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We present an experimental study of a two-dimensional liquid foam, composed of a 15

confined monolayer of bubbles, forced to flow within a model porous medium that mimics 16

an inhomogeneous open fracture. It consists of a Hele-Shaw cell with a single localized 17

constriction-like defect that reduces locally its gap and thus its permeability. Taking 18

advantage of the possibility to directly visualize and follow the bubbles, we compute the 19

bubble velocity field by image correlation analysis, as well as the bubble deformation field, 20

through eccentricity measurements obtained by fitting each bubble with an ellipse. The 21

defect acting as a permeable obstacle can strongly disturb the foam flow; we investigate 22

here the influence of its geometry (height, size, and shape) on the average steady-state flow 23

of foams of various liquid content, and specifically the motion and deformation of their 24

elementary components, the bubbles. In the frame of the flowing foam, we can observe a 25

recirculation around the obstacle, characterized by a multipolar velocity field. Its complex 26

structure displays a strong fore-aft asymmetry, with an extended region downstream the 27

constriction, where the foam velocity can be much larger than the imposed driving one. 28

This overshoot was already revealed for nonpermeable obstacles, but here we show that 29

its extent and intensity are associated to the bubble deformation and depend strongly and 30

nontrivially on both the geometry of the constriction as well as the liquid fraction of the 31

foam. 32

DOI: 10.1103/PhysRevFluids.00.003300 33

I. INTRODUCTION 33

Liquid foams are dispersed gaseous bubbles within a liquid phase [1]. Despite such a simple 34

composition, they display very specific rheological properties related to their jammed disordered 35

multiscale structure. Indeed, they behave as solids at rest, while they flow as liquids above a critical 36

yield stress [2,3]. Such a dual mechanical behavior is at the root of their use in numerous applications 37
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from everyday life products developed in the food and cosmetic industries to even larger-scale38

industrial processes, that are, for instance, soil remediation, mineral extraction, or blast mitigation39

[4].40

Foam flows in porous media have been studied for years and still represent a subject of intense41

research in the context of enhanced oil recovery [5]. Indeed, foam injection into a reservoir42

could improve the effectiveness of oil recovery processes [6,7] by suppressing viscous fingering43

instabilities and mitigating sweep inhomogeneities due to permeability variations and gravity44

override [8–11].45

From a more fundamental perspective, two-dimensional foam flows with bubbles confined as46

a single monolayer have been considered in order to investigate and probe the global rheological47

behavior of liquid foams and specifically their viscous, elastic, and plastic properties. The two-48

dimensional geometry allows a direct visualization of the evolving foam structure during its flow.49

For instance, the flow around an obstacle also classically referred as Stokes flow has been studied in50

full detail [12–15]. Remarkably, such two-dimensional foam flows can be quantitatively described51

within the framework of continuum mechanics [16].52

Nevertheless, discrete effects appear as soon as the bubble size becomes comparable to the53

obstacle dimensions or to the interobstacles distances [17,18]. Indeed, the impregnation of liquid54

foams inside a porous structure can exhibit specific properties due to the discrete nature of its55

elementary components, i.e., the bubbles. In very confined geometries with bubbles larger than56

the typical pore size, the foam structure corresponds to trains of soap films, lamellae. In constricted57

pore channels, the pressure drop across the lamellae, which can take asymmetric shapes even in58

idealized symmetric pores, brings forward a capillary resistance to the flow. This leads to a minimum59

of pressure gradient required to mobilize a “bamboolike” structure [19–21] at the origin of the60

effective yield stress of foams in porous media. Moreover, in such confined geometries, bubbles can61

easily coalesce or divide with direct consequences on the bubble size distribution and foam mobility62

[22–24].63

In the present study, we aim to investigate an intermediate situation where a monolayer of bubbles64

confined between two glass plates is forced to flow toward a permeable obstacle. The originality of65

the present study relies on the fact that the obstacle does not fill the gap of the confining medium.66

This degree of freedom leaves the possibility for the bubbles to go through or above the defect at67

the expense of strong deformations that can affect the surrounding overall foam flow.68

In the following, we present a systematic experimental study, investigating how the average69

steady-state velocity and bubble deformation fields of a liquid foam invading a confining porous70

medium are affected by a local permeable defect. We perform experiments with different obstacles,71

varying notably their geometrical properties (size, shape, and height), but also changing the liquid72

fraction of the invading liquid foam.73

The experimental procedure and data analyzing methods are described in Sec. II. On one hand,74

the average steady-state velocity field is measured by analyzing spatial correlations of the evolving75

structure of the foam between subsequent recorded images. On the other hand, the average steady-76

state bubble deformation field is obtained by investigating the shape of each labeled bubbles of the77

flowing foam, and, more specifically, by measuring their eccentricity, considering them as ellipses.78

