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Detection of Plasmodium 
falciparum in laboratory‑reared 
and naturally infected wild 
mosquitoes using near‑infrared 
spectroscopy
Dari F. Da1*, Ruth McCabe2, Bernard M. Somé1, Pedro M. Esperança2, Katarzyna A. Sala3,4, 
Josua Blight4, Andrew M. Blagborough3, Floyd Dowell5, Serge R. Yerbanga1, 
Thierry Lefèvre6,7,8, Karine Mouline6,7, Roch K. Dabiré1,7 & Thomas S. Churcher2

There is an urgent need for high throughput, affordable methods of detecting pathogens inside 
insect vectors to facilitate surveillance. Near‑infrared spectroscopy (NIRS) has shown promise to 
detect arbovirus and malaria in the laboratory but has not been evaluated in field conditions. Here we 
investigate the ability of NIRS to identify Plasmodium falciparum in Anopheles coluzzii mosquitoes. 
NIRS models trained on laboratory‑reared mosquitoes infected with wild malaria parasites can detect 
the parasite in comparable mosquitoes with moderate accuracy though fails to detect oocysts or 
sporozoites in naturally infected field caught mosquitoes. Models trained on field mosquitoes were 
unable to predict the infection status of other field mosquitoes. Restricting analyses to mosquitoes of 
uninfectious and highly‑infectious status did improve predictions suggesting sensitivity and specificity 
may be better in mosquitoes with higher numbers of parasites. Detection of infection appears 
restricted to homogenous groups of mosquitoes diminishing NIRS utility for detecting malaria within 
mosquitoes.

Mosquito-borne diseases continue to cause widespread suffering world-wide. Malaria cases are thought to have 
risen in the last few years following two decades of  decline1 whilst the public health impact of arboviruses such 
as dengue, chikungunya and zika continues to  increase2. Killing the mosquito vector is the most effective current 
method for controlling these  diseases3 and it is important to monitor infection in local mosquito populations 
to understand the efficacy of control interventions, track disease trends and provide warnings of outbreaks.

Entomological monitoring is costly and time consuming. The short life-expectancy of mosquitoes means that 
typically fewer than 5% of vectors are infectious even in highly endemic  regions4. This means that high number of 
insects need to be tested to generate reliable estimates. Unfortunately, there are no cheap and easy-to-use methods 
of detecting pathogens in mosquitoes. In malaria, the presence of infectious sporozoites is determined either by 
manual salivary gland dissection using a microscope or through molecular methods such as PCR (polymerase 
chain reaction) or ELISA (enzyme-linked immunosorbent assay)5–7. All these techniques are laborious and are 
therefore costly for large sample size whilst PCR also requires well-equipped laboratories and expensive reagents.

Near-infrared spectroscopy (NIRS) is a fast, non-destructive and reagent-free scanning technique which has 
been shown to detect mosquitoes infected with rodent models of  malaria8, laboratory strains of human  malaria9, 
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dengue,  zika10and the endosymbiont Wolbachia  bacteria11. Mosquitoes are scanned at different wavelengths in the 
near-infrared region of the electromagnetic spectrum and a chemometric model is used to convert spectra into 
estimates of pathogen prevalence. All previous NIRS infection works have been conducted on laboratory reared 
mosquitoes of similar age and using laboratory strains of pathogen. The accuracy of these diagnostics has been 
evaluated on a sub-set of the same group of mosquitoes, which is likely to overestimate sensitivity and specificity. 
There is also evidence that the technique may lose accuracy when there is more diverse field derived parasites 
and  mosquitoes12. Here we evaluate the ability of NIRS to determine Anopheles coluzzii infection status with wild 
Plasmodium falciparum isolates circulating in Burkina Faso. This is initially conducted with laboratory-reared 
Anopheles before evaluating the ability of the models to detect the parasite in wild caught mosquitoes infected 
naturally in the field. It is unclear whether NIRS is detecting the presence of parasite biomass or a physiological 
change in the mosquito. Here we devise a comprehensive set of experiments which would enable the differentia-
tion of mosquitoes which (1) have fed on malaria infected blood, (2) are infected with oocyst life-stages (visible 
in Burkina Faso from 3 to 11 days from infection)13 and (3) are infectious with salivary gland sporozoites. Sporo-
zoites are the most epidemiologically important parasite life stage although evaluation of control interventions 
might be easier with earlier life-stages which have a higher prevalence in wild mosquito populations and therefore 
require lower number of mosquitoes to generate sufficiently precise estimates.

