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Regulatory T cells (Treg) are essential components of peripheral immune homeostasis.
Adoptive Treg cell therapy has shown efficacy in a variety of immune-mediated diseases in
preclinical studies and is now moving from phase I/IIa to larger phase II studies aiming to
demonstrate efficacy. However, hurdles such as in vivo stability and efficacy remain to be
addressed. Nevertheless, preclinical models have shown that Treg function and specificity
can be increased by pharmacological substances or gene modifications, and even that
conventional T cells can be converted to Treg potentially providing new sources of Treg
and facilitating Treg cell therapy. The exponential growth in genetic engineering
techniques and their application to T cells coupled to a large body of knowledge on
Treg open numerous opportunities to generate Treg with “superpowers”. This review
summarizes the genetic engineering techniques available and their applications for the
next-generation of Super-Treg with increased function, stability, redirected specificity
and survival.

Keywords: immune tolerance, transplantation, autoimmunity, genome editing, CAR, cell therapy, immune
regulation, regulatory T cells
INTRODUCTION

The immune system has developed physiological regulatory mechanisms to avoid excessive
intensity or duration of immune responses and inflammation. Undesired immune reactivity
needs to be controlled in pathological situations such as autoimmune diseases, solid organ
transplantation (SOT), graft-vs.-host disease (GvHD), and immunogenicity of gene therapeutics
and biologics. These regulatory mechanisms can be exploited therapeutically to reshape immune
responses in subtler ways than conventional immunosuppressors. In fact, conventional
immunosuppressors are non-selective, also inhibit protective anti-pathogen immunity and have
common off-target toxicities. Although novel treatments dampen immune responses more
specifically and induce immune tolerance (1, 2), alternative treatments are needed.

Among the mechanisms that maintain tolerance, both CD4+ and CD8+ FOXP3+ Treg play a
central role (3–7). In addition, in both CD4+ and CD8+ compartments FOXP3− Treg are described
(8). Treg are multifunctional, adaptable, living drugs, that have the potential to restore/induce
org February 2021 | Volume 11 | Article 6116381
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durable immune tolerance and thus cure or ameliorate diseases
as demonstrated in pathological rodent models (3). Although
most Treg used in pre-clinical models have been polyclonal,
some were antigen-specific or genetically modified (5, 6, 8–10).
Small clinical studies have demonstrated the safety and some
efficacy of autologous in vitro expanded polyclonal CD4+ Treg
without genetic modifications in a variety of diseases (3).

Genetic modifications hold great potential to enhance their
clinical efficacy as previously shown for genetically modified
conventional T cells (Tconv) in the cancer field (11). The
exponential development of genome engineering approaches
enables strategies to generate “Super-Treg.”

This review describes genetic engineering techniques to
increase the specificity, functional stability, survival, and
suppressive function of Treg, as well as the generation of
allogeneic off-the-shelf products, and strategies to eliminate
these Super-Treg if necessary.
GENETIC ENGINEERING TOOLS FOR THE
GENERATION OF SUPER-TREG

Targeted genetic manipulation of Treg has surged due to
advances in genetic analysis and engineering (12).

Gene Transfer Using Lenti-/Retro-Viruses
or Transposases
The current gold standard for the stable ectopic gene expression
by T cells are replication-deficient lenti-/retro-viruses, which
insert entire gene expression cassettes into the genome (13)
(Figure 1). Multiple studies have demonstrated that Treg from
healthy donors and autoimmune patients can be efficiently
transduced in vitro (Table 1) (45). Alternatively, transposon-
based gene transfer systems allow the random insertion of
moderate to large cargo sizes in T cells (46, 47). Random
integration of the genetic cargo and insertional mutagenesis
are safety concerns requiring long-term monitoring (48),
although, so far no leukemic transformation has been reported
for virally transduced Tconv (49–51).

Gene Editing With Programmable
Nuclease Systems
Zinc finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs) enable recognition of a genetic
sequence through protein/DNA binding and induce double-
strand DNA breaks (DSBs) via dimerization (74–76) (Figure 1).
However, the discovery of the CRISPR-Cas system has induced a
paradigm shift as it enables easier design of efficient nucleases.
Recently, highly efficient optimized Cas9 nuclease variants have
been developed (77–79). DSBs at specific sequences are repaired
by non-homologous end joining or homology directed repair
(HDR) (by providing a DNA repair template) to achieve gene KO
or targeted mutation/insertion respectively (Figure 1). This was
successfully applied to sorted human Treg in the correction of a
pathogenic IL-2Ra in approximately 20% and GFP insertions in
up to 40% of CD4+ Treg (80). Targeting multiple genomic loci
Frontiers in Immunology | www.frontiersin.org 2
with site-specific nucleases allows multiplexing of gene knockouts
(KOs) in a single intervention. Two recent manuscripts described
CRISPR/Cas9 KO screening in Tregs to define genes involved in
mouse Treg stability and function (63, 81).

Nucleases without active nuclease domains can be repurposed
to shuttle other bioactive cargo to introduce small base changes,
modify epigenetic marks or interfere with transcription (82).
Nuclease-deficient Cas9 (dCas9) fused to enzymes with different
functions, can be used to specifically edit certain bases (83)
(Figure 1). Use of base editor proteins for gene multiplexing was
successfully achieved with very high efficiency in Tconv (84).
Potentially, the newly introduced prime gene editing system
could also be applied to insert or replace small gene sequences
efficiently without the need for DNA DSBs (85).

Delivery of Gene Editing Components
Into Cells
Gene editing requires efficient delivery of the respective
components into the cells’ nuclei. Gene editing enzymes can be
transferred as plasmid, mRNA, or recombinant protein-RNA
complexes (RNP). HDR repair templates are required as single-
or double-stranded DNA. Electroporation allows the highly
efficient transfection of protein, mRNA, or plasmids into T
cells. Viral vectors exploit their tropism to deliver their cargo
with more control than blunt electroshocks. Adenovirus-associated
virus (AAV) serotype 6 has been prominently used to deliver
genetic cargo into human Tconv and immunopathology-
polyendocrinopathy-enteropathy-X-linked (IPEX) syndrome-
patient-derived Tconv to induce Treg (27, 86). Lentiviruses and
AAVs can be modified to incorporate nuclease enzymes in their
capsids to achieve all-in-one delivery solutions for CRISPR-Cas
gene editing and DNA transfer tested in mice and human
embryonic kidney cells or lymphoblastoid cell lines (87–90).
Combination of transposon-based CAR transfer through an anti-
CD3 directed nanoparticle system allowed efficient T cell
reprogramming in immunocompetent mice in vivo (52).