Moreover, in Sec. II B 3, we define a permeability factor that quantifies the ratio of the flow rate79

passing through the constriction with respect to the flow rate in absence of defect. We observe a80

linear trend between this factor and the gap contrast.81

The localized constriction defect can strongly disturb the foam flow leading to multipolar and82

fore-aft asymmetric bubble deformation and velocity fields in the frame of the flowing foam. In83

particular, we can observe an extended region downstream the constriction, where the bubbles are84

strongly elongated in the mean direction of the flow and where the foam velocity can be much larger85

than the imposed driving velocity.86

We show in Sec. III A that as the gap contrast between the main cell and the constriction87

grows, the amplitude of the perturbation becomes larger, with nevertheless a saturation of both88

the maximum bubble deformation and the velocity overshoot for very strong confinement. We also89
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show that the spatial extent of the perturbation is related to the size of the defect as a first-order 90

approximation, while it depends slightly on its shape. Finally, in Sec. III B we report the systematic 91

decrease of the amplitude and extent of both the bubble deformation and the velocity overshoot with 92

an increasing liquid fraction of the foam. 93

Therefore, as discussed in the last conclusive section, our flow experiments confirm that the 94

elastoplastic properties of the liquid foam—controlled by its liquid fraction—are responsible of this 95

symmetry breaking of the flow fields (deformation and velocity) and, in particular, the overshoot 96

downstream the constriction. 97

II. MATERIALS AND METHODS 98

A. Setup 99

1. A simple model fracture 100

To model the simplest nonhomogeneous open fracture medium, we use a Hele-Shaw cell, 101

consisting of two glass plates, 500 mm long, 150 mm wide, and 10 mm thick, separated by a gap of 102

G = 1.2 mm. This gap is ensured by spacers placed on the side of the cell, together with a sealing 103

toric joint, that sets the effective width of the cell to 130 mm. A single obstacle of either square or 104

circular shape, different lateral size or diameter (a = 10, 20 or 30 mm), and various heights H of 105

typically a few hundred of microns, smaller than the cell gap H < G, is localized in the middle of 106

the Hele-Shaw cell. This defect reduces locally the gap thickness of the cell and thus decreases its 107

local permeability. 108

The obstacles are prepared by cutting and assembling pieces of 100-μm self-adhesive transparent 109

plastic film. For previous experimental series [25], glass plates of the cell were covered by a thin 110

stretchable hydrophilic plastic film to ensure identical surface properties within our porous medium. 111

Covering an obstacle by the film increased effectively the lateral size of the defect. Nevertheless, 112

we checked that performing flow experiments without this cover film did not affect our results. 113

Therefore, in the following experiments, we do not use this protocol for the sake of experimental 114

simplicity. 115

2. In situ foaming and forced flow 116

A vertical chamber filled with a soapy solution obtained by mixing a commercial dish washing 117

liquid (Dawn) with ultrapure water (1% in volume) is connected to the cell via a 10-mm-wide and 118

120-mm-long hole drilled in the bottom plate of the cell. 119

We generate in situ a two-dimensional confined liquid foam, composed of a monolayer of 120

quasi-mono-disperse bubbles, forced to invade the cell at a constant velocity, by bubbling filtered 121

pressurized air in this tank through a needle at a constant rate imposed by a digital mass flow 122

controller (Bronkhorst). In the present study, we report experimental results for constant flow rate 123

FAir = 40 ml/min. The generated bubbles are then quasi-mono-disperse with a diameter larger than 124

the cell gap, of around 3 mm, mainly controlled by the inner diameter of the needle, 0.5 mm. 125

The bubbles are forced to invade the cell at a constant longitudinal velocity V0 = Fair/cs = 126

3.25 mm/s, with the imposed air flow rate FAir and the cross section cs of the cell, both quantities 127

constant through the whole study. The gap G is small enough for the bubbles to form a two- 128

dimensional confined foam, as a single monolayer of bubbles. Furthermore, by controlling the level 129

of the surfactant solution in the tank, we can adjust the liquid fraction of the invading foam, without 130

any significant impact on the imposed velocity V0, since the liquid fraction remains much smaller 131

than unity in all experiments. 132

Without any obstacle in the cell, the liquid foam displays a simple plug flow, with a constant 133

velocity V0 across the cell in the y direction, the bubbles being simply translated without any 134

deformation. This is associated to the main source of energy dissipation in our flow experiments: 135

The friction at the contact between the bubbles and the glass walls in the confined dimension [26]. 136

On one hand, this results in a rather constant pressure drop along the cell and negligible fluctuations 137
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FIG. 1. Experimental setup: A model open fracture is made of two glass plates separated by a millimeter
gap G, with a single permeable obstacle, i.e., a local constriction of lateral extent a and height H < G, localized
in the middle of the cell. A liquid foam is created in situ and forced to flow within this porous medium,
by blowing air at a constant rate in a tank, filled with a soapy solution, connected to the bottom plate of
the cell. The left panel shows a side view of the set-up, while the right one displays a top view together
with a typical image recorded during a flow experiment (square obstacle with a = 20 mm, H/G = 0.8, FAir =
40 ml/min, � = 1.4 × 10−2). Dashed orange lines represent the Cartesian coordinate system that is introduced
with its origin in the center of the obstacle, with the x axis along and y axis perpendicular to the foam flow.

of the level of the surfactant solution in the tank. Furthermore, during our experiments, we have138

checked that this level did not evolve in the large tank, where the foam is generated. On the other139

hand, the lateral boundary condition in the y direction sets by the toric nitrile joint does not slow140

down the bubbles in contact with this sealing border but simply acts as a no-flux boundary condition.141

As we will show below, this can lead to a blockage effect when the width of the obstacle becomes142

too large.143

In the presence of a localized constriction, the velocity of the flowing foam is not uniform around144

such obstacle. Nevertheless, the permeable obstacle should modify neither the pressure drop along145

the cell, nor the far field velocity field as long as its radius is smaller than the cell length, as observed146

with similar setups with impermeable obstacles filling the gap of the cell [26]. In our experiments,147

we could indeed observe that, far from the constriction, where the perturbation has relaxed, we148

retrieve a constant longitudinal velocity, V0, that we impose.149

B. Direct observation and image analysis150

We observe directly the steady-state flow of the two-dimensional liquid foam and specifically the151

motion and deformation of its elementary components, the bubbles, in the middle of the cell around152

the obstacle.153

A digital camera (Basler) images an area of 200 × 100 mm, at a spatial resolution of 2048 ×154

