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Artistic composition (the structural organization of
pictorial elements) is often characterized by some basic
rules and heuristics, but art history does not offer
quantitative tools for segmenting individual elements,
measuring their interactions and related operations. To
discover whether a metric description of this kind is
even possible, we exploit a deep-learning algorithm that
attempts to capture the perceptual mechanism
underlying composition in humans. We rely on a robust
behavioral marker with known relevance to higher-level
vision: orientation judgements, that is, telling whether a
painting is hung “right-side up.” Humans can perform
this task, even for abstract paintings. To account for this
finding, existing models rely on “meaningful” content or
specific image statistics, often in accordance with
explicit rules from art theory. Our approach does not
commit to any such assumptions/schemes, yet it
outperforms previous models and for a larger database,
encompassing a wide range of painting styles. Moreover,
our model correctly reproduces human performance
across several measurements from a new web-based
experiment designed to test whole paintings, as well as
painting fragments matched to the receptive-field size of
different depths in the model. By exploiting this
approach, we show that our deep learning model
captures relevant characteristics of human orientation
perception across styles and granularities. Interestingly,
the more abstract the painting, the more our model
relies on extended spatial integration of cues, a property
supported by deeper layers.

Introduction

Artistic graphical composition can be roughly
defined as the structural organization of pictorial

elements on a canvas. Art history offers some basic
rules and heuristics for understanding the qualitative
characteristics of this phenomenon; however, it does
not codify processes such as segmentation/interaction
of pictorial elements to the degree of specification
required by quantitative analysis. Modern artists such
as Kandinsky or Klee initiated some systematic and
almost scientific studies on this topic (Kandinsky,
1989, 1991; Klee, 1961, 1973, 1998), but they struggled
with the combinatorial complexity afforded by
compositional questions. Despite more recent progress
in this area (Arnheim, 2004), composition remains a
complex amalgam of different phenomenona, highly
dependent on context and other aspects that are
not easily quantified. Composition also represents a
versatile experimental tool for empirical aesthetics
(Locher et al., 1999; McManus et al., 1993; Schwabe
et al., 2018); however, this approach focuses primarily
on aesthetic judgements, rather than the compositional
processes associated with those judgments.

Recent advances in machine learning, and
particularly deep architectures, have demonstrated
the ability of artificial neural networks to extract
hidden structure from high-dimensional data and solve
complex problems with human-level performance
(Dodge & Karam, 2017; Serre, 2019). Our goal is to
discover whether deep learning tools can advance our
understanding of composition and whether, by relying
on those tools, we may define a partial, yet relevant,
metric description of this phenomenon that is available
for quantitative scrutiny (see Iigaya et al., 2020 for
related methodology). To achieve this goal, we rely
on a well-defined and robust perceptual judgment of
visual orientation that is related to composition: telling
whether a painting is hung “right-side up.”
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Under the assumption that the orientation of
reference for a painting is that selected by the artist,
previous work has demonstrated that humans can
perform this task well above chance, even for abstract
paintings, and regardless of their level of familiarity
with painting material (Lindauer, 1969; Mather, 2012).
Therefore, it seems that orientation judgments represent
a robust behavioral metric, even for material with
no recognizable content. Orientations other than
the reference orientation may elicit equally valuable
subjective interpretations and/or aesthetic experiences
in the viewer; however, existing empirical evidence
indicates that part of the orientation judgment is
consistent across observers: not necessarily directed
toward the orientation of reference, but at least
directed away from some of the alternative options.
Furthermore, orientation judgments are of immediate
relevance to the study of visual perception, an area
where image orientation is often manipulated to
selectively target higher level processing (see for example
the well-known inversion effect (Neri, 2014; Valentine,
1988) and its numerous applications (Cusack et al.,
2015; Gaspar et al., 2008; Kelley et al., 2003; Neri et al.,
2006, 2007 Yovel & Kanwisher, 2005)).

The exact mechanisms underlying orientation
judgements are not fully understood. Some authors
have suggested that the perception of orientation
depends more on low-level stimulus properties
than higher level object recognition and/or image
interpretation (Lindauer, 1987), prompting others to
investigate the potential role of relatively simple cues,
such as Fourier amplitude spectrum slope (Mather,
2012), or image statistics based on explicit rules
gathered from several art theories incorporated into
a machine learning algorithm (Liu et al., 2017) (see
Elgammal et al., 2018; Rodriguez et al., 2018 for related
applications).

In approaching these issues, we do not commit
to restrictive assumptions or purpose-built schemes.
Our model is structured around a general architecture
not originally devised for application to art material.
We exploit a large database of paintings to train the
model, and in so doing we automatically approximate
the perceptual mechanisms underlying composition.
Despite not being hand-engineered to tailor our specific
problem of interest, the trained model outperforms
previous applications and extends to a greater variety
of painting styles.

It is generally believed that orientation judgments
are supported by global analysis of the scene (Oliva
& Torralba, 2006). The role of local cues has
been relatively unexplored, and more generally the
granularity of this phenomenon is not well-understood
(Gong et al., 2018). Within the context of our approach,
we can naturally probe the issue of granularity and
identify the appropriate scale for understanding
pictorial elements. More specifically, by exploiting

the hierarchical architecture of our model, we can
explore how information is represented at different
depths within the network. We find that the use of
small-scale patterns and deeper level features shows
qualitative differences between abstract paintings and
more realistic pictorial styles.

To validate the applicability of our model to
human visual perception, we carried out a web-based
experiment with human observers. They were asked
to perform the orientation judgment task on whole
paintings as well as fragments of different sizes,
corresponding with the different extent covered by the
receptive field of distinct depth levels in the model.
These experiments were designed with the following
goals in mind: establish whether human performance
on the orientation task can survive a wider range of
stimulus manipulations (painting style, abstraction
level, fragment size) than previously tested in the
literature; and determine whether our model provides
a satisfactory account of the human process. We
find positive answers to both questions, although we
did identify some discrepancies between human and
simulated results, which serve as useful starting points
for us to elaborate on how the proposed model may be
augmented in future work.

