
HAL Id: hal-03450496
https://hal.science/hal-03450496v1

Submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

AIRE deficiency, from preclinical models to human
APECED disease

Marine Besnard, Francine Padonou, Nathan Provin, Matthieu Giraud, Carole
Guillonneau

To cite this version:
Marine Besnard, Francine Padonou, Nathan Provin, Matthieu Giraud, Carole Guillonneau. AIRE
deficiency, from preclinical models to human APECED disease. Disease Models & Mechanisms, 2021,
14 (2), �10.1242/dmm.046359�. �hal-03450496�

https://hal.science/hal-03450496v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


REVIEW

AIRE deficiency, from preclinical models to human
APECED disease
Marine Besnard1,*, Francine Padonou1,*, Nathan Provin1, Matthieu Giraud1,‡ and Carole Guillonneau1,‡

ABSTRACT
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy
(APECED) is a rare life-threatening autoimmune disease that attacks
multiple organs and has its onset in childhood. It is an inherited condition
caused by a variety of mutations in the autoimmune regulator (AIRE)
gene that encodes a protein whose function has been uncovered by the
generation and study of Aire-KO mice. These provided invaluable
insights into the link between AIRE expression in medullary thymic
epithelial cells (mTECs), and the broad spectrum of self-antigens that
these cells expressandpresent to thedeveloping thymocytes.However,
these murine models poorly recapitulate all phenotypic aspects of
human APECED. Unlike Aire-KO mice, the recently generated Aire-KO
rat model presents visual features, organ lymphocytic infiltrations and
production of autoantibodies that resemble those observed in APECED
patients,making the ratmodel amain research asset. In addition,ex vivo
models of AIRE-dependent self-antigen expression in primary mTECs
have been successfully set up. Thymus organoids based on pluripotent
stem cell-derived TECs from APECED patients are also emerging, and
constitute a promising tool to engineer AIRE-corrected mTECs and
restore the generation of regulatory T cells. Eventually, these new
models will undoubtedly lead to main advances in the identification and
assessment of specific andefficient new therapeutic strategies aiming to
restore immunological tolerance in APECED patients.

KEY WORDS: AIRE, mTEC, APECED, APS-1, Organoid, Knockout
model

Introduction
Preclinical research using experimental animal models of diseases is
pivotal to advance the understanding of mechanisms involved in
these diseases and to successfully translate bench research to the
clinic. The selection of the model and its accuracy remain critical
since the success rate of drugs reaching clinical development
remains low. Worldwide, there are 7000 rare diseases recognized,
affecting more than 350 million people, but only <10% of these
diseases have an approved drug treatment (Villalón-García et al.,
2020). Clinical trials to evaluate therapeutic candidates for rare
diseases are challenging as, by definition, only small groups of
patient population are affected.
The autoimmune polyendocrinopathy candidiasis ectodermal

dystrophy (APECED; also known as autoimmune polyglandular

syndrome type I, APS I) is one of these rare human autoimmune
diseases (Perheentupa, 1980). APECED is an autosomal-recessive
disorder caused by a mutation in the autoimmune regulator (AIRE)
gene that is expressed in the thymus and whose protein product,
AIRE, is essential for central immune tolerance (Villasenor et al.,
2005). AIRE is involved in the expression of tissue-restricted
antigens (TRAs), i.e. tissue constituents that are not ubiquitously
expressed. These antigens are essential for negative selection as they
contribute to the projection of the complete self repertoire at the
local site of negative selection and, thus, enable the elimination of
all autoreactive T cells. The APECED disease, thus, involves
autoreactive T cells that escape deletion, as well as autoantibodies,
and leads to premature death in young adults. To date, there is no
cure to prevent or treat the APECED syndrome (Kisand and
Peterson, 2011).

To better understand the human APECED pathology, AIRE-
deficient mouse models have been generated since the identification
of causative gene; they have been essential to study and get a better
understanding of the APECED disease (Hubert et al., 2009; Mathis
and Benoist, 2009). However, flaws remain, since these models
only recapitulate limited aspects of human ACEPED pathology and
its clinical features and, to the best of our knowledge, these mouse
models have not been used to translate therapeutic drug candidates
to the clinic.

In this Review, we aim to describe the latest advances in the
different APECED models, including a rat model generated by our
lab and used to study the disease. Moreover, we discuss new
approaches, such as ex vivo models and organoids generated from
embryonic or induced pluripotent stem cells, to better understand,
challenge and assess immunotherapies.

Human APECED: clinical features and genetic causes
The first documented case of APECED syndrome was reported in
1929 by Thorpe and Handley, describing of a four-and-a-half-year-
old girl suffering from chronic tetany (see Glossary, Box 1),
hypoparathyroidism, chronic oral mycelial infection and cornea
ulceration (Thorpe, 1929). However, the term APECED is more
descriptive of the syndrome and appeared only in 1980 (Perheentupa,
1980). One characteristic of this potentially fatal disease is the
incidence of several severe auto-immune lesions within peripheral
tissues – not all of which are present in affected individuals –
resulting from the central immune tolerance defect. In the past,
patients were only diagnosed with APECED if presenting with at
least two symptoms of the so-called Whitaker’s triad, comprising
chronic mucocutaneous candidiasis (CMC), hypoparathyroidism
(HP) and adrenal insufficiency (Addison disease, AD) (Box 1) – all
three of which are considered to be hallmarks of this disease
(Esselborn et al., 1956; Neufeld et al., 1980). More recently, the
spectrum of APECED symptoms has been expanded to include ≤30
related manifestations. Amongst others, they include type 1 diabetes
(T1D), hypergonadotropic hypogonadism, ovarian failure, hepatitis,
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keratoconjunctivis, pernicious anemia, malabsorption, alopecia,
vitiligo, urtical eruption and enamel hypoplasia (Fig. 1; Box 1)
(Ferre et al., 2016; Orlova et al., 2017). APECED patients usually
harbor between five and 20 symptoms that, preferentially, appear
during childhood; however, some develop with age and without any
predictability of severity or diversity (Ahonen et al., 1990;
Constantine and Lionakis, 2019; Ferre et al., 2016; Perheentupa,
2006). In many cases, the development of symptoms is preceded by
production of specific autoantibodies – another characteristic of the
APECED syndrome (Ekwall et al., 1998). Indeed, patients produce a
wide array of autoantibodies, some of which correlate with the
presence of organ-specific autoimmunemanifestations. For example,
antibodies directed against cobalamin binding intrinsic factor
(CBLIF, also known as GIF), glutamate decarboxylase (GAD;
Box 1) and GA-binding protein transcription factor subunit beta 2
(GABPB2) are associated with the development of pernicious
anemia, vitiligo and autoimmune hepatitis, respectively (Fishman
et al., 2017). However, in contrast to the progressive development of
symptoms with age, the antigen repertoire targeted by autoantibodies
does not expand. This implies that autoantibodies alone cannot fully
explain the accumulation of the APECED-associated autoimmune
manifestations (Fishman et al., 2017). Autoantibodies that were
found in APECED patients to target cytokines, such as interleukin
(IL)-17 and IL-22, have been linked to CMC,whereas autoantibodies

targeting type I interferon (type I IFNs) negatively correlate with the
incidence of T1D; the latter might, therefore, be of therapeutic
interest (Meyer et al., 2016). Anti-IFNω antibodies are highly
specific of this pathology, as they are only found in patients
diagnosed with a thymoma or with APECED (Burbelo et al., 2010).
Moreover, they usually appear before the onset of other clinical
manifestations and can be found in all APECED patients. For these
reasons, anti-IFNω antibodies are now used as a diagnostic tool for
APECED syndrome (Kisand et al., 2008). This discovery
fundamentally improved the diagnosis of APECED as, until then,
only two diagnostic criteria had been available – the presence of the
classic association of symptoms, i.e. those from Whitaker’s triad or
an AIRE mutation. Indeed, the clinical picture has evolved with the
discovery of new manifestations and the documentation of prevalent
symptoms from Whitaker’s triad has declined (Perheentupa, 2002).
In addition, since APECED is mostly inherited recessively, scrutiny
of the AIRE gene by sequence analysis is only donewhen relatives of
the patient are affected or when specific symptoms have developed.
However, recent studies have shown that APECED can also be
inherited in a dominant manner through mono-allelic missense
mutations in the first plant homeodomain (PHD1) zinc finger of
AIRE, which then suppress wild-type AIRE in a dominant-negative
manner (Cetani et al., 2001; Oftedal et al., 2015). Prevalence
of APECED remains relatively low, with an average incidence of