Results
Laboratory‑reared mosquitoes. NIRS can identify mosquitoes infected and infectious with wild malaria 
parasites with relatively high accuracy. A total of 2452 An. coluzzii mosquitoes of ages ranging from 3 to 27 days 
were used to train the model (Table 1). Overall within-sample accuracy, defined as the percentage of mosquitoes 
correctly classified, for detecting sporozoite positive mosquitoes (uninfectious vs infectious) was 73% (sensitiv-
ity = 74%, specificity = 72%, Fig. 1, Table 2). NIRS was also able to differentiate between uninfected mosquitoes 
and those with either oocysts or sporozoites (uninfected vs infected), though with slightly lower accuracy (accu-
racy = 71%, sensitivity = 71%, specificity = 70%, Fig. S1). Accuracy was similar for mosquitoes infected on Day 
3 or Day 6 after emergence (accuracy = 74% and accuracy = 72%, respectively, for uninfectious vs infectious; 
accuracy = 73% and accuracy = 72%, respectively, for uninfected vs infected).

It is unclear whether NIRS is detecting parasite biomass or some metabolic or physiological response of the 
mosquito. NIRS had relatively poor accuracy differentiating between uninfected/uninfectious mosquitoes fed on 
infectious and heat inactivated blood (balancing for mosquito age between groups, accuracy = 64%). This sug-
gests the presence of infectious gametocytes is not initiating an immunological response subsequently detected 
by NIRS or that NIRS is directly detecting developing alive parasite.

Wild mosquitoes using models trained on laboratory mosquitoes. Models trained on laboratory-
reared mosquitoes infected with wild parasites were unable to predict infection status of wild caught mosqui-
toes. Overall out-of-sample accuracy for detecting wild caught sporozoite positive mosquitoes (uninfectious 
vs infectious) using the model with best within-sample accuracy was accuracy = 50% (sensitivity = 56%, speci-
ficity = 44%). Varying the machine learning method to reduce overfitting improves accuracy (Table 2) though 
predictions are still very poor (accuracy = 52%, sensitivity = 52%, specificity = 51%).

Wild mosquitoes using models trained on wild mosquitoes. To determine whether there was any 
difference in the spectra from infectious and uninfectious mosquitoes models were trained on wild-caught An. 
coluzzii mosquitoes alone. NIRS was unable to differentiate infectious or infected-infectious mosquitoes with 
any accuracy (accuracy of 51% and 51%, respectively). Examining mosquitoes from the same village did not 
substantially improve within- or out-of-sample predictions (Table 2).

Impact of mosquito age on detection. NIRS can differentiate the age of laboratory-reared mosquitoes 
with high  accuracy14,15. Previous laboratory studies investigating infection have only used mosquitoes of the 
same age (3–6 days post emergence). All mosquitoes were then same aged mosquitoes (3–6 days post emer-

Table 1.  The number of laboratory and field mosquitoes analyzed. All data were Anopheles coluzzii 
mosquitoes infected with wild strains of Plasmodium falciparum. a Blood source unknown as mosquitoes 
were collected potentially exposed. b All infectious mosquitoes were classified as also infected (whether or not 
oocysts were visible).

