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A polymer brush is a passive medium. At equilibrium the knowledge of its chemical composition
and thickness is enough for a full system characterization. However, when the brush is exposed to
fluid flow it reveals a much more intriguing nature, displaying intermediate properties between those
typically found in solids, porous materials and active-matter systems. Here we investigate such a rich
behavior via numerical simulations. We focus on the brush hydrodynamic response at low Reynolds
numbers, observing a significant fluid flow reduction inside a polymer-brush coated channel. We
find that the reduction of the flow inside the channel is significantly larger than what would happen
if the brush effect consisted only in reducing the effective channel width. This amplified reduction
is understood as being due to a morphological instability of the brush-liquid interface which is
shown to have an elastic origin: the mechanical stress acting on the brush due to the imposed
flow is partially released by the interface modulation. In turn, this modulation dissipates in the
surrounding fluid more energy than a flat interface, causing a reduction of flow velocity. Our results

and interpretations provide an explanation for recent experimental measurements.

PACS numbers: 7777777

I. INTRODUCTION

Polymer brushes are three-dimensional matrices of
densely grafted polymers, providing filamentous surface
coatings. From the synthetic point of view they can be
manipulated under many respects (e.g. polymer species,
surface geometry, grafting architecture) in order to finely
tune the physico-chemical properties of a desired sur-
face (the grafted substrate) [1-4]; however, they also
constitute the puzzling ingredient of many mammalian
organs [5-7]. In the first case, experimentalists exploit
the brush equilibrium features and the versatility of the
polymerization process to control its responsivenesses at
different electro-chemical stimuli. In the second case,
since many of the polymer-decorated organs are con-
cerned with the flowing or draining of biological fluids,
the research is centered on non-equilibrium features, with
the aim to reveal polymer brush dynamics and, conse-
quently, understanding why they have been awarded by
Evolution to be the most adequate organ coating.

In order to achieve a complete description of the hydro-
dynamic response of a polymer brush, one should scruti-
nize the system by mediating between a continuum point
of view, i.e. the possibility to integrate the fluid flow
streamlines, and a detailed characterization of the poly-
mer dynamics, zooming in the lengthscales. The majority
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of studies, instead, has focused on only one of those two
aspects [8-12]. For instance, a recent work reported on
microfluidic experiments in glass capillaries coated with
artificial polymer brushes. It has been found that the
fluid velocity is reduced significantly more than expected
from a channel diameter reduction due to the presence
of the brush [12]. Such surprising and non-trivial out-
come, however, could not be directly related to a precise
brush dynamics, since the experiments lacked resolution
at the scale of polymers (the brush thickness ranging in
the order of hundred nanometers). Here, we offer a com-
plementary point of view to those experiments: we model
the flow in a channel coated by a dense polymer brush
with a mesoscale approach, which allows for an investi-
gation of the fluid streamlines together with a detailed
description of the actual polymer dynamics. In qualita-
tive agreement with the experiments we find a significant
reduction of the flow velocity in the channel, which we
relate with the brush features: indeed, we attribute the
main origin of this peculiar behaviour to the brush sur-
face deformation. Such a deformation, appearing even at
low Reynolds numbers, takes the form of a monochro-
matic travelling wave, a phenomenon which has been
thoroughly characterized in Ref. [13]. In the cited study
the wave, experienced for different flow strengths, is de-
tailed in frequencies, wavelengths and oscillation ampli-
tudes and it is also associated to a fluid backward flow
measured in the vicinity of the brush interface. Here, in
addition, we ascribe the appearance of the surface wave
to an instability induced by hydrodynamic shear modes
and provide a general condition for its onset. Thus, the
present paper develops an analytical study to understand
the onset of instability for a polymer brush, treated as
an elastic medium. This study supports the numeri-



cal study based on mesoscale self-consistent simulations,
which produce a direct observation of a brush surface
modulation under certain conditions. Results and in-
terpretations presented therein offer an explanation for
recent microfluidic experiments and allow us to include
polymer brushes among those boundaries which induce
flow instabilities in a fluid at low Reynolds numbers.

II. METHODS

We aim at reproducing the dynamics of a simple New-
tonian fluid, modelled explicitly, and of densely grafted
polymers. Enclosing in a same numerical simulation
both the hydrodynamics and the polymer dynamics re-
quires a model suitable to grasp physics at the mesoscale.
We thus resort to coarse-graining methods and opt for
the Dissipative Particle Dynamics (DPD) technique [14-
17]. Indeed, a DPD particle represents not the single
molecule, but rather a certain amount of them. Our
DPD code applies a uniform coarse-graining both to sol-
vent particles and monomers, actually following the evo-
lution in time of clusters of fluid particles and blobs of
monomers. Forces to be integrated at each time step
are then adjusted for the zooming-out of lengthscales.
A detailed description of the code implementation with
the analytical expressions of forces is reported in the
Appendix, so, here, we just recall the main features of
the method. We avail ourselves of the three standard
DPD forces: a conservative one, a dissipative one and
a stochastic one. The first one is a soft-core repulsive
force, allowing the overlap of clusters: the DPD particle
must not have a strict spherical symmetry, due to rear-
rangement of the real microscopic molecules. The high or
low easiness of such rearrangement, meaning the viscous
resistance, is represented by the second force, while the
third force accounts for the number of collisions among
real microscopic molecules. Since all these three DPD
forces act between particle pairs and are central in or-
der to enforce local momentum conservation, the correct
hydrodynamics at long times is guaranteed. We under-
line that fluid particles exchange momentum with poly-
mer chains, dragging them. The model is, thus, self-
consistent, accessing both the polymer dynamics, influ-
enced by the imposed flow, and the flow field, perturbed
by the presence and motion of the brush.

