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The main objective of the present study is the derivation of exact analytical expressions for the orientation
and trajectory of a spherical microswimmer submitted to general linear flows and to an external (gravitational
or magnetic) force field, a problem known as gyrotaxis or magnetotaxis. We consider linear shear, hyperbolic,
solid-rotation and stagnation flows. The evolution equations of the swimmer orientation and its position are
nonlinear and analytical results are the exception rather than the rule. Most of available results for cell orien-
tation and trajectories are obtained numerically. The solution for the swimmer orientation is inspired from a
method due to Bretherton, initially developed for a different nonlinear equation. We show here that this method
can be generalized to our evolution equation. We will see that the swimmer under flow exhibits both run (a
motion where the orientation angle is kept constant with time) and tumble (the orientation angle is cyclic with
time) regimes, and a variety of cell trajectories are extracted analytically, such as parabolic, elliptic, helical, and
so on. This study offers a framework to generalize the results to other types of flows.

PACS Numbers:
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I. INTRODUCTION

Swimmers range from self-propelled microorganisms to macroscopic animals such fishs. Macroscopic organisms use inertia
in their motion, whereas microorganisms, like bacteria, spermatozoa, micro-algae etc, have a low enough Reynolds number (Re)
for inertial effects to be ignored in describing their locomotion.

In the zero Re limit, the governing equations of fluid motion are linear (the Stokes equations) and invariant under time reversal.
As a result, microorganisms must deploy non reciprocal deformations in time in order to move forward (the scallop theorem or
the reciprocal theorem) [1], [2]. Microorganisms, like spermatozoa, bacteria and microalgae, can move with the help of flagella
or cilia [3], [4] thanks to non reciprocal elementary strokes. Other cells may use ample shape deformations, known as amoeboid
[5], for their locomotion.

Many microorganisms respond to both flow and other stimuli (e.g. external force), such as gravity (gyrotaxis), magnetic
field (magnetotaxis), light (phototaxis), and so on. The interplay between flow and external force leads to a variety of complex
motions. Most of trajectories of these microswimmers have been so far obtained numerically, as described below.

Under flow and an external field the orientation vector (denoted as ppp) and the position (denoted as x) of a microswimmer with
a spherical shape assumption are described by

ṗpp =
1
2

ωωω× ppp+λ [ jjj?− (ppp. jjj?)ppp] , ẋ = u0(x)+vs, (1)

where ωωω is the fluid vorticity vector, jjj? accounts for the applied external field characterized by λ (λ = 0 in the absence of the
external field), proportional, for example, to gravity for a heavy bottom particle (i.e. when the mass center differs from the
sphere center [6–8]), vs = vs ppp is the swimming velocity and u0 is the applied flow. Brenner [6, 7] investigated the effect of
shear flow for the cases where ωωω and jjj? are either perpendicular or parallel, whereas Hall and Busenberg[8] studied the general
case where the angle between ωωω and jjj? can be arbitrary. Their results essentially show that the particle either tends to a fixed
orientation or describes a periodic motion. These two motions will be referred to as run and tumble motions. This is not to be
confused with run-and-tumble trajectory where the straight trajectory is interrupted by sudden changes of orientation. Here we
mean by ‘run’ that the particle keeps always a given orientation, and by ‘tumbling’ that the particle undergoes a cyclic motion.
Brenner [6, 7] determined the equilibrium orientation (corresponding to d ppp/dt = 0), and derived the condition under which
an equilibrium orientation exists and is stable. When the steady orientation ceases to exist the particle is expected to tumble.
Hall and Busenberg [8] used an application of the Poincaré-Bendixon stability theorem [9] to predict that the particle achieves
a unique stable terminal orientation when the applied field and vorticity are not perpendicular. In the same spirit as in [6–8],
Pedley and Kessler [10] have shown how to calculate equilibrium orientations of spheroidal microorganisms in a general flow
and how to predict run and tumble motions. The corresponding evolution equation for spheroidal shapes is different from (1) and
contains an additional cubic term for ppp due to the straining part of the flow. They provided a general expression for equilibrium
orientations in terms of polar angles and discussed their stability. However, in all these studies [6–8, 10] no analytical solution
was provided neither for the orientation angle in the tumbling regime nor for the particle trajectory.