Methods

Database

Our image database is derived from the WikiArt web
encyclopedia (WikiArt). The associated API returns
metadata such as artist identification and painting styles
of each image. At the time of this experiment (May
2019), the WikiArt database contained 157,291 entries.
We excluded non-painting styles (e.g., performing
arts) and pictures of painting details, reducing this
figure to 141,892 items. To make our results directly
comparable with those reported by Mather (2012), we
manually added 18 entries and moved all paintings
from this paper in the validation set. Because our
interest is mainly in how model performance varies
with style (e.g. abstract vs. figurative), we ensured that
different styles and artists were comparably distributed
between the training and validation sets. With a target
validation ratio of 0.1, the final split is 126,451/15,459.
We grouped entries into the genres and styles detailed
in Supplementary Tables S1 and S2. Representative
examples from this selection are shown in Figure 1.
Chosen classification is largely unambiguous, but
there are instances for which the specific choice of
genre/style may be disputable from historic and/or
artistic perspectives. For instance, abstract style is
often associated with modern/contemporary Western
movements; from such a viewpoint, our decision to
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Genres

Styles

Portrait

Renaissance

Figurative

Post-Renaissance
(Romanticism, Realism)

Genre Painting Landscape

Impressionism

Nude

Post-Impressionism
(Symbolism)

Expressionism

Sketches

Cubism

Abstract

Abstract Surrealism

Figure 1. Gallery of genres and styles mentioned throughout the paper. Ordering is chronological. (Mona Lisa by Leonardo da Vinci
(1503-1519), Still-Life with Drinking-Horn byWillem Kalf (1653), The Meeting (Bonjour Monsieur Courbet) by Gustave Courbet (1854),
Argenteuil seen from the small arm of the Seine by Claude Monet (1872), Young Girls on the Edge of the Sea by Pierre Puvis de
Chavannes (1879), The Scream by Edvard Munch (1893), Seated man with his arms crossed by Pablo Picasso (1915), Komposition VII
byWassily Kandinsky (1913), A Naturalist’s Study by Pierre Roy (1928)).

include Native art in the abstract category may seem
questionable. This decision, however, is motivated by
our focus on visual abstraction, rather than abstraction
as defined by historical criteria. Furthermore, the
questionable instances represent <1% of the total,
rendering this issue of little concern. A more probable
source of bias is represented by the portrait/landscape
aspect ratio. We address this issue in the Supplementary
Material, where we demonstrate that this bias is
negligible and that the aspect-ratio distribution is
well-balanced for abstract paintings, the class we are
most interested in.

Model architecture

The task of orienting an image can be thought of
as a simple classification problem with four classes,
each class corresponding with one possible orientation
for the painting. Within this family of machine
learning problems, the classification of items from
ImageNet (Russakovsky et al., 2015) has led to the
development of several deep learning models dedicated
to image processing, in particular convolutional neural
networks. There is now extensive evidence highlighting
similarities between convolutional neural networks
and the mammalian visual pathway (Kriegeskorte,
2015; Yamins & DiCarlo, 2016). Among such artificial
neural architectures, the most popular are AlexNet
(Krizhevsky et al., 2012) and VGG (Simonyan &
Zisserman, 2014). Based on its complexity and reported
accuracy on ImageNet, we selected VGG-16 (PyTorch
implementation; Paszke et al., 2019) as an appropriate
starting point for this study.

Figure 2 shows the schematic architecture of our
network. All convolutional blocks in gray (1–5) are
directly ported from VGG. They consist of multiple
convolutional layers with rectified linear units (ReLU)
activation functions followed by max-pooling. Our
implementation does not use batch-normalization and
we removed the original linear layers of the classifier to

be replaced by a custom-designed classifier-5, composed
of a convolutional layer (kernel size = 7, stride = 3) and
linear layers (sizes = [512, 128, 32]). ReLU activation
functions and dropout units are applied to all layers
except for the last one, to which we applied a softmax
function for classification purposes. The dropout rate is
of 0.30, except for units before the last layer with a rate
of 0.15.

The main feature of our network is that its linear
layers are convolutional with kernel size 1. We adopted
this formulation to enable inspection of the spatial
distribution associated with classified outputs. The
consequence on classifier-5 is null because, at this
depth in the network, its output (height = 1, width
= 1, classes = 4) is generated by a receptive field
covering the entire input image. The implication
for the other classifiers (1–4), inserted after each
convolutional block corresponding to earlier visual
areas, is that they have access to small receptive fields.
As a consequence, classifier-1 (earliest level) produces
for example a classification output of shape (36, 36, 4),
as if the network simultaneously judged the orientation
of multiple fragments across the picture. This
architecture makes it possible for us to inspect network
behavior at different depth and for cues of differing
granularity.

Training procedure

Input images conform to the VGG format with
resolution 224 × 224 pixels and color normalization
computed from the ImageNet database. In principle,
all parts of a painting may be relevant to judging its
orientation, making it inappropriate to crop images
into a square shape. We therefore scaled images so
that their largest dimension was 224, and fill the
remaining empty space with the ImageNet mean value
(Figure 3a). These manipulations raise two possible
concerns. First, downsampling to a lower resolution
may leave out useful orientation cues from the original
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Figure 2. Schematic architecture of the multilevel orientation classification model employed in this study. Each of five convolutional
blocks is associated with a classifier (indicated by classifier-n with n = 1 to 5). The output dimensionality of each classifier is indicated
by (x, x, 4), where x is the number of samples across each spatial dimension (see density of circle array within insets overlaying local
filters onto painting), and 4 is the number of orientation labels {up,90,180,270}. The four values within [ ] show one example of the
categorical distribution generated by the network for Komposition VIII byWassily Kandinsky (1923). In the legend, k/s stand for
kernel/stride size.

Figure 3. Effect of median filtering on network attention, visualized through guided error back-propagation. Error map is inverted and
thresholded for legibility. Light gray indicates pixels where attention reaches at least 1% of its maximum (moderate attention); dark
gray indicates pixels where it exceeds 10% (high attention). (a) shows original images used for training. (b) shows directed attention in
the absence of median filtering applied to the borders, (c) in the presence of median filtering. Two examples by Paul Klee are shown:
The Place of the Twins (1929) and After Annealing (1940).

image. This is possible; however, general considerations
about the nature of the images, combined with cursory
inspection of representative examples, indicates that
composition is a global property that is retained at the
adopted resolution. For example, the images shown in
Figure 1 are downsampled using the same algorithm
we used for the experiments: these paintings are still
highly recognizable and understandable. Furthermore,
our study is designed as a comparative behavioral
experiment between humans and a deep learning
model; we expect that the two systems should be
similarly impacted by downsampling. The second

potential concern relates to color normalization of the
paintings. If carried out incorrectly, this procedure may
disrupt the perceptual analysis of color and partially
alter compositional effects. To avoid this undesirable
outcome, we compute mean and standard deviation per
channel at the dataset level, not at the level of individual
images. Therefore, when normalization is carried out
using these mean and standard deviation values, relative
color differences and local contrast are conserved at the
painting level.