Days since feeding (laboratory-reared mosquitoes) Wild caught mosquitoes

3 5 7 9 11 13 15 17 19 21 Total Longo Klesso Total

Unexposed to infectious gametocytes

Inactivated blood 100 100 140 100 100 100 109 90 45 20 904 NA NA NA

Fed infectious gametocytes

Uninfected 147 110 106 75 73 70 58 40 39 1 719 2445a 80 2525

Infected (oocysts) 45 88 91 112 104 102 101 90 66 30 829 387 25 412

Infectiousb (sporozoites) 0 0 0 51 92 102 101 90 66 30 532 302 21 323

Total 292 298 337 287 277 272 268 220 220 51 2452 2832 105 2937
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gence). Then, all fed mosquitoes were dissected at the same time point: between 6 and 9 days for oocysts count-
ing or from 10 days for sporozoites  detection17. To generate more robust results a range of different aged mos-
quitoes were compared here which could in part account for somewhat lower accuracy than previous studies. 
Field mosquitoes will have to be greater than 13 days old if an extrinsic incubation period of 10 days is assumed. 
The inability of NIRS to detect wild infectious mosquitoes could be associated with the informative region of the 
spectra interacting with wavelengths that change with mosquito age. To test this hypothesis models were trained 
on laboratory-reared mosquitoes using a two-step process. Firstly, it was determined whether an individual 
mosquito was > 13  days old which the model achieved with high accuracy (within-sample accuracy = 84%). 
Secondly, older mosquitoes were then used to train the model for infectiousness which was again achieved with 
high accuracy (within-sample accuracy = 76%). Nevertheless, repeating the two-step process on field mosquitoes 
failed to improve model predictions as it failed to identify infectious mosquitoes in those previously defined as 
> 13 days old. This would suggest that the different age distributions of mosquitoes in the calibration and test 
data sets cannot explain the contrasting results of the laboratory and field data and that age is not confounding 
our result.

Impact of parasite intensity on diagnosis. The number of sporozoites in wild caught mosquitoes may 
be substantially lower than those infected through a direct membrane feeding assay. Quantitative PCR inves-
tigating sporozoite intensity was only conducted on wild caught mosquitoes. Nevertheless, the mean number 
of oocysts per oocyst-positive mosquito was 8.39 in the laboratory experiments and 3.05 recorded from wild 
caught mosquitoes. This difference in the intensity of infection may cause the spectra from laboratory and field-
reared to differ. To investigate this the models trained on field mosquitoes were rerun comparing uninfectious 
mosquitoes with those infectious mosquitoes with > 20 sporozoites per mosquito (as determined by quantitative 

Figure 1.  The ability of NIRS to predict laboratory-reared mosquitoes infectious with wild parasites. All 
models were trained on sporozoite positive and sporozoite negative laboratory reared mosquitoes using all the 
data presented in Table 1. (A) Receiver operating characteristic (ROC) curve illustrating the diagnostic ability 
of the best-fit model. Overall performance is given by the average area under the ROC curve (AUC). Figure 
illustrates the false positive and true positive rates achievable for different classification probability thresholds. 
A theoretical perfect diagnostic would be in the top left corner. Average ROC curve shown by the solid line 
with boxplots showing the variability for 50 randomizations of the training, validation and testing datasets 
(horizontal black line shows the median whilst the 25th/75th, 15th/85th and 5th/95th percentiles are shown by 
box edges, inner and outer whiskers, respectively). (B) Coefficient functions for the best fit model for each of the 
50 dataset randomizations (grey lines) and the overall average (black line). (C) Histogram showing the predicted 
status of tested mosquitoes that were infectious (light blue colored bars) or uninfectious (green bars).Vertical 
solid black line indicates the best threshold for differentiating between infectious or uninfectious mosquitoes. 
Darker blue bars indicates where the two distributions overlap and show those mosquitoes misclassified—false 
negatives are shown to the left of the optimal classification threshold line and false positives to the right. Inset 
shows the confusion matrix illustrating the different error rates: true negative rate (tnr, specificity); false negative 
rate (fnr); false positive rate (fpr); and true positive rate (tpr, sensitivity).
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PCR). Accuracy of the models does improve suggesting parasite intensity might be a contributing factor, though 
the predictive ability is still poor (accuracy = 56%, sensitivity = 55%, specificity = 57%, Fig. 2), and the number 
of naturally-infected mosquitoes with high sporozoite loads available to fit the model was relatively low (37 An. 
coluzzii). Similarly improved results were seen when models trained on laboratory mosquitoes were used to 
predict wild caught mosquitoes which were either uninfectious or highly infectious (accuracy = 64%, sensitiv-
ity = 67%, specificity = 61%, Fig. S2).