1088 pixels, and records 1000 frames during 250 s, at a constant rate of 4 Hz. A typical image155

recorded during a flow experiment of a dry liquid foam, invading the cell with a square obstacle156

a = 20 mm, filling 80% of the cell gap (H/G = 0.8) is shown on the right panel of Fig. 1. We also157

provide a typical recorded movie of such flow experiment in Supplemental Material [27].158

Using standard image analysis tools proposed by ImageJ and Matlab softwares, we can obtain a159

network of skeletonized bubbles. A zoom around the obstacle of a typical recorded image and the160
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FIG. 2. Zoom on a region around a square constriction (a = 20 mm) filling 80% of the cell gap for an image
recorded during a flow experiment of a dry liquid foam: (a) A raw image and (b) a binary image, showing the
results of our image analysis with a network of skeletonized bubbles.

results of edge detection are shown in Fig. 2. We can subsequently identify all individual bubbles of 161

the flowing foam, for each recorded image, for the various experiments performed. 162

1. Foam characterization 163

The liquid foams we produce have a typical jammed disordered multiscale structure. Their 164

elementary components, the bubbles, display mostly hexagonal shapes with six neighboring 165

bubbles, as shown in inset of Fig. 3. Furthermore, we show in this figure that the distribution of 166

the projected bubble area follows a Gaussian distribution, with an average size of 6.0 mm2 and a 167

standard deviation of 0.6 mm2, with a negligible dependence with the liquid fraction. 168

Nevertheless, one can directly observe in Fig. 2 that the bubbles on the obstacle that are quasi- 169

incompressible have an increase of size, obviously related to the reduction of the gap cell thickness. 170

More interestingly, one can also observe a symmetry breaking in the shape of the bubbles upstream 171

vs downstream the obstacle; indeed, the bubbles approaching the constriction get compressed in the 172

direction of the imposed mean flow, while the bubbles exiting the permeable defect are strongly 173

elongated in the direction of the mean flow. 174

As mentioned, we can vary the foam liquid fraction by adjusting the level of the surfactant 175

solution in the tank. The driest foam is obtained by letting the formulated foam drain in the tank 176

over a height of 4 cm, before entering the Hele-Shaw cell, while a wet foam is obtained by adjusting 177

3 4 5 6 7 8 9
A (mm )

P(
A)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fit: Normal distribution
μ = 6.0 mm σ = 0.6 mm

Bubble size

-Ф=7×10 -Ф=1.4×10 ²

FIG. 3. Gaussian distribution of the projected area of bubbles for a dry foam invading a cell without any
constriction. In inset, typical close-ups of a dry (left) and wet (right) foam show that those bubbles have mostly
hexagonal shapes.
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the level of solution just below the cell inlet. We will study here flow experiments with foams of178

different liquid fractions, � = 3 × 10−3, 7 × 10−3, and 1.4 × 10−2, referred as very dry, dry, and179

wet foam, respectively. The aforementioned values correspond to an effective liquid fraction [13],180

which definition is based on the average bubble area A and on the minimal contact length Lc between181

bubbles, before they undergo a topological rearrangement through neighbor swapping, a so-called182

T1 event [1]. With these notations the liquid fraction is given by � = 0.242 L2
c/A [13] and thus183

can be directly measured by extracting both A and Lc from the image sequences recorded for each184

experiment.185

2. Velocity measurement186

Tracking the foam bubbles, we can measure their velocity by computing their displacement187

between two recorded subsequent images. Nevertheless, instead of such tracking procedure, in order188

to extract the velocity fields of the flowing foam for various experiments we opted for an image189

correlation method. More specifically, we chose a time-resolved digital particle image velocimetry190

technique that treats the texture provided directly by the films of the bubbles themselves and their191

vertices. In practice, the Matlab toolbox, PIVlab [28] is used with the direct cross-correlation192

option, 64 × 64 pixels2 interrogation area and 32-pixel step. This chosen area includes about three193

foam bubbles. Analyzing 1000 images recorded per experiment with a time lag of δt = 0.25 s194

between two images, we finally obtain a time-averaged steady-state velocity field V̄ = (Vx,Vy).195

In the following, we will write Vx = V for simplicity.196

We have checked that analyzing solely the vertices of the skeletonized bubble network as tracers197

of the flow leads to similar velocity measurements. Such a result is particularly interesting to extract198

easily the velocity field of a three-dimensional liquid foam, flowing in a constriction or around an199

obstacle, such as the one captured recently using fast x-ray tomography [29], without the need of the200

very tedious and still unclear procedure of reconstruction of the three-dimensional bubbles shape201

[30].202

3. Permeability factor203

We define a permeability factor Q that accounts for the foam flow rate through the constriction, in204

order to characterize with a global quantity the flow disturbance induced by such defect. Considering205

the longitudinal component of the velocity field V of the flowing foam, along the vertical line206

(transverse direction to the mean flow) passing through the center of the obstacle (y axis, see the207

vertical dashed line in the right panel of Fig. 1), the constant flux of foam leads to:208

V0� =
(∫ −a/2

−�/2
+

∫ �/2

a/2

)
V dy + (1 − H/G)

∫ a/2

−a/2
V dy,

with � the width of the Hele-Shaw cell and V0, corresponding to the imposed longitudinal velocity.209

It is composed of the flow around and through the obstacle, respectively. The permeability factor Q210

is then defined as the dimensionless flow rate passing through the obstacle:211

Q =
(1 − H/G)

∫ a/2
−a/2 V dy

V0a
= �

a
−

( ∫ −a/2
−�/2 + ∫ �/2

a/2

)
V dy

V0a
.