It has been observed that the interplay between fluid vorticity and external field can lead to several consequences regarding
swimmer distribution under non linear flows, such as a Poiseuille flow. More precisely, Kessler [11] has studied experimentally
and theoretically the trajectory and spatial distribution of Chlamydomonas or Dunaliella cells, which are subject to a torque
induced by gravity (Gyrotaxis) in a Poiseuille flow. It is shown that when shear and gravity torques balance, cells keep a fixed
orientation (run regime) for sufficiently small vorticity and accumulate near the center of the vertical tube with a downward flow.
For upwards flow, the particles move away from the axis and accumulate at the periphery of the cylinder, where they perform
tumbling motion (if the vorticity is large enough). Kessler [11] has provided the run solution (constant orientation) and the
condition for its stability. No analytical solution to the orientation vector or to the particle trajectory is given. Kessler provided,
however, a nice solution for the concentration field supporting his observation (accumulation at the center or at the periphery).

In [12], Zottl and Stark have considered a spherical swimmer in Poiseuille flow in the absence of external force (λ = 0 in
Eq.(1)), besides noise. The authors showed that the deterministic part of the trajectory evolution equations can be mapped
onto a Hamiltonian system and different interesting behaviors of swimmer trajectories are determined. In Ref.[13], the authors
presented an experimental study of bioconvection and cell dispersion in a horizontal tubes with and without flow. Numerical
trajectories are presented for a spherical cell (in Poiseuille and plug flows), by making use of equations of type (1) in which the
cell is assumed to swim with a fixed orientation (run regime). However, no analytical solution of trajectory is presented. In [14],
the distribution of gyrotactic prolate ellipsoidal microorganisms in a steady vortical flow is examined. Numerical simulations
showed a rich variety of trajectories, including closed and spiral trajectories, that are highly dependent upon two physical
parameters: the swimming speed relative to a characteristic fluid speed and the magnitude of the gyrotactic torque. Very recently,
the effect of motility and shape on the microswimmer dynamics in a two dimensional axisymmetric (stationary Lamb-Oseen)
vortex flow is studied [15]. The swimmer is modeled as an ellipsoidal particle having a given swimming direction. By using
a dynamical system theory (Poincaré-Bendixson theorem), rich dynamics is obtained by classifying the fixed-point structures
as a function of particle shape and the relative swimming velocity. Different trajectories are obtained numerically showing
bounded and unbounded trajectories and transitions among them. In particular, it is found that prolate microswimmers tend to
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align parallel to the velocity field, while oblate microswimmers tend to remain perpendicular to it. For spherical swimmers, a
homogeneous distribution is obtained. Matsunaga et al. [16], presented a method to control particle trajectories in a Poiseuille
flow thanks to a static magnetic field. The authors showed, by numerical simulations, that the ellipsoidal magnetic particle
can be focused to an arbitrary transverse position. Equation (1) in the presence of gravity and fluid acceleration (solid body
rotation) parallel to gravity has been studied regarding migration of plankton [17], [18]. An approximate solution for the particle
trajectory (see Section V for more detail) is provided, allowing for an exact solution determination.

Orientation and trajectory of spherical micro-organisms in one dimensional vertical shear flow and under gravitactic and
intrinsic torques are studied numerically in Ref. [19]. In particular, the effect of the intrinsic torque on the particle orientation
and trajectory are investigated. Analytical solutions for trajectories are obtained only if the cell has a fixed orientation (run
regime). Thorn et al. [20] have considered the motion and the transport of spherical particles in different types of flows in x− y
plane (shear flow, solid-body rotation, straining flow), and for arbitrary angle between the fluid vorticity and the external field
(due to gravity), with and without additive stochastic reorientation. In the deterministic case, expressions of the equilibrium
orientations of (1) are presented and their stability is discussed. Particle trajectories are obtained numerically in the tumbling
regime.

In summary, in all the above studies, except for run motion, or in the absence of external force, the determination of the
orientation vector as a function of time and particle trajectories have been obtained numerically. Here, we will examine several
cases with linear flows (shear and straining flows, rigid rotation...) and external fields with different orientations. We will show
that in almost all cases studied here explicit analytical solutions can be obtained both for particle orientation and trajectories.

The determination of exact solutions for the orientation was motivated by our previous study in a different context (vesicle
and red blood cells under flow), where we had shown that the problem could be mapped onto that of a heavy bottom spherical
particle (in higher dimensions) [21]. Since we had earlier derived an exact analytical solution for vesicles [22], this allowed us
to show exact solutions (not known before) describing rigid heavy-bottom particles orientation in the presence of linear shear
flow. These solutions can be now generalized to different flows and orientations of external fields. The first step here will be
to calculate the particle orientation, by presenting a general method à la Bretherton, instead of using the strategy followed for
our analytical solution [22]. This new way allows for an easier generalization to different types of equations and external fields
(flow and external force). Two main types of motion will be characterized: the run-like solution and the tumble-like solution.
Once, the orientations vector solution is found, our second step consists in extracting analytically the particle trajectories. A rich
variety of trajectory patterns will be revealed.