Discussion
We show that NIRS can detect the presence of natural malaria parasites in laboratory-reared mosquitoes but 
cannot differentiate between uninfectious or infectious wild mosquitoes with any accuracy. Accuracy of predict-
ing the infection status of wild mosquitoes remains poor regardless of whether mosquitoesmodels were trained 
on either laboratory-reared or wild mosquitoes. The failure of NIRS to differentiate between infectious and 
uninfectious wild mosquitoes suggests the technique is unlikely to be able to detect sporozoites in the field. A 
large number of mosquitoes (nearly 3000 in total, with over 300 mosquitoes sporozoite positive) and a variety 
chemometric  approaches16 were used in the analysis. Though it cannot be discounted that larger sample sizes 
and different machine learning  methods18,19 may improve predictions, the lack of differentiation between groups 
suggests substantial improvements are unlikely.

The reason why NIRS was better able to predict infection in laboratory-reared mosquitoes than wild field-
infected specimens remains unclear. In the field, sporozoite positive mosquitoes are likely to be older than the 
average age in the mosquito population due to the relatively long extrinsic incubation period of the parasite. 
Previous laboratory studies have only compared infectious and uninfectious mosquitoes of the same ages so 
regions of the spectrum informative for age could also be indicative of infection status. Using the model to predict 
mosquito age first and then evaluating infectious status in the older mosquitoes did not improve identification 
of sporozoite positive wild mosquitoes. This would suggest that differences in the age distribution may not be 
the cause of the discrepancy though the ability of NIRS to evaluate the age of wild caught mosquitoes has not 
currently been evaluated in the field. Indeed, the inability of NIRS to detect sporozoites, which will on average be 
in older mosquitoes, questions the ability of the technique to determine age in field populations, though further 
investigation is necessary. Beside age heterogeneity, other factors including larval breeding site diversity, blood-
meal and sugar sources, physiological and nutritional status may explain why NIRS is poorly able to determine 
the infection status of wild mosquitoes.

Results show that direct membrane feeding experiments on average generate substantially higher intensity 
infections than that observed in wild mosquitoes. This difference in the quantity of parasite biomass could be 
a factor contributing to the lower accuracy in field mosquitoes. This hypothesis is supported by the accuracy 
improving when comparing uninfectious vs highly infectious wild infected mosquitoes, though only 37 mos-
quitoes were identified with more than 20 sporozoites in the salivary gland were identified by qPCR so further 
improvements might be seen with larger sample sizes. It is unclear whether in the laboratory, NIRS is detecting 
parasite biomass or an immunological response to the parasite. The lack of differences in the spectra of unin-
fected mosquitoes fed infectious blood or heat inactivated blood to kill gametocytes suggests that this life-stage 
is not initiating the immunological reaction, though it cannot be discounted that infertile gametocytes could still 
initiate the response. Here we were able to identify infected (positive for oocysts and sporozoites) and infectious 

Table 2.  Summary of overall accuracy of the different NIRS models for predicting presence of sporozoites. 
Models were trained on either laboratory or field mosquitoes, either all mosquitoes grouped together (all) or 
separately for mosquitoes from the villages of Longo (V1) or Klesso (V2). The number of PLS components (Q) 
is presented alongside overall models accuracy (the percentage of mosquitoes correctly classified), the true 
positive rate (TPR) and false positive rate (FPR). This is shown for either within sample accuracy (where the 
same group of mosquitoes were used to train/validate and test the model) or out-of-sample accuracy (where 
a different group of wild caught mosquitoes were used). For within-sample accuracy different individual 
mosquitoes were used to train, validate and test the model though out-of-sample evaluation provides a more 
robust test as different groups (i.e. laboratory vs field or different field locations) were used to assess accuracy. 
Two different models are presented for out-of-sample accuracy, either the most accurate either within-sample 
or out-of-sample (which tend to be more generalizable and have lower numbers of components, denoted Q).

Model trained 
on

Within-sample accuracy

Model 
predicting

Out-of-sample accuracy

Best model (Q)
Accuracy (std 
error) TPR TNR

Best within-sample model Best out-of-sample model

Accuracy (std 
error) TPR TNR Best model (Q)

Accuracy (std 
error) TPR FPR

Laboratory 
mosquitoes GLM (11) 73% (0.02) 74% 72% Field mosquitoes 

(all) 50% (0.01) 56% 44% fsGLM (4) 52% (0.007) 52% 51%

Field mosquitoes 
(all) fsGLM (2) 51% (0.04) 65% 37% NA NA NA NA NA NA NA

Field mosquitoes 
(V1) pGLM (2) 51% (0.04) 57% 46% Field mosquitoes 

(V2) 51% (0.05) 58% 45% fpGLM (2) 52% (0.05) 60% 43%

Field mosquitoes 
(V2) fpGLM (5) 47% (0.1) 28% 64% Field mosquitoes 

(V1) 51% (0.02) 30% 71% fspGLM (5) 51% (0.02) 39% 63%
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(positive for sporozoites) with similar accuracy. This is consistent with previous work using laboratory strains of 
the same parasite which was able to identify the presence of both oocysts and  sporozoites9.