The factor Q is equal to 1 if the obstacle is fully permeable (H = 0, no obstacle) and 0 if212

impermeable (H = G, obstacle filling completely the cell gap). This last equation shows that this213

permeability factor Q can be obtained from the velocity field of the liquid foam measured either214

inside or outside the obstacle.215

4. Bubble deformation measurements216

By studying the shape of each labeled bubbles of the flowing foam, we can quantify its217

deformation. Indeed, approximating each bubble as an ellipse, we compute their eccentricity ε to218
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FIG. 4. Example of an instantaneous bubble deformation map, obtained for a dry foam invading an Hele-
Shaw cell with a square obstacle of lateral size a = 20 mm, filling 60% of the cell gap, where we display both
the skeletonized bubble network and the ellipses fitting each labeled bubbles and their eccentricity is given by
the color bar.

obtain a measure of the bubble deformation. The eccentricity is defined as the ratio of the distance 219

between the foci of the ellipse and its major axis length, ε =
√

1 − b2/a2, where a and b are 220

the length of the major and minor axes, respectively. By definition, the eccentricity takes a value 221

between two extreme limit cases, 0 (for a circle) and 1 (for a line segment). We then attribute to 222

each pixel of each labeled bubbles of an image recorded at a time t , the corresponding value of the 223

measured eccentricity. Thus, we obtain a spatial map of the bubble deformation D at time t . An 224

example of such map is shown in Fig. 4. 225

Finally, we average the computed spatial maps of bubbles’ eccentricity to obtain a time-averaged 226

steady-state bubble deformation field D̄ of the foam flowing through and around the constriction. 227

Contrary to the bubble velocity measurements based on the PIV technique, such analysis of the 228

bubble deformation is very sensitive to any defect in the edge detection and the bubbles labeling 229

procedure; it indeed requires an accurate identification of a closed boundary for each bubbles of the 230

flowing foam. Despite a very good quality and contrast of the recorded images, a tedious manual 231

check was necessary to detect few defects and close correctly the skeletonized bubbles. Therefore, 232

in the present study, we analyzed a subsample of 200 images over the thousand recorded, for each 233

experiment, separated by δt = 0.5 s. 234

III. STEADY-STATE VELOCITY AND BUBBLE DEFORMATION FIELDS 235

A. Geometrical effects 236

First, we investigate the impact of the geometry of the obstacle—and, in particular, the obstacle 237

height—on the bubble deformation and velocity fields of the foam. 238

1. Obstacle height 239

a. Velocity fields. We show in Fig. 5 the average steady-state velocity fields V̄ of a dry foam 240

invading the cell with a square obstacle of lateral size a = 20 mm and increasing height H , from top 241

(no obstacle, H/G = 0) to bottom (obstacle filling the gap of the cell, H/G = 1), with the following 242

ratio of the obstacle height over the cell gap, H/G = 0, 0.3, 0.6, 0.8, 1. 243

Whatever the value of H/G, far from the obstacle, we observe that the foam velocity is constant, 244

corresponding to the imposed longitudinal velocity V0. Nevertheless, approaching such permeable 245

obstacle, the amplitude of the velocity field decreases, while it increases when leaving it. 246
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FIG. 5. Average velocity fields V̄ in the frame of the laboratory (left column) and in the frame of the
flowing foam (right column), for a dry foam invading the cell with a square obstacle of lateral size a = 20 mm
and increasing height H , from top (no obstacle, H/G = 0) to bottom (obstacle filling the gap of the cell,
H/G = 1), with the following ratio of the obstacle height over the cell gap, H/G = 0, 0.3, 0.6, 0.8, 1. The
colored maps on the right panels give also the amplitude of the normalized averaged longitudinal velocity
(V − V0)/V0, where V0 is the imposed longitudinal velocity.

The panels on the right of Fig. 5 display the velocity fields in the frame of the flowing foam, where247

we have subtracted this far field velocity V0. Colored maps are superimposed and give the amplitude248

of the normalized averaged longitudinal velocity (V − V0)/V0. As soon as an obstacle is present249
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FIG. 6. Profiles of normalized longitudinal velocity (V − V0)/V0 measured along the mean direction of the
flow (horizontal line y/a = 0, see Fig. 1) through the center of the cell, with a square obstacle (a = 20 mm) of
different height H . Inset: Maximum value of those normalized velocity profiles (V ∗ − V0)/V0 as a function of
the obstacle height H/G.

within the cell, even reducing slightly its gap, we can clearly notice the disturbance of the velocity 250

field, in particular in the frame of the flowing foam: a clear recirculation is then revealed, with a 251

strong fore-aft asymmetry of the flow, evidenced by a zone downstream the obstacle, where the foam 252

velocity can be much larger than the imposed longitudinal velocity V0. Such effect is reminiscent 253

of the “negative wake” observed in the flow pattern of rising air bubbles in viscoelastic fluids [31]. 254