We minimized overfitting using simple data-
augmentation techniques: first, we applied random
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color gamma correction outputc = inputγcc where
γc = 20.5a+0.25bc , a a random scalar and b a random
vector sampled from uniform distributions over [−1, 1].
Second, images are randomly rotated by up to 5◦
in either direction and randomly shifted along their
shorter dimension within a range such that the whole
image remains visible. To accelerate training, we
relied on the pretrained model provided by PyTorch.
Parameters for the convolutional blocks are not fixed,
so they are fine tuned for painting material during
training. When filter parameters are fixed, performance
is substantially reduced (see Supplementary Material).
We used cross-entropy loss for optimisation as is
customary in classification problems. Optimization is
performed by an Adam algorithm with learning rate
1e−4 and a scheduler that decreases this learning rate by
a factor of 10 when network accuracy remains stable
across two epochs.

Testing procedure

At the adopted resolution of the input images,
some pictures retained spurious cues to their original
orientation, such as artist signatures or handwritten
titles near the border. We solved this issue as follows.
We initially relied on guided back-propagation to
visualize regions emphasized by the model during a
preliminary training procedure, and found that the
network directed attention to artist signatures and
other written characters usually within the bottom
region of paintings (Figure 3b). These cues can be
trivially exploited to determine picture orientation, but
are not connected with composition, so our goal was
to remove them as effectively as feasible in automated
fashion (manual editing was not an option for such a
large database). We applied a median filter with a ramp
along all borders of each painting (filter of size 5, full
on the outer 5% of the image and with a ramp to zero
up to the 20% point). Median filtering is preferable to
Gaussian filtering because it removes high-frequency
noise while retaining sharp edges. This border-based
median-filtering procedure is only applied during
validation because it is not useful during training:
the network is still able to learn residual artefacts
associated with signatures. Figure 3c demonstrates
that, even though the network has learned to exploit
signatures during training, it successfully reallocates its
attention to other parts of the painting when median
filtering is applied to borders during validation. Results
reported in this article (most importantly validation
scores) are averaged separately for each painting over
four presentations of that painting in every possible
orientation. Model performance refers to average
top-1 scores. Top-1 accuracy is 1 if the most probable
predicted class is the targeted class, 0 otherwise.

Web-based experiments

We developed a dedicated website for human data
collection. Before accessing the experimental platform,
participants registered and specified their age as well
as their general knowledge of art material. In the
first experiment, participants were required to select
the original orientation of randomly picked abstract
paintings successively presented in blocks of 10. Each
painting was presented in isolation and could be
oriented interactively by the user; once the participant
was satisfied with a particular orientation, this was
selected by pressing a button and triggered presentation
of the next painting in the sequence. If any element in
the painting could serve as obvious hint to the correct
orientation, like a word or a signature, people were
asked to report it via a dedicated button. After each
series, a figurative painting of obvious orientation was
inserted into the sequence to check whether participants
were meaningfully engaging with the task. To motivate
their interest and maintain their focus, participants
were provided with feedback at the end of each series
detailing performance scores and information about
the paintings. In the second experiment, participants
saw fragments of both abstract and figurative paintings.
The fragments were sized to span the approximate
size and location of fragments accessible to the
network for each classifier. Under these conditions,
the task was perceived as challenging and sometimes
puzzling owing to the fragments often being small and
blurry; however, it produced interesting results for
understanding compositional perception at different
granularities. Because we sought to randomly sample
paintings from the same style distribution as the model
dataset, we excluded categories with a small number
of entries to avoid unreliable measurements. More
specifically, the abstract category included the following
styles (in decreasing order of representation): Abstract
Expressionism, Abstract Art, Art Informel, Color Field
Painting, Minimalism and Lyrical Abstraction; the
figurative category only included Romanticism. We
collected an average of 50 trials per participant from
71 participants aged between 15 and 67 and coming
from 8 different countries. As an indication that our
sample is representative of those commonly used in
the literature, our measured average accuracy of 47%
(Figure 9b) is highly consistent with values reported
by existing studies (Lindauer, 1969; Mather, 2012).
We excluded eight participants with scores of less
than 0.75 for figurative styles and of less than 0.25 for
abstract styles who had typically collected fewer than
10 trials. The inclusion of these participants lowers
overall accuracy to 46%, but does not alter the general
pattern of the results and their interpretation. We also
recorded reaction time, age and general knowledge
of art material (as self-reported via questionnaire);
these factors are tangential to the present study, so
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Figure 4. Model performance on whole paintings grouped by genre (a) and style (b).

they are only briefly discussed in Supplementary
Material.

Guided back-propagation

This neural network visualization technique consists
of back-propagating the true class/label (binary one-hot
distribution) as an error through the network all the way
back to the input image. Because the network applies
more correction to regions of the input image where
information is most useful for achieving categorization
of the back-propagated class, those regions map
out the equivalent of attentional deployment by the
network (Figure 3c, Figure 5b). The guided variant of
back-propagation was introduced by Springenberg et
al. (2015) to improve back-propagation of the gradient
through ReLU activation units.

Cross-entropy

Given target probability distribution p and estimated
probability distribution q, cross-entropy is defined
as H (p, q) = H (p) + DKL(p ‖ q) where H (p) is the
entropy of the target distribution (i.e., the average
amount of uncertainty/information about p) and
DKL(p ‖ q) is the Kullback–Leibler divergence from
q to p (a measure of the difference between the two
distributions). When target distribution p is the final
classified label (binary one-hot distribution), H (p) = 0
and cross-entropy simplifies to DKL(p ‖ q); to optimize
this function, the model simply pushes the q estimate
to match p as closely as possible. We also compute
cross-entropy for target distributions other than the
final one-hot label; more specifically, we compute
distributions for fragments at level n (q in notation
above) and measure their predictive power for target

distributions of closest fragments at level n + 1 (p in
notation above). The goal of this between-level metric
is to measure redundancy between distributions at
different levels. To produce a more interpretable metric
in Figure 8, redundancy is defined as exp[−H (p, q)].
The maximum redundancy is 1, corresponding with
0 cross-entropy. A chance level can also be defined as
the cross-entropy between equiprobable distributions,
simplifying to a redundancy of 0.25 with four classes.