Promising laboratory results and the ease and utility of the technique means that NIRS could substantially 
improve monitoring of mosquito populations in the wild. The technique has the potential to determine mosquito 
species and age at the same time though unfortunately the evidence presented here suggests that it cannot detect 
whether a mosquito contains the malaria parasite as well. The need to examine large numbers of mosquitoes and 
the high cost of molecular methods means that there may be some utility in triaging mosquitoes using NIRS 
before suspected infections are confirmed using other methods. NIRS and other spectrometry methods such as 
mid-infrared  spectroscopy20,21 could still substantially revolutionize the monitoring of wild mosquito popula-
tions. Nevertheless, the work presented here joins a growing body of evidence  that12 highlights the problems 
associated with transferring these potentially useful entomological tools from the laboratory to the field.

Materials and methods
Experimental design. A comprehensive set of laboratory experiments were designed to understand the 
sensitivity and specificity of NIRS to detect different life-stages of the parasite inside laboratory-reared and field 
mosquitoes. Previous work has shown that NIRS can detect oocysts and sporozoites 7 and 14 days post infec-
tion,  respectively9, in laboratory strains of the parasite and mosquito. Nevertheless, it is unclear whether it is 
detecting parasite biomass directly or a physiological change in infected mosquitoes which could be initiated 
by earlier life-stages (for example the ookinete stage which penetrates the mosquito mid-gut wall). To disentan-
gle the possible cause and understand how the likelihood of detecting the parasite changes with mosquito age 

Figure 2.  The ability of NIRS to predict field caught mosquitoes with high number of sporozoites. All models 
were trained using mosquitoes infected in the wild and were either sporozoite positive mosquitoes with > 20 
sporozoite per Anopheles (20 gene copy number as defined by qPCR) or sporozoite negative mosquitoes 
(Table 1). (A) The receiver operating characteristic (ROC) curve for the best-fit model demonstrating how the 
false positive and true positive rates vary for different for different classification probability thresholds. Overall 
performance is given by the average area under the ROC curve (AUC). A perfect model with 100% sensitivity 
and specificity would be in the top left corner. Solid line shows the average ROC curve with boxplots showing 
the variability for 50 randomizations of the training, validation and testing datasets (with box edges, inner and 
outer whiskers showing 25th/75th, 15th/85th and 5th/95th percentiles, respectively; and the black line inside 
the box showing the median/50th-percentile). (B) Coefficient functions for the best fit model for each of the 
50 dataset randomizations (grey lines) and the corresponding average (black line). (C) The histogram of the 
estimated linear predictor for the test mosquitoes, the green and light blue colored bars indicate the true class, 
showing the model’s ability to separate the two groups of mosquitoes. Vertical black line indicates the best 
threshold for differentiating infectious or uninfectious mosquitoes. The darker blue shaded area where the two 
distributions overlap corresponds to mosquitoes which have been misclassified—false negatives to the left and 
false positives to the right of the optimal classification threshold. Inset shows the confusion matrix reporting the 
different error rates: tnr, true negative rate (specificity); fnr, false negative rate; fpr, false positive rate; and tpr, 
true positive rate (sensitivity).
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and time since infection mosquitoes are fed infectious and non-infectious blood on either day 3 or 6 following 
emergence and scanned every other day until all mosquitoes have died. Ethical approval was gained from Impe-
rial College Research Ethics Committee (18IC4859) and “Comité d’Ethique Institutionnel pour la Recherche en 
Sciences de la Santé, Burkina Faso” (clearance A018-2017/CEIRES). The protocols and associated procedures 
were conformed to the current international legislation and recommendations, including bioethics specificities 
in Burkina Faso.