Box 1. Glossary
• Addison disease (AD), also known as primary adrenal insufficiency

and hypocortisolism: an endocrine pathology affecting adrenal glands,
resulting in a deficit in steroid hormone synthesis. Symptoms include
weight loss, abdominal pain and weakness.

• Alopecia: complete or partial loss of hair that can happen on the scalp,
i.e. in patches (alopecia areata) or the entire head (alopecia totalis), or
over the whole body (alopecia universalis).

• Aromatic L-amino acid decarboxylase (AADC, officially known as
DCC): an enzyme that catalyzes several different decarboxylation
reactions in the biosynthesis of various neurotransmitters and
neuromodulators.

• Chronic mucocutaneous candidiasis (CMC): chronic Candida spp.
infection of the mucosa, nails and skin that persists, owing to an immune
disorder linked to a T cell defect.

• Chronic tetany: a condition characterized by spasms, cramps
and overactive neurological reflexes as a result of low calcium blood
levels that are often the consequence of hypoparathyroidism
(see below).

• Enamel hypoplasia: a developmental defect that weakens the surface
of teeth, due to defective formation of the hard protective layer covering
the outside of the tooth.

• Epithelial cell adherence molecule (EpCAM): a common surface
marker protein of epithelial cells.

• Glutamate decarboxylase (GAD): an enzyme that catalyzes the
decarboxylation of glutamate to GABA, the main inhibitory
neurotransmitter.

• Gonadic failure: a disorder in which testes or ovaries fail to produce
either sex hormones or gametes, resulting in fertility issues.

• Hypergonadotropic hypogonadism (HH), also known as primary or
peripheral gonadal hypogonadism: the defective response of gonads
to hormones, caused by problems with the pituitary gland or
hypothalamus. It is the result of decreased testosterone or estradiol
production, respectively, in males or females, inducing a delay in sexual
development and diminished reproductive functions.

• Hypoparathyroidism (HP): failure of the parathyroid gland to efficiently
produce the parathyroid hormone, in fine leading to lowblood calcium levels.

• Immunological tolerance: capacity of the immune system to recognize
the body’s own components and not react to them, which is vital for the
protection against autoimmune diseases. The tolerance process takes
place in the thymus, whose main function is to control thymocyte
development, and to discriminate between self- and non-self antigens.

• Induced pluripotent stem cells (iPSCs): somatic cells reprogrammed
back to an embryonic-like pluripotent state.

• Keratoconjunctivis: simultaneous inflammation of the cornea and
conjunctiva.

• Medullary thymic epithelial cells (mTECs): a population of TECs
located in the medulla of the thymus. mTECs express and present a
large number of self-antigens to the developing T cell to ensure their
education and prevent autoimmune reactions.

• Protein-disulfide isomerase pancreas specific (PDIp, officially
known as PDIA2): a member of the protein disulfide isomerase (PDI)
family, acting as a molecular chaperone that catalyzes the formation of
disulfide bonds in secretory proteins.

• Pernicious anemia: decrease of red blood cell due to B12 vitamin
malabsorption in the intestines.

• Regulatory T cells (Tregs): a subpopulation of T cells that help prevent
autoimmune manifestations by regulating the activity of immune cells.
They control the immune response to and self- and non-self antigens.

• T cell receptor (TCR) repertoire: describes the T cell diversity within the
immune system of an individual in a physiopathological context and it
represents the repertoire of antigens encountered by the TCR.

• Tissue-restricted antigens (TRAs): tissue constituents that are not
ubiquitously expressed.

• Type 1 diabetes (T1D): an autoimmune disorder that affects pancreatic
Langerhans islet cells and results in very little to no insulin production.

• Vitiligo: a progressive autoimmune disorder affecting the skin that
manifests as patchy loss of pigmentation.
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1:90,000–1:200,000 in most European countries (Ferre et al., 2016).
However, this strongly increases within an isolated population, such
as the Finnish (1:25,000) and Sardinian (1:14,000) or within that of
Iranian Jews (1:9000), probably due to a historic founder-mutation
effect, specifically the Arg257X, Arg139X and Tyr85Cys mutations
(with X representing any amino acid), respectively (Ahonen et al.,
1990; Rosatelli et al., 1998; Zlotogora and Shapiro, 1992).

AIRE mutations and APECED
To date, 145 AIRE mutations, including numerous mutant alleles,
have been associated with APECED, from single-nucleotide
mutations to large deletions across the gene’s entire coding
sequence. Although missense mutations of the gene seem to
cluster preferentially in the exons that encode the CARD and PHD1
domains, there seems to be no such pattern for insertions or deletions
(indels). Most AIREmutations that are not indels occur in the CARD
domain; however, the most prevalent mutation, p.R257*, is located
in the SAND domain (Stolarski et al., 2006; Trebušak Podkrajšek
et al., 2005). It was initially believed that all AIREmutations lead to
the autosomal recessive inheritance of APECED; but, recent studies
identified dominant AIRE mutations in the SAND and PHD1
domains that induce a non-classic form of APECED. This form
features very few, if not unique, milder autoimmune manifestations
(Ahonen et al., 1990; Cetani et al., 2001; Oftedal et al., 2015), and its
discovery suggests that dominant AIRE mutations play a previously
unrecognized role in the induction of common organ-specific
autoimmune disorders (Oftedal et al., 2015).

AIRE and thymic tolerance
As discussed in more detail below, mouse APECED models in
which the Aire gene has been inactivated or knocked out revealed
that AIRE is specifically expressed in mature medullary thymic
epithelial cells (mTECs, see Boxes 1 and 2) of the thymus
(Derbinski et al., 2001; Rosatelli et al., 1998). mTECs are
characterized by high expression levels of class II major
histocompatibility complex (MHC class II) molecules and of a
wide array of self-antigens (Danan-Gotthold et al., 2016), which
they present to developing thymocytes. In mTECs, AIRE controls
the expression of thousands of tissue-restricted antigens (TRAs) that
normally are only expressed in one or a few peripheral tissues
(Kyewski and Klein, 2006). Although many functional aspects
of AIRE remain unknown, it certainly is involved in release of
RNA polymerase II pausing at promoters of AIRE-dependent genes
(Giraud et al., 2014; 2012) and in recruitment of chromatin-
remodeling factors that facilitate transcriptional elongation
(Abramson et al., 2010). Additionally, AIRE-dependent gene
expression is regulated through a post-transcriptional mechanism
that shortens the 3′ untranslated region of AIRE target transcripts to
increase their stability (Guyon et al., 2020).