Potential Genotoxicity of Gene Editing
Off-target effects are a concern for the clinical translation of gene
editing and careful experimental design as well as thorough off-
target analysis are required (91). Transient presence of the
components and high-fidelity nucleases reduce the risk of off-
targets. Further, unwanted repair outcomes at the edited on-
target sites have been observed including large deletions and
translocations (92, 93). Translocations are a particular risk when
multiplexing loci in a single manipulation (94), and decrease
cellular fitness after transfusion (95).

Immunogenicity of Cells After Genetic
Modification
Viral vectors, nuclease systems, and newly introduced transgenes
can be immunogenic, potentially decreasing the efficacy of
Super-Treg and even posing a potential safety risk as
previously seen using Tconv (96, 97). Of note, most human
adults have pre-existing adaptive immunity toward Cas9
proteins and enriched Cas9-reactive Tconv can eliminate Cas9-
February 2021 | Volume 11 | Article 611638
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FIGURE 1 | Examples of tools and technologies that allow genetic engineering of Tregs. Traditional gene transfer methods include retroviral transduction or
transposase-mediated gene transfer. Random integration of expression cassettes into the Treg genome allow for stable transgene overexpression of one or multiple
transgenes connected by internal ribosomal entry sites (IRES) or self-cleaving 2A peptide sequences. Recent advances in the production of plasmids with minimal
bacterial backbone (mini-/micro-circles) as well as enhanced transposase enzymes could qualify the use of transposase-modified T cells (52–55), but have not yet
been used to generate therapeutic Treg. Gene editing and its derivative technologies allow sequence-specific modification of the human genome. ZFNs and TALE-
nucleases bind specific DNA sequences through protein-DNA interaction (zinc-finger arrays, TALE-effectors). Both systems have been used to modify T cell products
in preclinical and clinical investigations for HIV or cancer therapy (56–58). CRISPR-Cas ribonucleoprotein complexes can be redirected through small guide RNA
(gRNA) and minimal DNA-motif requirements by the Cas enzyme (a.k.a. protospacer adjacent motif, PAM) that are different among Cas variants. After binding of their
target sequence, attached or inherent nuclease domains induce DNA double strand breaks (DSB) and subsequently DNA repair. Non-homologous end joining
(NHEJ) links the free DNA ends without proofreading, thereby leading to errors like small insertions or deletions that can disrupt genes through frameshifts in their
open reading frame. This can be used to knock-out genes and prevent functional protein synthesis. Alternatively, highly activated Treg in S-phase of the cell cycle
may also use homology-directed repair (HDR) after DSB. DNA with sequence homology to the cutting site is recognized by the HDR machinery in proximity and used
to repair the break via proofreading from the analogous DNA fragment. This can be exploited to correct mutations or introduce new genes. To this end, large
amounts of single/double stranded DNA templates including desired changes (e.g., nucleotide changes, transgene inserts) must be delivered into the Treg nucleus
(typically by electroporation or non-integrating viruses). Important derivative technologies of programmable nucleases include base editors and epigenetic editing
enzymes. Base editors are engineered multi-enzymes complexes typically attached to nuclease-deficient Cas proteins which allow targeted modification of certain
bases within the gRNA target sequence. Common variants include adenine base editors (=ABE) which convert adenine to guanine (A:T to G:C) and cytosine base
editors (=CBE) which convert cytosine to thymidine (C:G to T:A). Furthermore, targeted changes to the epigenome could be performed through enzymes that
interfere with methylation or histone modifications to promote desired epigenetic imprints. While retroviral delivery tools benefit from their ancestors’ capacities to
invade T cells naturally, other cargo must be effectively delivered into Treg. Electroporation is a common method to transiently introduce nucleic acids like DNA
(transposon technology), but also mRNA encoding gene editing enzymes or even recombinant proteins. Nanoparticles are another alternative for transient delivery of
gene engineering tools which are under development for Tconv and Treg. Further, adeno-associated viruses (AAV) and other non-integrating viruses may allow a
controlled delivery of DNA templates into Treg nuclei for efficient gene targeting. Figure generated using www.biorender.com.
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TABLE 1 | T cell products modified in vitro to treat immune-mediated disease models in vivo or cells from human patients with genetic diseases1.

Indication Genetic modification, technology Results Reference

Tissues/SOT
Partially mismatched heart transplant in mice Murine H-2Kd-spec TCR in murine CD4+ Treg,

g−retroviral vector
Long-term survival of grafts treated with

TCR transduced Treg
(14)

Human skin rejection in NSG mice with human
HLA-A2+ PBMCs

Human HLA-A2 CAR on human CD8+ Treg, lentiviral
vector

Prevention of skin rejection, superior to
polyclonal Treg

(9)

Human skin xenograft transplant model HLA-A2-specific CAR on human CD4+ Treg, lentiviral
vector

Diminished skin pathology, superior to
polyclonal Treg

(15)

Human skin (HLA-A2+) in NRG mice with human
allogeneic HLA-A2− PBMCs

Human HLA-A2 CAR CD4+ Treg, g−retroviral vector Prevention of skin rejection, superior to
polyclonal Treg

(16)

Allogeneic islet rejection in mice Mouse Treg expressing anti-FITC MAbCAR, lentiviral
vector

Incubation of Mab CAR Treg with FITC-
labeled mAbs directed against islet

antigens prevented islet rejection and
generated tolerance

(17)

Human skin xenograft model in mice Human CD4+ Treg, lentiviral vector CD28 but not 4-1BB co-stimulation
increases Treg function

(18)

GvHD/HSCT
Xenogeneic GvHD in NSG mice (also in IPEX
patient T cells)

Overexpression of FOXP3 from endogenous loci, HDR
of a strong promoter using TALENs and AAV as donors

GvHD suppression (19)

Xenogeneic GvHD in NSG mice caused by human
HLA-A2+ T cells

Overexpression in human CD4+ and CD8+ Tconv of
FOXP3 with or without HELIOS, g−retroviral vectors

GvHD is suppressed, CD4+/CD8+ T cells
expressing FOXP3 and HELIOS more
suppressive than each gene alone

(20)

Xenogeneic GvHD in NSG mice caused by human
HLA-A2+ T cells

10 different 2nd generation HLA-A2 CARs human Treg,
lentiviral vector with NGFR

CD28wt A2-CAR provide superior effects;
TNFR A2-CARs decrease survival vs.