We show in Fig.1 a sketch of the studied set-up: a par-
allelepiped box of sides L, Ly, L. containing N coarse-
grained DPD particles. A portion of them mimics the
simple liquid (not shown), while the rest, N,, (in light
red), make up the brush monomers. For the sake of
ease and computational time we attach polymers only
to the bottom wall z = 0. In the homodisperse case all
polymers have the same molecular weight (or polymer-
ization degree): each of the N, linear polymer chains is
composed by n identical monomers so that N, = nNg,.
Monomers of a same chain are connected by an additional
force, derived by a finite extensible nonlinear elastic po-

tential (FENE) [18]. The grafting point coordinates are
randomly chosen from a uniform distribution and located
on bottom surface according to the imposed grafting den-
Sity Ografs, defined as ograts = Nen/(LaLy).

We recall that in a slit-pore geometry a laminar flow
takes a parabolic shape, as shown in Fig. 1. In order to
produce a parabolic flow inside the channel (e.g. along

the z direction) a constant acceleration A= Aiis applied
to all fluid particles:

mif i — ﬁiézmd T mA. (1)

Analytically, this choice is fully equivalent to the appli-
cation of a pressure drop at the inlet/outlet of the chan-
nel and more convenient for simulations where periodic
boundary conditions are employed. No-slip at the walls
is imposed by applying the bounce-back boundary con-
dition [19]. Different values of A allow us to probe dif-
ferent dynamic regimes, here embodied by the value of
the Weissenberg number Wi, defined as Wi = Porush

tﬁow ’
where tpusn 18 @ brush characteristic timescale and tgeow

is a timescale introduced by the flow. Later in the text
we will introduce a specific definition for the Weissenberg
number, which arises naturally when dealing with surface
instability.

Physical units are established by comparison with the
physical reference system, namely the microfluidic ex-
periments reported in Ref.[12] and the biopolymer brush
called endothelial glycocalyx, which covers the inner ves-
sel walls of mammalians [20]. From the ratio of the spac-
ing between different filaments of the glycocalyx network,
dgiyco = 20nm [21], over the average distance between
anchor points of our brush, dgreft = \/1/0grast = 0.82
we thus fix the physical lengthscale {pnys:

lphys = dglyco/dgraft =24. 1079m.

The physical mass and time scales, mppys and tppys, are
extracted by the ratio of viscosities and by the ratio of
particle energies:

Tlphys
mphys = —1

phys lphys )

lphys

tohs = -
phys )
Uphys 3kBTphys

mphys

where npnys = 1073Pa s is the viscosity of water at
Tpnys = 300K, kp is the Boltzmann constant and the
DPD viscosity nppp = 0.84 is estimated by a simula-
tion of slit-pore velocity profile in a bare channel, using
n = pAR?/(20max) With vy the maximum velocity at
z = R. Solving the system, we obtain tpnys = 1.8+ 10755
and mypys = 5.1-1071"kg . With such choices, the physi-
cal values for the brush thickness hj; and for the maximum
fluid velocity vq. inside the channel are, respectively, of
the order of 500 nm and 1 cm/s.




FIG. 1. A sketch of the set-up system, showing the xz section
of the slit-pore channel. Two rigid walls are placed at z = 0
and z = L.. The bottom wall is coated by a (homodisperse)
polymer brush, whose thickness is named h,. The velocity
profile inside the channel is parabolic and vmq, signals its
maximum value.

III. RESULTS

At equilibrium the brush conformation results from the
balance between configurational entropy, that tends to
make chains visit the whole available space, and excluded
volume interactions, which disfavors contact between
monomers. Theoretical models (mean-field or scaling
theories [22, 23]), experiments (especially neutron scat-
tering [24, 25]) and numerical simulations (Monte Carlo
and Molecular Dynamics methods [26, 27]) agree in pre-
dicting the monomer distribution, the layer thickness and
the way it should scale with the grafting density ograf
and the polymerization degree n. Indeed, at equilibrium
the brush is properly described by the profile p(z), which
is the probability distribution of finding a monomer at
a distance z from the grafting wall. In Fig. 2 we show
p(z) for ograre = 1.5 and n = 40 (the brush thickness
is by = 2 [ zp(2)dz/ [ p(z)dz = 24.8 in DPD units [20])
and, in the inset, a comparison between brushes with dif-
ferent grafting densities ograre = 0.1,0.3,0.5,0.8,1.0,1.5
simulated in a box of size (Lg, Ly, L.) = (30,5,50). In
equilibrium, the scaling properties of polymer brushes do
not depend on the way the free ends are modelled, be-
ing retained in simulations of polymer brushes in good
solvent [28] or in theoretical treatments assuming all
free ends are at the maximum distance from the graft-
ing wall (Alexander model [29-31]) or can move over
the whole brush thickness (self-consistent mean-field the-
ory [22, 23]). Regardless of the model used, and hence
of the way free ends are included in the description, the
interface between the brush and the rest of the channel is
always smooth, as highlighted in Fig. 2 by the dashed cir-
cle. The precise configuration of the free ends thus gives
no significant contribution to the brush equilibrium be-
havior. By contrast, it turns to be crucial if the brush is
subdued to flow, since the free ends determine the brush
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FIG. 2. Density profiles p(z) for n = 40. In the inset: com-
parison among density profiles at different grafting densities
Ograst = 0.1,0.3,0.5,0.8,1.0,1.5. In the main frame, a zoom
for ograse = 1.5, with the circle highlighting the smooth decay
even in the higher volume fraction case.

elastic properties in general, and the shear modulus in
particular, which can couple to hydrodynamics even at
low Reynolds numbers, as we will show in the following.
Therefore, we stress that the smooth decay of the density
profile does constitute a peculiarity of the filamentous
coating and it must be considered for a correct under-
standing of the polymer brush under out of equilibrium
dynamics.

In the following the simulation results we will present
have been obtained with brushes with ograse = 1.5, corre-
sponding to a polymer brush with an average distance be-
tween filaments of ~ 20 nm and a thickness in the range
300 + 1000 nm to mimic the endothelial glycocalyx [20].
We also define the brush surface S position as the aver-
aged position of the farthest monomer from the grafting
wall. At equilibrium, this corresponds to S = Sy = 29.1
(DPD units).