II. ORIENTATION EVOLUTION EQUATION

We focus on the dynamics of an isolated rigid spherical (magnetic or gyrotactic) swimmer in general linear flows and in the
presence of an external field. The swimmer moves with a velocity vs = vs ppp, where ppp is the unit particle vector orientation and vs,
the magnitude of the swimming velocity, is assumed to be constant. It is assumed here that the orientation of the speed is at any
instant oriented along ppp. In the absence of rotary Brownian motion, the evolution of the unit orientation vector (or swimming
direction) ppp and position x = (x,y,z) of the particle can be modeled (at low Reynolds number) by the equations [6, 8, 23]

ṗpp =
1
2

ωωω× ppp+
M

8πµr3 [BBB− (ppp.BBB)ppp] , (2)

ẋ = u0(x)+ vs ppp, (3)

where u0 is the fluid velocity and ωωω = ∇×u0 is the fluid vorticity vector. We use Cartesian coordinates (x,y,z), with corre-
sponding unit vectors denoted by (iii, jjj,kkk). Note that ωωω× ppp can be replaced by ΩΩΩ.ppp, where matrix ΩΩΩ is the vorticity tensor given
by

ΩΩΩ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (4)

where ωωω = (ω1,ω2,ω3). The other parameters appearing in the above equations are the radius of the spherical particle, r, the
kinematic viscosity of the suspending fluid, µ , BBB is the uniform external field vector and M = |MMM|, where MMM is the dipole
moment of the particle.

We introduce the unit vector jjj? such that BBB = B jjj?. Therefore, Eq. (2) can be rewritten as

ṗpp =
1
2
[ΩΩΩ.ppp+λ ( jjj?− jjj?.pppppp)] , (5)
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where λ is a real physical parameter given by

λ =
M B

4πµr3 (6)

for a magnetic swimmer. The same equation is derived for a spherical gyrotactic particle (called heavy-bottom particle [6, 7, 24]),
with

λ =
ρhg
3µ

, (7)

where ρ is the cell density, h is the center of mass offset from the geometrical center and g is the acceleration due to gravity.
Quantity λ−1 represents the typical characteristic time a perturbed particle takes to return to orientation jjj? if ΩΩΩ= 0 (i. e., ωωω = 0).

As mentioned in the introduction, Eq. (5), and more general equations for spheroidal particles, have been studied by Brenner
[6, 7] and Hall and Busenberg [8]. Two types of motions are obtained depending on parameter χ = λ/ω, where ω is the strength
of ωωω, and ψ the angle between ωωω and jjj?. If ψ 6= π/2, or if ψ = π/2 and χ > 1, orientation ppp tends in time to a certain fixed
orientation irrespective of its initial orientation (run regime). For ψ = π/2 and χ < 1, orientation ppp describes one of an infinite
family of periodic closed orbits (tumble regime). In the tumbling regime no analytical solution was given. The extraction of
analytical solutions for the orientation vector (both for run and tumble regimes) is the first objective of the present paper.

In what follows we shall see how to exhibit exact solutions to Eq. (5), by using an idea due to Bretherton [25]. The next Section
introduces a simple and general method to analytically solve a class of equations of the type (5), for arbitrary parameter λ and
vorticity tensor ΩΩΩ. Another important new feature that constitutes the second objective of the paper, is to derive analytically the
particle trajectory in linear flows, by exploiting the exact analytical expression of the particle orientation.

III. A UNIFIED METHOD FOR THE ORIENTATION EQUATION

Recently, as mentioned before, we have studied the dynamics of quasi spherical vesicles under shear flow [21], and have
shown that the shape evolution equation can be mapped onto that of a rigid sphere similar to Eq. (5), with appropriate λ , in five
dimensions and with an appropriate fictitious vorticity ΩΩΩ. Based on this mapping and on our previous exact analytical solutions
for vesicle [22], we can solve Eq. (5). Here, instead of the method of [21], we provide a more general analytical approach which
can be more easily extended to other physical situations (such as arbitrary orientations of the external field).

A. Bretherton approach

After the famous Jeffery work [26] on dynamics of a rigid ellipsoid under shear flow, Bretherton [25] extended it to particles
with a more general shape. More precisely, he showed that any rigid non spherical particle in Stokes flow obeys the following
evolution equation

ṗpp = S .ppp+βs [E.ppp− (ppp.E.ppp) ppp] , (8)

or, equivalently,

ṗpp = A.ppp− (ppp.A.ppp) ppp, (9)

with A=S +βsE, S =
(
∇u0−∇uT

0
)
/2 and E =

(
∇u0 +∇uT

0
)
/2 are the vorticity and rate-of-strain tensors, respectively, and

parameter βs is the shape factor (its value is zero for a sphere and different from zero for any other shape). In Eq. (8), ppp is the
orientation vector taken to be along the major semi-axis.

