ∼−→ C′
and an isomorphism of C′-modules ϕ :M⊗C C′ ∼−→M′.

According to [Woo11, Remark 2.2], the local construction of a pair (C,M) from a linear
binary quadratic form (V,L, q) in the bijection is as follows. Over an open subset U ⊆ S
such that V|U and L|U are free, let (x, y) and (z) be OU -bases of V|U and L|U respectively, and
let (x∨, y∨) and (z∨) be the respective dual bases. Write q = ax2z + bxyz + cy2z for some
a, b, c ∈ Γ(U,OS). Then

C|U = OU ⊕ (Λ2V|U ⊗OU
L|U)

∨ = OU ⊕ τOU

as OU -modules where τ := (x∨ ∧ y∨)⊗ z∨, and the algebra structure is given by
τ 2 + bτ + ac = 0. RegardingM, one takesM = V asOS-modules, and its C|U -module structure
is given by τ · x = −bx− cy and τ · y = ax.

Computing the discriminant and the parity, we have

∆(V,L, q)|U = (b2 − 4ac)((x ∧ y)⊗ z))⊗2 = (b2 − 4ac)τ∨ ⊗ τ∨ = ∆(C)|U

and
Π(V,L, q)|U ≡ b((x ∧ y)⊗ z) = bτ∨ ≡ Π(C)|U (mod 2Γ(U,Λ2V|U ⊗OU

L|U)).

Therefore, Wood’s bijection is type-preserving, in the sense that if a linear binary quadratic
form matches to a pair (C,M) in the bijection, then they have isomorphic types.

When 2 is not a zero divisor on S, Theorem 2.25 applies and isomorphism classes of quadratic
algebras are determined by their types. Thus, given a quadratic algebra C0, restricting Wood’s
bijection to linear binary quadratic forms whose type is isomorphic to the one of C0 gives the
desired bijection. In particular, every class of pairs (C,M) with C having isomorphic type to
the one of C0 has a representative of the form (C0,M0) for someM0.

Remark 2.40. If we do not require our quadratic forms to be primitive, then one can check
that we still have a bijection in Theorem 2.39, but with classes of traceable modules instead
of invertible ones in the right-hand side of the bijection (cf. [Woo11] for the definition of
traceable).
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Remark 2.41. One must take care about the fact that Pic(C)�∼ is not a group in general! For
instance, over Z, there is a unique non-trivial automorphism of quadratic algebras (called the
conjugation) which identifies an ideal class with its inverse, as shown in the Example below. . .

Example 2.42. The class group of Z[
√
−11] is of size 3, and representatives of the three

different ideal classes are
〈

1,
√
−11

〉

, I :=
〈

3,
√
−11 − 1

〉

, J :=
〈

3,
√
−11 + 1

〉

. But the conju-
gation sends I to J , hence Theorem 2.39 gives a bijection between two sets of two elements.
More precisely, it associates to principal ideals the class of the linear binary quadratic form
x2z+11y2z on the one hand, and to the class of I the class of the linear binary quadratic form
3x2z + 2xyz + 4y2z on the other hand.

3 The Picard group of a quadratic algebra when 2 is not a

zero divisor

Given a quadratic algebra C0, Theorem 2.39 is close to a parametrization of its Picard group,
the only obstruction being the existence of non-trivial automorphisms of C0. The goal of this
Section is to rigidify quadratic algebras so that we remove all the non-trivial automorphisms,
with the notion of orientation. When 2 is not a zero divisor, this will be enough to recover the
Picard group in Theorem 2.39.

3.1 Orientation and twist

As already noticed in Remark 2.41, quadratic algebras over Z already have a non-trivial auto-
morphism, the conjugation. But over non-integral rings or schemes, there may be many more
automorphisms!

Example 3.1. Let R1 = R2 = Z. Choose d1 and d2 ∈ Z non-squares, and let C1 = Z[
√
d1],

C2 = Z[
√
d2]. If σ1 ∈ AutZ(C1) and σ2 ∈ AutZ(C2) are the respective conjugations of C1 and C2,

then the maps id× id, σ1× id, id×σ2 and σ1×σ2 are all automorphisms of the Z×Z-quadratic
algebra C1 × C2.

Wood already defined the orientation of a quadratic algebra C in the case when C/OS is
free ([Woo11, Theorem 5.2]). Inspired by her definition, we extend it to the general case.