Laboratory mosquitoes. A total of 2483 Anopheles coluzzii females were exposed to malaria using a direct 
membrane feeding assays (DMFAs). Blood with Plasmodium falciparum gametocytes was obtained from three 
volunteer children (aged 5–11 years) naturally infected with malaria living in villages surrounding Bobo-Diou-
lasso, after obtaining their parent/guardian’s informed consent. Stratified gametocyte densities (low, medium 
and high gametocytemia) were required expecting to generate various infection level in experimental groups 
of Anopheles). We therefore included three volunteers with 32, 136 and 1456 gametocytes per µL in venous 
blood. For each experiment replicate, 8–16 mL of venous blood was drawn in heparinized tubes and immedi-
ately centrifuged at 3000 rpm for 3 min to remove the supernatant, replacing it with non-immune serum from 
a European AB+ donor to increase infection rates. Three and six days old female mosquitoes from an out-
bred Anopheles coluzzii local colony were starved overnight and fed on the blood mixture through pre-warmed 
membrane feeders for 30 min. Fully fed females were sorted and maintained in cages at 28 °C ± 2, 80% ± 05 RH 
with 10% glucose solution. From day 3 to 21 post-blood meal mosquitoes were killed by chloroform vapor and 
immediately scanned. Mosquitoes killed 3–11 days from blood-feeding were immediately dissected using a light 
microscope and the number of oocysts on the midgut were counted. Mosquitoes killed 9–21 days were also 
assessed for salivary gland sporozoites using quantitative  PCR22. A control group of uninfected and uninfectious 
Anopheles were generated by feeding some females with gametocytes inactivated  blood23. This was performed 
by heating a sample of the same blood used to infect mosquitoes at 45 °C for 20 min to kill all gametocytes to 
provide an uninfectious control feed.

Wild mosquitoes. Mosquitoes were caught in the houses of two villages in the Bobo-Dioulasso region 
of Burkina Faso. The villages of Longo and Klesso were 120 km apart to allow the robustness of the method 
over space to be assessed. In addition to being easily accessibility from Bobo-Dioulasso, these two villages had 
mosquito and human prevalence well characterized in a previous study (Bompard et al.13). Wild mosquitoes 
were caught early in the morning by the technicians using a mouth aspirator in the living room of human 
 dwellings24 and transferred to the laboratory. They were maintained in cages (30 × 30 × 30  cm) in laboratory 
conditions (28 °C ± 2, 80% ± 05 RH with 10% glucose solution) during 3 or 7 days periods before the next step. 
These days were chosen to allow mosquitoes to digest their last blood-meal (to enable dissection and enumera-
tion of oocysts), increase the number of sporozoite positive mosquitoes and match previous work (Bompard 
et al.13). At these indicated periods, the Anopheles females were scanned using the spectrometer and their midgut 
was immediately dissected under a stereomicroscope to determine oocyst prevalence. The remaining carcass 
head-thorax was molecular analyzed for Anopheles species  identification25 and sporozoites detection in salivary 
 glands22. Only Anopheles coluzzii mosquitoes identified by PCR were included for statistical analysis for NIRS P. 
falciparum infection detection. All mosquitoes positive P. falciparum were further analysed through quantitative 
PCR to determine sporozoite intensity. qPCR analysis of gDNA was used to quantify the gene copy number in 
the mosquitoes. Analysis was performed in triplicate in 10ul reaction using BioRad SSO Advanced Universal 
Sybr Green Supermix (BioRad, 1725272) and the Roche LightCycler 480. Primers were designed to amplify frag-
ment of Plasmodium falciparum HSP70 gene with the following sequences: forward primer 5′-GAG GTA TGC 
CCG GTG GAA TG-3′; reversed primer 5′-CTG TTG GTC CAC TTC CAG CT-3′. Reactions were 40 cycles using 
following conditions: initial denaturation for 3 min at 95 °C, and 40 cycles of 10 s denaturation at 95 °C and 
20 s amplification at 60 °C. The number of HSP70 gene copies in gDNA extracted from mosquito was calculated 
from their respective Ct value based on plasmid standard curve. The standard curve was generated from serial 
dilutions of a plasmid pGEMPfHSP70 containing Plasmodium falciparum HSP70 gene. Mosquitoes with over 20 
gene copy numbers were classified as being highly infectious.

