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Abstract

Background: Multi-genotype malaria infections are frequent in endemic area, and people commonly harbour
several genetically distinct Plasmodium falciparum variants. The influence of genetic multiplicity and whether some
specific genetic variants are more or less likely to invest into gametocyte production is not clearly understood. This
study explored host and parasite-related risk factors for gametocyte carriage, and the extent to which some specific P
falciparum genetic variants are associated with gametocyte carriage.

Methods: Gametocytes and asexual forms were detected by light microscopy on thick smears collected between
2010 and 2012 in Nanoro, Burkina Faso. Merozoite surface protein 1 and 2 were genotyped by nested PCR on clinical
samples. Associations between gametocyte carriage and factors, including multiplicity of infection, parasite density,
patient age, gender, haemoglobin (Hb) level, and body temperature were assessed. The relationship between the
presence of a particular mspT and msp2 genetic variants and gametocyte carriage was also explored.

Results: Of the 724 samples positive to P, falciparum and successfully genotyped, gametocytes were found in 48
samples (6.63%). There was no effect of patient gender, age and body temperature on gametocyte carriage. However,
the probability of gametocyte carriage significantly increased with increasing values of multiplicity of infection (MOI).
Furthermore, there was a negative association between parasite density and gametocyte carriage. MOl decreased
with parasite density in gametocyte-negative patients, but increased in gametocyte carriers. The probability of game-
tocyte carriage decreased with Hb level. Finally, the genetic composition of the infection influenced gametocyte car-
riage. In particular, the presence of RO33 increased the odds of developing gametocytes by 2 while the other allelic
families K1, MAD20, FC27, and 3D7 had no significant impact on the occurrence of gametocytes in infected patients.

Conclusion: This study provides insight into potential factors influencing gametocyte production in symptomatic
patients. The findings contribute to enhance understanding of risk factors associated with gametocyte carriage in
humans.

Trial registration NCT01232530.
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Background

Malaria is an infectious disease caused by Plasmo-
dium parasites that are transmitted through the bites
of infected female Anopheles mosquitoes. It is a life-
threatening disease claiming about 405,000 lives each
year worldwide [1]. Burkina Faso, like several other sub-
Saharan African countries, ranks among the 10 highest
burden countries with over 7,875,575 cases and 4,294
malaria-related deaths every year [1]. Children under
5 years old and pregnant women remain the most vulner-
able groups.

Of Plasmodium species infecting humans, Plasmodium
Salciparum is the most dangerous involved in about 99%
of overall malaria-related deaths [1]. This is the most
common Plasmodium species in tropical settings, includ-
ing in Burkina Faso. Multi-genotype malaria infections
are frequent in endemic area and people commonly har-
bour several genetically distinct P falciparum variants
[2-5]. Multi-genotype infections may result from several
distinct mono-infected mosquito bites overtime and/or
from a single multiple-infected mosquito bite [6, 7]. In
human infections, highly polymorphic markers such as
Merozoite Surface Protein 1 and 2 (mspl and msp2) are
commonly used as polymorphic markers to distinguish
parasite genetic variants [5, 8, 9]. Using this approach
allows differentiation of distinct parasite genotypes
within a particular infection ranging from 1 (monoclonal
infection) up to 10 (multiclonal infection) in endemic set-
tings [3, 9-12].

During blood stage in humans, malaria parasites
undergo either asexual or sexual differentiation leading
to gametocyte production. Gametocytes are the sexual
forms of the parasite assuring the continuity of the para-
site life cycle in Anopheles mosquitoes. Although crucial
for the understanding of the infectivity cycle and disease
transmission, the ultimate and proximate mechanisms
leading to gametocyte differentiation are not fully eluci-
dated [13-16].