More relevantly, our observations appear analogous to the results obtained for a two-dimensional 255

foam flowing around an impermeable obstacle, characterized by Dollet et al. [12,13] using a liquid 256

pool geometry. The observed asymmetry of the velocity field and its overshoot downstream the 257

obstacle was attributed to the viscoelastoplastic nature of the foam [16], which cannot be modeled 258

as a simple viscoplastic fluid [32]. 259

Interestingly, in our flow experiments with a permeable obstacle, we can observe that both the 260

amplitude of the overshoot and the region where it develops evolve nontrivially with the gap of the 261

constriction. In particular, they tend to saturate and eventually decrease for very strong confinement, 262

when the height of the constriction over the gap of the cell H/G > 0.7. This is clearly shown and 263

quantified in Fig. 6, where we display the evolution of the normalized longitudinal velocity profiles 264

along the direction of the mean flow (V − V0)/V0, measured in the central part of the cell (y = 0) 265

as a function of the height of the obstacle H/G. Specifically, in the inset of Fig. 6, we display the 266

nonmonotonic behavior of the maximum value of those normalized longitudinal velocity profiles as 267

a function of the constriction height H/G. 268

b. Bubble deformation fields. We now investigate the time-averaged steady-state bubble defor- 269

mation fields for the very same series of flow experiments. These fields are shown in the right 270

panels of Fig. 7, where the color code gives the amplitude of the time-averaged eccentricity 271

of the bubbles, approximated by ellipses. On those colored maps, the superimposed ellipses 272

correspond to the labeled bubbles, detected for a given image recorded during a flow experiment, 273

actually shown in the left panels. The figures on the top correspond to an experiment, where the 274

liquid foam flows in a cell without any constriction. The corresponding bubble deformation field 275

appears rather homogeneous with an average value of the eccentricity around 0.60 ± 0.04, (though 276

one can observe some deviations with notably larger values along the cell boundaries, probably 277

related to small inhomogeneities, when tightening manually the gap cell). Our analysis does not 278

account for the arrangement structure with the neighboring bubbles, considering each labeled 279

bubbles independently. This somehow could explain the rather high value of average eccentricity, 280

characterizing the typical bubbles’ deformation of a dry foam forced to invade our homogenous 281

Hele-Shaw cell. 282
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FIG. 7. Average deformation fields for a dry foam invading the cell with a square obstacle of lateral size
a = 20 mm and increasing height H , from top (no obstacle, H/G = 0) to bottom (obstacle filling the gap of the
cell, H/G = 1), with the following ratio of the obstacle height over the cell gap, H/G = 0, 0.3, 0.6, 0.8, 1. The
color code gives the amplitude of the time-averaged eccentricity of the bubbles (considered as ellipses). On
the right panels we superimpose to the average deformation fields the ellipses corresponding to each labeled
bubbles detected for a given image recorded during a flow experiment and shown on the left panels.

As for the velocity fields shown just before, the bubble deformation field of the foam is clearly283

impacted by the presence of even a mild local reduction of the cell gap. We again clearly observe284

a complex structure for those fields, with in particular a fore-aft asymmetry, which reflects the285

symmetry breaking in the shape of the bubbles upstream vs downstream the obstacle, that we already286
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FIG. 8. Profiles of the bubble deformation, measured along the mean direction of the flow (horizontal line
y/a = 0, see Fig. 1) through the center of the cell, with a square obstacle (a = 20 mm) of different height H .
Inset: Maximum value of the deformation measured along those deformation profiles D∗ as a function of the
obstacle height H/G.

noticed in Fig. 2: The bubbles approaching the constriction are compressed in the direction of the 287

imposed mean flow, while the bubbles exiting the permeable defect are strongly elongated in this 288

direction of the mean flow. Furthermore, we can clearly distinguish a semicircular region upstream 289

the obstacle, where the bubbles are strongly stretched along a direction indicating that those bubbles 290

will flow around the constriction. 291

Indeed, those deformation maps are clearly correlated to the velocity fields shown in Fig. 5, 292

especially considering the region downstream the obstacles, where the foam velocity can be much 293

larger than the imposed longitudinal velocity V0, concomitantly to a strong elongation of the bubbles 294

along this longitudinal direction of the imposed flow V̄0. 295

Interestingly, we can also notice that those bubble deformation maps look very similar for 296

constrictions reducing locally the gap of 60, 80, and 100%. This observation is clearly confirmed 297

when we represent, in Fig. 8, the profiles of the bubble deformation, measured along the mean 298

direction of the flow (horizontal line y/a = 0) through the center of the cell, with a square obstacle 299

(a = 20 mm) of systematically increasing height H . As for the velocity fields, the nonlocal impact 300

and disturbance of the constriction-like defect is clearly evidenced, especially downstream the 301

obstacle, where the bubbles recover a relaxed state (corresponding for this dry foam, here, to a value 302

of an average eccentricity around 0.6) at a typical distance of around four times the obstacle size. 303

Moreover, the maximum value of the bubble deformation (given by the averaged eccentricity 304

of the bubbles) along those longitudinal profiles saturates when the constriction reduces the gap of 305

60%, as shown in insert, similarly to the evolution of the maximum value of the velocity overshoot 306

observed in Fig. 6. 307

c. Permeability of the inhomogeneous cell. We show in Fig. 9 a series of profiles of the 308

longitudinal velocity, centered on the obstacle (x = 0), in the direction y transverse to the mean 309

flow, for the same series of experiments (a dry foam invades the cell with a square obstacle of lateral 310

size a = 20 mm and various height H). Those velocity profiles are normalized as (V − V0)/V0. 311