negative control

(21)

Xenogeneic GvHD in NSG mice caused by human
HLA-A2+ T cells

Human HLA-A2 CAR CD8+ Treg, lentiviral vector GvHD is suppressed (9)

Xenogeneic GvHD in NSG mice caused by human
HLA-A2+ T cells

Human HLA-A2 CAR CD4+ Treg, lentiviral vector Prevented GvHD (10)

Allogeneic acute GvHD in mice Mouse CD4+CD25− T cells overexpressing Foxp3,
lentiviral vector

Prevented GvHD, preserved GVL (22)

Inherited genetic diseases
HLA-transgenic, FVIII-deficient mouse model
(hemophilia A)

FVIII-specific TCR in human CD4+ Treg, g−retroviral
vector

Inhibits factor VIII-specific antibody
production

(23)

FVIII-deficient mouse model FVIII-specific human CAR in human CD4+ Treg,
g−retroviral vector

Suppressed recall antibody response (24)

FVIII-deficient mouse model Foxp3 expressed by mouse T anti-human FVIII cells,
g−retroviral vector

Inhibits factor VIII-specific antibody
production

(25)

IPEX Human FOXP3 gene in CD4+ Tconv cells, lentiviral
vector

Conversion into functional Treg, especially
with naïve T cells

(26)

T cells and HSPCs Introduction of FOXP3 cDNA by HDR via CRISPR/Cas9
RNP and recombinant adeno-associated viral serotype
6 + NGFR tag in human Tconv, HSPCs and Treg as well
as patient cells

Endogenous locus gene insertion restores
physiological regulation in Tconv; also T cell

repopulation in humanized mice with-

corrected HSPCs

(27)

Allergy/hypersensitivity
OVA-induced and passive anaphylaxis in mice OVA-fused to antigen receptor signaling domains in

murine and human CD4+ Treg
Autoantibody producing B are suppressed
by BAR Treg, protects from hypothermia if

given before OVA challenge

(28)

Autoimmunity
IBD

Tconv cell transfer Overexpression of Foxp3, g−retroviral vector Control of intestinal inflammation (29)
Trinitrobenzenesulphoric acid

colitis in mice
2,4,6-trinitrophenol-specific murine CAR in CD4+ Treg,
g−retroviral vector

Reduces acute colitis (30)

T cell-transfer colitis and
azoxymethane–dextran sodium

sulfate model for colitis-
associated colorectal cancer

Carcinoembryonic
antigen CAR in mouse CD4+ Treg, g−retroviral vectors

Reduces acute colitis in both models and
reduction in colon cancer

(31)

Colitis induced by naïve T cells
injected in Rag2−/− mice

TET1-CD overexpression in murine CD4+ Treg,
g−retroviral vector

Reduced weight loss (32)

Type 1 diabetes
NOD mice Foxp3 overexpression in CD4+ Tconv with or without

islet specificites, g−retroviral vector
Only with antigen-specific CD4 cells but not
polyclonal CD4+ FOXP3+ controlled recent
onset diabetes despite similar suppression

in vitro

(33)

(Continued)
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expressing lymphoblastoid cell lines in vitro, which can be
reduced by Cas9-specific Treg (98). However, T cells edited
using Cas9 delivered by RNP electroporation did not elicit an
immune response and persisted, which might be due to the low
abundance of Cas9 in the edited final product or defective immune
responses in the patients (95).

For TALENs and ZFNs, despite being immunogenic per se,
stemming from Xanthomonas, which infects plants, and partially
from Flavobacterium okeanokoites, which was isolated from the
seabed, there is a low risk for previous exposure to the enzymes.
In contrast, Cas9 stems from Streptococcus pyogenes, which is a
common human pathogen. However, development of an
immune response upon permanent expression may still
be relevant.
GENETIC ENGINEERING STRATEGIES
FOR ENHANCED STABILITY AND
FUNCTION OF TREG

A limitation of adoptive Treg therapy is that inflammatory
conditions can inhibit their function or even switch them to
Frontiers in Immunology | www.frontiersin.org 5
Tconv (99, 100). Therefore, the identification of pathways
regulating Treg function and stability are key to define targets
for genetically engineering more stable and robust Treg
(Figure 2).
FOXP3
Given the key role of FOXP3 to control Treg function and that its
expression and function are labile or even lost in patients with
mutations in the FOXP3 gene (IPEX), numerous studies have
analyzed how to increase or stabilize its expression. Functional
CD4+ Treg from IPEX patients could be obtained by ectopic
expression of FOXP3 in their Tconv (26), but also with more
clinical potential by precise HDR on hematopoietic stem cells
(27) (Table 1).

This strategy could also allow high numbers of Treg to be
obtained from Tconv. In CD4+ Tconv, ectopic expression of
FOXP3 using retroviral vectors (22, 26, 43) or by HDR of a
strong promoter upstream of the FOXP3 coding sequences (19)
allowed generation of Treg that suppressed CD4+ Tconv not only
in vitro but also inhibited GvHD, colitis or dermatitis in animal
models (Table 1). Interestingly, tamoxifen-induced but not
constitutive FOXP3 expression in CD4+ Tconv resulted in
TABLE 1 | Continued

Indication Genetic modification, technology Results Reference

NOD mice Murine CD3z/CD28 human insulin-specific CAR and
Foxp3 (proteolytic cleavage) + CD90.1 with IRES in
naïve CD4+ effector T cells, g-retroviral vector

Despite effector origin behavior and nTreg
like phenotype, unable to prevent diabetes,

but survive 17 weeks

(34)

Neurological
Experimental autoimmune

encephalitis induced by MOG,
intranasal Treg delivery

CAR anti-MOG- + murine Foxp3 sequences in CD4+ T
cells, lentiviral vector

Reduces symptoms, cytokine release;
induce resistance to MOG re-challenge

(35)

Experimental autoimmune
encephalitis

MOG or MOG/NF-M bi-specific TCR- murine CD4+
Treg, g−retroviral vector

Superiority of bi-specific Treg even if
disease initiating antigen is not directly

targeted

(36)

Experimental autoimmune
encephalitis in DR15 transgenic

mice induced by MOG

Myelin-basic protein specific TCR transgenic human
CD4+ Treg g−retroviral vector

Alleviation of symptoms (37)

Rheumatological
Collagen-induced arthritis TCR from CD4+ cells involved in arthritis expressed in

Tconv in association with Foxp3 and TNFR-Ig,
g−retroviral vectors

Inhibition of disease and of inflammatory
cytokines

(38)