To solve (9), Bretherton [25] insightfully noticed that the term (ppp.A.ppp) ppp in Eq. (9), which is parallel to ppp, acts only to
conserve the unit length of ppp and does not affect its orientation. He showed that the temporal evolution of the orientation vector
ppp can be deduced from any vector qqq that is parallel to ppp and evolves according to

q̇qq = A.qqq (10)

and then the solution to Eq. (9) follows

ppp =
qqq
|qqq|

, (11)
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where

qqq = exp(At)qqq(0), (12)

where exp denotes the matrix exponential.
In summary, from a mathematical point of view, the main idea of Bretherton approach is to use the Ansatz

ppp = α(t)qqq (13)

that reduces Eq. (9) to the ordinary differential equation satisfied by α :

dα

dt
= α

3 (qqq.A.qqq) , (14)

which is easy to integrate. The Bretherton approach is extended and adapted to solve our problem in a closed form.

B. Extension to the present problem

It is not obvious to adopt a priori the method of previous Section to our equation (Eq. (5)). Appendix A describes how to
handle this question. As explained in this appendix for the particular and interesting case in which jjj? and ppp0 are perpendicular
(this orthogonality will naturally emerge, as discussed below), the general solution of Eq. (5) can be written as

ppp(t) = ppp0 +
exp
( 1

2 Ω̃ΩΩ0t
)

qqq(0)

α
−1(0)+

λ

2

∫ t

0
jjj?.exp

(
1
2

Ω̃ΩΩ0s
)

qqq(0)ds
, (15)

with

ppp0 = ξ ωωω +
λ

ω2 ωωω× jjj?, (16)

where ξ ∈ R, and where matrix Ω̃0 is defined by

Ω̃ΩΩ0 = ΩΩΩ−λ ppp0 jjj?T. (17)

It can be shown that parameter ξ plays the same role as the Jeffery orbit constant (it can be checked in our explicit calculations
below that it can be absorbed into the Jeffery constant). α(0) and qqq(0) (initial conditions) have to be chosen such that |ppp|= 1.

The general solution (15) is obtained by employing the Ansatz

ppp = ppp0 +α(t)qqq. (18)

IV. DYNAMICS OF A MICROSWIMMER IN 1D UNIDIRECTIONAL FLOWS

The goal now is to draw a global picture of a microswimmer orientation and its trajectory, for a class of external stimuli and
linear flow geometries. We study in this Section flows which have only one nonzero velocity component (unidirectional flows).
The bidirectional flow will considered in the next Section.

A. Swimming direction in 1d-linear shear flow

We will see that the swimmer will exhibit a fixed orientation (run regime) or a cyclic one (tumbling regime) in the course of
time, depending on flow strength. The imposed fluid velocity has the representation

u0 = (γ̇y,0,0), (19)

γ̇ being the steady shear rate. We also assume that the external field is parallel to jjj, so that jjj? = jjj. The fluid vorticity is given by
ωωω =−γ̇kkk. From (16) we get the one-parameter family:

ppp0 = ξ kkk+ λ̃ iii, (20)

where λ̃ = λ/γ̇(=−λ/ω3). The exact expression of the orientation vector is calculated from (15) by taking ppp0 = λ̃ iii (actually
it can be checked that ξ entering in (20) is unimportant and can be set to zero). We assume that λ (or λ̃ ) is positive. Two cases
can be distinguished:



6

1. For λ̃ > 1,

px = λ̃ − Λ2

λ̃

cosh(Λγ̇t
2 )

a+ cosh(Λγ̇t
2 )

, py =
Λ

λ̃

sinh(Λγ̇t
2 )

a+ cosh(Λγ̇t
2 )

, pz =
Λc
λ̃

1

a+ cosh(Λγ̇t
2 )

, (21)

where

Λ =

√
|λ̃ 2−1|, (22)

and a and c are integration constants determined by the initial orientation and satisfy (due to normalization condition; note
that λ̃ 2a2 ≤ 1)

c =±
√

1− λ̃ 2a2. (23)

2. If λ̃ < 1,

pppx = λ̃ +
Λ2

λ̃

sin(Λγ̇t/2)
a+ sin(Λγ̇t/2)

, pppy =
Λ

λ̃

cos(Λγ̇t/2)
a+ sin(Λγ̇t/2)

, pppz =
Λc
λ̃ 2

1
a+ sin(Λγ̇t/2)

, (24)

where Λ is defined in (22), a is a real parameter and c = Γ

|Γ|

√
Γ2− λ̃ 2, in which Γ = λ̃ 2a satisfying |Γ| ≥ λ̃ .