Results

Model performance on whole paintings

Model performance on whole paintings of
the abstract genre is around 50% (Figure 4a), in
excellent agreement with human measurements from
existing literature (Lindauer, 1969; Mather, 2012).
Performance also progressively improves from abstract
to objects, landscapes through to portraits (Figure 4a).
Qualitatively speaking, this progression seems to be
related to the characteristics of possible orientation
cues, such as their diversity and reliability. For example,
Portraits (e.g., Mona Lisa in Figure 1) contain faces
that are almost exclusively in the upright orientation,
making for highly stereotyped and reliable cues. Genre
Paintings often display people in standing position,
during battles, religious ceremonies or everyday life
(e.g., The Meeting (Bonjour Monsieur Courbet) in
Figure 1); cues are still primarily restricted to human
characters, but are less stereotyped due to different
(potentially conflicting) body poses. Landscapes and
Figurative genres display greater diversity of cues,
more abundant but certainly less reliable: trees and
clouds can be seen via water reflections and objects
may not be associated with specific orientations. Along
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Figure 5. Network attention through guided error back-propagation (see Methods). (a) Five examples of original inputs for validation
(Komposition VII byWassily Kandinsky (1913), Still-Life with Drinking-Horn byWillem Kalf (1653), Argenteuil seen from the small arm
of the Seine by Claude Monet (1872), The Meeting (Bonjour Monsieur Courbet) by Gustave Courbet (1854),Mona Lisa by Leonardo da
Vinci (1503-1519)). (b) Error maps with inverted and thresholded intensity. Light gray indicates pixels where attention reaches at least
1% of its maximum (moderate attention); dark gray indicates pixels where it exceeds 10% (high attention). Numeric values report light
and dark pixel percentages over the entire painting surface. (c) Average surface ratio of high attention, plotted separately for different
genres.

this qualitative scale, Nude is perhaps the only genre
that seems to be misplaced (right before Landscape
in Figure 4a), because one may expect that it should
be similar to Genre Painting. Looking at Young Girls
on the Edge of the Sea in Figure 1, Nude paintings
seem to explore an extended range of body poses,
making body orientation a potentially unreliable
cue.

To investigate this interpretation more quantitatively,
we can visualize the network’s error back-propagation,
a technique that exposes regions where the network
directs its attention during evaluation. The spatial
organization of attentional deployment offers useful
insight into the diversity of available cues. Consider
Mona Lisa in Figure 5b: the most active attentional
areas, indicated by dark gray pixels, are highly
localized and limited to facial details. In comparison,
Kandinsky’s Komposition VII prompts the model to
gather information across the entire image. For Monet’s
landscape and Kalf’s still life, the model operates in
a manner that appears to sit halfway between those
two extremes, in line with the hypothesis described
earlier. We attempt to quantify this trend by simply
measuring the proportion of image pixels where the
back-propagated attentional signal exceeds 10%. When
plotted separately for the different genres (Figure 5c),
this quantity is well aligned with the genre ordering of
Figure 4a. If we adopt pixel area as a proxy for cue
numerosity, the network model uses nearly 3.5 times
more cues for Abstract paintings than Portraits. In this
ranking, Nude is closer to Genre Painting, as expected
from our earlier qualitative considerations. Finally,
Sketches may be expected to occupy a position closer
to the Abstract genre; however, the sparseness of line

content over the flat canvas may explain the lower ratio
reported in Figure 5c.

A related concept for ordering model performance
on different art material is the reliability/interpretability
of available orientation cues, which may reflect the
purported importance of “meaningful” content for
orientation judgements. From this perspective, painting
style (rather than genre) may offer better insight into
the role of image content. For example, portraits
from Leonardo da Vinci and Picasso (see Figure 1)
encompass different degrees of ambiguity. With this
notion in mind, Figure 4b demonstrates a lawful
relationship between performance and abstraction
level (concreteness): from abstract style to Cubism,
Symbolism, and post-Renaissance realism. Therefore,
taken as a genre or a style, abstraction is in both cases
the most difficult material to orientate.

These observations may be summarized by the
notion that, although abstract orientation cues are
widely distributed across the canvas, they seem to
carry limited predictive power. By and large, these
visual features are likely employed by artists regardless
of their orientation; nonetheless, the associated
performance in the orientation judgment task is
well above chance. A recent study (Specker et al.,
2020) reports that human observers share artistic
judgment more effectively in relation to whole abstract
artworks as opposed to isolated elements (lines and
colors). Therefore, it appears that, in the absence
of preferred orientation for individual elements, the
only effective source of information must come from
the combination of the different cues into specific
arrangements that may or may not be represented at the
level of the perceptual/neural process. The progressive
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Figure 6. Model performance across classifiers. Values are grouped by style (as in Figure 4b) and displayed separately for the five
distinct classifiers. (b) plots values from (a) after rescaling between chance and maximum value for given style (corresponding to
performance of classifier-5).

construction/representation of compositional patterns
is a phenomenon of central interest to our study, and
one which we hope to understand further by examining
the role of local image cues/fragments in greater detail
(discussed further in the next Section).

Model performance on fragments

We are in a position to study model behavior for
earlier layers via inspection of classifier-1:4 (Figure 6a).
Model performance shifts toward chance as its spatial
resolution is restricted to smaller receptive fields and
could be rephrased as “more is better.”We interpret this
trend as reflective of the commonly regarded high-level
nature of the orientation judgement (Neri, 2014;
Valentine, 1988). Perhaps related to this observation,
a recent investigation of human aesthetic judgement
viewed from a neural network perspective (Iigaya et al.,
2020) reports that judgments of “concreteness” become
increasingly dominant with neuronal integration.
We also find that, when values are normalized by
the performance level associated with classifier-5
(Figure 6b), the dependence on deeper layers increases
with abstraction level of the painting.