Collagen-induced arthritis Tamoxifen-inducible or constitutive ectopic FOXP3
expression, g−retroviral vectors

Only inducible FOXP3 expression inhibited
the disease due to Treg migration to lymph

nodes

(39)

Arthritis mouse model
(immunization with OVA followed
by intra-articular rechallenge)

Murine OTII TCR Foxp3, g−retroviral vector Prevent symptoms when rechallenge
combined with OVA

(40)

Humanized mice (HLA-DR1
transgenic), arthritis induced with
bovine collagen II + adjuvant

Foxp3 + HLA-DR1 covalently linked to type II collagen
antigen in murine naïve T cells, retroviral vector

Inhibition of disease development and
reduction of autoimmune effector T cells

(41)

Lupus mouse model Tconv expressing anti-CD19 CARs B cells are killed, reduction in kidney lupus
lesions

(42)

Skin
Contact hypersensitivity and

autoimmune dermatitis
CD4+ Tconv with ectopic expression of Foxp3,
g−retroviral vector

Reduced skin lesions, homing of Treg to
skin and lymph nodes

(43)

Pemphigus mouse model CD4+ Tconv expressing an autoantigen in a chimeric
autoantibody receptor (called CAAR) are recognized by
autoreactive desmoglein-3 B cells, lentiviral vector

Autoreactive desmoglein-3 B cells are killed
by CAAR Tconv, reduction of pemphigus

lesions

(44)
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FIGURE 2 | Summary of targets to generate Super-Treg. Foxp3 expression can be modulated at the epigenetic level. Demethylation of CpG dinucleotides at the
FOXP3 locus by azacytidine or TET stabilizes FOXP3 expression, while remethylation at the upstream enhancer by IL-6 reduces FOXP3 expression (59). Histone
acetylation by HATs (p300, CBP) stabilizes FOXP3 expression by cooperating with key Treg transcription factors that act on the FOXP3 promoter, such as Runx1
and NFAT (60). On the contrary, the histone HDAC SIRT-1 inhibits FOXP3 transcription and its deletion promotes Treg function (61). Treg stability is also maintained
in inflammatory environments by CBP and P300 interaction with the Foxp3 CNS2 region, through which CBP is able to regulate pCREB and P300 to regulate
expression of GATA3 (60, 62). Histone deubiquitination by Usp22 and Atxn7l3 promotes FOXP3 expression, contrary to CHIP1 and DBC1. Chromatin remodeling by
BRD9, a member of the SWI/SNF chromatin remodeling complex, positively regulates FOXP3 as BRD9 depletion reduces the binding of FOXP3 to its enhancers
CNS2/CNS0, thereby reducing FOXP3 expression (63). BRD9 also regulates a subset of FOXP3 target genes by promoting both FOXP3 binding at their regulatory
element and increasing histone modifications. Knockdown of BRD9 thereby compromises FOXP3 expression and Treg function in vitro and in vivo (63). Thus, BRD9
overexpression could be interesting in Treg. Transcription factor AHR can trigger the differentiation of Treg by the expression of FOXP3 when activated in response
to dioxin, whereas carbazole induces Th17 cell development (64). FOXP3 expression can also be regulated at the post translational level. Acetylation by p300 and
CBP stabilizes FOXP3 protein, while deacetylation by CHIP1, DBC1, or HDAC7 induces degradation of the protein, which can be inhibited by HDAC inhibitors,
Usp22 and Atxn7l3. Glycolysis can be privileged. HIF1a binds to the promoter of RORgt, resulting in expression of IL-17 which drives Th17 cell differentiation (65)
and reducing Treg stability through the production of IFN‐g (66). HIF1a also increases glycolysis by upregulating GLUT1, and promotes FOXP3 ubiquitination. LKB1
and TCAIM (67) promoting glycolysis are promising candidates for consideration. CD39 participates in tolerance induction in kidney grafts (68) and the effector
memory Treg subset mainly expressing CD39 is diminished in multiple sclerosis (69). CD39 and CD73 transform ATP in adenosine acting through A2AR, which is
limited by ATP uptake by P2X7. Function and migration can be controlled. Antigen specificity of Tregs can be modified by inserting genes encoding for an ectopic
TCR or a chimeric antigen receptor preferentially in the TRAC locus. The control of rogue Super-Treg could include potent immunosuppressive drug regimens but
they require hours to days for elimination. Recently, the small molecule tyrosine inhibitor dasatinib was shown to be a fast and potent inhibitor of CAR signaling in
Tconv and may also be applicable to Treg platforms (72). Allogeneic Tregs present advantages regarding production but allogeneic MHC molecules have to be KO
and counterbalanced by HLA-E and CD47 (“do not eat me” molecules). The expression of cytokines known to be responsible for Treg function such as IL-10, TGFb,
IL-34, IL-35, and FGL-2 can be upregulated. Treg-mediated toxicity can be controlled by insertion of suicide genes, such as a truncated version of the epidermal
growth factor receptor recognized by the mAb cetuximab (70), or the peptide RQR8 combining epitopes recognized by the mAb rituximab (71) or by dimerization of
Casp9 by the small molecule rimiducid (72). Tregs can be tracked using deuterium and NIS. Proliferation and survival can be promoted. Folic acid is suggested to
upregulate the anti-apoptotic proteins BCL-2 and BCL-xL via folic acid receptor 4 (FR4) in Treg (73). Hence, increased expression of FR4 or enzymes of this
pathway such as dihydrofolate reductase in Treg may preferentially preserve these cells. IL-2, IL-7, and IL-15 signals are important for survival and proliferation of
Tregs. To make Treg independent of exogenous IL-2, they could be armed with their own IL-2 for self-supply. PD1 and CTLA-4 have both important roles for Treg
function and survival and LRBA, in contrast to PIM, is important for CTLA-4 expression. Drug resistance could also be considered for promoting Treg survival.
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control of autoimmune arthritis by migration into lymph nodes
(39). In line with these results, control of type 1 diabetes (T1D)
was obtained only with islet-specific CD4+ Tconv homing to
lymph nodes and not with polyclonal CD4+ FOXP3-expressing
Tconv in a mouse model (33). Transduction of mouse anti-
human FVIII T cells with Foxp3 resulted in decrease anti-FVIII
antibodies in hemophilia A mice (25). In in vitro studies, human
pathogenic synovial Tconv from rheumatoid arthritis patients
ectopically expressing FOXP3 showed reduced Tconv responses
(101). Other publications with in vitro studies described that
ectopic expression of one (102) or both (103) isoforms of FOXP3
in CD4+ Tconv resulted in functional human Treg.
Overexpression of the transcription factor HELIOS cooperates
with FOXP3 to generate both CD4+ and CD8+ Treg from human
Tconv, but particularly CD8+ T cells (20). Similarly, delivery of
dCas9 fused to a transcriptional activator and guides recognizing
FOXP3 promoter sequences increases FOXP3 expression (104).