Definition 3.2. Let N be a locally free OS-module of rank 1. An N -oriented quadratic algebra
is a pair (C, θ) where C is a quadratic algebra and θ : C/OS ∼−→ N ∨ is an isomorphism of OS-
modules, called an orientation of C.

Given two N -oriented quadratic algebras (C, θ) and (C′, θ′), an isomorphism of oriented
quadratic algebras is an isomorphism ψ : C ∼−→ C′ of OS-algebras such that θ = θ′ ◦ ψ, where
ψ : C/OS −→ C′/OS is induced by ψ.

Remark 3.3. We have chosen the above convention (an isomorphism with the dual of N instead
ofN itself) in order to deal with discriminants and parities as global sections ofN⊗2 andN /2N
respectively.

Remark 3.4. We recover Wood’s notion of orientation ([Woo11, Theorem 5.2]) by considering
N = O∨

S in the above Definition.

Remark 3.5. Notice that Λ2C ≃ C/OS through the isomorphism of OS-modules locally defined
on open subsets such that C is free by 1 ∧ τ 7→ τ . Thus, an N -orientation may also be viewed
as an isomorphism Λ2C ∼−→ N ∨.
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When C = OS[τ ]�〈τ 2 + rτ + s〉 is free, an O∨
S -orientation of C may be viewed as a choice of

a classical orientation 1 ∧ τ of C. In the general case, when C/OS ≃ N ∨, an N -orientation can
be interpreted as choices of local orientations of C which are globally consistent.

Proposition 3.6. Let S be a scheme such that 2 is not a zero divisor, and let N ∈ Pic(S).
Then the group of automorphisms of an N -oriented quadratic algebra over S is trivial.

Proof. Let (C, θ) be an oriented quadratic algebra over S and let ψ be an automorphism of
(C, θ). First, assume that C is free. As seen in Proposition 2.4, we can choose an OS-basis (1, τ)
of C such that (τ ) is a basis of C/OS, where τ ∈ Γ(S, C) is such that τ 2 + rτ + s = 0 for some
r, s ∈ Γ(S,OS). Write ψ(τ) = ετ + α for some ε ∈ Γ(S,OS)× and α ∈ Γ(S,OS). Since ψ is an
automorphism, we must have θ(τ ) = θ(ψ(τ )), leading to θ(τ ) = εθ(τ). We infer that ε = 1, for
θ(τ ) is a unit.

Since ψ is an automorphism, ψ(τ) must be a root of the polynomial X2 + rX + s. We
compute:

(τ + α)2 + r(τ + α) + s = 2ατ + α(α + r),

hence we must have 2α = 0 and α(α + r) = 0, by identification in the basis (1, τ). Since 2 is
not a zero divisor, we conclude that α = 0, hence ψ must be the identity map.

In the general case, let (Ui)i be an open covering of S such that C|Ui
is free for all i. Then

the previous reasoning is valid on Ui, hence ψ coincides with the identity map on Ui for all i.
Therefore, ψ must be the identity map globally.

When 2 is a zero divisor, non-trivial automorphisms can preserve the orientation, as Exam-
ple 3.7 shows in the free case.

Example 3.7. Let R = Z/8Z, let C := R[τ ]�〈τ 2 − 2〉. Then AutR(C) has cardinality 8, and

its elements are the maps τ 7→ uτ + v, for u ∈ R× and v ∈ {0, 4}. Furthermore, if θ is an
R-orientation of C, then there are two automorphisms of (C, θ), the identity and the map
τ 7→ τ + 4.

Example 3.8. A simpler case is R = F2 and C = F4. For any R-orientation θ of C, the
oriented quadratic algebra (C, θ) has two automorphisms.

Theorem 2.39 links primitive linear binary quadratic forms to the data of a quadratic algebra
and an invertible module. Taking OS-oriented quadratic algebras instead of non-oriented ones,
Wood modified the notion of linear binary quadratic form to preserve the bijection. Doing it
in the general case of N -oriented quadratic algebras for every N ∈ Pic(S), we introduce the
following notion.