As expected, those transverse velocity profiles have a symmetric shape, with the velocity of 312

the foam flowing through the permeable obstacle decreasing systematically with its height, while 313

increasing sideways up to a distance of around three times the obstacle lateral extent. Those 314

measurements allow us to estimate a permeability factor Q of our medium, as a function of the 315

ratio of the obstacle height over the cell gap H/G. 316

This permeability factor Q shown in the inset of Fig. 9 is obtained by computing the volume flow 317

rate of the liquid foam through and outside the obstacle as explained in Sec. II B 3. The reported 318
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FIG. 9. Profiles of the normalized longitudinal velocity (V − V0)/V0, centered on the obstacle (x = 0), in
the direction y transverse to the mean flow, as a function of the height of the constriction H/G. The inset shows
the permeability factor Q for those experiments, where a dry foam invades the cell with a square obstacle of
lateral size a = 20 mm.

values correspond to the mean between the two different ways of measurement, while the error319

bars reflect the standard deviation. For these flow experiments, we observe a systematic quasilinear320

decrease of the permeability factor Q as the gap of the cell is locally reduced.321

2. Obstacle shape and size322

To further complete our study of the impact of the geometry of the obstacle on the foam flow,323

we report, in the following, some experimental results for obstacle of different shapes as well as324

different lateral extents.325

Figure 10 displays the average longitudinal velocity fields of a flowing foam for two different326

obstacle shapes—circular versus square—with all the other parameters of the experiments being327

identical (driving velocity, liquid fraction, height, and diameter or lateral extent of the obstacle),328

displayed in the frame of the flowing foam. At first order, the measured velocity fields are similar. A329

small difference can be noticed though in the recirculation observed sideways the obstacle, as well330

as for the overshoot, which has a larger extension in the mean direction of the flow for the square331

obstacle. In this case, we observe a “channeling” flow within the obstacle, with bubbles following332

the obstacle straight boundaries. The profiles of the longitudinal velocity in the center of the cell,333

along the direction of the flow shown for those two different obstacles (Fig. 10, bottom panel)334

confirm that the amplitude of the disturbance is slightly larger for the square obstacle—probably335

simply related to the fact that such defect has an effective size larger than for a circular one of an336

equivalent diameter.337

We also report how the averaged steady-state velocity field of the foam evolves with the lateral338

extent of the constriction. Figure 11 shows the normalized longitudinal velocity field for a square339

obstacle of lateral extent a = 10 mm (top panel) and a = 30 mm (middle panel). The case a =340

20 mm is already given in the middle panel of Fig. 10. The size of the obstacle has obviously a341

strong impact on the foam velocity field on both its structure and amplitude. Indeed, due to the342

moderate values of the ratio obstacle diameter over the cell width, a consequent blockage effect can343

be observed, with a foam velocity close to the cell boundary larger than V0. The larger the obstacle344

diameter, the stronger the effect.345

Moreover, we show in the bottom panel of Fig. 11, profiles of normalized longitudinal velocity346

(V − V0)/V0, along the mean direction of the flow, rescaled by the lateral extent of the constriction347

x/a. These rescaled profiles for three different experiments with a = 10, 20, and 30 mm are very348
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(a)

(b)

FIG. 10. (a) Average velocity fields V̄ (in the frame of the flowing foam) of a dry foam invading the cell
with a circular obstacle of diameter a = 20 mm and a square obstacle of lateral size a = 20 mm; in both cases,
the obstacle height to gap ratio is H/G = 0.6; the colored maps give the amplitude of the normalized averaged
longitudinal velocity (V − V0 )/V0. (b) Corresponding normalized longitudinal velocity profiles (in the center
of the cell y = 0). The symbols shape corresponds to the type of obstacles.

close to each other, revealing that, at first order, the flow disturbance is proportional to the size of 349

the obstacle. Nevertheless, even after renormalizing those velocity profiles, we still can observe in 350

the inset of the bottom panel of Fig. 11 a systematic increase of the maximum amplitude of the 351

overshoot with the lateral extent of the constriction. 352

We can furthermore notice the observation of finite-size effects. Indeed, on one hand, the 353

decreasing velocity trend at the leading edge of the smallest obstacle appears slightly different from 354

one observed with the larger obstacles. Such an observation could be related to a discrete effect, 355

since for experiments with small obstacle with a = 10 mm, its lateral extent becomes comparable 356

to the bubble size, outside the constriction. Inside the constriction, the projected area increases and 357

very few (at most three) bubbles are found within the confining space. On the other hand, one may 358

notice that the wake at the trailing edge of the largest obstacle with a = 30 mm relaxes toward the 359
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(a)

(b)

FIG. 11. (a) Average velocity fields V̄ for a dry foam invading the Hele-Shaw cell with a square obstacle
of lateral sizes a = 10 (top panel) and 30 mm (bottom panel) and height H/G = 0.6, displayed in the frame
of the flowing foam. The colored maps give the amplitude of the normalized averaged longitudinal velocity
(V − V0)/V0. (b) The bottom panel shows the corresponding normalized longitudinal velocity profiles along
the mean direction of the flow in the center of the cell (y = 0); for different lateral sizes a of the obstacle. The
inset shows the maximum value of the velocity overshoot as a function of the lateral size of the obstacle. The
symbols shape corresponds to the type of obstacles.