Now, we are ready to easily analyze the dynamics of ppp.
Case 1 : λ̃ > 1. In the limit t→ ∞,

ppp→ λ̃
−1iii+

√
1− λ̃−2 jjj = pppeq. (25)

This is a pure run motion, showing that the particle orientation tends to the unique stable terminal orientation (irrespective of its
initial orientation). During the run motion, the alignment angle 0 < φ < π/2, between the microswimmer orientation (or ppp) and
the external force (or jjj), is given at any instant by

φλ = arctan

(
Λ
−1 aλ̃ 2 + cosh(Λγ̇t

2 )

sinh(Λγ̇t
2 )

)
. (26)

For large t, φλ approaches

φλ (∞) = arctan
(
Λ
−1)= sin−1

(
λ̃
−1
)
. (27)

Since pppeq is perpendicular to ωωω the swimmer is unable to rotate for large t.
Case 2 : λ̃ < 1. In this situation, the equilibrium orientation angle (27) does not exist and, as it is known and transparent from

Eq. (24), that the particle performs tumbling motions or periodic orbits (see Figure 1) with period

T =
4π

γ̇
√

1−λ 2
. (28)

For the particular case where there is no preferred swimming direction λ = 0 (strong rotation or absence of external torque),
we get

px = a0 cos(γ̇t/2+θ0), py = a0 sin(γ̇t/2+θ0), pz =±
√

1−a2
0, (29)

where θ0 and a0 are constant parameters (depending on initial orientation), showing that ppp describes a family of circular orbits
about the vertical z-axis [27].

B. Swimming Trajectories in 1d linear shear flow

The aim of this Section is to examine the long-term transport of the particle in simple shear flow. Recall that the time evolution
of its center-of-mass position is given by

ẋ = u0(x)+vs, (30)
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FIG. 1. Motion of orientation ppp in the tumbling case. λ̃ = 0.5, γ̇ = 1 and a = 4.

in which vector vs = vs ppp is the swimming velocity vector relative to the fluid and magnitude vs = |vs| is assumed to be constant.
It is well known that several physical forces may influence particle trajectories. For instance, as mentioned in the introduction,

a gyrotactic cell may swim at a fixed orientation or it may tumble [10, 11]. Taking advantage of the explicit expressions of the
orientation vector ppp, we derive here exact expressions for the swimmer position xxx = (x,y,z), by solving the set of equations

dx
dt

= γ̇y+ vs pppx,
dy
dt

= vs pppy,
dz
dt

= vs pppz. (31)

1. Trajectories in the run regime

We assume that the swimmer is at (stable) equilibrium orientation ppp = pppeq (see Eq. (25) ). The y−equation (31) is solved
by

y(t) = y(0)+ vs

√
1− λ̃−2t, (32)

from which one deduces

x(t) = x(0)+
(

γ̇y(0)+ vsλ̃
−1
)

t +
γ̇vs

2

√
1− λ̃−2t2. (33)

The z−component is constant; z(t) = z(0). Eqs. (32) and (33) show that coordinates x and y tend to infinity with time t
and that the x− y plane projection of the trajectory has the form

x− x(0) =
γ̇y(0)+ vsλ̃

−1

vs

√
1− λ̃−2

(y− y(0))+
γ̇

2vs

√
1− λ̃−2

(y− y(0))2, (34)

which describes a parabola. Note that the long-time behavior of the x− y plane projection trajectory is given by

x≈ λ

2vsΛ
y2. (35)

This result is identical to that of a spherical gyrotactic particle studied in [20].



8

For general run regime, the trajectories are described by (recall that a2λ̃ 2 ≤ 1)

x(t) = x(0) +

(
γ̇y(0)+

vs

λ̃
− 2vs

λ̃
ln(a+1)

)
t +

2vs

λ̃

∫ t

0
ln
(

a+ cosh
(

γ̇Λ

2
s
))

ds

+
4a√

1−a2

vs(λ̃
2−1)

Λλ

{
tan−1

(
1√

1−a2
(a+ e(γ̇Λ/2)t)

)
− tan−1

(
1√

1−a2
(a+1)

)}
,

y(t) = y(0) +
2vs

λ
ln

a+ cosh
(

γ̇Λ

2

)
t

a+1

 .

(36)

The z−component is given by

z(t) = z(0)+
4
√

1− λ̃ 2a2
√

1−a2

vs

λ

{
tan−1

(
1√

1−a2
(a+ e(γ̇Λ/2)t)

)
− tan−1

(
1√

1−a2
(a+1)

)}
. (37)

For large values of t the z− component tends to a constant and the components x and y approach a parabola satisfying Eq.
(35) (trajectories are parallel to the x− y plane).