Contrasting predictions can be made regarding the
relationship between gametocyte production and multi-
plicity of infection (MOI). First, the existence of within-
host competition among distinct genotypes of malaria
parasites [5, 9, 17] could result in an increased invest-
ment in reproduction and transmission to flee the com-
petition [18, 19]. Second, in presence of competitors,
parasites could divert resource away from transmission
towards replication to maximize their competitive suc-
cess and hence their within-host survival [20, 21]. These
contrasting strategies illustrate the two opposite ends

of the well-known general survival versus reproduction
trade-off [22]. In malaria parasites, support for both of
these strategies were previously provided. Some studies
demonstrated that clonal multiplicity can promote both
the longevity of P. falciparum infection in patients and
their ability to produce gametocytes [23-25]. Accord-
ingly, positive relationship between MOI and gameto-
cyte carriage has been reported [6, 26], and can translate
into a positive correlation between MOI and mosquito
infection rates [6]. Other studies found that investment
in gametocytes is reduced in mixed infections [27, 28].
These results are in apparent contradiction and seem dif-
ficult to reconcile but gametocyte production is a com-
plex process. A recent modelling approach demonstrated
that parasites may display different patterns of transmis-
sion investment even in controlled conditions with ani-
mal models [29].

Besides genetic complexity, other factors generally
associated with stressful conditions and pointing to
deterioration in host conditions can drive gametocyte
differentiation [13, 15]. These drivers include drug treat-
ment, immune response, host anaemia, and nutritional
status [15-18, 30-34]. Male gender was also previously
reported as an independent risk factor associated with
gametocyte carriage [35]. Another level of complexity is
whether some specific genetic variants are more or less
likely to invest into gametocyte production. In animal
models, the existence of clones of Plasmodium berghei
with different capability to produce gametocytes were
previously described [36]. Genetically determined capa-
bility of some clones to produce gametocytes after a pro-
longed asexual stage was also reported in vitro [36, 37]
and in vivo [38]. In natural human infections, a previous
study suggested that some particular P, falciparum clones
have a relatively higher capacity to produce gametocytes
[39]. Causal relationship underlying sexual forms dif-
ferentiation is difficult to establish in human infections.
However, associated parasite and host-related risk fac-
tors could be identified through correlation between
these factors and gametocyte carriage. Genes located
in chromosome 9 of the parasite and variation in DNA
repeats were both listed as factors involved in gametocy-
togenesis mechanism [40, 41]. Variation in DNA repeats
represents the main molecular basis of the differentia-
tion among msp! (chromosome 9) and msp2 allelic fami-
lies. Therefore, there is a good reason to postulate that
allelic variability in msp1 and msp2 genes could influence
gametocytogenesis in humans. This study explored para-
site- and host-related factors associated with gametocyte
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carriage and the extent to which some specific P, falcipa-
rum variants are associated with gametocyte carriage in
symptomatic patients in Burkina Faso.

Methods

Source of samples and microscopic analyses

Samples for this report were collected between 2010 and
2012 during a pharmacovigilance for artemisinin-based
combination therapy study carried out in Nanoro, Bur-
kina Faso. The latter was described in detail elsewhere
[42, 43]. Malaria slides were prepared from peripheral
blood obtained from finger prick and were stained with
3% Giemsa for 30 min. Slides were double read using
Olympus CX21 microscope (Olympus Corporation,
Tokyo, Japan) for the detection of asexual forms as first
intention against 200 white blood cells and a negative
result were declared after examination of 100 micro-
scopic fields. During that process, when sexual forms
were met, sexual form density was determined against
500 white blood cells count. Final parasite density rep-
resented arithmetic mean of the two readings. A third
reader was appealed in case of discrepancies (huge dif-
ference between the two readers) defined as follow: (i)
difference in Plasmodium species identification; (ii) posi-
tive versus negative results; and, (iii) if the higher count
divided by the lower count was > 2. In that case, the two
closest readings among the three were considered.

Haemoglobin and body temperature

Haemoglobin (Hb) level was measured using Hemocue
301" (HemoCue AB, Angelholm, Sweden). Undiluted
blood obtained from finger prick was drawn into the
microcuvette, which was inserted in the analyzer and
Hb value in g/dL was read immediately. Electronic digi-
tal thermometers (Omron, Dalian, China) were used for
the measurement of axillary temperature. The tip of the
thermometer was inserted under the armpit and numeric
value of axillary temperature in degree Celsius was
recorded.