Impaired expression ofAIRE-dependent TRAs inmousemodels of
APECED impedes the negative selection of developing self-reactive
thymocytes (Liston et al., 2003). This has been demonstrated in
transgenic mice that have thymocytes harboring T-cell receptors
(TCRs) specific to the self-antigen hen egg lysosome (HEL) under the
control of the rat insulin promoter (RIP), a promoter that depends on

• Type 1 diabetes
• Exocrine
 pancreatic failure

Autoimmune
hepatitis

Interstitial
lung
disease

•�Candidiasis
•�Enamel
 dysplasia

Alopecia Kerato-
conjunctivitis

Hypoparathyroidism

•�Adrenocortical
 insufficiency

• Tubulo-interstitial
 nephritis

•�Malabsorption
•�Autoimmune
 enteropathy

Hypergonadotropic
hypogonadism

• Vitiligo
• Nail dystrophy
• Urtical eruption

Fig. 1. Common symptoms of APECED.Representation of different manifestations usually observed in APECEDpatients, including the historicalWhitaker’s triad
(candidiasis, hypoparathyroidism and adrenocortical insufficiency; red) and the symptoms that have been linked to APECED syndrome only recently (blue).
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action of AIRE inmTECs (Liston et al., 2003). In contrast to Aire-KO
mice that do not express HEL in mTECs, few HEL-specific T cells
were retrieved from wild-type (WT) mice, showing that AIRE-
dependent HEL expression resulted in depletion of T cells able to
recognize HEL peptides (Liston et al., 2004; 2003). However, the role
of AIRE in shaping immunological tolerance (Box 1) appears to rely
not only on the clonal deletion of autoreactive thymocytes but also on
the generation of regulatory T cells (Tregs; see Box 1) (Yang et al.,
2015). In addition, AIRE is also involved in the mechanisms that
enable Tregs to suppress autoimmune manifestations in the periphery
of the immune system (Aricha et al., 2011; Teh et al., 2010). These
findings show that AIRE plays a key role in the establishment of
immunological tolerance, by promoting the negative selection of
developing autoreactive thymocytes and by generating Tregs that
efficiently suppress autoreactive responses elicited by autoreactive
T cells in their periphery. These findings have implications on how to
treat APECED patients.

Current standard of care for APECED patients
Currently, APECED patients receive a combination of treatments
tailored to their individual clinical profile. CMC is the most
common clinical feature; it requires daily oral medication and close
monitoring to avoid chronic Candida spp. infection, as it can lead to
the development of oral squamous cell carcinoma (Böckle et al.,
2010). Normally, CMC is treated with antifungal drugs such as
fluconazole, topical ketonazole or amphotericin B for azole-
resistant forms (Constantine and Lionakis, 2019; Humbert et al.,
2018). APECED patients might also receive hormone replacement
therapies comprising synthetic thyroid hormones, mineralo-
corticoids, hydrocortisone or sex steroids (Jankowska, 2017;
Napier and Pearce, 2012; Winer et al., 2008; Yeap et al., 2016) to
treat hormone deficiencies resulting from HP, AD and/or gonadic
failure (Box 1). Symptoms that are linked to an excessive response of
autoreactive T cells, like autoimmune hepatitis, tubulo-interstitial
nephritis or autoimmune enteropathy, are treated with
immunosuppressants, such as azathioprine, mycophenolate or
corticosteroids (Gentile et al., 2012; Manns et al., 2010; Ulinski
et al., 2006). However, the long-term use of immunosuppressive
drugs causes significant and unavoidable adverse reactions that can
have life-long deleterious effects. For example, corticosteroid therapy
in young APECED patients slows their growth and delays puberty
(De Leonibus et al., 2016; Polito and Di Toro, 1992). In addition,
immune inhibition caused by corticosteroid therapy in children and

adults increases their susceptibility to infections – a significant issue
in patients already prone to CMC. Hence, there is a profound need to
develop more-targeted therapeutics to treat this disease. Recently,
rituximab immunotherapy has been used with relative success to treat
pneumonitis in the context of APECED; it leads to a clinical
improvement without affecting the production of autoantibodies
against potassium channel regulatory protein (KCNRG) (Ferré et al.,
2019). Nevertheless, as APECED patients are still at risk of premature
death (Borchers et al., 2020), their management is very complex and
requires the collaboration of numerous specialists, such as dentists,
dermatologists, endocrinologists and pediatricians.

The first significant step to improve our knowledge on the
APECED syndrome and to evaluate the efficacy of new therapies
was achieved only 20 years ago, when scientists generated the first
rodent model of AIRE deficiency. We describe its details below.

Preclinical rodent models of APECED
To study the role of AIRE in the establishment and/or maintenance
of immunological tolerance, several rodent models of APECED
disease were generated by inactivating Aire in mice and rats. Here,
we summarize all existing preclinical models of APECED,
highlighting their strengths and limitations in relation to human
APECED pathology. These models can be used in parrallel to study
the heterogeneity and mechanisms underlying the APECED
syndrome caused by different known human mutations.

Mouse APECED models: their strengths and limitations
The first available mouse models of APECED syndrome were
generated from various mouse strains and genetic backgrounds
(summarized in Table 1 and Fig. 2) using two main approaches: 1)
engineering genetic mutations found in human APECED patients
into the murine Aire locus and, 2) using exon targeting to delete
exons that encode functional domains of Aire (Fig. 2B). The first
APECED mouse, which we call model 1, was generated in the
Peltonnen lab based on a mutation commonly found in Finnish
APECED patients (Ramsey et al., 2002). This mutation corresponds
to a cytosine→thymine nucleotide transition at position 889 (C→T,
889) that causes a premature stop codon, thereby truncating exon 6
of the human AIRE (Björses et al., 1998). To mimic this mutation,
Peltonnen and colleagues designed a construct that targeted exon 6
through homologous recombination, leading to the insertion of a
neomycin cassette at the beginning of exon 6 (Ramsey et al., 2002).
The APECED mouse model 2, generated by the Mathis lab, uses a
shorter Aire transcript in which the premature truncation of exon 1
caused the deletion of exon 2 and of some of the upstream and
downstream introns, leading to a non-functional AIRE protein
(Anderson et al., 2002). The APECEDmouse model 3, generated in
the Matsumoto lab, was also designed independently of any known
humanmutation. In this model, a neomycin cassette replaced exon 5
to exon 12 of the Aire locus, thus yielding a truncated AIRE protein
that lacks a large segment of its functional domain (Kuroda et al.,
2005). However, APECED mouse model 4 – containing a common
human APECED-associated mutation found in the Anglo-
American population (Hubert et al., 2009) – was generated in the
Scott lab (Heino et al., 2001), comprising a 13 bp deletion in exon 8
(967–979), which disrupts the PHD1 domain of the protein.

