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Fine-regolith production on asteroids controlled by rock porosity

 , and thermal cracking proceeds more slowly than in denser rocks. We infer that regolith blankets are uncommon on carbonaceous asteroids, which are the most numerous of all asteroid types 13 . By contrast, these terrains should be common on stony asteroids, which have less porous rocks and are the second-most populous group by composition 13 . The higher porosity of carbonaceous asteroid materials may have aided in their compaction and cementation to form breccias, which dominate the carbonaceous chondrite meteorites 14 .

 . Thermal inertia (Γ) measures materials' resistance to temperature change; it is determined by thermal conductivity κ, heat capacity c P , and bulk density ρ (Γ=[κc P ρ] 1/2 ), and allows distinguishing different geological units, such as fine regolith from rocks.

Here fine regolith means unconsolidated particles of size smaller than the e-folding depth of the diurnal thermal wave (l s , a few centimetres on Bennu 10 ), while rocks are defined as every competent surface material of size D R >l s . The thermal inertia of fine regolith (Γ P ) is lower than that of rocks of same composition (Γ R ) because radiative thermal conduction between particles is less efficient than phononic heat transfer within an individual particle or rock [START_REF] Delbo | Asteroid Thermophysical Modeling[END_REF] . Thus, fine regolith is hotter than rocks during the day, and vice versa during the night. Both fine regolith and rocks contribute to the infrared emission proportionally to their surface abundances α and

(1-α), respectively [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] .

To distinguish fine regolith from rocks on Bennu, we use a machine learning method [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] that explores all possible combinations of the spectral signals of fine regolith and rocks as a function of their surface abundance, roughness and respective thermal inertia until the OTES daytime and night-time observations are simultaneously fitted (Methods). We use our method to derive Γ P , Γ R , and α in 122 quasi-randomly-distributed OTES footprints (spots) of ~40 m in diameter (Supplementary Table 1; Extended Data Figure 1). These spots include the two best-observed areas on Bennu: the designated backup and primary sampling sites of OSIRIS-REx, respectively called Osprey and Nightingale.

We find that α varies between a few and several tens of percent (Figure 1) and there is less fine regolith at Osprey than at Nightingale, consistent with the surface abundance of unresolved materials seen in PolyCam images (Extended Data Figure 2). The values of α are also consistent with the surface abundance of unresolved materials in PolyCam images at coarser spatial resolution (Methods; Extended Data Figure 3). The measured Γ R encompasses a continuum of values between ~250 Jm -2 K -1 s -0.5 , close to that derived [START_REF] Shimaki | Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping[END_REF][START_REF] Grott | Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[END_REF] for Ryugu's boulders, and >1,000 Jm -2 K -1 s -0.5 , close to that of CM2 carbonaceous chondrites [START_REF] Opeil | The surprising thermal properties of CM carbonaceous chondrites[END_REF] of composition analogous to the one spectroscopically inferred for Bennu [START_REF] Hamilton | Evidence for widespread hydrated minerals on asteroid (101955) Bennu[END_REF] . For α≈0, Γ R is within the range of thermal inertia values derived by a previous study [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] , which assumed that the surface in the OTES spot is composed of a single geological unit.

We observe a direct correlation between of Γ R and α (Figure 1), with Spearman correlation coefficient R=0.56±0.06 and a probability of non-correlation p<4×10 -3 (Methods; Extended Data Figure 4). The correlation is robust (R=0.54±0.07; p<0.05) when we reject spots where the thermophysical model may confuse very low-Γ R boulders as fine-regolith-covered areas (Methods; Figure 1). The correlation is also robust against the choice of a model parameter that represents the fine-regolith macroporosity (Methods; Extended Data Figure 5). Additionally, we demonstrate that the correlation is not an artefact of thermophysical modelling (Methods; Extended Data Figure 6). Finally, we do not see an inverse correlation between α and the size of the largest boulders in the OTES spots (Methods; Extended Data Figure 7), thus ruling out that the Γ R -α correlation is due to boulders' sizes (large boulders may have lower Γ R than smaller ones [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] ).

Because fine regolith is more abundant where rocks have higher Γ R (Figure 1), and Γ R is a monotonically decreasing [START_REF] Grott | Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[END_REF] function of rock porosity (Methods), we deduce that the surface abundance of fine regolith is lower where the nearby rocks are more porous (Figure 1).

We argue that the correlation of Figure 1 can be explained by the dependence of regolithforming processes, i.e., collisional and thermal fragmentation of rocks, on rock porosity.