®

Molecular analyses

Parasite genomic DNA was extracted from dried blood
spots collected during the screening process of patients,
i.e., before treatment administration using Qlamp DNA
Kit (Qiagen, Hilden, Germany) following manufactur-
er’s instruction. DNA extract was used for merozoite
surface proteins (msp) 1 block 2 gene (K1, MAD20 and
RO33) and msp2 block 3 gene (3D7 and FC27) genotyp-
ing by nested PCR as previously described. Briefly, 5 puL
of DNA extract was used to initiate the first PCR round
using a Mastercycler® Gradient, (Eppendorf, Hamburg,
Germany) and a Biometra thermal cycler (Analytik
Jena, Jena, Germany) PCR machines. For the primary
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multiplex PCR round, the cycling conditions consisted
of an initial denaturation step of 5 min at 94 °C, followed
by 36 cycles of 1 min at 94 °C, 2 min at 58 °C and 2 min
at 72 °C, and a final extension step of 10 min at 72 °C.
One pl of this PCR product was used as DNA template
to launch the nested round. For the nested mspI round,
the cycling conditions consisted of an initial denatura-
tion step of 5 min at 94 °C, followed by 30 cycles of 1 min
at 94 °C, 2 min at 59 °C and 2 min at 72 °C, and a final
extension step of 10 min at 72 °C. For the nested msp2
round, the cycling conditions consisted of an initial dena-
turation step of 2 min at 94 °C, followed by 40 cycles of
30 s at 94 °C, 45 s at 58 °C and 1.5 min at 72 °C, and a
final extension step of 10 min at 72 °C. PCR amplicons
were detected under UV light transillumination after eth-
idium bromide-stained agarose gel electrophoresis. DNA
fragments sizes were calculated using Photo Capt™¥
(version 11.01) regarding fragments sizes of the refer-
ence which was a 100 Pb molecular weight marker from
Thermo Scientific Fermentas® (Fermentas UAB, subsidi-
ary of Thermo Fisher Scientific Inc. Vilnius, Lithuania).
Details about the genotyping procedure were previously
reported [5, 42]. MOI referred to the number of different
parasite genotypes co-existing within a given infection.
MOI was calculated separately for mspl and msp2 and
the final MOI value for each clinical isolate represented
the maximum MOI value from both msp1 and msp2 loci
as previously described in detail [5, 9]. A sample was clas-
sified as belonging to a given allelic family (K1, MAD20
or RO33 for mspl and 3D7 or FC27 for msp2) on the
basis of an occurrence of at least one band after DNA
amplification using the family specific primers [5, 9, 44].

Statistical analysis

Clinical data were entered in an ACCESS database while
molecular data were captured in a separate EXCEL file.
All statistical analyses were performed with the R (ver-
sion 3.5.1) software [45]. A generalized linear model
(GLM) with binomial errors was used to investigate the
effect of MOI, parasite density, patient age, gender, Hb
level, body temperature, and two-way interactions on
gametocyte carriage. GLMs with Poisson, Gaussian and
negative binomials errors were used to compare, respec-
tively, (i) MOI levels; (ii) Hb levels; and, (iii) the asexual
stage density, between gametocyte-positive and -nega-
tive samples. The effect of the presence of a particular
allelic family (mspl: K1, MAD20, RO33, and msp2: 3D7
and FC27) on gametocyte carriage was tested using a
GLM with binomial errors. Finally, a GLM with nega-
tive binomial errors was used to investigate the effect
of MOI, parasite density, patient age, gender, Hb level,
body temperature, and two-way interactions on game-
tocytaemia. Model simplification used stepwise removal
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of terms, followed by likelihood ratio tests (LRT). Term
removals that significantly reduced explanatory power
(p<0.05) were retained in the minimal adequate model.
Odds ratios and 95% confidence interval (CI) of the bino-
mial models were also computed. Collinearity between
explanatory variables was checked using the “vif” func-
tion of the “car” package.

Results

Of the 724 samples positive to P falciparum and suc-
cessfully genotyped, gametocytes were found along with
asexual forms in 48 samples, i.e., a gametocyte carriage
prevalence was 6.63% (48/724) with a mean gameto-
cyte density of 186.9+35.1 gametocytes/pl (min=15,
max =1,240). This represents a minimum gametocyte
prevalence since the sensitivity of microscopy is rela-
tively low. All 724 positives samples were P. falciparum
mono-infection.