Definition 3.9. LetN ∈ Pic(S). AnN -twisted binary quadratic form, denoted as a pair (V, q),
is the linear binary quadratic form obtained when we set L = Λ2V∨ ⊗OS

N in Definition 2.31;
in particular q is a global section of Sym2 V ⊗OS

Λ2V∨ ⊗OS
N . Locally on some open subset

U ⊆ S such that both V|U and N|U are free, OU -bases (x, y) of V|U and (ν) of N|U will induce
the basis (ν det(x,y)) on L|U , where we write the tensor product as a product by abuse of
notation. The induced right action is called the N -twisted action, and we refer to it with the
notation GLtw2 . Locally, a matrix µ ∈ GL2(OU) acts in the twisted way on a quadratic form
q = ax2z + bxyz + cy2z (where z = ν det(x,y)) as follows:

µ · q :=
(

µ,
1

det(µ)

)

· q, (3.10)

where the action on the right-hand side of (3.10) corresponds to the GL2×GL1-action from
Equation (2.33).
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Remark 3.11. Notice that the extra factor 1
det(µ)

in Equation (3.10) counterbalances the effect
of GL2 on the discriminant, by Remark 2.35.

Definition 3.12. Let N ∈ Pic(S). An N -twisted binary quadratic form is said to be primitive
if it is when viewed as a linear binary quadratic form.

Wood noticed that making specific choices of L leads to other kinds of bijections, such as
bijections with binary quadratic forms for L = OS or twisted quadratic forms for L = Λ2V∨

([Woo11, Theorems 5.1 and 5.2]). In the same spirit, we state here the version corresponding
to our setting (L = Λ2V∨ ⊗OS

N ), directly for primitive forms.

Theorem 3.13. Let N ∈ Pic(S). There is a set-theoretical bijection







GLtw2 -equivalence classes of
primitive N -twisted binary
quadratic forms over S







1:1←→















isomorphism classes of (C, θ,M),
with (C, θ) an N -oriented
quadratic algebra over S,

andM an invertible C-module















.

An isomorphism (C, θ,M)
∼−→ (C′, θ′,M′) is a pair (ψ, ϕ) where ψ : (C, θ) ∼−→ (C′, θ′) is an

isomorphism of N -oriented algebras, and ϕ :M⊗C C′ ∼−→M′ is an isomorphism of C′-modules.

3.2 Oriented and natural discriminant, oriented and natural parity

We want to parametrize the Picard group of a given quadratic algebra C0 using Theorem 3.13
and the tools developed in Section 2. Assume that 2 is not a zero divisor on the base scheme
S, and let N be a chosen representative of the isomorphism class of (C0/OS)∨. in view of
Proposition 3.6, the only automorphism of an N -oriented quadratic algebra over S is the
identity. Therefore, given an N -orientation θ of C0, and M, M′ two C0-modules, the triples
(C0, θ,M) and (C0, θ,M′) are isomorphic in the sense of Theorem 3.13 if and only if M and
M′ are isomorphic as C0-modules. Thus, to recover the Picard group of C0, we need to fix an
orientation θ0 and select all isomorphism classes having a representative of the form (C0, θ0,M)
for some M. The possible obstructions are the existence of different quadratic algebras which
are not isomorphic, and there may be different orientations of C0 giving non-isomorphic oriented
quadratic algebras. In this Subsection, we adapt the discriminant and the parity to that context,
in order to overcome these problems. Notice that we do not need yet the hypothesis that 2 is
not a zero divisor on S. From now on, the only classes of quadratic forms we shall consider will
be GLtw2 -classes.

The following Example shows that considering isomorphism classes of discriminants is too
flexible.

Example 3.14. Let R be a ring, let ε ∈ R×, and let C = R[τ ]/ 〈τ 2 + rτ + s〉 a free quadratic
algebra over R, where r, s ∈ R. Let (C, θ) and (C, θε) be two differently R-oriented copies of C,
where θ : τ 7→ 1 and θε : ετ 7→ 1, with τ the image of τ in C/R. Let I be some invertible ideal
of C, and assume that I is free of rank 2 over OS. If q = [a, b, c] is a quadratic form attached to
(C, θ, I), then one can compute that qε := [εa, εb, εc] corresponds to (C, θε, I), following Wood’s
local construction [Woo11, Remark 2.2]. If we denote by δ = b2 − 4ac the “natural” discriminant
of q, then ε2δ is the one of qε, hence they have isomorphic discriminant by Remark 2.35. But
if ε2 6= 1, q and qε are not in the same GLtw2 -class since the twisted action completely fixes the
discriminant, in view of Remark 3.11.