Collisional fragmentation is driven by meteoroid impacts, craters from which were observed 6 on D R >>l s rocks. Craters on rough-textured rocks were measured, by means of the OSIRIS-REx Laser Altimeter, to have a higher depth-to-diameter ratio than those on smoother rocks [START_REF] Ballouz | Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders[END_REF] . Because crater depth-to-diameter ratio typically increases with increasing target porosity [START_REF] Flynn | Hypervelocity cratering and disruption of porous pumice targets: Implications for crater production, catastrophic disruption, and momentum transfer on porous asteroids[END_REF][START_REF] Michikami | Ejecta velocity distribution for impact cratering experiments on porous and low strength targets[END_REF] , we deduce that Bennu hosts rocks of different porosities, consistent with Figure 1 and ref. 10, but independently of OTES data. Impact experiments show that: (i) a lower-porosity rock requires a lower energy per unit mass to be broken than a higher-porosity rock, because in the latter impact energy is spent on pore-space collapse [START_REF] Flynn | Hypervelocity cratering and disruption of porous pumice targets: Implications for crater production, catastrophic disruption, and momentum transfer on porous asteroids[END_REF] and compaction [START_REF] Housen | Impacts into porous asteroids[END_REF] during initial crater formation; (ii) crater ejecta's mass, which could partially contribute to fine regolith, decreases with increasing target porosity [START_REF] Flynn | Hypervelocity cratering and disruption of porous pumice targets: Implications for crater production, catastrophic disruption, and momentum transfer on porous asteroids[END_REF] ; and (iii) craters formed on low-porosity (Φ≈25%) rock simulants of Bennu's composition have spalls [START_REF] Avdellidou | Very weak carbonaceous asteroid simulants I: Mechanical properties and response to hypervelocity impacts[END_REF] , which increase fragment production. Conversely, spalling was rarely observed around craters on Bennu's rocks [START_REF] Ballouz | Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders[END_REF] . We deduce that collisional fragmentation increases with decreasing rock porosity and is frustrated on Bennu's rocks, which typically have Φ>25% (Figure 2).

Asteroids' rocks can develop fatigue fractures to release mechanical stresses generated by diurnal temperature cycling [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] . It is postulated that these fractures grow until breaking the host rocks, thereby producing regolith [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] . Exfoliation fractures with sizes between a few centimetres and few metres were observed [START_REF] Molaro | Thermal fatigue as a driving mechanism for activity on asteroid Bennu[END_REF] on Bennu, consistent with the aforementioned process. To investigate regolith formation by thermal fatigue, we model (Methods) the time to break two rocks on Bennu that have porosity Φ=20% and Φ=40%. We find that the break-up time is shorter for the rock with Φ=20% than for that with Φ=40% (Extended Data Figure 8), suggesting that fine regolith is more likely to be produced from the former. This is consistent with the correlation of Figure 1.

We infer that low-porosity rocks produce more fine regolith than high-porosity rocks by means of both meteoroid impacts and thermal cracking (Figure 3). This explains the lack of extensive fine-regolith-covered areas on Bennu [START_REF] Lauretta | The unexpected surface of asteroid (101955) Bennu[END_REF] , where most rocks are highly porous (ref. 10; Figure 2).

We argue that the frustration of fine-regolith build-up in the presence of high-porosity rocks could be a general phenomenon on asteroids.

Analysis of thermal images acquired by JAXA's Hayabusa2 mission [START_REF] Shimaki | Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping[END_REF][START_REF] Okada | Highly porous nature of a primitive asteroid revealed by thermal imaging[END_REF] indicated that Ryugu's surface globally has Γ≈225±45 Jm -2 K -1 s -0.5 , some D R >50 m boulders have Γ R ≈115-160

Jm -2 K -1 s -0.5 , and a few small boulders have Γ R ≈600-1,000 Jm -2 K -1 s -0.5 , suggesting that most rocks on Ryugu have porosities similar to Bennu's (Φ≈40-50%, Figure 2; Methods). For Φ≈40-50%, the correlation of Figure 1 indicates that Ryugu, like Bennu, should have less fine regolith on the surface than asteroids with lower-porosity rocks.

Conversely, disk-integrated infrared measurements of the stony asteroid (25143) Itokawa revealed [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] that its rocks have Γ R ≈900 Jm -2 K -1 s -0.5 , corresponding to Φ=20±4% (Methods), which is lower than most rocks on Bennu and Ryugu (Figure 2). Hence, the correlation of Figure 1 implies that Itokawa's most common rocks produce more fine regolith than Bennu's and Ryugu's.