We can gain more insight into the issue of granular
representation within the model by plotting predicted
orientations from individual receptive field units
(Figure 7). The first and most obvious characteristic
of these results is that figurative paintings are more
spatially redundant than abstract paintings: they offer
orientation cues more uniformly spread across the
image down to small scales. Further to this observation,
although the results for figurative paintings at coarser
scales can be roughly predicted from those at finer scales
via simple integration of local cues, this rule does not

seem applicable to abstract paintings: a large fragment
is not reflected by simple averaging of smaller related
fragments.

To quantify redundancy between adjacent classifiers,
we measure how well distributions at level n describe
those at level n + 1 using rescaled cross-entropy (see
Methods). This quantity is plotted in Figure 8; it
ranges between chance (level n + 1 cannot be predicted
by level n) and ceiling performance (level n + 1 can
be fully predicted by level n). First, we notice that
redundancy increases as we transition from the earlier
layers to the later layers, meaning that redundancy
increases along the processing pipeline. For example,
redundancy between classifiers 1-2 and 2-3 remains
near chance across all styles. As we transition to later
levels (description of classifier-5 from classifier-4),
figurative paintings show a strong correlation between
classifiers, while abstract paintings remain close to
chance.

A different (but related) way of thinking about
Figure 8 is to consider the progressively expanding
horizontal bars for figurative paintings as reflecting a
gradual emergence of a structured representation that
is largely shared across layers. Whatever properties
are being represented by the network to support
classification, their representation is constructed
incrementally along the processing hierarchy and
is therefore distributed across layers. In the case of
abstract art, representation of relevant properties does
not appear to emerge gradually along the pathway.
Classifier-5 seems to represent a global property
of abstract art that is not transparently available
from earlier layers, and which we speculate may be
connected with composition. It is true that earlier layers
support an appreciable level of task performance (see
Figure 6a), but our cross-entropy analysis indicates that
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Figure 7. Predicted orientations from individual receptive field units within each classifier. Different classifiers (1–5) are plotted from
left to right. Relative size of the four wedges within each circle reflects prediction strength across the four different orientations.
Examples are shown for three paintings (dates given when known): Argenteuil seen from the small arm of the Seine by Claude Monet
(1872), The Waterfall of Amida behind the Kiso Road by Katsushika Hokusai, After Annealing by Paul Klee (1940).

Figure 8. Redundancy between adjacent classifiers, grouped by style. This metric corresponds to rescaled cross-entropy between
classifier distributions at level n and those at level n + 1 (see Methods). Values are averaged across fragments. Along x axis, c.p.
stands for ceiling performance.

this is achieved via representation of other task-relevant
properties that do not share characteristics with those
represented by classifier-5.

To summarize these results, it appears that abstract
art suffers from higher local variability of compositional
effects, requiring spatially extended integration of
orientation cues for them to cohere into a reliable
orientation estimate. Deeper layers must represent
emergent global properties that are not necessarily
available to previous layers; these properties may be
connected with Gestalt principles associated with
abstract material, for which the whole is more than
the sum of its parts. It is true that we measured
performance levels that are relatively low (albeit well

above chance), and that this observation alone prompts
caution in potentially overstating the universality of
this phenomenon; nonetheless, it also implies the
existence of a mechanism that is clearly structured to
a measurable extent (i.e. stands above chance). Partial,
but systematic, neural integration of image features
has also been described for other aesthetic judgments
(Iigaya et al., 2020). To determine whether these
findings are idiosyncratic to our model or, as we hope,
they reflect real compositional mechanisms of more
general relevance to cognition, we report on human
behavioral experiments designed to retain the closest
possible connection with the above characterization of
the network model.
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Figure 9. Human versus model performance for whole paintings and fragments. In (a), model performance from classifier-5 is plotted
alongside human performance on whole paintings (dark versus light bars, respectively), grouped by style. In (b-c), model performance
from different classifiers (1–5) is plotted alongside human performance on image fragments, separately for abstract (b) and figurative
styles (c).

Human experiments and comparison with
network model

Among abstract styles, human observers have
the most difficulty determining the orientation of
images from Color Field Painting (e.g., Mark Rothko)
and Minimalism (e.g., Francois Morellet), as these
styles provide less pictorial content and more perfect
symmetries. Figure 9a demonstrates that results
from the neural network are well-aligned with the
corresponding human results (except for Color Field
Painting).

The model-human correspondence also exists on a
per-classifier basis (Figures 9b, c). For this analysis, we
compare model performance from different layers with
human performance for different fragment sizes. We
emphasize that values for the model are not obtained
by presenting the model with fragments (as for example
in Rodriguez et al. (2018)): here the model is always
presented with full-size images. Different values refer
to different classifiers at different depths. We can
establish a one-to-one pairing between network layer
and fragment size because, when selecting fragment
size in the human experiments, the different sizes were
tailored to the receptive-field size of different layers
within the model. Other than that, there is no obvious
connection between model and human results, meaning
that it is not trivially expected that values obtained from
different network depths should mirror those obtained
from human measurements at different fragment
sizes.

We find good correspondence between the two
sets of results: abstract and figurative styles show the
same progression of performance across different
fragment/receptive-field sizes (r2 = 0.976 with
p < 0.001). One implication of this result is that,
if we assume that the network model represents an
acceptable approximation to the human visual pathway
(Kriegeskorte, 2015; Yamins & DiCarlo, 2016), we
should be able to probe activity at different levels
within the pathway by simply restricting fragment size
in a behavioral experiment. Although this result may
seem trivial on the surface, it is not to be taken for
granted when the output metric is a relatively complex
perceptual judgment (see Discussion for more in-depth
consideration of these issues). Further experiments
using different behavioral tasks would be necessary to
confirm/disprove the generality of this result.

Our proposed model is not only able to replicate the
extent to which humans produce correct responses,
but also specific patterns according to which humans
produce incorrect responses. Figure 10 plots normalized
frequency of incorrect predictions (three orientations
other than the upright orientation of reference) across
classifiers (for model in a and b) and fragment size
(for humans in c). It is evident that, when incorrect
responses are produced, there is a tendency on the part
of both model and humans to select the orientation
180◦ away from the orientation of reference (painting
in upside-down configuration) more often than those
orthogonal to it. This anisotropic effect applies to all
styles for the model (Figure 10a) and is particularly
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Figure 10. Normalized frequency of incorrectly predicted orientations across classifiers for model, all styles (a) and abstract style (b);
across fragment size for humans, abstract styles (c). eq. stands for equi-frequency. Examples are shown for three paintings: Argenteuil
seen from the small arm of the Seine by Claude Monet (1872), Komposition VII byWassily Kandinsky (1913), Komposition VIII by
Wassily Kandinsky (1923).

pronounced when analysis is restricted to abstract
paintings (Figures 10b, c); for this type of art material,
model and human behavior are well-correlated
across classifiers and fragment sizes (r2 = 0.745 with
p < 0.001).