A way to choose exactly one GLtw2 -class among those of q and qε is to formalize this notion
of “natural” discriminant, that is, to consider a well-chosen representative of the isomorphism
class of the discriminant. The same applies for the parity.
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Definition 3.15. Let N ∈ Pic(S).
The oriented discriminant of an N -oriented quadratic algebra (C, θ) is the global section of

N⊗2 defined by
δor(C, θ) := ((θ∨)−1)⊗2(∆(C)).

The natural discriminant of an N -twisted binary quadratic form (V, q) is the global section
of N⊗2 defined by

δnat(V, q) := (Tr⊗idN )⊗2(∆(V,Λ2V∨ ⊗OS
N , q)),

where idN is the identity map on N and Tr is the trace, that is, the canonical map
Λ2V ⊗OS

Λ2V∨ ∼−→ OS defined by (x ∧ y)⊗ (λ ∧ µ) 7→ λ(x)µ(y)− λ(y)µ(x).
Likewise, the oriented parity of (C, θ) is the global section of N /2N defined by

πor(C, θ) := (θ∨)−1(Π(C)),

where (θ∨)−1 is the map induced by (θ∨)−1 modulo 2.
The natural parity of (V, q) is the global section of N /2N defined by

πnat(V, q) := (Tr⊗idN )(Π(V,Λ2V∨ ⊗OS
N , q)).

Remark 3.16. We can describe all those discriminants and parities locally. Let U ⊆ S be an
open subset such that C|U , V|U , N|U are free. Let (1, τ), (x, y) and (ν) be OU -bases of C|U , V|U
and N|U respectively, let τ be the image of τ in (C/OS)|U , and write τ 2 + rτ + s = 0 for some
r, s ∈ Γ(U,OS). Then, we have

δor|U(C, θ) = (r2 − 4s)θ(τ )(ν)−2ν ⊗ ν πor|U(C, θ) ≡ rθ(τ )(ν)−1ν (mod 2Γ(U,N ))

δnat|U(V, q) = (b2 − 4ac)ν ⊗ ν πnat|U(V, q) ≡ bν (mod 2Γ(U,N )).

Remark 3.17. In the free case, when N = OS, we can view directly the oriented and natu-
ral discriminants and parities as global sections of OS and OS/2OS, expressing the previous
quantities in the canonical basis of OS.

Definition 3.18. Let N ∈ Pic(S).
The oriented type of an N -oriented quadratic algebra (C, θ) is the triple

(δor(C, θ), πor(C, θ),N ). Equivalently, it is the triple obtained from the type of C through the
map (θ∨)−1.

Similarly, the natural type of an N -twisted binary quadratic form (V, q) is the triple
(δnat(V, q), πnat(V, q),N ), also obtained from the type of q through the map Tr⊗idN .

Once again, the oriented parity is necessary in the general case to characterize oriented
quadratic algebras. Indeed, in the same spirit as in Example 2.12, we can construct non-
isomorphic oriented quadratic algebras (C1, θ1) and (C2, θ2) with the same oriented discriminant.
But we can also find two different orientations of the same quadratic algebra giving two non-
isomorphic oriented quadratic algebras with the same oriented discriminant!

Example 3.19. Let R = Z2

[

2
3

4

]

, an order in the totally ramified extension Z2[
4
√
2]. Observe

that
√
2 /∈ R, but 2

√
2 =

(

2
3

4

)2

∈ R, so we can form the quadratic algebra

C = R[X ]�
〈

(X −
√
2)2
〉

= R[X ]�
〈

X2 − 2
√
2X + 2

〉

.
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Let θ1 : X 7→ 1 + 2
3

4 and θ2 : X 7→ 1 be two orientations of C, with X the image of X in

C/R. Notice that 1 + 2
3

4 is indeed a unit in R since
(

1 + 2
3

4

)(

1− 2
3

4

)

(

1− 2
√
2
)

= −7. The

oriented discriminant of (C, θi) is zero in both cases, but there is no isomorphism of oriented
quadratic algebras between (C, θ1) and (C, θ2). The reason is that such an isomorphism ψ

should satisfy ψ(X) =
(

1 + 2
3

4

)

X + α, for some α ∈ R to be determined, since we must have

θ1 = θ2 ◦ ψ. Since ψ(X) must be a root of the polynomial X2 − 2
√
2X + 2, one computes (using

Equation (2.7) for instance) that in particular, one should have α = 2
5

4 . This is impossible,
since 2

5

4 does not belong to R.

Remark 3.20. Instead of Z2

[

2
3

4

]

, one can take R = Z

[

1

7
, 2

3

4

]

in Example 3.19.