Epigenetic regulation of FOXP3 expression is important for
the expression of FOXP3 in Treg. Demethylation of CpG
dinucleotides at the FOXP3 locus including at regulatory
elements in the intronic region, at the proximal promotor and
the upstream enhancer stabilizes FOXP3 expression (59, 105,
106). If these Treg-specific demethylated regions (TSDR) are not
fully demethylated, such as in the induction of FOXP3 expression
by TGF-b, FOXP3 expression can be lost upon restimulation in
mouse Treg (107). Epigenetic modifications of FOXP3 for TSDR
demethylation in Treg by azacytidine (a DNA methyltransferase
inhibitor) induces and stabilizes FOXP3 expression in mouse
Treg (107). Partial demethylation of TSDR CNS2 in Treg by
catalytically inactive CRISPR-Cas9 (dCas9) fused to the catalytic
domain of ten-eleven translocation (TET) protein, which
promotes demethylation, resulted in stable FOXP3 expression
and increased suppressive activity in vivo in mice (32). However,
a similar system using dCas9 fused to TET1 did not increase
FOXP3 levels in mouse Treg (108).

Transcription of FOXP3 can be repressed by histone
deacetylation in the FOXP3 promoter by histone deacetylase 7
(HDAC7), and HDAC inhibitors increase FOXP3 expression
through regulation of both the gene and the protein, and can
improve the suppressive action of murine and human Treg (109,
110). A dCas9 fused to the catalytic domain of histone
acetyltransferase (HAT) p300 showed that histone acetylation
targeted to the promoter locus was able to activate and stabilize
FOXP3 levels in mice, even under inflammatory conditions (108).

Lysine acetylation by HATs of both histones in the FOXP3
locus and of FOXP3 itself increases its transcription and reduces
its poly-ubiquitination and degradation as well as enhancing
FOXP3 chromatin binding in mouse and human Treg (111, 112).
Hyperacetylation by HDAC inhibitors or overexpression of
HATs can increase FOXP3 levels in mouse and human Treg
(112, 113). For example, P300 and CBP HATs acetylate FOXP3,
increasing its DNA binding and thereby regulating murine Treg
function and stability (60). CBP and P300 affect Treg
development through several mechanisms, including
promoting FOXP3 production, and by participating in a
positive feedback loop that enhances murine Treg stability in
Frontiers in Immunology | www.frontiersin.org 7
inflammatory environments, which could be further exploited
through molecular engineering (60).

Ubiquitination of both histones at the FOXP3 locus and of the
protein itself is important in the regulation of FOXP3, viamembers
of the deubiquitination module of the SAGA complex, Usp22, and
Atxn7l3. Loss of Usp22 in Treg reduces Foxp3 transcript levels,
increases FOXP3 ubiquitination and degradation, and reduces
suppressive activity in vivo in mice (63, 81). Furthermore, Stub1
(114) and TRAF6 (115) E3 ubiquitin ligases induced by
inflammation target the ubiquitination of FOXP3 followed by its
degradation in mouse and human Treg and represent interesting
targets for genetic ablation in Treg products. In contrast, Hrd1, an
E3 ligase critical in suppressing the ER stress response, stabilizes
murine FOXP3 expression (116). In terms of kinases and
phosphorylation of FOXP3, PIM1 (117), and CDK2 (118) kinases
negatively regulate FOXP3 and Treg function.

Other Transcription Factors
HIF‐1a reacts to hypoxia by triggering the switch between
mitochondrial oxidative phosphorylation and aerobic glycolysis
(119), and is also induced by continuous TCR stimulation via
mTOR in human T cells (120). In mouse Treg and human
embryonic kidney cells, HIF-1a promotes the ubiquitination and
proteasomal degradation of FOXP3 (65), and its upregulation in
response to hypoxia inhibits FOXP3 expression in mouse T cells
(121). HIF-1a also inhibits the development of mouse Treg
through increasing glycolysis by upregulating glycolytic
proteins (122). HIF-1a deficiency inhibits glycolysis and
therefore promotes the differentiation of murine Treg over
Th17 cells (123). Deletion of HIF-1a in mice increases FOXP3
expression, and reduces transcription of Th17 cell-related genes
(65, 121), suggesting HIF-1a KO as a means to improve Treg
stability through metabolic control. Differentiation of induced
human Treg is inhibited by IL-1b in a HIF-1a-dependent manner
(124). However, in human Jurkat cells, HIF-1a induction
increased FOXP3 protein and mRNA levels, which was reversed
by knockdown of HIF1a (125, 126). On the same lines, exposure
of human PBMCs to hypoxia increased the proportions of
FOXP3+ Treg among CD4+ CD25+ T cells and their suppressive
potential to inhibit Tconv proliferation, which was also observed
in mouse splenocytes (125).

Aryl hydrocarbon receptor (AHR) is a ligand-dependent
transcription factor that functions as an environmental sensor
and mediates the differentiation of both Th17 cells and FOXP3+

Treg. AHR is highly expressed in peripheral Treg in the gut, and
its deletion impairs their function. Conversely, activation of AHR
in transgenic mice increases the population and migration of
Treg (127). AHR inhibited proinflammatory cytokines (IFNg
and IL-17) and Th1-associated genes, but was dispensable for
FOXP3 stability. Ahr activation in a conditional knock-in in Treg
in a mouse model of colitis enhances suppressive activity and
migration to the inflammatory site, and a reduction in
proinflammatory T cells (127). Furthermore, AHR activation
was found to promote generation of human induced Treg,
producing IL-10 and controlling Tconv via granzyme B, but
did not have an effect on thymic-derived human Treg (128, 129).
February 2021 | Volume 11 | Article 611638

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Amini et al. Genetic Modification for Treg Therapy
Pro-Inflammatory Cytokines and
Extracellular Metabolites
IL-6 is a proinflammatory cytokine that induces the expression
of kinase PIM1 during inflammation, which inhibits expression
of Treg markers inc luding CTLA4 and CD25 v ia
phosphorylation of FOXP3 (130). T cell-specific deletion of the
IL-6 receptor gp130 in mice reduces IL-6 signaling and promotes
the conversion of peripheral Tconv into Treg (131). IL-6
blockade suppresses the immune response in models of
autoimmune disease and is used in the treatment of
rheumatoid arthritis (132, 133). At the same time, a recent
publication showed that IL-6Ra-deficient Treg lost suppression
and aggravated experimental glomerulonephritis (134).
Therefore, mitigating IL-6 signaling in Treg, which was
assumed to be a compelling strategy to enhance their
functionality in inflamed tissues and in the presence of high
levels of IL-6 needs more investigation and has to be
overthought critically.