far-field imposed flow on a shorter rescaled distance. One possible explanation is that the flow is360

confined in the lateral direction, as observed in Fig. 11, due to the finite width of the cell. This effect361

reduces the extent of the perturbation laterally, but could also reduce its extent in the longitudinal362

direction.363
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(a)

(b)

FIG. 12. (a) Average velocity fields V̄ for a very dry and a wet foam with a liquid fraction of � =
3 × 10−3 and 1.4 × 10−2, top and middle panels, respectively, invading the cell with a circular obstacle of
diameter a = 20 mm and height H/G = 0.6, displayed in the frame of the flowing foam; the colored maps
give the amplitude of the normalized averaged longitudinal velocity (V − V0)/V0. (b) This panel shows the
corresponding normalized longitudinal velocity profiles along the mean direction of the flow in the center of
the cell (y = 0);

B. Liquid fraction effect 364

Finally, we also investigate how the liquid fraction of the foam affects its flow, e.g., the motion 365

and deformation of the bubbles, through and around the constriction. 366

Figure 12 shows average steady-state velocity fields for a very dry � = 3 × 10−3 and a wet 367

1.4 × 10−2 liquid foam, invading the Hele-Shaw cell with a circular obstacle of diameter a = 20 mm 368

and height H/G = 0.6. Notice that the case of a dry foam is already shown in the top panel of 369

003300-15



NATALIA SHMAKOVA et al.

Fig. 10. The bottom panel of Fig. 12 displays also the profiles of the normalized longitudinal370

velocity in the mean direction of the flow in the center of the cell (y = 0). Again, we can observe the371

disturbance of the foam flow due to the localized constriction (in this case, the gap is locally reduced372

of 60%), with a strong asymmetry of the velocity field upstream vs downstream the obstacle.373

Nevertheless, our measurements show that when increasing the foam liquid fraction, this fore-aft374

asymmetry of the velocity field and more globally, the amplitude of the flow disturbance created375

by the obstacle is reduced. Specifically, we notice that, while the spatial extent of the overshoot376

downstream the constriction does not seem to be affected by the foam liquid fraction, its amplitude377

decreases strongly for a wetter foam.378

We go further in our analysis by showing for the same series of flow experiments, the average379

bubble deformation fields D̄ in Fig. 13. The bottom panel of this figure displays also the profiles380

of the average bubble deformation in the center of the cell (y = 0), along the mean direction of the381

flow. We can observe anew the complex structure of those bubble deformation maps correlated to382

the average steady-state velocity fields of the liquid foam—a multipolar structure, with a fore-aft383

asymmetry. The important result here is the fact that when increasing the liquid fraction of the384

foam, the disturbance of the bubble deformation field due to the constriction is reduced, as for385

the velocity field. The amplitude of the bubble deformation increases with a drier foam, while the386

extent of the region where the bubbles are strongly elongated (either upstream or downstream the387

obstacle) does not seem to evolve with the liquid fraction of the foam. We can further notice that388

the amplitude of the bubble deformation in the relaxed state far from the obstacle decreases with389

the liquid fraction—the bubbles getting closer to a circular shape, their average value of eccentricity390

decrease.391

Both the elastic shear modulus and the yield stress of liquid foams decrease with their liquid392

fraction [3,33]. Therefore, as we will discuss in the following conclusive section, our various393

experimental observations and measurements point out the role of the elastic properties of liquid394

foams, which appear responsible for such symmetry breaking of the flow.395

IV. DISCUSSION AND CONCLUSION396

Our experiments show a clear correlation between the deformation of the bubbles and the liquid397

foam velocity.398

Specifically, the top and middle panels of Fig. 14 demonstrate that the maximum amplitude of the399

velocity overshoot and the maximum value of the bubble deformation (both measured downstream400

the obstacle) display the same evolution with the gap contrast between the cell and the localized401

constriction H/G, as well as with the foam liquid fraction �, for various experiments—performed402

with different obstacle shapes and liquid fractions of the foam. Indeed, both quantities increase403

and then saturate for strong confinement, when H/G becomes larger than 60% and, moreover,404

systematically decrease for wetter foams. We furthermore confirm that the shape of the obstacle405

has a rather minor effect on the foam flow. Finally, the bottom panel of Fig. 14 shows that the406

amplitude of the velocity overshoot V ∗ is proportional to the maximum bubble deformation D∗; our407

experimental data are indeed very well fitted by the following expression, V ∗/V0 = 1.55 D∗.408

At the light of our various experimental results, we can propose the following mechanism at the409

origin of the rheological behavior observed: The localized constriction-like defect disturbs the foam410

flow by notably inducing a strong elongation of the bubbles, which increases with the amplitude411

of the disturbance, mainly controlled by the height of the obstacle. The subsequent elastic stress—412

stored upstream and released downstream the constriction—leads to the foam flow asymmetry and413

in particular the velocity overshoot. One should note that our bubble deformation analysis (purely414

scalar) does not lead to a straightforward estimation of an elastic stress. A tensorial approach such415

as the one developed in [14,15,34] would have been indeed necessary to measure an elastic internal416

strain, based, for instance, on the calculation of a texture tensor, from the links between neighboring417

bubbles. However, the simplicity of implementation of our analysis allowed us to obtain easily a418
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FIG. 13. Average bubble deformation fields D̄ for a dry (top panel) and a wet (middle panel) foam with
a liquid fraction of � = 7 × 10−3 and 1.4 × 10−2, respectively, invading the cell with a circular obstacle of
diameter a = 20 mm and height H/G = 0.6; the colored maps give the amplitude of the averaged eccentricity.
The bottom panel shows the corresponding average bubble deformation profiles along the mean direction of
the flow in the center of the cell. Large bubbles deformations measured on some boundaries are just due to
small defects in the gap cell, related to its manual tightening.