The Aire-deficient mice described above have a range of infertility
problems but present with normal weight and size compared with
their littermates, both postnatally and at an age of ∼2–3 months
(Anderson et al., 2002; Hubert et al., 2009; Kuroda et al., 2005;
Ramsey et al., 2002). Most of their immunological traits, such as T
cell proliferation, cytokine production, CD4:CD8 ratio, thymocyte

Box 2. Specific markers and function of TECs
The role of the thymus in establishing immunological tolerance is based
on the functional selection of T cells, a process that is orchestrated by
thymic epithelial cells (TECs) (Takahama, 2006). Whereas cortical
thymic epithelial cells (cTECs) are involved in thymocyte lineage
commitment and in the positive selection of T cells based on the
recognition of peptides-MHC molecules (Klein et al., 2014; Takahama,
2006), medullary epithelial cells (mTECs) mediate the negative selection
of autoreactive T cells based on the unique ability of mTECs, to express
and present tissue-restricted antigens (TRAs) to developing T cells and
to eliminate the autoreactive ones (Anderson et al., 2002; Klein et al.,
2014; Stritesky et al., 2012). Early markers of cTEC and mTEC lineages
include the cytokeratins KRT8 (K8) and KRT5 (K5), respectively (Sekai
et al., 2014). Mature mTECs also highly express CD80, MHC-II
molecules and the autoimmune regulator AIRE, and are characterized
by expressing a high numbers of AIRE-induced TRAs (Gäbler et al.,
2007; Sekai et al., 2014).
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and lymphocyte numbers, expression of differentiation markers, and
in vitro antigen presentation appear to be normal at birth and up to
early adulthood. This is except mouse model 2 (Mathis lab); mice of
this model present with increased numbers of activated/memory T

cells (CD44highCD62Llow) in peripheral lymphoid organs at the
age of ∼2–3 months (Anderson et al., 2002). An increased number
of mTECs was also observed in mice of models 1 and 4 at the age of
∼2–3 months (Anderson et al., 2002; Hubert et al., 2009). In models
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Fig. 2. Comparison of the AIRE/Aire locus in human, mouse and rat, and strategies to generate APECED rodent models. (A) Schematic representation of
AIRE/Aire locus organization in human, mouse and rat, showing the different genetic contexts. (B) Summary of the strategies used to develop APECED
mouse and rat models, providing the location of the genetic editing and its consequence for the Aire protein.
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2, 3 and 4, absence of AIRE is also associated with the loss or
significantly reduced expression of several autoantigen genes, thus
impairing the negative selection of autoreactive T cells usually
mediated by AIRE in the thymus (Anderson et al., 2002; Derbinski
et al., 2001; Kuroda et al., 2005; Niki, 2006; Su et al., 2008).
All these mouse APECED models display age-dependent organ

lymphocytic infiltration, with variation in the targeted tissues
possibly due to environmental factors and genetic backgrounds, as
the original APECED mouse models 2 and 3 were back-crossed
onto several different genetic backgrounds (Anderson et al., 2002;
Gavanescu et al., 2007; Jiang et al., 2005; Kuroda et al., 2005; Niki,
2006). Numerous serum antibodies against different tissues were
detected in early adulthood in most Aire-deficient mouse models,
and the number and frequency of these antibodies progressively
increases with age (Anderson et al., 2002; Hubert et al., 2009; Jiang
et al., 2005; Kuroda et al., 2005).
Experiments involving thymic chimeras demonstrated that

thymocytes derived from Aire-deficient mice are autoreactive and
can transfer the autoimmune disease when transplanted to immuno-
deficient recipients (Anderson et al., 2002; Kuroda et al., 2005).
Initially, the number of Tregs (Box 1) and their function seemed to
be normal in APECED mouse models 1, 2, 3 and 4, suggesting that
only the overproduction of autoreactive T cells induces autoimmune
manifestations (Kuroda et al., 2005). However, subsequent studies
revealed that Aire deficiency also affects the function of Tregs.
Indeed, an analysis of the T cell receptor (TCR; Box 1) repertoire of
Tregs (CD4+Foxp3+ and CD8+CD28low) provided molecular
evidence that AIRE is potentially involved in shaping the TCR
repertoire of Tregs (Malchow et al., 2013a, 2016; Pomié et al.,
2011). Moreover, a comparative analysis of CD8+CD28low Tregs
fromWT and APECEDmodel 4 mice (Hubert et al., 2009) revealed
that, despite equal representation and similar immunosuppressive
activity, the CD8+CD28low Tregs from Aire-KO animals fail to
control the onset of colitis when using adoptive cell transfer (ACT)
in vivo together with colitogenic cells, a phenotypic feature of
APECED patients (Pomié et al., 2011) – which is in contrast to
CD8+CD28low Tregs from WT mice.
Another mouse APECED model, hereafter, referred to as model

5, was developed in the Anderson lab (Su et al., 2008) (Table 1) and
is based on an autosomal dominant mutation found in Italian
patients, who show a heterozygous base substitution at position 809
of the cDNA sequence (G→T, 809 in exon 6) (Cetani et al., 2001).
This nucleotide change leads to replacement of amino acid (aa)
glycine with tryptophan at position 228 (Gly228Trp) in the SAND
domain of human AIRE. Mice in model 5 present with autosomal
dominant autoimmunity and a spectrum of disease manifestations
that are different compared to those observed in the other mouse
APECED models discussed above. This is because the AIRE
protein carrying the Gly228Trp mutation appears to exert a
dominant-negative effect that prevents WT AIRE protein to reach
active transcription sites in mTECs (Su et al., 2008).
Despite the insights these mouse models provided regarding

etiology and pathology of APECED, significant phenotypic and
clinical differences exist between Aire-deficient mice and human
APECED patients. For example, no animal of the APECED mouse
models described here displayed the most common, visible
autoimmune and ectodermal manifestations of APECED, i.e.
CMC, HP and vitiligo – not even those of mouse models bred
onto the non-obese diabetic (NOD) genetic background that
exhibited a more severe autoimmune phenotype (Gavanescu et al.,
2007; Jiang et al., 2005; Niki, 2006; Su et al., 2008). In addition,
none of these models had autoantibodies directed against cytokines,

such as type I IFNs, IL-22 and IL-17, which are commonly detected
in APECED patients. However, a recent study reported that the
APECED mouse model 4 (Hubert et al., 2009; Table 1) does have
IFNα2a, IL-17 and IL-22-neutralizing autoantibodies (Kärner et al.,
2013); and, whereas APECED remains a life-threatening
autoimmune disease in humans, Aire-deficient mice have a life
expectancy that matches that of their WT littermates, despite their
organ-specific autoimmunity.

As such, none of these mouse APECEDmodels have been able to
recapitulate the severe clinical features seen in APECED patients.
They have, nevertheless, provided important insights into the
functional relationship between Aire and the cellular and molecular
pathogenic mechanisms of this disease, enabling the function of
AIRE to be investigated in the selection process of T cells and in the
establishment of immunological tolerance. All the previously
described AIRE-deficient mouse models also played an important
role in understanding the role of AIRE in central immune tolerance.
However, for proper clinical studies, there is still a need for an
animal model that explicitly displays the phenotypical traits of
APECED patient. In 2018, a potentially accurate rat model of the
disease was designed in the Guillonneau lab (Ossart et al., 2018).
The following section presents the strengths and limitations of this
APECED rat model.

The rat model of APECED: strengths and limitations
As Fig. 2A shows, although organization of the Aire locus is similar
in humans and rats, the murine Aire locus overlaps with another
gene. As such, disrupting Aire in rats might more faithfully
recapitulate the clinical features of APECED patients. To the best of
our knowledge, only one Aire-deficient rat model exists, generated
by our own group (Ossart et al., 2018) (Table 1). It was generated by
targeting exon 3, which encodes the nuclear localization signal
(NLS) sequence of Aire, to induce a 17 bp deletion that mimics the
human Arg139X mutation commonly found in Sardinian APECED
patients (Rosatelli et al., 1998). This mutation leads to an early stop
codon, resulting in the premature termination of AIRE translation
and reproduces in rats many of the main human characteristics of the
APECED syndrome (Ossart et al., 2018). Three lines of these rats
were generated by back-crossing the founder Aire-deficient Brown
Norway rats with WT Sprague-Dawley or Lewis rats for several
generations (Table 1). Despite some insignificant differences in
terms of symptom severity, the overall phenotype of the rats was
similar between each strain (Ossart et al., 2018). This observation
supports the hypothesis that the consequences of Aire deficiency do
not primarily depend on the genetic background but probably more
on the layout of the Aire locus.