Spacecraft images show that Itokawa's geopotential lows are smooth terrains covered in centimetre-sized regolith 2 , whereas Bennu's and Ryugu's are not [START_REF] Lauretta | The unexpected surface of asteroid (101955) Bennu[END_REF][START_REF] Sugita | The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes[END_REF] . Itokawa's smooth terrains may have formed via global particle-size sorting induced by surface mass motion 2 . Signatures of mass motion were also observed on Bennu 26 and Ryugu 7 , but smooth fine-regolith-covered terrains are lacking [START_REF] Lauretta | The unexpected surface of asteroid (101955) Bennu[END_REF][START_REF] Sugita | The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes[END_REF] , suggesting that Bennu's and Ryugu's surface abundances of fine regolith may be globally lower than Itokawa's. This is consistent with our analysis.

On small asteroids, fine regolith could be emplaced far from the source rock via electrostatic lofting [START_REF] Hsu | Electrostatic removal of finegrained regolith on sub-km asteroids[END_REF] , ejection during thermal exfoliation [START_REF] Molaro | Thermal fatigue as a driving mechanism for activity on asteroid Bennu[END_REF] , and/or meteoroid impacts [START_REF] Michikami | Ejecta velocity distribution for impact cratering experiments on porous and low strength targets[END_REF] . However, the robustness of the Γ R -α correlation rules out an isotropically fine-regolith redistribution from each local source on Bennu. Further, (i) electrostatic lofting is inefficient at mobilizing centimetresized particles 27 ; (ii) exfoliation is only one aspect of thermal cracking, the other being rock breakup by through-going fracturing without fragment ejection; (iii) the current understanding [START_REF] Michikami | Ejecta velocity distribution for impact cratering experiments on porous and low strength targets[END_REF] is that little mass should be retained by small asteroids from crater ejecta produced by impacts on low-porosity rocks. However, rocks broken in tightly-clustered pieces were observed on Bennu (Extended Data Figure 9; refs. 8, 9, and 28), suggesting that regolith is produced by in-situ fragmentation of large rocks exposed on the surface, similar to what has been observed on the Moon [START_REF] Ruesch | In situ fragmentation of lunar blocks and implications for impacts and solarinduced thermal stresses[END_REF] . Finally, Itokawa may lose more crater ejecta to space than Bennu and Ryugu because average ejection velocities decrease with increasing target porosity [START_REF] Michikami | Ejecta velocity distribution for impact cratering experiments on porous and low strength targets[END_REF] . Despite this, smooth terrains were only observed on Itokawa 2,7,9 , suggesting that its fine-regolith losses are compensated by a higher production than Bennu's and Ryugu's.

The wide range of rock porosities measured on Bennu and Ryugu likely originated on their parent bodies [START_REF] Okada | Highly porous nature of a primitive asteroid revealed by thermal imaging[END_REF] . We postulate that high-porosity rocks subjected to impacts can be compacted without target disruption 30 . Crushing in high-porosity materials can enhance shear strain and cause associated frictional heating 31 ; this may have assisted lithification of the chondrite precursors into the lower-porosity carbonaceous breccias that dominate the CM and CI meteorite collection [START_REF] Bischoff | Nature and Origins of Meteoritic Breccias[END_REF] and were also observed on Bennu 28 and Ryugu 7 .

30. Scott, E. R. D. & Bottke, W. F. Impact histories of angrites, eucrites, and their parent bodies. (Methods). The red points correspond to 13 areas where α could be overestimated because of the presence 10 of boulders whose Γ R could be lower than the threshold value between fine regolith and rocks (Methods). The plotted solutions have χ 2 r <3 as goodness-of-fit (Methods), which is satisfactory for these types of observations. The error bars correspond to 1 standard deviation (Supplementary Table 1; Methods) computed on ~670 samples on average.
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Fig. 2. The porosity of most of Bennu's and Ryugu's rocks is much higher than Itokawa's.

The porosity values of Bennu's rocks are weighted according to rock abundance (1-α) and are binned using the Freedman-Diaconis rule. The magenta-and green-shaded areas indicate the estimated surface-averaged ranges of rock porosity on asteroids Ryugu [START_REF] Shimaki | Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping[END_REF][START_REF] Grott | Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[END_REF] and Itokawa [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] , respectively. About 70% of the rocks on Bennu are as porous as Ryugu's, while only ~5% of Bennu's rocks have porosity similar to Itokawa's.

Fig. 3. Fine-regolith production is frustrated in the presence of high-porosity rocks. On asteroids, rocks with higher porosity are compacted by meteoroid impacts rather than excavated [START_REF] Housen | Impacts into porous asteroids[END_REF] . Thermal stresses in a more porous rock are weaker in magnitude than in a denser rock [START_REF] Molaro | Thermal fatigue as a driving mechanism for activity on asteroid Bennu[END_REF] , implying that the former could be less prone to producing fine regolith than the latter.