Example 3.21. Let R = Z[X, Y ]�〈X2 − 8, Y 2 − 8〉 and C = R[Z]�〈Z2 +XZ + 2〉.
Let θ1 : Z 7→ 1 and θ2 : Z 7→ 3− Y be two orientations (where 3− Y ∈ R× since
(3− Y )(3 + Y ) = 1). The oriented discriminant of (C, θi) is 0 in both cases. Follow-
ing the reasoning of Example 3.19, we show that there is no isomorphism of oriented
quadratic algebras between (C, θ1) and (C, θ2). Indeed, any isomorphism ψ should satisfy
ψ(Z) = (3 + Y )Z + α for some α ∈ R, and the fact that ψ(Z) is a root of the polynomial
Z2 +XZ + 2 implies that 2α = 2X +XY , but 2 does not divide XY in R, a contradiction.

Proposition 3.22. Let N ∈ Pic(S). Two N -twisted binary quadratic forms which are equiva-
lent have equal natural type. Likewise, two isomorphic N -oriented quadratic algebras have equal
oriented type. Furthermore, Wood’s bijection (Theorem 3.13) is type-preserving, meaning that
if a twisted quadratic form (V, q) matches to a triple (C, θ,M), then δnat(V, q) = δor(C, θ) and
πnat(V, q) = πor(C, θ).

Proof. Let (V, q) and (V ′, q′) be two equivalent N -twisted binary quadratic forms: there exists
an isomorphism of OS-modules f : V ∼−→ V ′ sending q to q′. Locally on some open subset U ⊆ S
such that V|U and N|U are free, let (x, y) and (ν) be OU -bases of V|U and N|U respectively,
and set (x′, y′) := (f|U(x), f|U(y)) for an OU -basis of V ′

|U . Denote by q = ax2z + bxyz + cy2z

where z = ν det(x,y); then f|U sends q to q′ = ax′2z′ + bx′y′z′ + cy′2z′. The coefficients being
unmodified, the computation of the natural discriminant and parity is everywhere locally the
same.

For N -oriented quadratic algebras, the reasoning is similar. It remains to check the corre-
spondence. According to Remark 2.2 in [Woo11], locally on U ⊆ S where V|U and N|U are free,
if q = ax2z + bxyz + cy2z in some OU -basis (x, y) of V|U (and z = ν det(x,y)), then the corre-
sponding quadratic algebra C|U is given by the OU -basis (1, τ) where τ 2 + bτ + ac = 0, and its
orientation θ sends τ to ν∨. On the one hand, we have δnat|U (V, q) = (b2 − 4ac)ν ⊗ ν; on the
other hand, δor|U(C, θ) = (b2 − 4ac)θ(τ)(ν)−2ν ⊗ ν = (b2 − 4ac)ν ⊗ ν = δnat|U (V, q), as desired.
Clearly, we also have πnat|U(V, q) ≡ bν ≡ πor|U(C, θ) (mod 2Γ(U,N )), hence (V, q) and (C, θ)
have equal types.

3.3 Recovering the Picard group from Wood’s twisted quadratic

forms

Under the condition that 2 is not a zero divisor on our base scheme S, it is enough to fix the ori-
ented discriminant and the oriented parity in order to recover the Picard group in Theorem 3.13.
This extra condition on 2 is necessary, as shown in Examples 2.29 and 2.30.
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Theorem 3.23. Let S be a scheme, and assume that 2 is not a zero divisor on S. Then we
have the following bijection:

{

valid triples (δ, π,N )
} 1:1←→

{

isomorphism classes of
N -oriented quadratic algebras

}

(δ, π,N ) 7−→
[

(Ω(δ, π,N ), idN∨)
]

(δor(C, θ), πor(C, θ),N ) ←− [

[

(C, θ)
]

where Ω(δ, π,N ) is the quadratic algebra constructed in Proposition 2.23, and idN∨ denotes the
identity map Ω/OS = N ∨ −→ N ∨.

Proof. We proceed as for Theorem 2.25. The map sending the isomorphism class of an N -
oriented quadratic algebra to its oriented type is well-defined by Proposition 3.22, and surjective
by definition of valid triples. For injectivity, we check that every N -oriented quadratic algebra
(C, θ) of oriented type (δ, π,N ) is isomorphic to (Ω(δ, π,N ), idN∨). For this part, the proof is
the same as for Theorem 2.25, except that θ is not chosen but given. The commutativity of the
local isomorphisms Ψi’s with the orientations θ and idN∨ is a straightforward computation.