At approximately 6 months of age, animals of all Aire-deficient
rat strains start to develop skin disorders, including patchy hair loss
suggestive of alopecia, depigmentation (vitiligo), and nail
overgrowth (nail dystrophy) – symptoms that are frequently seen
in APECED patients (Collins et al., 2006). Moreover, several
organs, including liver and kidney, show extensive lymphocytic
infiltration in all strains of Aire-deficient rats, correlating with
increased serum levels of alkaline phosphatase and creatinine,
respectively (Ferre et al., 2016; Orlova et al., 2017). Both male and
female Aire-deficient rats show reproductive defects, even when
mated with WT animals, and even though testes and ovaries appear
to be anatomically normal, thus recapitulating the fertility problems
observed in APECED patients (Christin-Maitre et al., 1998;
Schaller et al., 2008). In addition, exocrine pancreatic tissue
destruction, a major clinical complication in some APECED
patients, is a highly prevalent phenotype seen in >90% of Aire-
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deficient rats (Perheentupa, 2006). Overall, histological analyses
have revealed that 79% of Aire-deficient rats exhibit pancreatic fat
accumulation, a decrease in acini, intralobular focal lymphocyte
infiltration and hyperplasia of the islets of Langerhans (Ossart et al.,
2018). However, glucose blood levels remain normal and they do
not develop diabetes, in contrast to APECED patients (Paquette
et al., 2010).
Thymopoiesis does occur in Aire-deficient rats, with the number

and proportion of immune cells being similar to those inWTanimals;
an exception being decreased numbers of plasmacytoid dendritic
cells and natural killer T cells, and increased numbers of effector
T cells (Ossart et al., 2018). Transcriptomic comparisons of the
thymus between Aire-deficient and WT rats and mice demonstrated
that, in rats, AIRE does not regulate the expression of the same set of
self-antigen genes, possibly explaining the difference in auto-
reactivity observed between rodents (Ossart et al., 2018).
Additionally, Fezf2 – another key factor involved in inducing the
expression of TRAs in mTECs and potentially involved in the
establishment of negative selection – is downregulated in the thymus
of Aire-deficient rats but not in that of Aire-deficient mice (Takaba
et al., 2015). This suggests that Aire deficiency decreases the
complexity of the self-antigen repertoire presented in the rat thymus,
resulting in the increased escape of autoreactive T cells and a larger
array of autoimmune manifestations.
Aire-deficient rats also produce a large panel of autoantibodies

against several antigens, including those found in the kidney, liver,
testis, intestines, adrenal gland and pancreas (Ossart et al., 2018). As
in humans, we found no correlation between the titers of these
autoantibodies and the severity of the associated symptoms; as such,
their importance in the etiology and pathology of APECED remains
to be clearly established. Studies in Aire-deficient mice have reported
the opposite result (DeVoss et al., 2008; Gavanescu et al., 2008),
possibly due to the fact that the autoantibody repertoire in mice
strongly differs from that of humans suffering from APECED
(Pöntynen et al., 2006). In particular, APECED-specific
autoantibodies, such as anti-IFNω, anti-IL-17 and anti-IL-22, are
not found in most of Aire-deficient mouse models, except in model 4
(Kärner et al., 2013), but their levels in Aire-deficient rats are
comparable to those in APECED patients (Ossart et al., 2018). This
absence of spontaneous specific autoantibody production in mouse
models of Aire deficiency further suggests that the
immunopathological mechanisms that occur in these mouse
models differ from those of the rat model and of APECED
patients. Thus, the Aire-deficient rat seems to be an appropriate
animal model in which to study autoantibodies in the context of
APECED.
Although the rat model of Aire deficiency recapitulates many

features of the APECED syndrome, the Whitaker’s triad of
symptoms remains to be observed in these animals. Whether
those disparities are linked to Aire itself is still unknown. One
hypothesis explaining the phenotypic differences between Aire-
deficient mice and rats, and humans suffering from APECED states
that each species has its own specificity in terms of immune system
components, such as cytokines, complement system, B cell- and
T cell-signaling pathways, γδ T cells, Th1/Th2 differentiation, etc
(Mestas and Hughes, 2004). One particular example is that humans
produce four subclasses of immunoglobulin G (IgG), i.e. IgG1,
IgG2, IgG3 and IgG4, which have no direct homologues in mice
and rats. Mice also lack expression of some Fc receptors (FcRs),
such as FcαRI, FcγRIIA and FcrγRIIC, all of which play a crucial
role in the immune response as they establish a link between
adaptive immune cells that produce Igs and innate cells that express

FcRs (Bruhns, 2012). Altogether, small divergences might be
compounded by the central immune defect due to AIRE deficiency
and result, in fine, in different phenotypes.

Mice have been extensively investigated for immunological
research during the last decades, while the use of rat models for
immunology-related investigation is more recent and, still, less
frequent. As a consequence, most available techniques and tools are
not tailored to rats. Despite this, rat models appear to be very useful as
they better represent a number of human diseases, such as Duchenne
muscular dystrophy (Ouisse et al., 2019) and, currently, the rat model
is the most appropriate for preclinical studies of APECED. We
foresee that Aire-deficient rat models will also benefit fundamental
immunology studies regarding mechanisms of action of AIRE;
particularly, because higher numbers of primary mTECs can be
obtained from Aire-deficient rats as compared with Aire-deficient
mice, as the availability of these cells is a limiting factor in ex vivo
experiments. In combination with animal models, these ex vivo
experiments –which are discussed in more detail below – are a great
asset to study thymic mechanisms under pathological conditions.

Ex vivo models to assess mTEC function
Although animal models of APECED are invaluable to understand
the events that link AIRE to the negative selection of autoreactive
thymocytes and the selection of Tregs, we also need new models to
gain further insights into the molecular mechanisms that underlie
the mode of action of AIRE. As a result, ex vivo models, showing
AIRE-mediated induction of TRAs and the impact AIRE has on
T cell development, have been generated to investigate such
mechanisms. Since primary TECs (see Box 2, Specific markers and
function of TECs) die rapidly in standard culture systems ex vivo,
TEC lines were initially used as in vitro systems in which to study
induction of gene expression through AIRE. Although these TEC
lines provided key findings (Abramson et al., 2010; Giraud et al.,
2014), they also have several major limitations, including loss of
AIRE expression, which has to be restored by transfecting these
cells with an AIRE expression vector. To model induction of gene
expression through AIRE in a more physiologically relevant
manner, ex vivo models have been set up by using primary TECs
in settings that better mimic the complex environment of the
thymus, which keeps TECs alive and functional.

To date, only a few ex vivo culture systems of primary TECs in a 3D
network have been established (Pinto et al., 2013; Villegas et al.,
2018). In contrast to previously described two-dimensional (2D)
models of TEC cultures (Bonfanti et al., 2010; Kont et al., 2008;
Mohtashami and Zúñiga-Pflücker, 2006; Palumbo et al., 2006), 3D
culture models preservemTEC lineage functions, and the cells express
TRAs under the control of AIRE and other transcription factors.