A. Hydrodynamic instability of the flat brush
surface

1. Surface morphological instability has elastic origin

It has been recently shown that under specific condi-
tions of a parabolic flow the brush polymers co-ordinate
the recursive motion of their free ends and give rise to a
collective effect, namely a traveling wave over the brush
surface [13]. The idea of the present study is to attribute
the presence of the wave, that is, of finite-amplitude os-
cillations, to an instability driven by hydrodynamics.

The occurrence of surface protuberances can be at-
tributed to a morphological instability of elastic origin.
Indeed, it is quite well established that a surface sub-
ject to an axial stress (such as shear stress) stores elastic
energy which can be partially released in the form of a
surface deformation, which has a lower energy than a flat



one. An example of a such a behaviour is known as the
Asaro-Tiller-Grinfeld [32, 33] instability discussed in the
context of solid surfaces [34], where the modulation takes
place thanks to mass rearrangement (surface diffusion,
for example). Another context where surface instabili-
ties appear is the clamped gel problem [35], where the
bottom surface of a thermoresponsive gel is fixed to a
solid surface. Upon varying the temperature the gel ex-
periences a uniaxial stress leading to surface modulation
which is not due to mass rearrangement but to buckling-
like modes. Similarly, when an elastic medium is in con-
tact with a fluid under shear flow, the elastic medium is
under a uniaxial stress and a surface deformation leads to
a partial release of the stress [36]. In all these three cases
a linear stability analysis has been performed showing the
occurrence of a surface instability. The third case is the
most relevant for our study. The linear stability analysis
was performed in Ref. [36]. However, no simple analyti-
cal expression is available. Here, we have simplified the
analysis making it more adequate for a polymer brush
instead of a gel, and precisely: (i) in Ref. [36] the gel
(in our case the brush) has a visco-elastic behavior and
an inertial contribution, while we neglect (legitimately)
inertia and consider the brush to be purely elastic (given
the fact that flow is almost absent within the brush at
low W+i); (ii) in Ref. [36] the gel-fluid interface is endowed
with surface tension, while we show that this is not only
unnecessary (a cut-off wavenumber is ensured by gel elas-
ticity and fluid viscosity) but the notion of surface tension
does not make sense; (iii) in Ref. [36] the fluid has a finite
extent in z-direction, whereas here we took the assump-
tion that the system is infinite (meaning that the system
size is large as compared to wavelength of interest, which
is a quite legitimate assumption in the experiments of
Lanotte et al.[12] and in our numerical set-up). In both
works the medium is taken to be incompressible. Our
simplifying assumptions have the advantage to yield a
simple analytical expression for the dispersion relation.

2. Linear stability analysis

Since the flow close to walls is of shear type, we con-
sider the following set-up: an imposed linear shear flow
u; = Ay (where 4 is the shear rate) with a geometry
similar to that in Fig. 1 but with a large L. (actually
infinite; this is legitimate as long as the brush thickness
and wavelengths of interest are small as compared to L,
two fulfilled conditions).

The fluid obeys the Stokes equations

—Vp+nAv =0 (3)

V.v =0, (4)

where v is the velocity, p thee pressure and 7 the vis-
cosity. The brush is taken to be a linearly elastic do-
main described by the Lamé equations. Due to rotational

symmetry in the plane of the planar brush-fluid interface
the dispersion relation depends only on the modulus of
wavenumber. For this reason it is sufficient to consider a
2D model (the system is supposed to be invariant in the
y direction). In this case it is convenient to make use of
the Airy function [37] x, related to elastic stress tensor
0ij by

0%y 0?x 0%y
= 55y Ozz= 555 Oxz=— ’ (5)

Ox? 022 0x0z

The Lamé equation (equilibrium equation for an elastic
medium) reduces to solving[37]

A?x =0 (6)

The Airy function obeys a bi-harmonic equation. Once y
is determined one can extract the stress tensor from (5),
and the displacement field u, upon using Hookes law,

OIZL‘

1+v
Cxx = Y [(1 - V)Uaca: - VO'ZZL
1
€y = ;;V[(l —V)0,y — VOga
1
€rz = ;Vo—mzy (7)

where Y is the Young modulus, v the Poisson ratio, and
ei; = (Oyu; + 0ju;)/2 is the strain tensor.

For a planar interface the shear stress in the fluid is
constant (equal to imposed one) and is equal to that in
the brush (due to mechanical equilibrium). Linear sta-
bility analysis is performed by considering that the inter-
face z = hy + h(x,t) is deformed with a small amplitude
€. While the Stokes and Lamé equations are linear, the
solution is a nonlinear function of h. Linear stability con-
sists in retaining only linear terms in deformation ampli-
tude. Because in a linear regime modes do not couple,
it is sufficient to consider a single Fourier mode, so that
interface equation reads z = hy + €4t 4 c.c., where
g is wavenumber and w is the attenuation/growth rate
of the perturbation (Re(w) > 0 signals an instability).
c.c. stands for complex conjugate and will be omitted in
what follows. All solutions of the linear problem follows
the same dependence with x and ¢

a. Hydrodynamic solution Taking the rotational of
(3) eliminates the pressure and one obtains A(9,v, —
O0,v,) = 0. Using continuity equation (4) one obtains
iquy + 0,v, = 0 allowing us to express v, in terms of
v,. Using that 0,v, = —iqu, (eq. (4)), implying that
0,v; = —i0,,v,/q, one easily finds that v, obeys the
degenerate equation

(azz - q2)2vz = 07 (8)

so that the general solution of v, is given by (recall the
system is taken semi-infinite along z and we retain only
decaying solution in z)

v, = (A + Bz)e 1Zlartwt (9)

where A and B are integration constant.