The correspondence between human and model
behavior for incorrect responses indicates that, in both
cases, some image features present horizontal/vertical
compositional cues that support alignment of the
image along either horizontal or vertical axes, without
providing useful information for determining how the
image should be mirror-flipped around the chosen axis.
Consider, for example, an image containing a mountain
reflected against a lake in front of the mountain; clearly,
a human observer is able to orient this image so that
one mountain is above, and the other one is below.
However, if the observer were asked to determine which
mountain should be on top and which below, he or
she may be unable to make such a determination (in
the assumption that the lake produces a nearly perfect
reflection of the mountain above it). Similarly, if the
observer were asked to determine whether the image
should be flipped left-right or not, he or she may be
unable to produce an informed answer. Our results
indicate that cues of this kind are available from the
image database we constructed, and that both model
and human are able to exploit them in similar fashion.
In Figure 10, the upside-down confusion also seems to
be more pronounced for later/larger layers/fragments,
suggesting that the horizontal/vertical opposition
emerges as a consequence of spatially broad cue
integration. On abstract material, across classifiers and
fragment sizes, a Cuzick’s test (Cuzick, 1985) confirms
this trend with p = 0.012.

Human/model comparison on a per-painting
basis

So far, we have considered the behavior of humans
and model without referring to individual paintings.
For example, when we say that model performance
matches human performance for orienting abstract
art, we mean that out of 100 abstract paintings, the
model responds on average as correctly as the human
observers. This finding does not mean that model
and human responses match at the level of individual
paintings: the model may be correct for 50 out of 100
paintings, and so may be the human observer, but the
50 paintings for which the model is correct may be
those 50 for which the human is incorrect. To address
this possibility, below we consider model versus human
responses on a per-painting basis.

Figure 11 plots the density distribution of joint
orientation choices generated by model and humans
for individual abstract paintings. If model and humans
were to agree on the orientation of every painting,
modulations would only be present within the diagonal
bins; all other values should be zero. Because all values
must sum to 1 in each plot, we can take the sum of
the diagonal values as an indication of model–human
agreement (the sum is 1 when model and humans fully
agree, 0 when they consistently disagree). The diagonal
sum is significantly different from the null prediction
only for whole paintings (Figure 11e); when data
are plotted for humans orienting smaller fragments
and model responses from more superficial layers
(Figures 11a–d), agreement decreases to around chance.
But how do we assess significance in relation to the
statements above?
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Figure 11. Density distribution of joint orientation choices generated by model and humans for individual abstract paintings,
computed separately for different fragment-size/classifier from small/early (a) to large/late (e). Diagonal values correspond with
matching responses (humans and model generate the same response); the diagonal sum (indicated by large white digits) is therefore
termed “mutual agreement.” Its value is z-scored against the null hypothesis of human/model independence of choices (see main
text for clarification). Intensity of white digits and thickness of diagonal orange line scale with corresponding z score. Bottom-left
value reports agreement on target orientation.

There are at least two different ways of defining a
null hypothesis against which to test significance of the
agreement value. The simplest approach is to define the
null hypothesis as one where both humans and network
respond randomly; in this case, the expected value for
each pixel in the 4×4 surface plots of Figure 11 is
simply 1/16, and the expected sum across the diagonal
is 1/4. Although this approach may be appropriate
for evaluating whether humans/models perform above
chance, we find that it is inadequate for the purpose
of addressing the specific issue we formulated at the
beginning of this section. Consider, for example, a
scenario in which humans and the model are always
correct, regardless of the specific painting that is
presented to them; clearly, they are also always in
agreement with each other, merely as a consequence
of being correct: the diagonal sum would be 1 and,
when tested against the null hypothesis as outlined, it
would be highly significant. We would then incorrectly
conclude that humans and model behave similarly on a
per-painting basis. A similar issue arises if, for example,
humans and model are always incorrect by consistently
reporting the upside-down orientation: again, they will
be 100% in agreement, but this outcome does not carry
any specificity for distinct paintings. More generally,
this problem applies to any non-random pattern of
responses on the part of humans/model, including less
extreme versions of the scenarios outlined above; that
is, ones where a given response is not certain but has an
associated probability different than chance. Our goal is
to define the null hypothesis in relation to this class of
scenarios.

To establish a baseline level for agreement, we
calculate expected agreement under the hypothesis that
humans and model act independently with relation
to specific paintings: on any given trial, we assume
that humans produce the four possible responses with

probabilities {p↑, p→, p↓, p←} regardless of the specific
painting that is presented, and the model produces
those responses with probabilities {q↑, q→, q↓, q←};
using the empirical estimates for these quantities, we
calculate the expected value for their agreement a0 and
its standard deviation σ0 on a per-painting basis. We
then assess the experimentally measured agreement
value â in relation to this baseline via (â − a0)/σ0
(z-score); that is, we determine how far the observed
agreement values score over and above their expected
level under the hypothesis that humans and model
present no per-painting association. When we apply this
calculation, we find that the agreement value associated
with the whole-painting/classifier-5 dataset (Figure 11e)
returns a large z-score (>5), whereas the z-scores
associated with the other four datasets (Figure 11a-d)
barely reject the null hypothesis of independence. We
therefore conclude that, although humans and model
perform similarly on average across the entire database
for all fragment-size-versus-classifier comparisons (see
Figure 9), their strategies may differ on a per-painting
basis. More specifically, when humans have access to
fragmentary information about a specific painting, and
the network is restricted to early classifiers, humans
adopt a decision strategy that bears little resemblance to
the strategy adopted by the network. In contrast, when
the whole painting is available to human observers and
the network has access to classifier-5 information, their
strategies present similarities that are specific to the
given painting and extend to both correct and incorrect
classifications.