3D organotypic co-culture
Primary TECs show various biological similarities to keratinocytes
in the skin (see Box 3, TECs and keratinocytes). As such, an ex vivo
3D organotypic co-culture (OTC) system that supports TEC
survival and expansion has been developed, which draws on an
in vitro model of skin development (Boehnke et al., 2007; Stark
et al., 2006). The maturation process of both TECs and
keratinocytes depends on their close interaction with stromal cells,
such as fibroblasts, and on a 3D structural network of extracellular
molecules – the extracellular matrix (ECM) (Depreter et al., 2008;
He et al., 2002; Hunziker et al., 2011; Jenkinson et al., 2003;
Ulyanchenko et al., 2016). The 3D OTC model mimics dermal
tissue by using dermal fibroblasts that are embedded in an inert,
semi-solid matrix of insoluble fibrin strands to mimic the ECM
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(Fig. 3). The addition of TGF-β to this model induces the activation
and proliferation of the dermal fibroblasts. Purified mature AIRE-
positive mTECs extracted from young (4–6 weeks-old) mice are
then seeded onto this matrix within a specific medium that contains
the RANK ligand (RankL) (Fig. 3) – reportedly an essential factor
for the terminal differentiation of AIRE-positive mTECs (Akiyama
et al., 2008; Hikosaka et al., 2008; Rossi et al., 2007). The 3Dmatrix
enables activated fibroblasts to secrete a number of key factors that
establish a complex ECM (Fig. 3), which is key for mTEC integrity
in this culture model (Boehnke et al., 2007; Stark et al., 2004). In
this way, the OTC model preserves key features of mTEC function,
such as expression of AIRE and its dependent TRAs, and has,
therefore, been instrumental in the identification of the molecular
mechanisms that underlie mTEC developmental features, such as
the key differences between immature and mature mTECs, as
reported for the intact thymus (Pinto et al., 2013). This model could
also be used to identify the precise molecular mechanisms that
underlie AIRE-dependent expression of TRAs.
However, although the OTC model provides an optimal

environment for ex vivo TEC culture, its 3D organization might
not be a perfect match for the thymus – it is still a model that sustains
viable TECs for ∼1 week.

Human thymus-derived cell culture
A culture model was designed to allow the expansion of functional
TECs from human thymic explants and to address a key problem of
earlier versions of this type of model. Here, successive rounds of
enzymatic digestion to isolate TECs from other types of thymic cell
population (Fernández et al., 1994; Patel et al., 1995; Röpke, 1997;
Skogberg et al., 2015) affected the expression of TEC surface
molecules and impaired the viability of the cells (Autengruber et al.,
2012; Shichkin et al., 2017). In contrast to these earlier approaches,
the model reported by Villegas et al. involves an efficient, enzyme-
free procedure that enables human primary mTECs to be extracted
and, subsequently, expanded from fresh thymic explants (Villegas
et al., 2018). Fresh thymic fragments were obtained from
immunologically normal human babies (aged 2 days to 1 year)
undergoing corrective cardiovascular surgery. Those thymic
fragments were cultivated in a medium that supports the migration

of various types of thymic cell population (Nancy and Berrih-
Aknin, 2005; Nazzal et al., 2014; Wakkach et al., 1996), and the
eventual migration and expansion of TECs around the explant. This
expansion model was maintained for a few days and the functional
properties of mTECswere assessed through expression of AIRE and
of AIRE-dependent TRAs. The results of these studies show that the
human-derived mTECs of this model retain their ability to secrete
important signaling molecules, such as cytokines, chemokines and
growth factors, that are essential for the differentiation and
maturation of T cell subsets (Cowan et al., 2016; Hauri-Hohl
et al., 2014; Kimura and Kishimoto, 2010; Kondo et al., 2019;
Lkhagvasuren et al., 2013).

The human thymus-derived culture system is a short-term model
that cannot be expanded beyond 7–8 days, which limits the types of
study that can be performed (Villegas et al., 2018). Although ex vivo
models of mTEC culture are a great way to assess mTEC function,
they are also dependent on the availability of primary human thymic
tissues. Organoid and stem cell-derived models might, therefore,
be better suited to expand mTEC differentiation and functional
TEC studies.

Organoids and stem cell-derived models
Thymic organoids are the next step towards a more realistic thymic
model that would enable us to study the signals that trigger mTEC
differentiation into their mature AIRE-positive state and to carry out
T cell differentiation ex vivo. A 3D thymic organoid model would
need to mimic the thymic microenvironment and have different types
of cell population interacting within the ECM that, as discussed
above, plays a key role in the survival and development of a thymic
cell population. Significant progress in ECMmodelling has recently
been made using artificial ECMs (Seet et al., 2017) and
decellularized tissues (Fan et al., 2015; Hun et al., 2017), which
can support the generation of functional T cells ex vivo and are
expected to greatly benefit research on stem cell-derived thymic
models (Seet et al., 2017). Since induced pluripotent stem cells
(iPSCs; Box 1) were first developed (Takahashi and Yamanaka,
2006), there has been growing interest in differentiating these cells
into functional thymic tissue. Indeed, iPSCs are crucial to develop
models with which to study the ontogeny and function of rare types
of cell population, like mTECs, which are difficult to isolate and
expand ex vivo. iPSC-derived cells also have the inherent capacity to
harbor genetic diversity, an essential capacity for research in
immunology. A key goal of APECED research is to derive iPSCs
from the somatic cells of patients and then use gene editing to correct
their endogenous AIRE gene mutations. The gene-edited iPSCs
could then be differentiated into functional mTECs that express the
restored AIRE protein and all the AIRE-dependent and -independent
TRAs. This approach could result in promising clinical applications,
notably cell therapies, where corrected syngeneic mTECs are
transplanted to restore the functionality of thymic tissue.

A first step toward this goal has been achieved with the
differentiation of mouse embryonic stem cells (ESCs) into
EpCAM+K5+K8+ TEC-like cells (Lai and Jin, 2009; Parent et al.,
2013; Su et al., 2015), using a 14-day differentiation strategy (see
Box 4). Here, two key markers of thymic lineage commitment,
FOXN1 andHOXA3, were expressed at similar levels in the resulting
cells. After their transplantation into nude recipient mice, these ESC-
derived TEC-like cells restored proper thymic organization, as
evidenced by the formation of typical medullary and cortical
structures. An increase in functional peripheral T cells was also
observed, indicative of the transplanted differentiated cells showing
normal thymic activity. TECs have also been differentiated from

Box 3. TECs and keratinocytes
Keratinocytes (skin cells) and TECs share many biological similarities
(Petrie and Zúñiga-Pflücker, 2007). Indeed, TECs are organized into a
3D network that is crucial for the homeostatic maintenance of the thymic
microenvironment and provide an excellent support for the education
and maturation of functional thymocytes (Gordon and Manley, 2011).
Keratinocytes form a multi-layer, tightly connected sheet that forms the
outermost protective layer of the skin (Simpson et al., 2011). Both
keratinocytes and TECs express the transcription factor FOXN1, which is
necessary for their development and functional integrity (Baxter and
Brissette, 2002; Bleul et al., 2006; Gordon and Manley, 2011; Nehls
et al., 1996). In the thymus, FOXN1 is required to induce differentiation of
both cTECs and mTECs (Gordon and Manley, 2011). In the epidermis,
FOXN1 plays an important regulatory role in the development and
homeostasis of keratinocytes, and their function in wound healing
(Bukowska et al., 2018). Keratinocytes and TECs also express a set of
similar cytokeratins (Bonfanti et al., 2010; Cabral et al., 2001;
Langbein et al., 2003; Sekai et al., 2014) and differentiation factors,
and their progenitors share similar markers, such as PLET-1, RAC1
and SMAD7, which play very important roles in the differentiation of
these cells into specific subsets (Depreter et al., 2008; He et al., 2002;
Hunziker et al., 2011).
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human iPSCs, with comparable results (Chhatta et al., 2019; Inami
et al., 2011; Sun et al., 2013). More recently, the transplantation of
reaggregated differentiated mouse iPSCs into nude recipient mice
was shown to promote the tolerance of skin grafts and the generation
of functional T cells (Otsuka et al., 2020). However, several
challenges remain that hinder further refinements to this approach.
First, the differentiation efficiency achieved by these culturing