b. Elastic problem x (see (5)) has the following so-
lution

x = [(C + Dz)e % + (C' 4 D'z)e%]el1twt (10)

with integration constant C', D, C’ and D’. v, can be
determined from the relation with v, evoked above, and
using the Stokes equation p can be determined. Once
these quantities are known the hydrodynamic stress can
easily be determined, using Il;; = —pd;; + n(0;v; + 0;v;).
We have thus 6 different constant A, B, C and D, and
C’ and D', plus the interface deformation amplitude .
c. Boundary conditions Using the boundary condi-
tions at the brush interface, z = hy+h(z,t) (and develop-
ing them to linear order in ¢), one obtains homogeneous
algebraic equations for the amplitudes. The boundary
conditions are: (i) continuity of normal stress, (ii) conti-
nuity of tangential stress, (iii) zero displacement at the
bottom wal (u, = u, = 0), (iv) ) continuity of velocity
(vy and v,) at the interface. These 6 conditions allow us
to express the 6 integration constant as a function of e.
Finally, imposing a continuity of interface velocity (given
by d:h(z,t)) with that of the fluid velocity v, provides an
additional relation resulting in a homogeneous equation
for € and a nontrivial solution exists only if the prefactor
is non zero (alternatively we could use that the determi-
nant of the full system of algebraic equations be zero for
a non trivial solution to exist). This results in a disper-
sion relation relating w, q¢ and control parameters. In the
limit of a Poisson ratio v = 1/2 (incompressible gel) the
dispersion relation takes a relatively simple form (after
algebraic manipulations which are straightforward)

[¢* + 1 — cosh?(q)]w? — 2w sinh(q) cosh(q)
Wi ¢?
+1 3

where ¢ is the dimensionless wavenumber related to the
physical wavenumber ¢ by g = ¢h; (we recall that hy is
the brush thickness) and Wi will be referred to as the
Weissenberg number defined by Wi = 4n/G. In this
definition for Wi we have equated tgow = (%)~ and
thrush = 1/G. We have also used the relation between
the Young modulus Y and shear modulus G, Y = 3G
(for incompressible material). The physical growth rate
@ has been scaled by the shear rate, so that in Eq. (11)
the growth rate w is dimensionless and reads w = @/7.
It has a real and imaginary part and it will be written
as w = w, + iw;. An instability is signaled by a positive
value of w,.. A typical shape of w,.(q) is given in Fig. 3(a).
We can notice that there is a critical value of Wi beyond
which there is a band of wavenumbers corresponding to
positive w;., signaling an instability of the surface. We
see that the critical value of W+ is around 25, meaning
that for an instability to arise in our simple model the
shear stress should be about 25 times larger than the
bulk shear modulus G. Note that we are considering an
incompressible brush, so that at ¢ = 0, w, = —c0, mean-
ing that any homogeneous (¢ = 0) compression of the

. coshZ(q) =0. (11)

brush is stable, its relaxation time being instantaneous.
In reality a brush has a finite compressibility, so that at
qg = 0 we expect w, to take a finite value. This means
that in reality the curves in Fig. 3(a) will be shifted up-
wards and hence the critical value of Wi will be smaller.
In other words, we predict that the instability of a real
(compressible) brush would take place when the shear
stress reaches values of few times the elastic modulus.

The above linear study has an indicative value show-
ing the existence of an instability and of the accompa-
nying band of active modes (unstable modes). While it
may be possible to extend the model to explicitly take
into account the compressibility of the brush, the elas-
tic response of the brush considered here, which will be
discussed in the next section, has a nonlinear response
in a quite large range of shear stress. Therefore a full
quantitative theory would require the development of a
nonlinear elastic theory for the brush to take on the study
of its linear and nonlinear instability with respect to sur-
face modulation, which is beyond the goal of the present
paper.

We note in passing that the smallest wavelength be-
low which the surface is stable (Aa, corresponding to the
largest value of ¢ at which the upper curve in Fig. 3(a)
crosses the g¢-axis), represents a “microscopic” cut-off
suppressing short wavelength instabilities. Usually the
presence of a cut-off is connected to surface tension [36].
By contrast, here the cut-off length is controlled by the
brush elastic modulus. The presence of a cut-off means
that, if the simulation box L, is smaller than Ao, then
no instability mode can fit in the box and the surface
is stable. We will see numerically in section IIIB that
increasing the box size L, the surface becomes morpho-
logically unstable and that this instability causes a strong
flow reduction, as observed experimentally [12].

3. Linear and non linear elastic response of the brush

In the model sketched above we have treated the brush
as a linear incompressible elastic medium (Poisson ratio
is set to 1/2). We have attempted to investigate this
matter further by analyzing numerically the response of
the brush to an imposed stress. Figure 4(a) shows the re-
lationship between an imposed compression and the cor-
responding stress response of the brush. We simulate a
Surface Force Apparatus experiment and compress the
brush by mean of an ideal plate posed at a certain dis-
tance from the grafting wall; the plate behaves as a rigid
wall of infinite mass for monomers, while it is transparent
to solvent particles. The stress is estimated as P = F//A,
where F' is the time average of the total DPD conserva-
tive force exerted by each monomer on the plate surface
of area A. In Fig.4(b), on the other hand, we show the
relation between a shear stress exerted on the brush and
the corresponding shear strain. The shear stress o is im-
posed by the flow and it is calculated as o = 1%, where
¥ = VUmax/Zmax With Umax the maximum velocity mea-
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FIG. 3. Real and imaginary parts of the growth rate w as a
function of wavenumber ¢ for different values of Wi: a) the
dispersion relation showing real part of w ; b) the frequency
f obtained from the imaginary part of w divided by 2ps.

sured at the corresponding z = zp.x. We recall that for
our system 1 = 0.84 in DPD units. The shear strain is
the average of the component along the flow direction of
the end-to-end vector, Ax = (Rec ). It is evident from
the two figures that those relations are linear for small
strains only. As a consequence, the polymer brush has
a nonlinear elastic character that comes into play as the
imposed flow gets higher, and it gets stiffer and stiffer on
increasing the rate of compression/strain.