2. Trajectories in the tumbling regime

Let us first consider two particular examples. The first case corresponds to the situation where the swimming speed is very
small in comparison to the imposed flow speed. Neglecting terms proportional to vs in (36), meaning that the particle is
simply advected by the flow, we have

x(t) = x(0)+ γ̇y(0)t, y(t) = y(0), z(t) = z(0), (38)

meaning that the particle migrates perpendicular to the applied external field and parallel to the x− y plane.

In the second example we assume that λ = 0 (no external force). In that case we obtain from (29) and (31)

x− x(0) = {γ̇y(0)+2a0vs cos(θ0)} t +
4avs

γ̇
(sin(θ0)− sin(γ̇t/2+θ0)) , (39)

y− y(0) =
2a0vs

γ̇
(cos(θ0)− cos(γ̇t/2+θ0)) , (40)

and

z− z(0) =±vs

√
1−a2

0t, (41)

leading to two different scenarios (recall that a0 and θ0 are constant parameters depending on initial orientation). For
example if a2

0 6= 1, we deduce that if |γ̇y(0)/2a0vs| ≤ 1, the particle may follow a periodic trajectory. To be more precise,
if γ̇y(0)+ 2a0vs cos(θ0) = 0 the swimmer moves along a helical path (with the helix pitch along the z-axis, see Figure
2), while if |γ̇y(0)/2a0vs| > 1, or γ̇y(0)+ 2a0vs cos(θ0) 6= 0, the swimmer trajectory is unbounded along both x and z
directions (Figure 3). However, in the frame moving along x with velocity γ̇y(0)+2a0vs cos(θ0) the trajectory is a helix
with the pitch along z; the helix wanders around the z-axis, as in Figure 2. For the particular case where λ = 0, which
corresponds to the absence of external torque, the spherical particle tumbles and its trajectory describes a cycloid in the
shear plane.

In [28], ten Hagen et al. have derived similar expressions for x and y, Eqs. (39) and (40), to describe two-dimensional
trajectories of a self-propelled spherical particle under linear shear flow and rotates in a magnetic field parallel to the fluid
vorticity. In their case the applied magnetic torque is constant and only adds up to vorticity in Eq. (5). Their equation is
linear in ppp (λ = 0) and the total angular velocity for the particle for this case is given by the sum of the fluid vorticity and
the external torque; OOO = (−γ̇/2+M)kkk, where M is the magnitude of the external torque.
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FIG. 2. Example of a periodic trajectory in the absence of external torque (Eqs. (39)-(41)). Parameters are θ0 = π/2,a0 = 0.5,vs = 1 and
γ̇ = 2.

FIG. 3. Trajectory showing a cycloid in the absence of external torque (Eqs. (39)-(41)). Parameters are θ0 = π/3,a0 = 0.5,vs = 1 and γ̇ = 2.

Let us now return to the case λ 6= 0. For a general tumble trajectory a simple integration of (31) shows that the particle
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position is given by (a = λ−2Γ > 1)

x(t) = x(0) +

(
γ̇y(0)+

vs

λ̃
− 2vs

λ̃
ln(a)

)
t +

2vs

λ̃

∫ t

0
ln
(

a+ sin
(

γ̇Λ

2
s
))

ds

− 4a√
a2−1

vsΛ

λ

{
tan−1

(
1√

a2−1
(1+a tan(γ̇Λ/4t)

)
− tan−1

(
1√

a2−1

)}
,

y(t) = y(0) +
2vs

λ
ln

a+ sin
(

γ̇Λ

2

)
t

a

 .

(42)

The z−component is given by

z(t) = z(0)+4
vs

λ

√
λ̃ 2a2−1√
a2−1

{
tan−1

(
1√

a2−1
(1+a tan((γ̇Λ/4)t)

)
− tan−1

(
1√

a2−1

)}
. (43)

This result shows, as expected, that components y and z describe periodic curves, while component x is unbounded with
time. However, in the moving frame along x with velocity

(
γ̇y(0)+ vs

λ̃
− 2vs

λ̃
ln(a)

)
t, the trajectory is periodic in the

3 directions (a closed trajectory). The trajectory is helical in the laboratory frame with a certain angle with respect to
Cartesian axes (Fig. 4).