qualitative characterization of the deformation of the bubbles in order to evidence the role of the 419

localized constriction. 420

Moreover, we can also explain the plateau in the maximal deformation of the bubbles and foam 421

velocity, observed for strong confinement, by considering the plastic behavior of the liquid foam. 422
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FIG. 14. Maximum value of the normalized velocity overshoot (V ∗ − V0 )/V0 (top panel) and bubble
deformation D∗ (middle panel) as a function of the obstacle height H/G for square and circular objects with
a = 20 mm for � = 3 × 10−3 (magenta square and yellow circle) � = 7 × 10−3 (red squares and blue circles)
and � = 1.4 × 10−2 (purple squares and green circles). The bottom panel shows that for flow experiments
where both quantities have been measured, that V ∗ is proportional to D∗.
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FIG. 15. Permeability factor as function of the height of the constriction H that reduces locally the cell
gap G, computed for various foam flow experiments with different liquid fractions of the foam and obstacle
shapes.

Indeed, the occurrence of bubble rearrangements (T1s) prevents an infinite stretching of the bubbles. 423

Furthermore, the threshold in bubble deformation for such yield transition is a function of the 424

liquid fraction [13]: The larger the foam liquid fraction, the smaller the maximum deformation 425

of the bubbles. Therefore, the maximal bubbles deformation and consequently the amplitude of the 426

overshoot are set, on one hand, by the defect that stretches the bubbles and, on the other hand, 427

limited by their plastic yielding, characterized by topological rearrangements through the swapping 428

of neighboring bubbles. 429

Those processes lead to a complex flow pattern, which was already studied both experimentally 430

and theoretically for nonpermeable obstacles [16], but with more complex features here, due to the 431

partial permeability of the obstacle. 432

Our velocity measurements and specifically the measurements of the longitudinal velocity in the 433

transverse direction to the mean flow, in the center of the cell, allow us to estimate a permeability 434

factor of the model porous medium, quantifying the foam flow through and around the localized 435

constriction. This permeability factor Q is shown in Fig. 15 for experiments performed in various 436

conditions (different obstacle shapes and liquid fractions) as a function of the obstacle height H/G. 437

We observe a systematic quasilinear decrease of the permeability factor as the gap of the cell is 438

locally reduced. The dispersion of our measurements does not allow to distinguish precisely an 439

eventual impact of the experimental parameters on the cell permeability, which would deserve 440

a thorough dedicated study. Nevertheless, we could extrapolate that for even wetter foams, the 441

permeability factor could become zero for constriction height H/G � 0.85. In these experimental 442

conditions of a strong confinement, we could indeed observe that the bubbles of a wet foam 443

do not flow through the constriction but simply around it, so that the constriction is acting as a 444

nonpermeable obstacle. 445

To conclude, we have performed a thorough experimental study of a confined two-dimensional 446

liquid foam (composed of a monolayered of bubbles) forced to flow within an inhomogeneous 447

open fracture. Our model porous medium consists of a Hele-Shaw cell, with a single localized 448

constriction, that reduces locally the cell gap and therefore decreases its permeability. 449

Analyzing the evolution of the texture of the flowing two-dimensional liquid foam (specifically 450

the vertices and films of the bubbles, as well as their shape), we could compute the average steady- 451

state velocity and bubble deformation fields of the foam, for various experiments, performed with 452
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different geometries of the obstacle (by changing its shape, size and height), as well as different453

amount of liquid within the formulated foams.454

Our main result concerns the multipolar deformation and velocity fields with the strong fore-aft455

asymmetry of the foam flow—systematically observed for our various experiments—with a zone456

downstream the constriction, where the bubbles are strongly elongated in the mean direction of457

the flow and where the foam velocity can be much larger than the mean imposed driving velocity.458

While such symmetry breaking and velocity overshoot were already reported in previous studies for459

a liquid foam flowing around a nonpermeable obstacle [12,13], we show here that such disturbance460

and recirculation can be modulated with the geometry of the obstacle and in particular, its height,461

which controls the local permeability of the cell. We, moreover, explain how our flow experiments462

confirm that the elastoplastic properties of the liquid foam, which are controlled by the foam liquid463

fraction, are responsible of this symmetry breaking of the flow deformation and velocity fields and,464

in particular, the overshoot downstream the constriction.465

Finally, we could notice that the films of the bubbles could be pinned on the edges of the466

constriction, either at its inlet or outlet. This effect which is not present in the case of an obstacle467

filling completely the gap of the cell brings forward a capillary resistance to the flow and thus can468

impact the velocity field of the confined liquid foam. Further work is needed to clearly quantify such469

pinning and depinning of the bubble films and elucidate its consequences on the foam flow. Our first470

attempts to understand and predict the quasi-two-dimensional foam flow observed in our specific471

geometry, through and around a local constriction, based on the Durian “bubble” model [35,36],472

could reveal the limits of such numerical approach to describe confined flows of dry foams. Indeed,473

we were not able to observe a clear asymmetry of the flow nor a significant velocity overshoot474

downstream the constriction.475
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