In the region of small deformations, we extract the val-
ues of the two elastic moduli, Y and G. A linear fit yields
Y =14 and G = 0.59 and hence v ~ 0.19, confirming
the compressibility of the brush.

We also estimate the shear stress at the brush
outer surface layer S as og = ndv(z)/dz|,—g, where
dv(z)/dz|,=s is obtained from the linear slope of the ve-
locity profile v(z).

Here we follow Ref. [13] wher it has been shown that
the wave appears when the velocity profile exhibits a flow
inversion close to the brush surface. Figure 5 shows
the minimum of the velocity profile as a function of
Wi for the system with (Lg, Ly, L.) = (30,5,50). The
Weissenberg number in our simulation is calculated as
Wi = n/G%, where ¥ = Vpmae/(Zmaz — hp) is a measure
of the imposed flow. Indeed, even if the imposed flow
is parabolic, in the brush vicinity the fluid velocity is
close to zero and the flow can be legitimately linearized.
The data show that the flow inversion, and hence the
appearance of the surface wave, happens at Wi ~ 0.25,

which corresponds to g & 0.3 (see inset). This value is
comparable with the value of G reported above. In other
words, the instability takes place as soon as the brush ex-
periences at its surface a shear stress comparable with its
shear modulus G. As we have seen in the dispersion re-
lation (11), Wi is the only parameter entering there, and
we have seen that the instability takes place for Wi ~ 1
(meaning that the shear stress is of the order of the shear
modulus). Thus, we indicate in the following relation

o5 ~G (12)

the necessary condition for the onset of such instability.
Below such threshold we expect the polymer brush to
reduce the flow as if it was a regular rigid wall, without
inducing any anomaly in the velocity profile.

The dimensionless fastest growing wave number has a
value around 1.4 (see Fig.3(a)) corresponding to a wave-
length A = 27hy/1.4 ~ 110 (in DPD units). Referring
to figure 6, showing the first coefficients of the Fourier
power spectra in the spatial domain, we find that for
the L, = 180 s, the dominant harmonic corresponds to
a wavelength which is half the system length (a value
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FIG. 4. The brush nonlinear response to compression (a)
and to strain (b). Sp is the averaged position of the farthest
monomer from the grafting wall at equilibrium. As the ap-
plied normal or tangential load increases, the brush stiffens.
The blue lines are linear fits in the region of small deforma-
tions yielding an estimation of the brush Young modulus (a)
and shear modulus (b).
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FIG. 5. The minimum of the velocity profile as a function of
the Weissenberg number Wi for the (Ls, Ly, L2) = (30,5, 50)
system. The inset shows the dependence of the shear stress
at the brush outer surface layer, og, as a function of Wi.

of 90), thus comparable to the theoretical value 110.
While in the L, = 30 the dominant wavelength is ba-
sically selected by the system size. Indeed, instead of
fastest mode, the smallest wavelength (and correspond-
ing to an unstable mode) fitting in the simulation box
can be exhibited. In the vicinity of instability thresh-
old, this wavenumber remains comparable to that corre-
sponding to the fastest one (see Fig.3(a)), and thus larger
than the box size, explaining the absence of instability for
L, = 30.

Furthermore, as explained in Ref. [13], the instability
manifests itself as a travelling wave. The linear stabil-
ity presented here shows that w has an imaginary part
(see Fig.3(b)), and thus the modulation has a travel-
ling wave character. The frequencies extracted from
the linear analysis are reported in Fig.3(b) and are in
good agreement with the ones obtained from simulations
(see Fig.4.(c) of Ref. [13]). To compare those results we
should first notice that the Weissenberg number used in
Ref. [13] is different from the Wi defined in this paper
and that the range i{137, 218} in Ref. [13]) corresponds to
our Wi = {0.31,0.47}. Then, it is sufficient to scale the
frequencies shown in Ref. [13] by the factor n/(G*W+) to
obtain frequencies dimensionalized by shear rate in the
order of 0.2 (in DPD units), therefore in the same order
of magnitude as those appearing in Fig.3(b). In addi-
tion, since the wavelengths in simulation and theory are
comparable, we conclude that the travelling speeds ob-
tained numerically and analytically agree with each other
in terms of order of magnitude.

The prominence of the shear moduli G compared to
other elastic moduli in determining brush instabilities
resides in the observation that a polymer brush, and
polymers in general, can be more easily sheared than
compressed. In our simulations we find Y/G =~ 2,
but it is worth noticing that in real polymer brushes
Y/G =~ O(10%)[38, 39]. As a result, a hydrodynamic
load more easily excites shear modes than compression
modes. The gap between those two elastic features is not
surprising if we consider how anisotropic a polymer brush
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FIG. 6. Spatial Fourier coefficients of surface modulation for
different system sizes.

(d)

FIG. 7. Elastic properties of a macroscopic brush, which serve
as guidelines to infer polymer brush elastic properties: (a) fil-
aments can sustain the weight of the wooden substrate, mean-
ing that the Young modulus is not negligible; (b) the brush
is easily shearable, as shown by the deformed filaments, to-
gether oscillating under a light shear impressed by a lateral
movement.

is, by construction. Figure 7 shows a series of images of a
macroscopic brush (Fig. 7(a)) that highlights this prop-
erty: although the brush can sustain the weight of the
wooden substrate (Fig. 7(b)), revealing a non-negligible
compression resistance, it can be easily sheared just by
slightly left-right shaking one hand (in Fig.7(c)-7(e)).