protocols remains low, with ∼10% of cells expressing the TEC
marker epithelial cell adhesion molecule (EpCAM) (Box 1) (Otsuka
et al., 2020; Soh et al., 2014), and so further studies are needed to
optimize these protocols. Another priority is to develop robust
protocols that can be adapted to different iPSC lines, as
reproducibility remains a main issue. The difficulty of maintaining
TECs in culture also jeopardizes the final stages of iPSC-derived
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TEC differentiation. Hopefully, recent advances of TEC
conservation in culture will make the co-culturing of TECs with T
cells possible, in order to support crosstalk between these two cell
types and to enable the induction of the cellular programs that lead to
their respective maturation. In addition, recent findings have revealed
a substantial and unrecognized degree of TEC heterogeneity
(Bornstein et al., 2018; Dhalla et al., 2019 preprint). In the past, a
relatively small marker set was used to define differentiated TECs, to
distinguish few distinct types of TECpopulation. However, the recent
application of single-cell transcriptomics revealed a substantial
degree of TEC heterogeneity (Bornstein et al., 2018; Dhalla et al.,
2019 preprint), providing us with a more precise way to identify a
particular population of iPSC-derived TECs and its signaling
pathways. Thus, thymic models based on iPSCs will benefit from
new insights provided by single-cell transcriptomics and are expected
to closely mimic the biological mechanisms that occur in vivo. In
addition, over time, the differentiation of APECED patient-derived
iPSCs into functional TECs is expected to lead to efficient cell
therapies, e.g. transplantable TECs or Tregs obtained from an ex vivo
T cell development system in which T cell precursors interact with
iPSC-generated TECs.

From experiments to human trials
Gene and cell therapy to correct a mutant AIRE gene or to correct
AIRE function represent a promising approach to cure APECED. In
support of this, similar approaches have been employed to treat other
rare diseases, by using CRISPR-Cas9- or adeno-associated virus-
based gene therapy to restore the correct expression of mutated genes
(see also Gene therapy: The ultimate cure for hereditary disease
therapy, 2019). However, in the case of APECED, there are some
pitfalls to restoring AIRE expression on a tissue-wide scale, since
normal expression of AIRE is restricted to the mTEC lineage. Indeed,
it has been shown that some tumor-associated antigens are AIRE-
dependent and that immune responses to tumors are stronger in Aire-
deficient mice (Bakhru et al., 2017; Malchow et al., 2013a,b; Träger
et al., 2012), indicating that the widespread expression of a corrected
AIRE gene in patients could increase the risk of anAPECEDpatient to
develop cancer. One study, employing a more targeted approach,

indicates how this problem might be addressed (Ko et al., 2010) by
using Aire-deficient mice, which only express reduced levels of TRA
and, therefore, are more susceptible to TRA-induced experimental
autoimmune encephalomyelitis (EAE). Retroviral transduction was
then applied to overexpress AIRE in vitro in cell lines of thymic
medullary or dendritic cell origin, as well as in bone marrow cells. In
the cell lines, this approach showed reduced expression of TRAs.
However, in bone marrow chimeras that had been generated using the
transduced bone marrow cells, elevated expression of TRAs resulted
in a delay of the symptomatic onset of EAE (Ko et al., 2010).
Transplantation of the thymus from allogeneic sources remains under
investigation, but has been successfully performed in pediatric patients
with a severe primary immunodeficiency called DiGeorge syndrome,
which is characterized by thymic hypoplasia or aplasia (Markert et al.,
2010). In this study, sixty patients were transplanted with postnatal
allogeneic cultured thymus tissues, resulting in >70%survival, and the
successful reconstitution of recipient T cells and T cell function.
However, the allogeneic origin of the transplanted thymic tissuemight
limit its long-term function due to anti-donor immune responses. In
addition, only tissue from donors whowere less than one year old was
used to limit the risk of viral exposure to these immunodeficient
patients (Markert et al., 2010). To the best of our knowledge, this
approach has not been used to treat APECED patients.

Thanks to developments in tissue-engineering techniques,
bioengineered artificial thymus organoids are also being
developed with the aim of rejuvenating thymus function. Such
organoids have been shown to successfully attract lymphocyte
progenitors in nude mice, supporting the generation of a complex
T cell repertoire and the induction of donor-specific tolerance (Fan
et al., 2015; Tajima et al., 2016). However, thymic organoids will
need to also mimic the complexity of a real thymus, which –
despite recent advances (Fan et al., 2015) – is yet to be achieved. In
addition, concomitant cytokine (such as IL-7 or IL-22) and growth
factor (FGF7) therapies might be needed to maintain and promote
the proliferation of thymic structures (Berent-Maoz et al., 2012;
Dudakov et al., 2012).

Given the broad spectrum of symptoms in APECED, translating
findings derived from animal models and from ex vivo and in vitro
experiments to the clinic is a real challenge. To diagnose patients at an
early stage is of key importance as it allows therapies to take place
before irreversible organ lesions have occurred. In addition,
monoclonal antibodies represent a tremendously powerful tool that
could be used to target specific effector T cells while preserving Tregs.
Indeed, they might represent the next-generation therapies for
APECED and would also help to avoid the deleterious, long-term
side effects of the immunosuppressive drugs currently used to manage
APECED patients (Constantine and Lionakis, 2019). Indeed, we have
shown that – for complications after transplantation (i.e. solid-organ
rejection and graft-versus-host disease) and in patients with Duchene
muscular dystrophy – treatment with anti-CD45RC mAb can restore
the balance of Teff-to-Treg cells, inhibit transplant rejection and induce
tolerance and, thus, protect against muscle loss in Duchene dystrophy
(Boucault et al., 2020; Ouisse et al., 2019; Picarda et al., 2017). Treg
cell therapy – either from allogeneic sources or genetically modified to
restore their function – also represents a potential treatment (Bezie
et al., 2019; Flippe et al., 2019). Moreover, the rat model of APECED
could be used to develop such immunotherapies because it allows the
visual assessment of disease-associate phenotypes, such as alopecia,
weight loss and vitiligo.