Effect of MOl on gametocyte carriage

The probability of gametocyte carriage significantly
increased with increasing values of MOI (GLM bino-
mial, LRT X21=5, P=0.025, Fig. la, Additional file 1:
Table S1). In particular, one additional unit of MOI
enhanced the odds of being gametocyte-positive by 1.26
(95% CI: 1.04—1.5). Accordingly, the number of parasite
genotypes identified in blood samples from gametocyte
carriers (median=3.5) was significantly higher than in
samples from gametocyte-negative patients (median=2)
(GLM Poisson: LRT X?;=4.78, P=0.029, Fig. 1b).

Effect of Hb on gametocyte carriage

The probability of gametocyte carriage decreased with
Hb level (GLM binomial, LRT X?,=5.01, P=0.0245,
Fig. 1c, Additional file 1: Table S1). In particular, for every
1-point increase in Hb level, the odds of being game-
tocyte-positive decreased by 19% (OR=0.81, 95% CIL:
0.70-0.94). Accordingly, Hb level was lower in gameto-
cyte carriers than in patients infected with asexual stages
only (GLM Gaussian, F,,,,=6.94, P=0.009, Fig. 1d).
There was no collinearity between Hb level and MOI
(vif=1.003) such that the effect of anaemia on gameto-
cyte carriage was independent of the effect of MOIL.

Effect of parasite density on gametocyte carriage

and interaction with MOl and body temperature

There was a negative association between the pres-
ence of gametocyte and parasite density (GLM Bino-
mial, LRT X?,=15, P<0.001, Fig. 2a, Additional file 1:
Table S1) (OR=0.99, 0.99-1). Accordingly, gametocyte
carriers exhibited lower parasite densities compared to
gametocyte-negative patients (GLM negative binomial:
LRT X?,=23.8, P<0.001, Fig. 2b). There was a significant
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interaction between parasite density and MOI (LRT
X?;=54, P=0.02, Additional file 1: Table S1): MOI
decreased with parasite density in gametocyte-negative
patients, but increased in gametocyte carriers (Fig. 2c).
There was also an interaction between parasite den-
sity and body temperature on gametocyte carriage (LRT
X?;=6, P=0.015, Additional file 1: Table S1): body tem-
perature increased with parasite density in gametocyte-
negative patients but tended to decrease in gametocyte
carriers (Fig. 2d).

Effect of age, gender and body temperature

on gametocyte carriage

There was no main effect of patient gender, age, body
temperature and other two-way interactions on gameto-
cyte carriage prevalence (Additional file 1: Table S1).

Effect of msp1 and msp2 allelic families on gametocyte
carriage

The genetic composition of the infection influenced
gametocyte prevalence. In particular, the presence of
RO33 increased the odds of developing gametocytes by
2 (95% CI: 1.09-4.02, Fig. 3). The other allelic families K1,
MAD?20, FC27, and 3D7 had no significant impact on the
occurrence of gametocytes in infected patients (Fig. 3).

Effects of MOI, Hb, parasite density, age, gender, and body
temperature on gametocyte density

Although gametocyte density tended to increase with
MOI (Fig. 4a) and decrease with Hb (Fig. 4b), similar
to the observation made for gametocyte carriage. This
was not statistically significant, likely due to a lack of
power (i.e., only 48 gametocyte-positive samples) (MOI
effect: LRT X?; =418, P=0.12; Hb effect: LRT X?,=419,
P=0.12, Additional file 2: Table S2). The only significant
predictor of gametocyte density was asexual stage den-
sity (LRT X?;=2090, P <0.001, Additional file 2: Table S2,
Fig. 4c). However, there was no effect of gender, age, body
temperature, and two-way interactions (Additional file 2:
Table S2).