B. Flow reduction in the bulk channel as effect of
the brush surface instability

An interesting experimental result was reported re-
garding the influence on flow properties of a polymer
brush coating the internal surface of a glass capillary[12].
Given a pressure-driven flow, one would expect the max-
imum velocity in the capillary center to be that given by
a Poiseuille profile with a radius reduced by the brush



thickness. By contrast, the measured maximum velocity
was found to be less than expected, as if the brush were
twice thicker than its real value. In terms of numerical
values, let us denote by vy the maximum velocity for the
bare capillary (in the absence of the brush), and v, that
of a capillary having a radius equal to the bare value mi-
nus the brush thickness (as if the brush effect was to only
reduce the capillary radius). The measured velocity [12]
vy was found to be lower than v{, by 30%. Our numeri-
cal results show that that the morphological instability,
discussed above, is a plausible candidate to explain this
behavior.

We find that wherever a surface wave is present, a sig-
nificant reduction of the bulk maximum velocity as func-
tion of the channel length is also observed. We first re-
call that in a channel the expected fluid velocity profiles
have a parabolic shape, as analytically obtained in case
of Stokes flow in a slit-pore geometry. Since in our sim-
ulations polymers have been grafted only at the z = 0
wall, the centre of the parabola does not coincide with
the centre of the channel. Parabolas are thus fitted by

oA

o (o = A = (2= AP). - (13)

vz(2) ((Rmaz

where the pressure gradient has been substituted by the
imposed force per unit volume AP/L = pA, R4, is the
z-coordinate corresponding to the maximum velocity and
A is a fitting parameter. If there is no wave at the brush
surface we find A ~ h;, and the velocity profile (Fig. 8,
black curve) can be almost perfectly overlapped with the
velocity profile of a channel of width L, — h; (Fig. 8, or-
ange curve). This means that if no instability is present,
the polymer brush behaves as a rigid compartment which
effectively reduces the channel width. We see in Fig. 3(a)
that for Wi ~ 30 the largest values of ¢ beyond which
there is no instability is of about 2 (changing Wi does
not affect to much this value, and we have checked from
our dispersion relation that for Wi = 100 the threshold is
of about 3). This provides a cut-off length, which is the
minimum box length below which no instability should
be present, of about Ly, = 2mhy,/2 = 7why, ~ 78. We find
that, while for L, = 30 there is no instability, increasing
the channel length from L, = 30 to L), = 6L, = 180
results in a pronounced decrease of the fluid bulk max-
imum velocity, which is associated to a surface insta-
bility. Under these conditions the maximum velocity is
around 60% lower than that obtained when no instabil-
ity is present and the brush is flat (L, = 30). Further
increasing the box size can only increase this figure, since
more wavelengths can be excited as the channel’s length
grows. Coherently with this picture, Fig. 8 shows that
Umax slightly decreases when the length of the channel
doubles (L = 12L, = 360).

We propose that the hydrodynamics-brush coupling
modifies the energy balance: the flow excites one or more
natural mode frequencies of the brush and the supplied
energy, instead of increasing the bulk fluid velocity, feeds
the instability. Therefore, the brush motion is enhanced,

60 T T T T
L, =140 L -

> — —
Lx =30 40\

=
> L 4

parabolicprofile
inachannelof ~[
width= L, — hy,
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FIG. 8. Comparison between the flow profiles inside chan-
nels of increasing lengths: L, = 30 (black curve), L, = 180
(turquoise curve) and L, = 360 (violet curve). The width is
fixed at L, = 140 and the imposed acceleration is A = 0.01 in
all cases. The orange plot corresponds to the parabolic veloc-
ity profile in a channel of reduced width L, —hs. It is observed
a significant reduction of the maximum velocity as function
of the channel length. The trend shows a saturation around
a 60% decrease, associated with the surface wave. We show
pictures of the brush surface wave which settles in the longer
systems (in red color the simulated system, with its nearest
replicas in grey, to convey the impression of the periodicity of
the surface modulation). Wi = 1.29 in all cases.

as revealed by the aspect of the wave (see Fig. 8). This
viewpoint is in line with the outcome of an experiment
by Kumaran and Muralikrishnan devoted to the charac-
terization of viscous flow past a soft interface: beyond a
certain threshold for the applied shear stress, the trans-
port of energy disfavours the average flow and an increase
in the fluid apparent viscosity is measured [40], which is
coherent with the decrease of the maximum velocity we
show in Fig. 8. Again, this analogy is an additional hint
that polymer brushes can develop hydrodynamic-induced
instabilities. Interestingly, thanks to the mesoscale na-
ture of our simulations we are able to directly observe
the oscillations of the soft interface, which were only in-
ferred in Ref. [40].

C. Comparison with experiments

We have seen above that that the morphological inter-
face instability can drastically reduce the flow, which in
our simulations is decreased by =~ 60% compared to the
planar case. However, Lanotte et al. [12] measured only
a ~ 30% reduction. A possible reason for this discrep-
ancy is the polydisperse nature of the brush investigated
in Ref. [12]. On a qualitative level it has been shown that
polydispersity changes how the surface wave appears and



behaves [20], although a thorough quantitative investiga-
tion of its effects is beyond the scope of the current work.
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FIG. 9. Velocity pattern in the channel with a modulation
of interfaces: (a) a sinusoidal modulation, with ziop/L. =
Asin(—z/(27)) + 1 for the upper wall and zbottom/L: =
Asin ((x/2m)) for the bottom wall, and (b) a cycloidal modu-
lation, with zop/L. = A/2(1—cos (—z/(27))+1 for the upper
wall and zbottom/L> = —A/2(1 — cos ((x/27)) for the bottom
wall. The color code refers to the modulus of the velocity.
Here A = 0.3 in unit of the channel width.
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FIG. 10. Maximum velocity divided by that corresponding to
a straight channel as a function of surface deformation. Com-
parison between the sinusoidal wall modulation (black) and
the cycloidal one (red). Notice that the modulation thickness
T reported on the z-axis is T = A for the cycloidal case and
T = 2A for the sinusoidal case.