Methods

Two-component thermophysical modelling

The global mosaic of images [START_REF] Bennett | A high-resolution global basemap of (101955) Bennu[END_REF] acquired by the PolyCam imager of the OSIRIS-REx Camera Suite (OCAMS [START_REF] Rizk | OCAMS: the OSIRIS-REx camera suite[END_REF] ) with resolution 5 cm pixel -1 shows that Bennu's surface is composed of a mixture of rocks and, to a lesser extent, unresolved materials [START_REF] Walsh | Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[END_REF][START_REF] Dellagiustina | Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[END_REF] . The latter may include fine regolith with particle size D P <l s =[κ/(c P ρ)P/π] 1/2 , where P is the asteroid's rotation period. These observations motivate us to determine the surface abundance of fine regolith (α) with respect to the surface abundance (1-α) of rocks with size D R >l s .

To this end, we select 122 quasi-randomly-distributed regions (OTES spots; Extended Data Figure 1) and use a machine learning two-component thermophysical model [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] For each area and time of day, we use the OTES' acquisition mid-observation time and boresight to calculate the longitude and latitude of the OTES spot's centre and diameter projected on Bennu's surface. The surface is modelled using the 6-m-resolution SPC/OLA v34 shape model composed of triangular facets and derived from a combination of stereophotoclinometry and laser ranging [START_REF] Barnouin | Digital terrain mapping by the OSIRIS-REx mission[END_REF] ; its pole orientation 9,10 is J2000 ecliptic longitude 69.92° and latitude -83.45°. The observation geometry for each spot and time of the day (i.e., ephemerides of the OSIRIS-REx spacecraft and the asteroid) is computed using the spiceypy Python-wrapper for the SPICE Toolkit. The kernel files are directly sourced from the SPICE kernels produced by the mission.

For each observation geometry, we build the local set of facets of Bennu's topographic model by drawing concentric circles (with radius ranging between 0 and that of the OTES spot and centred at the spot's centre) and by drawing radial vectors with origin in the spot's centre and length between 0 and the spot's radius. Since we limited our survey to latitudes between ±60°, each OTES spot is well-approximated by a circle with a diameter of 40 m that corresponds to the instrument footprint. All the unique facets that lie at the intersection between a circle and a radial vector belong to the local set.

For each OTES spot and for each observation time, we set up thermophysical simulations using a well-defined model [START_REF] Delbo | Asteroid Thermophysical Modeling[END_REF] that uses the aforementioned observation geometry, asteroid illumination, asteroid spin state, and local sets of facets of Bennu's shape model as input. We create lookup tables of simulations where Γ varies between 25 and 2,500 Jm -2 K -1 s -0.5 (the upper limit corresponding to low-porosity meteorites [START_REF] Opeil | The surprising thermal properties of CM carbonaceous chondrites[END_REF] ) with step 25 and θ is modelled using hemispherical craters with surface crater density (f c ) ranging between 0 and 0.99 with step 0.14 (as such, θ=49f c 1/2 represents roughness RMS slope [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] ). We assume a fixed value of Bolometric Bond's albedo equal to 0.02 and infrared emissivity ε=0.95 (as previously done [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] ). The shape model's rotation and daily temperature cycle are simulated for 15 Julian days until the temperature cycle converges to a stable cycle. After this, we output the simulated radiance at the epoch of the OTES observation between 6 and 50 μm, where the OTES noise equivalent spectral radiance (NESR, which represents the 1σ variation in calibrated radiance) is the lowest [START_REF] Christensen | The OSIRIS-REx thermal emission spectrometer (OTES) instrument[END_REF] .

Next, for each OTES spot and for each observation time, we use the aforementioned look-up table of thermophysical simulations to train a neural network that generalizes the prediction of the radiance as a function of Γ and θ. The step of training the neural networks and using them in the fitting routine makes the exploration of the large, multi-dimensional parameter space of solutions computationally possible. This approach is particularly potent for the case of Bennu as both day-side and night-side data are available with a wide spectral wavelength range [START_REF] Christensen | The OSIRIS-REx thermal emission spectrometer (OTES) instrument[END_REF][START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] . The 70% of model radiances is used for training via stochastic gradient descent and a neural network architecture with 1 hidden layer of 10 neurons, which is the optimal scheme [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] . Another 15% of the dataset is used to protect the networks against overfitting the training data. We use the last 15% of the dataset to assess the networks' performance on unseen data in terms of mean squared error between the predicted and target radiances. The networks generalise well the prediction of the model radiances at testing: the average errors are equal to 0.2% and 0.9% of the radiance peak value for Γ=350 Jm -2 K -1 s -0.5 and θ=43° (which are the average surface thermophysical properties of Bennu 10 ) for the 3:20 a.m. and 3:00 p.m. observations, respectively; the correlation coefficient between predicted and target radiances is >0.99.