Discussion

In this study, the probability of gametocyte carriage sig-
nificantly increased with increasing values of MOI. Given
the within-host competition among different parasite
strains [5], the presence of multiple, genetically distinct,
parasite strains may represent unfavourable environment
for the less competitive strains. The stress resulting from
this unfavourable environment was described as a poten-
tial mechanism that triggers the sexual differentiation
pathway [13, 46]. Previous reports indicated that MOI
can promote either longer persistence or continuous pro-
duction of gametocytes [23, 25, 26]. Beside supporting
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the terminal investment strategy, the positive association
between MOI and gametocyte carriage may suggest that
infections with multiple clones have simply more chance
to contain some clones that will evade the host immune

response, persist in the host and result in gametocyte
development [24, 26].

Results of this study support two predictions made by
a model of transmission strategies in the rodent malaria



Sondo et al. Malar J (2021) 20:31

Page 6 of 11

o 0.15
()}
.
®
o
2
2y
g 0.10
ko)
€
©
()}
k]
2
= 0.05
(1]
Q
o
[a
0.00
0 250000 500000 750000
Parasite density (number/ul)
c
Gametocyte
carriage
6_ asass e o
= 0
-1
) 41 pesomen o o o
=
[} ———— . e — "
0 250000 500000 750000
Parasite density (number/ul)
gametocyte carriers)

C 1e+06

1e+05

1e+04

Parasite density (number/pl)

41 . . .

N
o

w
©

w
(o]

Body temperature (°C)

w
~
e %o 8g
eolge
.
H
.
o
o
.
oo
o
.
o
.

361 =

0 50000 100000 150000 200000
Parasite density (number/pul)

Fig. 2 Relationship between parasite density and gametocyte carriage. a Estimated probability of gametocyte carriage as a function of parasite
density. Gametocyte stages are more likely to occur in infections with low parasite density. b Parasite density (number of parasites / pl of blood)

in gametocyte-negative (0) and —positive (1) patients. Each point represents a blood sample from a P, falciparum-infected patient (n =676
gametocyte negative patients and 48 gametocyte carriers). The horizontal bold black line represents the median value of parasite density for each
of the two groups, and the upper and lower boundaries of the box indicate the 75th and 25th percentile, respectively. ¢ MOI level as a function

of parasite density for both gametocyte-negative (0) and —positive (1) patients. Each colour line represents a linear relationship (& se) fitted to the
MOI values for each group (red = non-carriers and blue =gametocyte carriers). The presence of gametocytes in patient blood was determined by
microscopic observation and MOI was defined as the number of different parasite genotypes (based on msp1 and msp2 genotyping) co-existing
within a particular infection. d Body temperature (°C) as a function of parasite density for both gametocyte-negative (in red) and —positive (in blue)
patients. The lines represent a linear relationship (% se) fitted to the temperature values for each group. Because there were 52 missing values

in the temperature dataset temperature, the sample size in d is different from that of (a) and (c) (n=625 gametocyte negative patients and 47

parasite Plasmodium chabaudi, that is: investment in
gametocytogenesis should increase: (i) at low parasite
densities; and, (ii) with host anaemia [47]. This study
showed that gametocyte carriers exhibited lower parasite

densities compared to gametocyte-negative patients. This
negative association between parasite density and game-
tocyte carriage was previously reported highlighting
lower parasitaemia as a risk factor of gametocytaemia. As
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lower parasitaemia are commonly observed in asympto-
matic population, this finding raises the question about
the contribution of asymptomatic population in sus-
tainability of malaria transmission. Thus, restricting this
investigation to symptomatic patients represents a limit
of the study. Indeed, higher prevalence of gametocyte
carriers was previously reported in asymptomatic popu-
lation than in symptomatic population [48, 49]. This
could mean that the principal infectious reservoir could
be people outside the vulnerable groups, i.e., children
and pregnant women who fall regularly clinically ill from

the disease. In such context, interventions targeting spe-
cifically the reservoir need to be implemented in order
to achieve best impact in malaria control and elimina-
tion. However, conflicting findings pointing to hyper-
parasitaemia as risk factor of gametocytes carriage was
also reported [50]. The differences are mainly attribut-
able to population profile (symptomatic versus asympto-
matic including sub-patent parasite carriers) and parasite
detection method, i.e., light microscopy against qPCR
[51]. Gametocyte detection based on light microscopy,
rather than sensitive methods such as qPCR, represent




Sondo et al. Malar J (2021) 20:31 Page 8 of 11
a . b .
1000 . 1000 .