We propose the following explanation for these
results. Earlier classifiers (corresponding to smaller
receptive fields) only have access to fragment-like
information during training; this constraint may steer
the classifiers towards discovering local statistical
regularities for the purpose of identifying the overall
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Figure 12. Comparison between our model and the results
reported by Mather (2012). (a) The average human and model
performance. The original article reports human mean
performance per painting. This quantity is not directly
comparable to top-1 accuracy of the model, because the latter
does not reflect the level of uncertainty for each painting. We
have therefore chosen to plot the raw prediction value for the
correct orientation as the model metric to plot against human
performance (b).

orientation of the painting. The resulting strategy
may differ from the way in which humans approach
fragments of Abstract art: the human tendency is to
consider sub-parts of an abstract painting as a new
complete painting, rather than as a fragment. An
additional factor that may be relevant in this context
is the well-documented inconsistency of aesthetic
judgments across observers, especially for abstract
material (Leder et al., 2016; Schepman et al., 2015;
Specker et al., 2020; Vessel, 2010; Vessel et al., 2018).
Although the network model does not suffer from
subjective variability in the human sense, it is affected
by the stochastic nature of the training protocol.
Therefore, it is possible to quantify and compare
internal noise between model and humans (Neri, 2010),
an endeavor which we hope to pursue in future research.

We find similar results with human data collected
by others. Our model is better than human observers
for the selection of paintings adopted in Mather
(2012) (Figure 12a), similar to the small difference we
observe for our own data (Figure 9b). When we plot
model-versus-human responses to individual paintings
from this prior study (Figure 12b), we find a measurable
trend (p = 0.002), but the magnitude of the correlation
is relatively small (r2 = 0.231) (see Dodge & Karam,
2017 for related results). Clearly, the detailed behavior

Figure 13. Painting-by-painting human agreement with network
model (top), the artists who painted the images used in our
study (middle), and other humans from our sample of
participants (bottom). This analysis was restricted to abstract
material.

of our model on a per-painting basis presents some
limitations that will require further investigation.

Human agreement with model/artist/other
humans for abstract paintings

Figure 13 reports human overall agreement with
the model (classifier-5), the artist (whose choice is
used as correct reference above) and other humans,
for judgments made on whole paintings (data from
fragments is excluded from this analysis). The model–
human agreement is 42%. Agreement with artists is
the same as human performance (already reported in
Figure 9b) and it is slightly higher at 47%. Because
model performance is close to human performance, this
difference in agreement is due to the discrepancy already
highlighted in Figure 11. Finally, for paintings that
have been evaluated multiple times by humans, we can
compute mutual agreement via average agreement of all
possible pairs of judgements per painting. Defined this
way, inter-human agreement reaches 49%, amusingly
suggesting that artists themselves may not be the most
reliable reference on this task or, more likely, that some
artists deliberately choose non-optimal orientations
(insofar as optimality is defined with reference to the
orientation considered most appropriate by an average
human observer).

Discussion

Relations to art composition

Despite its rich history, the study of pictorial
composition has been hampered by the inherent
combinatorial complexity of how graphical elements
interact on canvas. Our goal was to determine whether
modern computational tools, in particular deep
learning, may help to tackle this difficult problem and
advance our understanding of abstract art composition.
Engaging with a research programme of this kind
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brings up an immediate problem: how do we go about
quantifying the perception of art composition in
humans? It goes without saying that the cognitive
phenomena underlying composition, both those
exploited by the creating artist and those engaged by
the observing spectators, reach far beyond the remit
of one scientific study. Moreover, we would like to
draw a distinction between “objective” description and
“metric” description: a metric description does not
necessarily imply an objective description. Our goal
is not to objectify the meaning or the interpretation
of the composition, neither defining rightness of
compositions, but to build a metric of composition
based on data, that is, existing paintings from a
specified limited spectrum. Objectiveness of the metric
is then transparently constrained by the range of the
dataset itself, rather than its fundamental correctness.
We want to organize composition around measurable
dimensions that are relevant to human perception, so
that perceptual processes may 1) serve as a guide in the
identification of important dimensions for candidate
metric(s) and 2) enable quantitative measurements
of how pertinent those metrics are to composition.
As a consequence, we do not have a definitive answer
concerning whether and how the chosen metric is
connected with the notion of “objective” description.
Possibly, we will never have such an answer because
the very concept of objective description may not
exist. This consideration has forced us to focus on
a relatively simple, yet critical metric of perceptual
judgment relating to art material: determining the
overall orientation of the picture (Lindauer, 1969, 1987;
Liu et al., 2017; Mather, 2012). We view this as a first
humble step in the direction of answering the question
laid out in this article, and therefore recognize that a
satisfactory account of art composition will require
further research. Notwithstanding the simplicity of this
behavioral metric, we discuss below its merits and its
connection with existing literature in vision science.

Anecdotal evidence from the art world provides
some relevant points of contact with the judgment task
used in this study. Upon returning home, still lost in
his thoughts, Kandinsky once noted: “I suddenly saw
a painting of indescribable beauty, impregnated with
great inner ardor. I was at first dumbfounded, then
I quickly reached this mysterious painting on which
I only saw shapes and colors and whose subject was
incomprehensible.” (Kandinsky, 2014). As a matter
of fact, he was looking at one of his own paintings,
but set out in unfamiliar orientation. A mere change
of orientation in the picture was sufficient to spark
a perceptual reaction that would conjure up a novel
composition, serving as a cursory indication that
image orientation and art composition are somehow
connected, albeit in ways that we (or even the artist)
may not fully understand. If we accept that this
connection may be present, we must then ask whether

orientation judgments of art material are supported by
perceptual mechanisms that overlap with those studied
by visual psychophysics; in other words, is vision science
an appropriate tool for understanding this problem
at any meaningful level (Mamassian, 2008)? There is
evidence to support this additional connection: portrait
artists, for example, are more efficient at certain visual
discrimination tasks than non-artists; however, they are
equally subject to the well-known face inversion effect
(Devue & Barsics, 2016), a phenomenon intimately
linked with the perception of overall image orientation.
This brings us to the last connecting element between
art composition and vision science: if we accept
that global orientation judgments are relevant to art
composition, and if we accept that judgments of
this kind may engage similar mechanisms to those
operating in other visual skills, we then ask whether
this task is also important for understanding vision in
general. Existing literature provides clear answers to
this question.