Another likely source of difference between the numer-
ical and experimental results is provided by system size
and interface geometry. Because of computational costs
our system size along the flow direction cannot be as
long as it is in real experiments. Indeed, with the level of
description we chose the lateral size L, cannot be more
than a few (2 to 4) times the instability wavelength. This
means that higher wavelength modes can not fit in the
simulation box, and this will most likely affect the nonlin-
ear evolution of the surface wave, such as its amplitude,

and its temporal dynamics. Moreover, as we have previ-
ously observed in Fig. 8, the more the velocity reduction
the more the deviation of the wave front from a simple
sinusoidal shape. Here, we have attempted to extract
the role of interface geometry for the maximum velocity
change. We used a Lattice Boltzmann simulation [41]
to draw the flow field between two rigid walls which dis-
play a fixed modulation mimicking the brush deforma-
tion. We have focused on two cases, as shown in Fig. 9:
a sinusoidal modulation and a cycloidal modulation. The
main results are reported in Figure 10, which shows the
evolution of the maximum velocity as a function of the
deformation amplitude A and compares the two geome-
tries. We see that a velocity reduction of ~ 25% (closer
to experiments) is obtained for a wall modulation which
is 20% of the channel width. However, in the cited exper-
iments [12] such velocity reduction is found for a brush
thickness which is only 5% the channel width. This indi-
cates that it is likely that the anomaly in the maximum
velocity measured actually comes from an interplay be-
tween the brush and the flow and it is not only a matter
of geometry of the boundary. This bolster the idea of
the elastic instability as the leading mechanism destroy-
ing more the flow field with respect to what expected for
the flow field past rigid bodies at low Reynolds numbers.

IV. CONCLUSION

We have discussed the behavior of a polymer brush as
exposed to a parabolic flow in slit pore geometry. Our
mesoscale investigation accounts for the specific dynam-
ics of the polymer free-ends exposed to flow: driven by
the long-range of hydrodynamics, they can generate col-
lective effects, namely a travelling wave at the brush sur-
face. By analogy with solid elastic films we have quanti-
fied the Young and shear moduli and indicated the wave
as the onset of a shear instability induced by hydrody-
namics. We have found a criterion for the onset of the
instability in the following condition:

agg ~ G (12)

where og is the shear stress exerted by the flow on the
brush surface S and G is the brush shear modulus. Such
an outcome is in line with a previous theoretical result
[36] found for flow past a soft gel and widen the range
of hydrodynamic interactive soft media to embrace poly-
mer brushes too. We stress on the importance of G in
determining the threshold: this effect can be traced back
to the difference between the values of the two moduli,
with the shear modulus being much smaller than Y, dif-
ferently from what is expected in standard solid matter
for isotropic materials. Beyond such threshold, brush in-
stabilities can take place and waves can form. Moreover,
in the presence of waves of big oscillation amplitudes, the
imposed pressure drop feeds the instability, resulting in
a strong flow reduction in the channel. We thus offer a
numerical counterpart to the microfluidic experiments of



Ref.[12], providing a long-sought plausible interpretation
of the results reported therein. We emphasize such inter-
pretation, since we have also proved that a rigid interface
model is not a good approximation for a polymer brush
under flow: in the end, at low Reynold numbers, a poly-
mer brush, with its dynamical protrusion inside the fluid,
displays a richer dynamics than a sharply-cut interface
does, even tailoring its geometry for much complicated
shapes.

It is worthwhile noticing that our case study can be
related to blood circulation: the chosen set-up resembles
the microcapillary environment and the simulated poly-
mer brush is a simpler model for the endothelial glycoca-
lyz. Interestingly, the shear modulus of the endothelial
glycocalyx layer has been measured to be G = 6.7Pa
[39] and at physiological conditions shear stresses at the
microcapillary walls are of the same order of magnitude
(few Pascals). Thus, the criterion condition of Eq.(12)
can be fulfilled and the surface wave we have discovered
might come into play under physiological conditions. We
speculate that if the discussed instability and flow re-
duction do take place at the microcirculation level, they
could serve as a control in regulating the blood velocity
and hence the shear stress felt by the vascular walls.

As outlined in Figs. 4, a polymer brush in not sim-
ply linearly elastic: it becomes stiffer and stiffer on in-
creasing the Wi. Moreover, the properties of the brush
also depends on temperature (or, equivalently, solvent
quality) [42]. Thus, a full clarification of the brush phe-
nomenology will require a more complex model encom-
passing nonlinear dynamic sources and thermal effects.
We remark that our DPD simulations contain almost
one million particles and that a further increase of the
system size is frustrated by computational limits. The
construction of a continuum model to solve the Navier-
Stokes equations with adequate boundary condition to
mimic the brush layer in order to investigate the behav-
ior also in case of flowing objects is an interesting task
for future investigations.
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Appendix: details on the DPD method

DPD is a coarse-graining of MD, employing both
spatio-temporal averaging of interaction potentials as
well as grouping of atoms into single particles (the DPD
particle). It was introduced by Hoogerbrugge and Koel-
man in 1992 [14] to simulate isothermal Navier-Stokes
equations. It thus grasps hydrodynamics interactions
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and covers bigger timescales and bigger lengthscales than
the usual ones reproducible with MD.

Each of the N point-like DPD particles evolves in time
according to Newton’s equation

N
J#i

(A1)

(with obvious choice for symbols). The forces ﬁij act-
ing on pairs have three contributions: a conservative
one, Fc(rij), a dissipative one, F"D(n-j), and a stochas-
tic one, F*S (rij). These are all central forces such that
F‘ij = —F_}i, thereby guaranteeing local momentum con-
servation. All of them act within the same distance range
r¢, that is chosen as the lengthscale unit. The conserva-
tive force has the following expression:

Tij \ -
= a 1——)ry 1y <re
FO(ri) = 4™ ( ) VST (A2
0 Tij > Te
with the definitions 7j; = 7; — 7; for the vector dis-

tance between the i-th and j-th particle, r;; = |7;| and
Tij = Tij / ;5. It is a conservative soft-core repulsive force,
corresponding to the following potential

2
"ij _Te

— ;i — <
V(Tij) = aozﬁ (T.l] 2’[“0 2 > r” =Ter (A?))