Next, we use the networks to simulate the radiance L regolith emitted by fine regolith of thermal inertia Γ P and that emitted by rocks of thermal inertia Γ R (L rock ), and linearly combine them to model the radiance L model emitted by a mixture of fine regolith and rocks:

L model f s , θ, Γ P , Γ R , α =f s ×(αL regolith Γ P , θ + 1-α L rock Γ R , θ ), (1) 
where f s is an optional scaling factor which is adjusted during the model fit to account for small modelling errors caused by (unknown) inaccuracies in the topographic model and/or potential deficiencies of the surface roughness [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] . Γ P can assume values between 25 Jm -2 K -1 s -0.5 and Γ c , and Γ R between Γ c and 2,500 Jm -2 K -1 s -0.5 , where Γ c is the thermal inertia "cut-off" value of regolith whose particles have D P =l s . It is computed as follows. For each area, we postulate that fine regolith is produced by the comminution of local rocks by meteoroid impacts [START_REF] Horz | Impact Experiments Related to the Evolution of Planetary Regoliths[END_REF] and thermal cracking [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] . This implies that fine regolith particles inherit the thermal conductivity κ, grain density ρ s , and porosity Φ of the rock. κ is obtained using the fit of meteorite values 37

κ Φ = Γ R 2 c P ρ s 1-Φ = 0.11 1-Φ Φ (2) 
where ρ s =2920 kg m -3 for CM meteorites [START_REF] Macke | Density, porosity, and magnetic susceptibility of carbonaceous chondrites[END_REF] and c P is the heat capacity for the meteorite CM2

Cold Bokkeveld 20 at the OTES spot's mean diurnal temperature [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] . Although alternative relationships of thermal conductivity versus rock porosity are available [START_REF] Grott | Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[END_REF] , Eq. 2 is the model that also fits well more recent results for super-weak CM-like materials [START_REF] Avdellidou | Very weak carbonaceous asteroid simulants I: Mechanical properties and response to hypervelocity impacts[END_REF] . Since Γ R is a fitted parameter, the procedure for determining Γ c is necessarily iterative; we initialise the iteration assuming Γ R equal to the single-component thermal inertia derived by previous studies [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] . We use a standard [START_REF] Sakatani | Thermal conductivity of lunar regolith simulant JSC-1A under vacuum[END_REF] regolith model to calculate particulate regolith bulk thermal conductivity (κ P ) as a function of particle diameter D P . These values are compared to respective values of l s =l s (κ P ) to find the value of κ P where D P =l s . This value of κ P is combined with c P and ρ=ρ s ×(1-Φ)×(1-φ) to calculate Γ c (φ is the regolith macroporosity, that is, the volume of voids between particles). We use published [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] model parameters and assume: ζ=0.68+7.6×10 -5 D P -1 as the ratio of the effective distance of radiative heat transfer in the voids between particles to the void geometric size [START_REF] Sakatani | Thermal conductivity of lunar regolith simulant JSC-1A under vacuum[END_REF][START_REF] Wada | Asteroid Ryugu before the Hayabusa2 encounter[END_REF] , ξ=0.12 as the degree of reduction of the thermal conductance at the contacts between particles owing to the microscopic surface roughness [START_REF] Sakatani | Thermal conductivity of lunar regolith simulant JSC-1A under vacuum[END_REF] , infrared emissivity 10 ε=0.95, and regolith macroporosity φ=40%. The latter is an often-used value and represents a loose random packing of spherical particles [START_REF] Ryan | Full-Field Modeling of Heat Transfer in Asteroid Regolith: Radiative Thermal Conductivity of Polydisperse Particulates[END_REF] . We take into account thermal gradients within individual regolith particles using the non-isothermal correction factor [START_REF] Ryan | Full-Field Modeling of Heat Transfer in Asteroid Regolith: Radiative Thermal Conductivity of Polydisperse Particulates[END_REF] as in previous work [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] .

For a given Γ c and assuming θ from published 10 results, we explore all possible combinations of the free parameters x=(f s 3:00 p.m.

, f s 3:20 a.m.

, Γ P , Γ R , α) to identify the best-fit radiance that minimises the error function: 

where L OTES is the observed radiance re-sampled with step 1 μm, σ is the error measurement equal to 3 times the OTES' pre-flight [START_REF] Christensen | The OSIRIS-REx thermal emission spectrometer (OTES) instrument[END_REF] 772 Hz NESR, obs is the number of observations and df=5 is the number of parameters to fit. The uncertainties of the free parameters are computed as the standard deviation of the set of solutions whose χ 2 r <min(χ 2 r )+[2/(obs-df)] 1/2 , as typically done in thermophysical modelling [START_REF] Hanuš | Thermophysical modeling of main-belt asteroids from WISE thermal data[END_REF] . Upon completion of the fitting, the best-fit Γ R is used to update the value of Γ c , which is in turn used to re-compute the best-fit (f s 3:00 p.m.