© 300 : . . . @ 300{ = 0 .

I= . . . I= . ~

0] )

= =

19) 9]

S 2

g 100 g 100

© ©

O] O]

. . o .
30 . 30 .
' . . L] L] . . L] LN ] .
1 2 3 4 5 6 6 8 10 12
c MOI Haemoglobin level (g/dL)
1000 .

© 300 . ., ¢

é * . -

)

=

)

£

g 100

©

O]

30 .
3e+03 1e+04 3e+04 1e+05
Parasite density (number/pul)

Fig. 4 Relationship between gametocytaemia and a MOI, b Hb level and c asexual stage density. Blue lines represent a linear relationship (&£ se)
fitted to the MOI, Hb and parasite density values, respectively. On each panel, gametocytaemia on the y-axis is on a log10 scale. The x-axis of ¢ is on
alog10scale

one limitation of this study, underestimating gametocyte
carrier prevalence as well as the possible contribution of
other sub-patent Plasmodium species. In addition, read-
ing malaria slides against 500 leucocytes rather than
1,000 leucocytes for gametocyte detection could have
underestimated detection power.

In gametocyte-negative patients, MOI was lower in
patients with heavy infections than in patients with mild
infections, thus supporting the existence of within host
competition with suppressive effect for disadvantaged
strains [5]. However, in gametocyte-positive patients,

MOI increased with increasing parasite density suggest-
ing that the suppressive effect resulting from within-host
competition and strain-specific immunity (observed in
gametocyte-negative population) is mitigated and the
disadvantaged strains commit to sexual differentiation
instead of being eliminated.

Furthermore, as pointed out by several other authors,
this study identified host anaemia as a risk factor
for gametocyte carriage, such that for every 1-point
increase in Hb level, the odds of being gametocyte-pos-
itive decreased by 19% [31, 48, 52]. Possible mechanism
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of this correlation between anaemia and gametocyte
carriage would be the haemolysis of infected eryth-
rocytes which was previously identified as a factor
inducing gametocytogenesis [53]. These results sug-
gest that combining malaria and malnutrition pro-
grammes would enhance the effectiveness of control
interventions.

There was no main effect of patient gender, age,
body temperature, and other two-way interactions on
gametocyte carriage, yet some of these host factors
such as gender and body temperature were previously
described as associated risk factors of gametocytaemia
[35, 48]. This may also be attributable to population
profile because of the lack of asymptomatic population
in this study.

This study used msplI and msp2 as polymorphic mark-
ers which are under immune pressure due to their
involvement in the merozoite invasion [54]. This repre-
sents one limitation of this study in terms of discrimi-
natory power compared to neutral markers such as
microsatellites. New methods with much higher genetic
resolution such as Next Generation Sequencing would
also provide better characterization of the parasite popu-
lation profile compared to mspl and msp2 genotyping.
Nevertheless, the genetic composition of the infection
influenced gametocyte prevalence. Previous reports
suggested that different P falciparum parasite variants
may influence gametocyte carriage differently. A study
reported that individuals carrying both 3D7 and FC27
allelic types of parasite had a higher risk of harbour-
ing gametocytes compared to single 3D7 or FC27 allelic
types [26]. In addition, an association between gametocy-
taemia and particular dhfr allele was previously reported
[55]. In this study, the RO33 allelic family was mostly
associated with gametocyte carriage than others. Nev-
ertheless, these findings, although highlighting an asso-
ciation with gametocyte carriage do not establish causal
relationship, i.e., these allelic families are mostly engaged
in sexual differentiation than others. For example, if
this was true, the RO33 allelic family should have been
the commonest allelic family (mostly transmitted) yet it
is the less represented in the study area [9]. Therefore,
further investigations exploring the effect of allelic fam-
ily variability on gametocytaemia with special attention
towards the infectivity of RO33 allelic family for anophe-
line mosquitoes are needed.

Conclusion

This study provides insight into potential factors influ-
encing gametocyte production in symptomatic patients.
The findings contribute to enhance understanding of risk
factors associated with gametocytes carriage in humans.
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