Relations to existing literature in vision science

Prior studies offer numerous demonstrations of
perceptual inversion effects in relation to meaningful
visual material, such as faces (Valentine, 1988) or
moving bodies (Chang & Troje, 2009; Neri et al., 2006,
2007). In these demonstrations, flipping the stimulus
upside-down generally disrupts perceptual analysis by
biological observers (human as well as non-human
Vallortigara et al., 2005; Vallortigara & Regolin, 2006),
even though it is not expected that this manipulation
should impact an artificial system for which up and
down do not necessarily carry any meaning (unless
the system has learnt about gravity). The impact
of stimulus inversion is characterized by a distinct
developmental trajectory (Zhao et al., 2014) and has
been associated with specific regions of visual cortex
(Grossman & Blake, 2002). In short, at least within the
context of contemporary thinking about higher-level
vision, there is no doubt that stimulus orientation
represents a valid topic of enquiry for understanding
visual perception. More specifically, inversion effects
are intimately associated with the notion of holistic
processing, often summarized as “the whole is more
than the sum of its parts,” a concept that has played
a significant role in the study of higher-level vision
(Ullman, 1996). Inversion effects have been exploited
to selectively probe holistic processes in a number of
applications, ranging from natural scene perception
(Neri, 2014) to action processing (Taubert et al., 2011;
Cusack et al., 2015).

Furthermore, and in direct connection with the
present study, previous authors have argued that deep
neural networks should prove useful for the study of
perceptual inversion effects (VanRullen, 2017). In our
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study, perhaps the most pertinent demonstration of
the profitability afforded by this computational tool
is the stratification of relevant effects across layers
(Figure 6a); indeed, it is difficult to imagine how this
type of analysis would have been possible using more
conventional modeling tools. Collectively, our results
indicate that abstract art, more than other styles, relies
on global compositional principles that emerge deeper
into the network (Figure 6b), and that may bear on the
concept of holistic processing outlined above. The term
“global” may not encompass overly complex cognitive
phenomena, and may to some extent overlap with the
notion of ‘spatially extended’ as deeper layers possess
larger receptive fields. Nevertheless, we have also shown
that there is no simple/naive integration of orientation
cues that would explain the observed patterns in our
data (Figure 8). The issue of granularity remains largely
unanswered at this stage, although we do make some
progress in this respect.

Granularity and receptive field structure in
human versus network architectures

By breaking paintings into fragments, our goal
was to venture beyond prior studies and begin to
consider composition as dynamic interaction of
image subelements. As outlined, we find that local
features of abstract art are integrated into a global
representation that remains hidden from transparent
explanation. This may, or may not, conform to artistic
intuition. On the one hand, Abstract art explores
pictorial composition on a level that is not bound
by conventional relationships of experiential space,
so it may be expected that the underlying structure
should not be available at the level of simple spatial
integration. On the other hand, it is often the case
that Abstract art seems to be redundant across
space (e.g., some applications of action painting), so
that it would seem that little should be gained from
incorporating more spatially extended information.
Furthermore, Figurative art often presents complex
spatial relationships on a large scale; indeed, natural
scene perception is by no means a phenomenon that
can be easily reduced to naive spatial integration of
local cues (DiCarlo et al., 2012). We conclude that our
demonstration of emergent global encoding at deeper
layers for abstract art is not trivially expected based
on either conventional ideas about art material, nor
on mainstream considerations about receptive-field
structure in hierarchical models. We discuss the latter
issue further below.

The notion that visual cortex is organized along a
hierarchical pathway of visual areas with progressively
increasing receptive-field size is established (Dumoulin
& Wandell, 2008; Yamins & DiCarlo, 2016); however, it

is not at all understood how information is combined
from one area to the next. At this stage, we are
perhaps nearing adequate characterization and
computational understanding of the transition from
V1 to V2 (Freeman et al., 2013), but subsequent
transformations remain poorly understood. This
picture is further complicated by the known presence
of feedback processes (Lamme et al., 1998), which are
not implemented in any form within our model. With
this in mind, it is somewhat surprising that our model is
able to capture some properties of human orientation
judgments for isolated fragments by simply restricting
its access to more superficial layers. On the face of it,
this result indicates that, by designing experiments with
tailored fragmented stimuli, we may be in a position to
probe human perceptual mechanisms corresponding
to different layers in the model and possibly different
visual areas along the processing hierarchy. We contend
that this result is not trivial, both in consideration
of the unresolved issues associated with inter-aerial
transformations outlined above, and also in light of
the fact that the connection between the notion of
receptive/perceptive field on the one hand, and final
behavioral response on the other hand, is far from
being as straightforward as is often tacitly assumed
(Neri & Levi, 2006; Spillmann, 1971). In humans, we
cannot simply read out of earlier visual areas using
experimental tools; what we can perhaps do is force
observers to rely on signals from those earlier areas for
the production of behavior (which we can measure).
That we may achieve this by tailoring fragment size
is not trivially expected, particularly in relation to a
behavioral judgment that is not explicitly connected
with global integration and that involves higher-level
cognitive processes. We do not know whether the
same result would be obtained for other perceptual
judgments, an issue we hope to address in future
research.

Notwithstanding the correspondence between
human observers and model responses as discussed,
we do find conspicuous differences between the
behavior exhibited by the network and that measured
from humans. Interestingly, those differences become
particularly evident when we consider fragments,
less so with whole paintings (Figure 11). We propose
that this result should be interpreted in light of the
considerations discussed above. As we have already
noted, our model is purely feed-forward, that is, its
architecture fails to incorporate important recurrent
computations that are known to operate in cortex. It
is conceivable that related perceptual processes are
engaged by humans in our task, possibly contributing
to the discrepancy we observe with respect to the model
(see also Doerig et al., 2020 for related considerations).
Furthermore, the nature of the discrepancy may be
specific to the task/protocol we selected for this study
and/or to the resolution of our measurements. We do
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not have definite answers to these and other related
questions, some of which we have highlighted in this
Discussion. At this stage, we view our contribution
as a starting point for more in-depth studies of art
composition adopting a similar framework, namely the
integrated application of deep learning models, data-
driven extraction of regularities and psychophysical
validation in human observers. Our results demonstrate
that this approach is feasible and capable of generating
non-trivial insights and predictions into the mechanisms
underlying art composition in humans.

Keywords: machine learning, psychophysics, receptive
field, pictorial composition, inversion effect
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