, f s 3:20 a.m. , Γ P , Γ R ,

α). This loop is repeated until |Γ R i -Γ R i-1 |<σ R i-1
, where (i) indicates the present iteration and σ R i-1

is the standard deviation of Γ R obtained at the iteration (i-1)-th. Convergence is typically reached in four iterations. Once the analysis is completed, we add a cautionary 10% relative error to the uncertainties because previous studies [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] found that the thermophysical solution obtained by fitting the 3:00 p.m. and 3:20 a.m. data is within 10% of the value obtained by including additional OTES data acquired at other times of the day.

Finally, we reject 25 spots where the best-fit solutions have χ 2 r >10 and/or for which no convergence is found for Γ R ≤2490 Jm -2 K -1 s -0.5 . We carry the analysis and tests reported below on the remaining 97 spots (Supplementary Table 1).

Tests of the robustness of the results

We test whether the measured α-values are consistent with the surface abundance of unresolved materials seen in PolyCam [START_REF] Rizk | OCAMS: the OSIRIS-REx camera suite[END_REF] images. We do this test for the spots 609505286:610098718 and 609504794:610100730 centred at Osprey and at Nightingale, for which Burke et al. (ref. 43) performed rock mapping down to D P =2 cm≲l s (results are in Extended Data Figure 2). We note that the OTES spots have areas at least 38 and 20 times larger than those within which rocks were visually mapped at Osprey and Nightingale, respectively.

We also test that the value of α is always smaller or equal than the surface area of unresolved materials that we can visually see, at coarser spatial resolution than at Osprey and Nightingale, within the entire OTES spot. We choose the spots 609493058:610103962 and 609487186:610098206 where we perform rock mapping as similarly done in ref. 43 on PolyCam images at a spatial resolution of 5 cm pixel -1 (thus, >l s ). The area of each rock is computed as that of a circle with diameter equal to the rock's longest dimension. One minus the sum of rocks' areas divided by the area of the OTES spot is provided as % of unresolved material in Extended Data Figure 3, along with the value of α. We also check that the size distributions of the mapped rocks are consistent with that globally mapped on Bennu [START_REF] Dellagiustina | Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[END_REF] , meaning that the two sites are representative of average Bennu.

We use the two-sided Spearman test to reject the null hypothesis that a random distribution of Γ R -and α-values could produce the observed correlation of Figure 1 (Extended Data Figure 4).

To take into account uncertainties in the values of Γ R and α, we perform the Spearman test 10,000 times, where at each trial we vary Γ R and α within their uncertainties. We draw the samples from Gaussian distributions with mean and standard deviation equal to the nominal value and uncertainties of Γ R and α.

We repeat the Spearman test after we reject 13 areas where large dark boulders fill the OTES spot (red data points in Figure 1). Bennu's dark boulders tend to have low Γ R values [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF][START_REF] Dellagiustina | Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[END_REF] , although the lower limit of Γ R is unknown because only one boulder was spatially resolved by the OTES instrument [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] . If the boulders' Γ R <Γ c , their surface abundance would erroneously contribute to the surface abundance of fine regolith α instead of being counted as rocks, with the caveat that fine regolith could be present on top of the boulders [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF] .

We investigate whether the Γ R -α correlation is sensitive to the assumed value of regolith macroporosity φ (Extended Data Figure 5). We repeat the thermophysical modelling of all OTES spots for a low-end value of φ=15%, which is an estimate for the whole asteroid based on a boulder size-frequency distribution analysis [START_REF] Biele | Macroporosity and Grain Density of Rubble Pile Asteroid (101955) Bennu[END_REF] , and a high-end value of φ=60%, which is a compromise reduction from much higher values used in previous studies (e.g. φ=80%, ref. 45, which we consider unlikely for a polydisperse size-frequency-distribution). We perform a 3σ test on the solutions to identify those areas where (Γ P , Γ R , α) for φ=15% and φ=60% are statistically distinct from those for φ=40%. This test is done considering only those spots where a converged solution is found for both macroporosities: 93 spots (φ=40% versus φ=15%) and 90 spots (φ=40% versus φ=60%). We repeat the Spearman test to assess the robustness of the correlation against removing the areas with statistically distinct solutions from the dataset.

We investigate whether the Γ R -α correlation may be an artefact due to the assumption of linear mixing between the radiances emitted by fine regolith and rocks (Eq. 1). We simulate synthetic radiances emitted from a single triangular facet with zero roughness and thermal inertia values following the step function Γ(α): Γ≤Γ c =100 Jm -2 K -1 s -0.5 for α=100% and 100<Γ<2,500

Jm -2 K -1 s -0.5 for α=0%. We simulate the observation of these model radiances by OTES and fit them using our thermophysical model to see whether we retrieve the modelled step function or a correlation similar to that of Figure 1 is instead obtained (Extended Data Figure 6).