The purinergic receptor P2X7 induces T cell activation
through binding of ATP, pushing the balance toward
proinflammatory Th17 cells, and decreasing the viability and
suppressive function of mouse Treg (135). In a mouse model of
experimental colitis, P2X7 receptor KO resulted in an increase of
activated Treg, IL-10, and TGF-b (136). Preventing P2X7
signaling is able to preserve mouse Treg stability by
stabilization of nuclear complexes of NFAT and FOXP3, and
the resulting downstream transcription of Treg-linked genes
(135). CD39 and CD73 expressed by Treg degrade ATP to
adenosine and adenosine itself can enhance the expansion and
immunosuppressive function of human Treg in vitro by binding
to the purinergic P1 adenosine 2A receptor (A2AR) (137, 138).
Thus, genetic overexpression of CD39 could be beneficial.

Although Treg produce immunosuppressive cytokines, such
as IL-10 (139), TGFb (140), IL-34 (141, 142), IL-35 (143), and
FGL2 (144, 145), their production could be increased by
genetic means.

Treg with increased function and stability could therefore be
engineered by inhibition of negative regulatory genes (using
nucleases), overexpression of positive regulators (using
lentiviral vectors), likely giving more precise control than small
molecule treatments which may bind multiple members of a
family (for example acetylases).
GENETIC ENGINEERING STRATEGIES
FOR INCREASED PROLIFERATION AND
ENGRAFTMENT OF TREG

Proliferation Signals
Survival of human naïve CD4+ Treg is mediated by IL-7
signaling, which increases anti-apoptotic BCL-2 (146) while
long-term survival of CD4+ Treg is dependent on IL-2 (147)
and of CD8+ Treg on IL-15 (4). Low dose IL-2 infusion was
shown to increase Treg numbers, FOXP3 expression and lead to
a more diverse repertoire of CD4+ and CD8+ Treg in patients (4,
148). Currently, there are different engineered IL-2–based drugs
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targeting CD25 on Treg, also referred to as IL-2 muteins (149) in
clinical trials. Since IL-2 signaling is associated with long-term
survival of human Treg, constitutively active STAT5 (150),
which is an important signal transducer in this pathway, may
improve Treg survival and abolish their dependence on
extracellular IL-2 (Figure 2). Moreover, to make Treg
independent of exogenous IL-2 that may activate Tconv and
NK-cells, they could be armed with their own IL-2 for self-
supply. However, ectopic IL-2 expression could compromise the
immunosuppressive mechanism of IL-2 deprivation of
surrounding Tconv. A mutated IL-2R that only binds an IL-2
mutein and not wild-type IL-2 could be engineered in mouse
Treg that are then selectively expanded (151).

A strategy to engineer constitutively active cytokine receptors
independent of cytokine availability may also be translated from
Tconv to Treg (152), e.g., allowing long-term survival via a
constitutively active IL-2 receptor (147). Moreover, chimeric
cytokine receptors (CARs) converting pro-inflammatory
signals (captured by the extracellular domain of the respective
receptor, e.g., IL-6) into Treg-survival signals using the
intracellular signal transduction domains (e.g., IL-2 receptor)
of pro-survival signals may contribute to improved survival of
Treg products as reported previously in a mirroring approach for
the support of Tconv (153).

Apoptotic Mechanisms
Several pathways inducing Treg apoptosis seem to be
dependent on FAS (154, 155) and pro-survival pathways on
BCL-2 (73, 146, 154). Thus, disruption of FAS or over-
expression of BCL-2 may significantly increase the viability of
Treg. An alternative may be to increase the PD1-PDL1
signaling in Treg, since PD1 blockade was reported to lead to
downregulation of BCL-2 and increased FAS receptor
expression (154). However, mouse Treg lacking PD-1 were
shown to be activated and have high suppressive potential
(156), which underlines the necessity for further studies of
this axis in human Treg. Additionally, human CD4+ Treg
express PD-L1 in response to IL-7 (154) and induce apoptosis
in PD-1+ Tconv (157) and autoreactive B-cells (158). As CTLA-
4 has an important role in Treg function and increased
degradation of CTLA-4 as present in LRBA deficiency is
associated with high levels of Treg apoptosis, stabilizing
strategies for sustained or increased CTLA-4 expression may
also improve human Treg survival (159, 160).

Metabolism
Treg and Tconv have different metabolic requirements, as Treg
use glycolysis and increase fatty acid oxidation upon activation
(161, 162). Acetyl CoA carboxylase (ACC) regulates both
biosynthesis and breakdown of long chain fatty acids and
ACC1 deficiency induces high levels of FOXP3 expression in
mouse and human Treg (163). Therefore, ACC is a potential
target for altering the metabolic programming of T cells, as
blocking fatty acid synthesis favors Treg induction and prevents
Th17 development. Liver kinase 1 (LKB1), a metabolic sensor, is
essential for murine Treg stability and suppressive activity by
inhibiting expression of pro-inflammatory cytokines and
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preventing exhaustion (164). LKB1 and its target genes are
downregulated in impaired Treg from patients with acute
GvHD and Lkb1 deletion in Treg in mice leads to severe
autoimmune inflammation, and can aggravate acute GvHD
(164, 165). LKB1 also stabilizes FOXP3 expression in Treg and
expression levels correlate with Foxp3 expression in human Treg
(165). In contrast to Tconv, murine and human Treg do not
accumulate lactate and are insensitive to lactate in medium (166).
LKB1 increases glycolysis and lactate formation and in mice,
abrogation of Lkb1 leads to loss of mitochondrial integrity and to
a dramatic reduction of Treg (167). Thus, LKB1 overexpression
could be used to stabilize FOXP3 expression, maintain metabolic
homeostasis, and avoid exhaustion in Treg.
Drug Resistances
In several settings, Treg are infused into patients treated with
immunosuppressants to inhibit Tconv but also compromise Treg
function (168). Hence, making Treg resistant to these drugs may
allow their preferential survival. Indeed, strategies aiming to
make antiviral T cells resistant to calcineurin inhibitors or
glucocorticoids including knockdown (169), knockout (170–
172) or introduction of calcineurin-resistant mutants (173),
might also be applied to Treg.
GENETIC ENGINEERING STRATEGIES
FOR REDIRECTING TREG
ANTIGEN SPECIFICITY