Finally, we can prove Theorem 1.3, which we make precise here:

Theorem 3.24. Let S be a scheme in which 2 is not a zero divisor. Let C0 be a quadratic algebra
over S. Let N be a representative of the isomorphism class of the OS-module (C0/OS)∨, and
fix an isomorphism of OS-modules θ : C/OS ∼−→ N ∨. Set δ := δor(C, θ) and π := πor(C, θ).

Then Wood’s bijection (Theorem 3.13) restricts to a bijection






GLtw2 -equivalence classes of primitive
N -twisted binary quadratic forms

with natural type (δ, π,N )







1:1←→ Pic(C0),

which endows the set on the left-hand side with a group structure.

Proof. As seen in Theorem 3.23, there is a unique isomorphism class of N -oriented quadratic
algebras with oriented discriminant δor = δ and oriented parity πor = π. Recall that by Propo-
sition 3.6, there is no non-trivial automorphism of (C0, θ), hence two C0-modulesM andM′ are
equivalent in Wood’s sense (cf. Theorem 3.13) if and only if they are isomorphic as C0-modules.
Therefore, once a representative (C0, θ) is fixed, the bijection restricts to isomorphism classes
of invertible C0-modules. Since the bijection is type-preserving (Proposition 3.22), this corre-
sponds to selecting, on the other side of the bijection, the GLtw2 -classes of primitive N -twisted
quadratic forms having natural discriminant δnat = δ and natural parity πnat = π.

In particular, Wood’s local description of the bijection still holds in Theorem 3.24. It enables
us to deduce the following special case:

Corollary 3.25. Let R be an integral domain of characteristic different from 2, and assume
that every locally free R-module of finite rank is free. Let π ∈ R/2R, and let π̃ ∈ R be a lift of
π. Let δ ∈ R be such that δ ≡ π̃2 (mod 4R). Then we have the global bijection















GLtw2 -classes of primitive
twisted binary quadratic forms
with natural discriminant δ

and natural parity π















1: 1←→ Pic





R[ω]�
〈

ω2 + π̃ω − δ − π̃2

4

〉





[

[a, b, c] with a 6= 0

]

7−→
[

〈ω +
π̃ − b
2

, a〉
]
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where the notation [a, b, c] means that we have chosen an R-basis (x, y) for our twisted binary
quadratic form in which it can be expressed as ax2z + bxyz + cy2z (where z = det(x,y)).

Remark 3.26. We have [a, b, c] ∼ [c,−b, a] and [a, b, c] ∼ [a + b+ c, b+ 2c, c] through the matri-

ces

(

0 −1
1 0

)

and

(

1 0
1 1

)

. Since [a, b, c] is primitive, the quantities a, c and a+ b+ c cannot

vanish at the same time, hence every primitive quadratic form over R is equivalent to one whose
first coefficient is nonzero.

Proof. We follow Wood’s local description of the bijection [Woo11, Remark 2.2]. Since every
locally free R-module of finite rank is free by assumption, every twisted binary quadratic form
is globally defined by an equation of the form ax2z + bxyz + cy2z with z = det(x,y).

Given such a quadratic form [a, b, c] with a 6= 0, let C = R[τ ]/ 〈τ 2 + bτ + ac〉 and M be
the associated quadratic algebra and invertible C-module. There exist x, y ∈M such that
M = xR ⊕ yR as R-modules, and τ · x = −by − cx, τ · y = ax. It is a straightforward compu-
tation to check that the homomorphism of R-modules

ϕ : M −→ 〈τ, a〉
x 7→ τ
y 7→ a

is a surjective homomorphism of C-modules. Since R is an integral domain, and since a 6= 0,
the ideal 〈τ, a〉 has rank 2 as an R-module, hence ϕ is injective. Thus, ϕ is an isomorphism of
C-modules, and [a, b, c] corresponds to the ideal 〈τ, a〉 in Pic(C).

The isomorphism R[τ ]/〈τ 2 + bτ + ac〉 ∼−→ R[ω]/〈ω2 + π̃ω − δ−π̃2

4
〉 sending τ to ω + π̃−b

2
en-

ables to conclude.

Some examples of rings satisfying all hypotheses of Corollary 3.25 are R and R[X ] for every
principal ideal domain R such that char(R) 6= 2 [Ses58].
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