Finally, although the absence of AIRE is a feature of APECED
disease, significantly decreased levels of AIRE have also been
observed in patients suffering from Omenn syndrome or Down

Box 4. iPSCs – thymic differentiation strategies
To differentiate iPSC lines derived from somatic cells such as fibroblasts
or B cells (Otsuka et al., 2020; Su et al., 2015) into a functional thymic
epithelium, cells must replicate the steps of thymic embryonic
development, i.e. they must differentiate from definitive endoderm (DE)
into anterior foregut endoderm and then into third pouch pharyngeal
endoderm (Parent et al., 2013). Several protocols have been established
and optimized to generate individual iPSC lines. Generally, DE is
induced by culturing iPSCs for 5 days with activin A (INHBA) and, in
some cases, with WNT3A and the GSK3 inhibitor CHIR99021 (Otsuka
et al., 2020; Parent et al., 2013; Soh et al., 2014; Sun et al., 2013). The
anteriorization stage relies on the effect of retinoic acid (RA) combined
with that of BMP- and WNT-signal inhibitors, LDN193189 and IWR1,
respectively (Inami et al., 2011; Otsuka et al., 2020; Parent et al., 2013;
Soh et al., 2014). The TGF-β inhibitors SB431542 or LY364947 are also
crucial at this stage. In the final steps of differentiation, cells are usually
exposed to BMP4, WNT3A, RA, and FGF signals, such as FGF7, FGF8
and FGF10 (Otsuka et al., 2020; Parent et al., 2013). The sonic
hedgehog inhibitor cyclopamine has also been shown to improve thymic
differentiation. Since these differentiation protocols are highly
susceptible to variability, they still need to be fine-tuned to achieve
successful differentiation of the thymic epithelium and should be adapted
for each individual iPSC line.
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syndrome, two disorders characterized by severe immunodeficiency
and T-cell-mediated autoimmunity (Cavadini et al., 2005;
Giménez-Barcons et al., 2014). This strong correlation between
thymic AIRE expression and the susceptibility to a wide range of
autoimmune manifestations suggest a ‘dose-effect’ of AIRE that
may also provide clues for targeted therapeutics.

Conclusions
The different models generated to study APECED and the
development of systems for culturing primary TECs have
considerably improved our understanding of the mechanisms that
underlie immunological tolerance in the thymus. In addition, they
have enabled the development of several pre-clinical therapeutic
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Fig. 4. Research strategies that employ in vivo and in vitro models of APECED to develop new therapies. This schematic highlights the advantages and
limitations of each model.
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approaches for controlling autoimmunity in APECED (Fig. 4).
However, the existing animalmodels ofAPECEDdo not recapitulate
all of the specific aspects of the human disease in humans. Indeed,
many mouse models recapitulate only a few aspects of human
ACEPED pathology and its clinical features. Moreover, although the
rat APECED model can recapitulate several pathological hallmarks
of the human disease and will help the translation of drugs to the
clinic, additional models are needed, including those of other known
Aire point mutations that might be associated with specific disease
phenotypes. The ex vivo 3DOTC and thymus-derived culturemodels
also need to be adapted to the newly discovered broad spectrum of
TEC sub-population (Kadouri et al., 2019) the specificities of species
origin, i.e. mouse, rat and human. Further studies of these
models will undoubtedly offer new insights into function thymic
epithelium – notably, with respect to the effect AIRE has across
human and murine samples – and will explain the phenotypical
differences between APECED in mice, rats and humans.
Differentiation of iPSCs into functional thymic tissue will enable
functional T cells differentiation ex vivo, thereby providing a unique
opportunity to restore a dysfunctional immune system through
personalized cell therapy treatments. The comprehensive
characterization of the complex molecular mechanisms that
underlie the effect of AIRE on induction of TRAs, as well as the
identification of additional molecular factors involved in the
induction of central immune tolerance, will certainly be revealed
by using newly developed single-cell transcriptomic and epigenetics
approaches. Combined analyses of such new and existing data on
TEC biology in human and rodent samples (Bornstein et al., 2018;
Kernfeld et al., 2018; Miragaia et al., 2018; Park et al., 2020) are key
to tackle TEC heterogeneity and function and, especially, the
repertoire of Aire-dependent and independent TRAs. These
approaches of deciphering the molecular mechanisms that underlie
APECED by using different models and culture system are essential
to ensure appropriate and efficient therapeutic measures.
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Borchers, J., Pukkala, E., Mäkitie, O. and Laakso, S. (2020). Patients with
APECED have increased early mortality due to endocrine causes, malignancies
and infections. J. Clin. Endocrinol. Metab. 105, e2207-e2213. doi:10.1210/clinem/
dgaa140

Bornstein, C., Nevo, S., Giladi, A., Kadouri, N., Pouzolles, M., Gerbe, F., David,
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Toribio, M. L. (1994). Establishment and characterization of cloned human thymic
epithelial cell lines. Analysis of adhesion molecule expression and cytokine
production. Blood 83, 3245-3254. doi:10.1182/blood.V83.11.3245.3245

Ferre, E. M. N., Rose, S. R., Rosenzweig, S. D., Burbelo, P. D., Romito, K. R.,
Niemela, J. E., Rosen, L. B., Break, T. J., Gu, W., Hunsberger, S. et al. (2016).
Redefined clinical features and diagnostic criteria in autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight 1, e88782.
doi:10.1172/jci.insight.88782
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Röpke, C. (1997). Thymic epithelial cell culture. Microsc. Res. Tech. 38, 276-286.
doi:10.1002/(SICI)1097-0029(19970801)38:3<276::AID-JEMT8>3.0.CO;2-K

Rosatelli, M. C., Meloni, A., Meloni, A., Devoto, M., Cao, A., Scott, H. S.,
Peterson, P., Heino, M., Krohn, K. J. E., Nagamine, K. et al. (1998). A common
mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy patients. Hum. Genet. 103, 428-434. doi:10.1007/s004390050846

Rossi, S. W., Kim, M.-Y., Leibbrandt, A., Parnell, S. M., Jenkinson, W. E.,
Glanville, S. H., McConnell, F. M., Scott, H. S., Penninger, J. M., Jenkinson,
E. J. et al. (2007). RANK signals from CD4(+)3(−) inducer cells regulate
development of Aire-expressing epithelial cells in the thymicmedulla. J. Exp. Med.
204, 1267-1272. doi:10.1084/jem.20062497

Schaller, C. E., Wang, C. L., Beck-Engeser, G., Goss, L., Scott, H. S., Anderson,
M. S. and Wabl, M. (2008). Expression of aire and the early wave of apoptosis in
spermatogenesis. J. Immunol. 180, 1338-1343. doi:10.4049/jimmunol.180.3.1338

Seet, C. S., He, C., Bethune, M. T., Li, S., Chick, B., Gschweng, E. H., Zhu, Y.,
Kim, K., Kohn, D. B., Baltimore, D. et al. (2017). Generation of mature T cells
from human hematopoietic stem and progenitor cells in artificial thymic organoids.
Nat. Methods 14, 521-530. doi:10.1038/nmeth.4237

Sekai, M., Hamazaki, Y. and Minato, N. (2014). Medullary thymic epithelial stem
cells maintain a functional thymus to ensure lifelong central T cell tolerance.
Immunity 41, 753-761. doi:10.1016/j.immuni.2014.10.011

Shichkin, V. P., Gorbach, O. I., Zuieva, O. A., Grabchenko, N. I., Aksyonova, I. A.
and Todurov, B. M. (2017). Effect of cryopreservation on viability and growth
efficiency of stromal-epithelial cells derived from neonatal human thymus.
Cryobiology 78, 70-79. doi:10.1016/j.cryobiol.2017.06.010

Simpson, C. L., Patel, D. M. and Green, K. J. (2011). Deconstructing the skin:
cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell
Biol. 12, 565-580. doi:10.1038/nrm3175

Skogberg, G., Lundberg, V., Berglund, M., Gudmundsdottir, J., Telemo, E.,
Lindgren, S. and Ekwall, O. (2015). Human thymic epithelial primary cells
produce exosomes carrying tissue-restricted antigens. Immunol. Cell Biol. 93,
727-734. doi:10.1038/icb.2015.33

Soh, C.-L., Giudice, A., Jenny, R. A., Elliott, D. A., Hatzistavrou, T., Micallef,
S. J., Kianizad, K., Seach, N., Zún ̃iga-Pflücker, J. C., Chidgey, A. P. et al.
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