Treg-mediated tolerance can be improved by increasing antigen
specificity and with the development of gene editing, redirection
of Treg specificity became feasible (Figure 2). Indeed, antigen-
specific Treg have an increased suppressive ability and a stronger
efficacy in the regulation of the immune response and an
improved migration to the site of interest compared to
polyclonal Treg (9, 10, 174–178). While ex vivo expansion in
presence of the antigen of interest, or in vivo by administration of
peptides recognized only by Treg (176, 177, 179) is possible,
using genome editing would be advantageous as it would confer
antigen-specificity to a larger Treg population rather than
amplifying a very small subset of antigen-specific Treg, which
can be challenging. However, genome editing to redirect
specificity would also multiply the danger of contaminating
Tconv that may have a proliferative advantage in cytokine-rich
medium used during Treg expansion and could overgrow the
culture, multiplying their abundance in the final product. Thus, a
very pure starting population is required or the undesired cells
(such as CD8+ non-Treg) must be depleted at a later time point.
However, the latter is challenging for, e.g., CD4+ Tconv, which
are not easily distinguishable from Treg after culture, but could
also cause detrimental effects. Furthermore, it will be crucial to
choose a receptor with appropriate affinity for Treg to exclude
the possibility of instabilities. Even pre-selection of more stable
Treg subsets or genetic engineering to make them more stable
may be required to generate a safe product.
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Treg specificity can be redirected by the use of TCRs and
CARs (180, 181). Importantly, Treg with a single specificity have
been shown to suppress multiple antigens if presented by an APC
simultaneously, as shown in autoimmune, GVHD, and SOT
models (9, 10, 15, 182).
TCRs
Redirecting T cell specificity with an engineered TCR was
reported as early as 1996 using a chimeric TCRb chain
consisting of a single-chain Fv portion derived from a
monoclonal antibody paired with endogenous TCR/CD3
component, thus providing antibody and TCR specificity
(183). The use of TCRs has several advantages since it
represents a physiological way of activating T cells and allows
the targeting of intracellular antigens presented by HLA
molecules. In addition, expression of only one antigen per cell
is sufficient to activate the TCR-expressing Treg. However, HLA
restriction limits coverage to a particular part of the population.
Careful identification of a high affinity TCR-a/b is required to
ensure that they retain functionality without acquiring a harmful
unpredicted specificity when mispaired with the endogenous
TCR. To avoid this, disruption of the endogenous TCR using
nucleases might be necessary (184). Proofs of concept include
human Treg expressing a myelin basic protein-specific TCR
derived from a multiple sclerosis patient, which showed in
vitro and in vivo efficacy in an EAE model (37). Efficacy was
also demonstrated in a mouse model of hemophilia A using
human Treg engineered with a factor-VIII-specific TCR isolated
from an hemophilia A patient (23). TCRs against autoantigens
have also shown in vivo efficacy in models of arthritis (38)
(Table 1) or in vitro recognizing islet antigens involved in T1D
(182, 185).

Interestingly, MHC-I-restricted TCRs have been shown to be
functional in human CD4+ Treg, bypassing the need for the CD8
coreceptor, and this was the case for TCRs with low affinity not
functional on CD4+ Tconv (186).

A potential future perspective of these studies is the use of
TCRs isolated from Treg and not from effector T cells as done
until now. Although only very few TCRs and the peptides
recognized by Treg TCRs have been identified until now, they
do show differences with TCRs from Tconv, e.g., recognizing
longer (15aa) peptides or reversed TCR docking modes (176,
177, 187).
CARs
Pioneer work by Eshar and colleagues in the autoimmune field
allowed the generation of CARs in which antigen recognition
signaling domains of antibodies and a TCR-zeta-chain were
fused in a single molecule (181). Sequences from co-
stimulatory proteins were also fused in cis and the most
commonly used ones are the intracellular portions of CD28 or
4-1BB. While the 4-1BB signaling domain used in the CAR
construct has been suggested to enhance Tconv persistence and
improve the toxicity profile in patients, CD28 was shown to be
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more beneficial for Treg phenotype and function (18). CAR
technology has some advantages over TCRs, the most important
one being the absence of HLA restriction. CAR-Treg are less
dependent on IL-2 compared to TCR-expressing Treg,
potentially due to costimulatory signals received upon
activation of the CAR. However, CARs also have several
limitations vs. TCRs, as CARs only recognize extracellular
antigens. Additionally, CARs require higher expression levels
than TCRs (100–10,000 antigens/cell vs. <10, respectively) for
sufficient activation although increasing the affinity of CARs can
also increase efficacy (188, 189). CAR molecules can be
immunogenic, not only due to murine scFv fragments, but also
due to the generation of new epitopes in a chimeric molecule,
and this impacts the persistence of effector T cells in patients (97,
190). Even induction of anti-CAR antibodies was described for
effector T cells and the immune reaction was reported to be able
to cause anaphylaxis in a patient repetitively treated with CAR T
cells (191). Possibly, anti-CAR immune responses may be less
severe if the CAR is expressed in an immunosuppressive Treg
compared to expression in pro-inflammatory Tconv.

Human CD4+ and CD8+ CAR-Treg have been used in mouse
models of FVIII hemophilia, SOT and GVHD as well as in vitro
with CD4+ Treg from IPEX patients (for a complete list see
Table 1). Mouse CD4+ CAR-Treg have demonstrated efficacy in
mouse models of SOT, GvHD, IPEX, colitis, allergic asthma,
rheumatological diseases, and EAE (Table 1).