FIG. 4. Trajectory showing a helical shape. λ̃ = 0.6, vs = 1, γ̇ = 1, Γ = 0.8.
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To sum up the main results of this section, we have presented a simple method to analytically solve the (minimal) model
that describes the motions of a spherical rigid sphere under flow and an external field. We have been able to derive
a closed form of trajectories for the run and tumble regimes. In particular, it is found that the x− y projection of the
run trajectory describes a parabola, while in the tumbling regime the trajectory y component oscillates and x component
increases with time; the trajectory is a helix. This result suggests, for example, that magnetotaxis might provide a method
for identifying or separating rigid spherical magnetic swimmers as a function of their radii. More precisely, the swimmer
exhibits a parabolic trajectory in the shear plane provided its radius (arising from λ̃ = λ/γ̇ > 1 ; run regime; see Eq. (6)
for definition of λ ) satisfies r < M h/4πµ|γ̇|= rc, while if r > rc (λ̃ = λ/γ̇ > 1) its trajectory is helical. Note that critical
radius rc is determined by a competition between the flow and the external field (e.g. magnetic, gravitational).

V. 2D-BIDIRECTIONAL FLOWS

In this Section, we consider the following general velocity field

u0 = (δx+ γ̇1y, γ̇2x−δy,0), (44)

where δ , γ̇1 and γ̇2 are arbitrary constants. The above velocity field representation can be motivated by the fact that, in many
cases, on the particle scale, the flow field may be linearized. We consider here three cases: a) external force is orthogonal to
vorticity, b) external force is parallel to vorticity, and c) external force is neither orthogonal nor parallel to vorticity. We will
consider gravity force and Coriolis force [17, 29, 30].

Let us note that since the (local) fluid vorticity is given by ωωω = −γ̇kkk, where γ̇ = γ̇1− γ̇2, we may assume that δ = 0 (since
only ωωω enters the ppp equation), i.e.,

u0 = (γ̇1y, γ̇2x,0), (45)

where γ̇1γ̇2 6= 0. The opposite case where δ 6= 0 and γ̇1 = γ̇2 = 0, which corresponds to a stagnation flow, is treated in Section
V.C. Since vorticity is along kkk, the solutions for orientation vector ppp obtained for a simple shear flow remain valid.

A. Vorticity and external force are perpendicular

Let us consider first the effect of gravity ggg and take it to be parallel to jjj, ggg = g jjj. The orientation ppp satisfies Eq. (5) with
jjj? = jjj,ω1 = ω2 = 0,ω3 =−γ̇, and parameter λ = mgh/4πµr3, see (7). According to (25), the stable equilibrium orientation (if
|γ̇|< |λ |) is given by

pppeq =
γ̇

λ
iii+

1
λ

√
λ 2− γ̇2 jjj. (46)

As we have seen the particle tumbles if |γ̇|> |λ | and its orientation is given by solution (24). The particle trajectory is obtained
by solving the following system

dx
dt

= γ̇1y+ vs pppx,
dy
dt

= γ̇2x+ vs pppy,
dz
dt

= vs pppz. (47)

Note that the flow can also be defined by a stream function Ψ as

Ψ(x,y) =
1
2
(
γ̇1y2− γ̇2x2) . (48)

1. Run trajectory

We suppose that |λ̃ | > 1 ( we recall that λ̃ = λ/γ̇), and that the swimmer is at the stable equilibrium orientation (46).
Therefore, the position x = (x,y,z) is governed by the following linear system

dx
dt

= γ̇1y+ vsλ̃
−1,

dy
dt

= γ̇2x+ vs

√
1− λ̃−2,

dz
dt

= 0. (49)

Two different trajectories are obtained depending on the sign of γ̇1γ̇2.
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(a) For γ̇1γ̇2 > 0, the general solution has the following expression

x = ae
√

γ̇1 γ̇2t +be−
√

γ̇1 γ̇2t − vs

γ̇2

√
1− λ̃−2, (50)

and

y = a
1
γ̇1

√
γ̇1γ̇2e

√
γ̇1 γ̇2t −b

1
γ̇1

√
γ̇1γ̇2e−

√
γ̇1 γ̇2t − vs

γ̇1
λ̃
−1, z = z(0), (51)

where a and b are arbitrary constants. Clearly, if a = 0, x and y tend to − vs
γ̇2

√
1− λ̃−2 and − vs

γ̇1
λ̃−1, respectively,

while for a 6= 0, the x− y plane projection long-time behavior is given by

y∼ 1
γ̇1

√
γ̇1γ̇2x, (52)

or equivalently

γ̇2x2 ∼ γ̇1y2. (53)

A similar result can be found in [20] in which it is shown that the x−y trajectories are hyperbolae. In fact, it is easily
seen from (50) and (51) that x and y satisfy the following equation(

x+
vs

γ̇2

√
1− λ̃−2

)2

−
(

γ̇1√
γ̇1γ̇2

y+
vs√
γ̇1γ̇2

λ̃
−1
)2

= 4ab, (54)

confirming that trajectories are hyperbolae for any time (see Figure 5). This result shows that run trajectories follow
the streamlines (see (48)).