0 Tij > Te

where the constant value aqg7./2 has been added to shift
the potential to zero at r = r.. According to standard
DPD, the functional shape of Eq. (A.2) comes from av-
eraging a Lennard-Jones 12-6 potential over short time
scales and small lengthscales, thus measuring the effec-
tive potential between clusters of liquid molecules [16].
Fast dynamics (the number of collisions with neighbors,
known as the cage effect of simple liquids) is averaged
out, resulting in a purely-repulsive interaction. The soft-
ness is justified by the blob nature of DPD particles that,
containing also empty space, should have the possibility
to overlap. We note that the absence of divergences in
Eq.(A.3) entails one of the advantages of DPD with re-
spect to MD: while an hard-core potential imposes a max-
imum integration time-step to avoid excessive forces, the
soft-core interaction allows for bigger time step values.
The constant a,g measures the force between two com-
pletely overlapping particles, where the indexes «, § in-
dicate the particle type (solvent or polymer, in our case).
It controls the density fluctuations of the system and it is
casted from the compressibility of the modeled fluid [43].

The two other extra forces account for the loss of de-
tails in the coarse-graining procedure, namely the huge
amount of collisions occurring between real molecules
and constituting the microscopic foundation of transport
properties, such as viscosity and diffusivity. The dissipa-
tive force takes the following form:

(A.4)

FP(rij) = —yw® (rij) (Foj - T5) P,



where the “weight function”w? (r;;) we used is:

o\ 2
17 ~

D —— | Tij Tij STe

w(rij) = ( 7‘0) s

0 Tij > Te.

(A.5)

Precisely, Eq.(A.4) accounts for the energy loss, introduc-
ing a friction among particles proportional to the relative
velocity ¥;; = U; — ¥; and to a factor -y that depends on
the temperature T. To balance the dissipative force, a
random force is also necessary:

ﬁs(rij) = aws(rij)Gij(At)_%r}j (AG)
where o is related to temperature, w”(r;;) is another
weight function and 6;; is a random number extracted
from a gaussian distribution that has zero average
(0;;(t)) = 0 and is uncorrelated in time and among parti-
cle pairs: (0;;(t)01m(t')) = (0i10m + 0im0;1)0(t —t"). The
condition #;; = 6;; has to be verified in order to locally
conserve momentum. The factor 1/v/At in Eq. (A.6)
comes from the discretization procedure of a Wiener pro-
cess and ensures that the particle self-diffusion coefficient
is independent from the time step value [43]. The two
forces FP (ri;) and ﬁs(rij) act as a thermostat.

It has been proved that to reproduce the correct equi-
librium probability distribution of the NVT ensemble the
dissipative and random forces have to verify two con-
straints [44]:

2

2%pT

2 and 4=

w® (rij) = [w (ri;)] (A.7)

In addition to these basic DPD forces, other kinds of
interaction can be included in the DPD frame according
to the specific simulated system. In the present case, to
mimic polymers, linear chains of DPD particles are con-
nected by a finitely extensible nonlinear elastic potential
(FENE) [18]

Tij — Teq

FEENE — ok R?
e R2 = (rij = Teq)?

Tij Tij — Teq <R

(A.8)
where k is the spring constant, r., the neighbor equi-
librium distance and R the maximum allowed extension.
An extra monomer is added to each chain as anchor, i.e.
grafting point. Grafting point coordinates are randomly
chosen from a uniform distribution and located on a flat
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surface z = zy,q; according to the imposed grafting den-
sity ograse, defined as ograpr = Nep/(LgLy) with Ny
the number of chains composing the brush. The anchor
centers of mass are aligned with the wall z coordinate
and their position is not updated. Note that polymers
are non-ideal ones since they also interact via the DPD
repulsive force, that operates as an excluded volume po-
tential.

Given the softness of the conservative interaction po-
tential, a repulsive force of the kind in Eq. (A.2) is not
enough to prevent particles from escaping the box. It
is then necessary to implement an additional mechanism
to bring back particles that cross the wall line and we
opted for the bounce back reflection, in which the whole
particle velocity vector is reversed ¥ — —4. The bounce-
back mechanism, by construction, is consistent with the
no-slip condition at the wall.

We integrate the equations of motion with a modified
Velocity Verlet algorithm, as commonly done in DPD
simulations [43].

We chose the DPD units such that r. =1, m; = 1 and
kT = 1. The integration time step is At = 0.02. We
underline that such value is at least one order of magni-
tude bigger that the usual ones set for MD simulations
and, thanks to the softness of the potential, is enough
to make the system reach the equilibrium/steady state.
We set the system number density p = N/(L,L,L,) =
3 [43]. The number of monomers per chain is set to
n = 40 and the grafting density ogrqp; spans from
Ograft = 0.1 to 0gprqfe = 1.5. Since the total number
of DPD monomers N,, is subtracted to the total amount
of particle N, the actual number of solvent particles is
Ny, = N - Ny, = pLyLyL, — nograftLsLy. Following
Ref. [43], we fix the solvent-solvent interaction parame-
ter aggs relating it to the dimensionless compressibility
of water k' = 1/(pkpTkr), where k7 is the fluid com-
pressibility, then ass = 75kpT/pri = 25. We assume
that the polymer-polymer interaction parameter has the
same value (e.g. ass = app), while we select a smaller
value for the solvent-polymer parameter agp = 20 (good
solvent conditions). For the interaction with walls we set
a, = 6 < ags to avoid an artificial depletion zone along
the walls. The noise amplitude is fixed to ¢ = 3, as in
previous literature [43]. It is worth noticing that with
higher values for o the code takes more time to reach
the equilibrium/steady state. For the FENE potential
we use 1o = 0.86, R =1 and k = 50.
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