The importance of internal vs. external antigen targets could
orientate toward the generation of a TCR- vs. a CAR-transgenic
Treg. There are also new tools developed such as CAR-T cells
possessing a TCR-like antibody moiety (TCR-like CAR-T) with a
single-chain variable domain specific for a distinct peptide/MHC
(192). In an original approach, CD4+ Treg expressing a CAR
directed against FITC and ex vivo incubated with FITC-labeled
antibodies directed against donor alloantigens inhibited
pancreatic islet rejection (17). Similarly, the UniCAR system,
in which a universal CAR is indirectly linked to their target cells
via a separate targeting module, has been applied to human Treg
(193). In a new approach to treat autoantibody-driven diseases,
CD4+ Treg have been engineered to express CARs with antigens
recognized by B-cells (called BARs, where the scFv fragment is
replaced by an antigen) (28). Similarly, Tconv expressing an
autoantigen in a chimeric autoantibody receptor (CAAR)
mediated killing of the autoreactive B-cells, as shown in
pemphigus (44). Also, Tconv expressing anti-CD19 CARs
generally used to treat B-cell malignancies were used to treat
mice with lupus disease (42) (Table 1).
GENETIC ENGINEERING STRATEGIES
FOR THE USE OF OFF-THE-SHELF
ALLOGENEIC TREG

Genetic engineering of allogeneic Treg as an off-the-shelf
product would allow cells from a given donor to treat several
patients thereby reducing the cost per dose as well as increasing
treatment flexibility (Figure 2). Nevertheless, this approach has
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the draw-back of allogenicity due to recognition of foreign MHC-
I and -II antigens by host T cells. To extend allo-Treg persistence,
deletion of b-2 microglobulin and CIITA could be performed to
eliminate MHC-I and -II antigens, respectively. Although
absence of MHC-I may increase the susceptibility of Treg to
NK cell lysis and that could limit therapeutic efficacy, activated
Treg may be more resistant in vivo and indeed triple-KO T cells
have been found to persist better than HLA-sufficient T cells. In
addition, overexpression of HLA-E or CD47, important in NK
cell inhibition through inhibitory receptors, could prevent NK
cell-mediated lysis (194–196). Preventing an immune response
against allogeneic cells is even more important in the Treg setting
than in the Tconv setting, as here any pro-inflammatory immune
response can be detrimental as opposed to the Tconv setting, in
which the goal is to create a pro-inflammatory environment.
However, it has also to be considered that Treg have anti-
inflammatory properties per se and first applications of 3rd

party-der ived Treg af ter umbi l ica l cord stem cel l
transplantations did not reveal relevant adverse events (197).

Another potential risk using allogeneic T cells is GvHD
although the inherent suppressive function of Treg makes this
risk less relevant than with allogeneic Tconv. Generating highly
specific, allogeneic Treg products also harbors the risk of toxicity
in the case of unstable Treg or contaminating Tconv. Strategies
such as suicide genes and elimination markers—some already
clinically evaluated in Tconv—could be included to shut off
adoptively transferred “stealth” Treg in case of toxicity (198)
(Figure 2).

Pluripotent stem cells-derived Tconv mainly for cancer use
have been described (199, 200) and derivation of Treg would be
an important step not only to have an unlimited source of cells
but also for generating “stealth” Treg.

It will also be important to better understand the migration of
Treg to different anatomical compartments and their survival. To
date, Treg infused in patients have only been identified in vivo in
T1D patients after labeling CD4+ Treg with deuterium but this
strategy is limited to cells in circulation and not in tissues (201).
Also, mouse CD4+ Treg have been transduced for the
expression of the sodium-iodide symporter (NIS). NIS uptakes
into only living cells plasma iodide and other substrates
detected using PET or SPECT/CT. NIS-expressing Treg
radiolabeled with Technetium-99m pertechnetate were
detected in spleen with no effects on cell viability, phenotype,
and function (202).
GMP COMPLIANT MANUFACTURING
AND CLINICAL PERSPECTIVES OF
SUPER-TREG

An increasing number of clinical trials employing adoptive Treg
transfer are currently ongoing or registered addressing a large
variety of applications (3, 5, 6). The generation of Super-Treg
with genetic modifications will require the use of improved
protocols for the purification and amplification of Treg to prevent
contaminating Tconv with putative hazard. Bead-based or flow
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cytometry-based cell sorters (9, 14–16, 18), either fully closed or
open systems, allow for clinical grade CD4+ Treg isolation. For
clinical-grade CD8+ Treg isolation flow cytometry-based
approaches are used. Typically, in vitro Treg expansion before
adoptive transfer takes around 2–3 weeks (9, 14).

Release criteria usually include the classical phenotypic
Super-Treg markers (e.g., CD25, FOXP3 for CD4+ Treg) and
absence of pro-inflammatory markers, e.g., pro-inflammatory
cytokine production and CD45RC for CD8+ Treg. Functional
assays or epigenetic assays may be beneficial, however cannot be
realized in a timely manner before Treg product infusion.

Super-Treg quality control will require additional control of
nuclease delivery and duration of expression as well as
maximization of efficacy preferentially using vector-free
systems (41). Safety controls will include in silico as well as in
vitro analysis of off-target effects of nucleases and careful analysis
of the edited loci (41). In this context, a clinical trial using
CRISPR/Cas9-genetically modified in cancer patients has been
recently published (95).

A Phase I/II clinical trial is approved in UK that plans to
apply CAR anti-HLA-A2 CD4+ Treg in kidney transplantation.
Academic multi-center consortia (like the ReSHAPE
consortium, http://www.reshape-h2020.eu/partnership) aim to
generate CD4+ and CD8+ Super-Treg and to apply them to both
animal models of immune-mediated disease and clinically in
kidney transplanted patients.
DISCUSSION

The specific challenge of using Treg therapy in general in human
pathologies will be to interfere with established autoimmunity,
rather than de novo immunizations (SOT, GvHD, gene therapies,
biologics), without provoking global immunosuppression.

A future direction is the use of CARs recognizing inflamed or
damaged tissues that could direct the Treg to these pathological
areas, as shown by preliminary data (203).

The demonstration that Treg can stimulate tissue regeneration
(204–208) reveals regenerative medicine as a novel indication for
Super-Treg.
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As for CAR-Tconv (209), the simultaneous use of both CD4+

and CD8+ CAR-Treg may prove to be superior to each subset alone.
Treg will likely be modified using new T cell engineering

strategies, such as synthetic Notch receptors that have an
extracellular single-chain antibody and intracellular transcriptional
domains that are released and activate expression of target
genes (210).

Immune humanized immunodeficient animal models will
continue to be useful to address many questions in preclinical
studies (211). Moreover, human and/or patient organoids, may
gain more importance and are promising candidates for
examining Treg function in disease models (212).

Biomarker studies will be important to define not only the
effects of Super-Treg therapy but also the timing and doses of
their administration.

The knowledge of Treg biology, their success in animal
models and early clinical trials as well as the explosion of
genome editing techniques are synergistic approaches to treat
immune-mediated diseases in the future.
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