Finally, it has been suggested [START_REF] Rozitis | Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[END_REF][START_REF] Dellagiustina | Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[END_REF][START_REF] Dellagiustina | Variations in color and reflectance on the surface of asteroid (101955) Bennu[END_REF] that dark boulders (normal reflectance 0.034-0.049) are more abundant, can reach higher diameters, and have lower thermal inertia than the bright boulders (normal reflectance 0.049-0.074). These boulder properties could mimic the Γ R -α correlation of Figure 1 if α was also negatively correlated with the area of the largest boulder in the OTES spot.

Using the boulder database of ref. 46 we plot the α-value as a function of the size of the largest boulder and perform the Spearman test to investigate whether these quantities are correlated (results are in Extended Data Figure 7).

Interpretation of the results

For each OTES spot, we compute the rock porosity Φ from the best-fit Γ R by means of Eq. 2, assuming ρ s and c P as for the computation of Γ c . The range of Φ-values for Ryugu in Figure 2 corresponds to that estimated [START_REF] Grott | Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu[END_REF] using Eq. 2 for the boulder observed by the MASCOT infrared radiometer, whose type is typical [START_REF] Okada | Highly porous nature of a primitive asteroid revealed by thermal imaging[END_REF] on Ryugu. We use Eq. 2 also to compute Φ of the rocks on Itokawa from the published [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] value of Γ R =894±122 Jm -2 K -1 s -0.5 assuming the composition of LL chondrites, which is that of the samples returned from Itokawa 47 : ρ s =3220 kg m -3 and c P =682

Jkg -1 K -1 . We compute the uncertainty of Itokawa's Φ as σ(Φ)=∂Φ/∂Γ R ×σ(Γ R ), where σ(Γ R ) is the uncertainty of Itokawa's Γ R from ref. 17.

Next, we use this information to estimate the time to break a rock of diameter D R by thermal fatigue (t B ). We use known models [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF][START_REF] El Mir | The efficiency of thermal fatigue in regolith generation on small airless bodies[END_REF] to simulate a bed of polydispersed spherical rocks, whose surface is exposed to cyclic temperature variations driven by sunlight; on each rock, an initially sub-mm-sized fracture placed on the surface propagates downward in the rock (i.e., towards the centre of the asteroid), until its size, a, becomes equal to D R , which is the condition for rock break-up. The time to fracture, t B , can be calculated from the fracture growth rate da/dN, which is typically approximated [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] using Paris' law: da/dN=C[ΔK I (a)] n , where N is the number of temperature cycles, C and n have values determined from experiments or analogy with asteroid simulant materials [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] , and ΔK I is the maximum variation of the stress intensity factor (K I ) for fracture opening mode. The latter is related to the stress τ experienced by the material during a temperature cycle. ΔK I ∝ τ ∝ ΔT, which is the maximum diurnal temperature excursion [START_REF] Delbo | Thermal fatigue as the origin of regolith on small asteroids[END_REF] .

Moreover, from Eq. 23 of ref. 48 we can write that t B /P=Λ′(D R /l s ) 1/m , where P is the asteroid rotation period; m=1/(1-n) for D R /l s ≤1 and m=1/(n-1) for D R /l s >1. Hence:

t B P =N=Λ '' D R l s 1 m ΔT -n (4) 
Given N cycles required to break a rock with a certain D R /l s , material properties, geometry and ΔT, we derive the value of Λ" and use Eq. 4 to predict t B for rocks of different sizes at different ΔT. First, we calculate l s to be 6.4 and 8.6 cm for the carbonaceous and the ordinary chondrite of ref. 24 for which, at D R =l s , their Figure 1 gives t=3.5×10 3 and 6.3×10 3 years, respectively, corresponding to N=1.4×10 6 and N=14×10 6 cycles, given their P=6 hours. We take ΔT from their Extended Data Figure 2. Next, we use Eq. 4 to derive t B as a function of D R for values of l s , P and ΔT that are more appropriate for Bennu, Ryugu and Itokawa than those of ref. 24. From the latter reference we take the carbonaceous chondrite properties, but we use Γ R =500 Jm -2 K -1 s -0.5 , which is more appropriate for the high-Φ, low-Γ R rocks that dominate Bennu's and Ryugu's surfaces (Figure 2 and ref. 18, 19, 25, respectively). For the ordinary chondrite, we use Γ R =900

Jm -2 K -1 s -0.5 , as the latter value was derived from astronomical observations [START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] of Itokawa, and we assume that these parameters could also represent low-Φ, high-Γ R rocks which may be present resolution, it is possible that there are unmapped particles larger than l s (but smaller than the image resolution) that our thermophysical model detects as rocks and thus do not contribute to the value of α. and 92% of the cases, respectively. The correlations are robust against removing the areas whose solutions are statistically distinct from the dataset with macroporosity φ=40% (Spearman correlation index: 0.55±0.07 and p<0.05 in 100% of 10,000 trials). The error bars correspond to 1 standard deviation (Supplementary Table 1; Methods) computed on ~450 and ~880 samples on average. The results for a regolith macroporosity of φ=40% are described in the main text (Figure 1).