Mosquito scanning. Mosquitoes were killed with chloroform vapor and scanned using a LabSpec4 Stand-
ard-Res i (standard resolution, integrated light source) near-infrared spectrometer and a bifurcated reflectance 
probe mounted 2 mm from a spectralon white reference panel (ASD Inc., Westborough, Massachusetts, USA). 
Absorbance at 2151 wavelengths from 350 to 2500 nm of the electromagnetic spectrum was recorded using RS3 
spectral acquisition software (ASD Inc., Westborough, Massachusetts,  USA17) which averaged spectra from 20 
scans. All mosquitoes were scanned on both sides centering the light probe on the head and thorax region.

Statistical analysis. Machine learning methods were used to construct binomial logistic regression models 
using maximum likelihood. The mean of the two spectra from each mosquito were used in the analysis. Spectra 
were then trimmed to values corresponding to 500–2350 nm to remove the excess noise arising from the sensi-
tivity of the spectrometer at the ends of the near-infrared  range26. These spectra were analysed using partial least 
squares regression (PLS), a statistical technique utilising the covariance between the spectra and infection status 
in order to extract the most informative elements within a much smaller dimension. This method generates dif-
ferent numbers of principal components which are linearly independent and used as the explanatory variables in 
the regression model. An upper limit of 20 components was enforced, with the optimal number of components 
being determined via ordinary cross-validation.
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In conjunction with the use of PLS, three additional techniques were used to further improve model general-
isability through ensuring as smooth a coefficient function as possible: functional representation of the spectra, 
spectral smoothing and penalised  regression16. The utility of each technique was considered independently as 
well as in conjunction with one another. Representing the spectra with a set of basis functions of size k, written 
as a proportion of the total number of spectral variables, both removes excess noise from the data and increases 
computational efficiency by reducing the dimensionality of the data. Spectral smoothing achieves a similar effect 
but through the use of B-spline functions and with no reduction in dimensionality. Finally, ridge regression, 
a form of penalisation with a squared penalty term, shrinks the values of the coefficient function and favours 
models with lower numbers of explanatory variables.

The number of observations belonging to each class was often imbalanced so the training and independent 
testing data were sampled from to enforce the same number of observations from each class and optimise the 
model’s performance both within- and out-of-sample. The balanced training data was further split into train-
ing, cross-validation and testing subsets of sizes 50%, 25% and 25% respectively. This process was repeated 50 
times to minimise the possibility of sampling error from both the balancing and data splitting. For each of the 50 
iterations multiple sub-models were fit using the training subset, (with 2–20 components), and for those models 
deploying penalised regression, with ten exponentially increasing values of the penalty parameter from 0.01 to 20. 
The accuracy of each was tested using the cross-validation subset to determine which option maximised the area 
under the receiver operating characteristic curve (AUC, value closer to 1 indicating better performance). Once 
the maximal sub-model were identified, the sub-model with a lesser number of components with AUC value 
within τ of the maximised AUC value was selected as the overall optimal model that is presented in the results. 
By applying this finalised model to the testing subset, the critical threshold minimising the error arising from 
classifying these mosquitoes as infectious or uninfectious was estimated. The error structure was calculated as the 
number of false negative and false positive predictions divided by the total number of observations in this subset. 
The overall model error is taken as the average of the 50 models to the 50 testing subsets (within-sample-error) 
or to the independent test set using mosquitoes infected in a different location and not used in model training 
or validation (out-of-sample error). Note that this within-sampling error is more rigorous than other reported 
out-of-sampling methods which jack-knife data (exclude one sample from the training set each time, and test 
accuracy on that sample). Sixty-four different parameter combinations were explored for each experiment using 
a grid search approach in which each of the three smoothing techniques above were considered as binary vari-
ables (with 0 implying exclusion and 1 inclusion) with four tuning parameter values τ = 0.05, 0.1, 0.15, 0.2 and 
three basis sizes k = 25%, 50%, 75% for those models deploying functional representation. The optimal model 
was then selected by considering the parameter combination producing the minimal overall error in conjunc-
tion with those with minimal bias, measured by the absolute value between the false positive and false negative 
rates. All analyses were carried out in R using the package  mlevcm16 and assume that diagnostics (microscopy 
and PCR) are 100% accurate.

Data availability
All data will be placed on an online repository once manuscript is accepted.
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