Extended

Extended Data Fig. 6. The correlation between Γ R and α is not an artefact of thermophysical modelling. We fit model radiances emitted by a single triangular facet with zero roughness; if the thermal inertia Γ ≤ Γ c = 100 Jm -2 K -1 s -0.5 , then α=100%, and if Γ c <Γ<2,500

Jm -2 K -1 s -0.5 , then α = 0%. We retrieve the expected step function of α as a function of Γ, indicating that the correlation in deviation (Supplementary Table 1; Methods) computed on ~ 670 samples on average.

Extended Data Fig. 8. The time required to thermally break rocks is shorter for lowporosity rocks than for high-porosity rocks. We consider the asteroid to be in near-Earth space and explore a range of rotation periods corresponding to the shaded areas. The latter is to take into account changes in the current rotation periods (4.296 h and 12.1 h for Bennu and Itokawa, respectively) that these asteroids may have experienced in the past [START_REF] Hergenrother | The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations[END_REF] 
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 1 Fig. 1. The thermal inertia of Bennu's rocks is positively correlated with the local surface

  Figure1) and use a machine learning two-component thermophysical model[START_REF] Cambioni | Constraining the thermal properties of planetary surfaces using machine learning: Application to airless bodies[END_REF] to simultaneously

  a.m. (x, λ)-L OTES 3:20 a.m. λ ]

Data Fig. 4 .Extended Data Fig. 5 .

 45 The correlation between Γ R and α is statistically significant. a, Spearman correlation coefficient. b, Spearman p-value; a Spearman p<0.05 indicates that the correlation between Γ R and α is statistically significant. The figure corresponds to the results for a value of regolith macroporosity of φ=40%. The correlation between Γ R and α is robust against the choice of the fine-regolith macroporosity. The results for macroporosity φ=15% and φ=60% have Spearman correlation coefficients 0.56±0.06 and 0.58±0.06, probability of non-correlation p<0.05, and are within 3 standard deviations of the best-fit values for regolith macroporosity of φ=40% in 99%

Extended Data Fig. 7 .Figure 1

 71 Figure 1 is not the result of geometric effects. The error bars in panel c correspond to 1 standard

  due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We estimate that in their main belt source region, at about 2.3 au from the Sun, the time to break is ~60 times longer. Extended Data Fig. 9. Examples of in-situ boulder fragmentation on Bennu. a, a 5.4 mdiameter boulder located at 22° N 157° E. b, a 5.6 m-diameter boulder located at 42° N 170° E. c, a 5.3 m-diameter boulder located at 57° N 304° E. d, a 5 m-diameter boulder located at 39° S 203° E. The images are from the global mosaic 32 acquired by the PolyCam 33 imager of OCAMS.

The fine regolith abundance derived from OTES data is lower than the areas of unresolved material measured in Bennu's images.

  on Bennu's and Ryugu's surface, but in lower abundance than the high-Φ, low-Γ R rocks. The rotation periods are P=4.296, 7.63, and 12.1 hours for Bennu[START_REF] Hergenrother | The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations[END_REF] , Ryugu[START_REF] Watanabe | Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[END_REF] , and Itokawa 51 , respectively. However, since these rotation periods could have been different[START_REF] Hergenrother | The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations[END_REF] in the past, due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, we consider generic low-Γ R , high-Φ and high-Γ R , low-Φ cases with P=4.296 and 12.1 hours for a total of four cases. For each of them we calculate their l s -values and run a thermophysical model to determine, at 1.2 au of heliocentric distance, the values of ΔT. Finally, using Eq. 4 we produce the Extended Data Our visual mapping and size measurement of rocks within two OTES spots: a, OTES spots 609493058:610103962; b, OTES spots 609487186:610098206. In both areas, the values of α from our thermophysical solution are smaller than the area of unresolved materials seen in the images. Given the coarse PolyCam[START_REF] Bennett | A high-resolution global basemap of (101955) Bennu[END_REF] 

	α Osprey <α Nightingale	(Supplementary	Table	1,	spots	609505286:610098718	and
	Figure 8. 609504794:610100730, respectively).					
	Extended Data Fig. 3.					
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