(b) In the second case we suppose that γ̇2.γ̇1 < 0 and that the particle is at the equilibrium orientation (as in the first
case). Note that the above linear system (49) still holds. Exact analytical expressions of x = (x,y,z) can easily be
obtained upon integration, yielding for some real parameters a and θ0

x = acos
(√
|γ̇1γ̇2|t−θ0

)
− vs

γ̇2

√
1− λ̃−2,

y =−
√
|γ̇1γ̇2|
γ̇1

asin
(√
|γ̇1γ̇2|t−θ0

)
− vs

γ̇1
λ̃
−1,

z = z(0). (55)

As a result, the x− y projection of the trajectory has the form(
x+

vs

γ̇2

√
1− λ̃−2

)2

+

(
γ̇1√
|γ̇1γ̇2|

y+
vs√
|γ̇1γ̇2|

λ̃
−1

)2

= a2, (56)

and so, trajectories are ellipses constrained to a plane parallel to x− y plane (z = z(0)) (see Figure 5). As in item (a)
of the present Section, the trajectories follow the streamlines.

Note that, as a corollary of the above results, if we consider the following linear external flow [31]

u0 = s(x jjj+ yiii)+ω0(x jjj− yiii), (57)

in which s is a measure of strength of the elongation flow component and 2ω0kkk is the vorticity vector, one sees, that for
|ω0| sufficiently small, we have elliptical trajectories if |s|< |ω0|, while in the opposite case trajectories are hyperbolae.

2. Tumble trajectory

We consider the case where γ̇1 = −γ̇2 > 0 (the case γ̇1 6= −γ̇2 did not allow extraction of exact solution for trajectory).
The tumbling regime corresponds to |λ̃ |< 1. We easily obtain the trajectory for x′ = (x,y) (the x− y plane projection) by
introducing x′c = x+ iy (in complex notation), which satisfies (according to Eq. (3))

d
dt

(
eiγ̇1tx′c

)
= vseiγ̇1t(pppx + ipppy). (58)
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FIG. 5. Run trajectories when vorticity and external torques (gravity) are perpendicular. The fluid velocity is given by (45). Parameters are
λ̃ = 1.5, γ̇1 = 2 and vs = 0.5. For the parabola (dashed-dotted blue line) γ̇2 = 0.5 and for the ellipse (solid red line) γ̇2 = −0.5. For both
trajectories the initial condition is x(0) = y(0) = 0.

FIG. 6. A tumble trajectory in the x− y plane according to (59) with x′c(0) = 0. Parameters are λ̃ = 0.6, vs = 4, γ̇ = 1, γ̇1 = 0.5, and a = 3.

Then, the expression of x′c can be rewritten as (solution for ppp remains formally identical as for a simple shear flow)

x′c = e−iγ̇1tx′c(0)+ vse−iγ̇1t
∫ t

0
eiγ̇1s

(
λ−1 [Γ+ sin(Λγ̇1s)]+ iλ̃−1Λcos(Λγ̇1s)

a+ sin(Λγ̇1s)

)
ds. (59)

Equation (59) shows that x′c or (x,y) describes periodic trajectories (see Figure 6). The z−component of the particle
position, which is periodic in time, is given by (43). The present findings agree with the conclusion of [20], obtained by
numerical simulations. The trajectory is a sort of spherical helix (Fig. 7).
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FIG. 7. Trajectory showing a helical shape. λ̃ = 0.6, vs = 1, γ̇ = 1, Γ = 0.8.

B. External force parallel to vorticity

Here we consider the case where gravity is parallel to vorticity. This is a simple and interesting example in which the
orthogonality (A13) condition is not satisfied. As found previously [6, 7], [8], in this case the swimmer orientation evolves in a
run regime. However, we cannot use our approach to solve the equation of the orientation ppp in a closed form. We then restart
from the evolution equation itself and it turns out that the solution is simply obtained in this case.

By assuming ggg =−gkkk, orientation ppp satisfies 

2
d px

dt
= γ̇ py +λ pz px,

2
d py

dt
= −γ̇ px +λ pz py,

2
d pz

dt
= λ

[
p2

z −1
]
,

(60)

The above system has exactly two stationary solutions ppp =±kkk and only equilibrium −kkk is stable.
In this case only run trajectory exists, and the trajectory is obtained by solving

dx
dt

= γ̇1y,
dy
dt

= γ̇2x,
dz
dt

=−vs. (61)
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Here, it is assumed that the swimmer is at the stable equilibrium orientation (ppp =−kkk).
As above, two different run trajectories are obtained depending on the sign of γ̇1γ̇2.

1. For γ̇1γ̇2 > 0, we have

x = ae
√

γ̇1 γ̇2t +be−
√

γ̇1 γ̇2t , (62)

y = a
1
γ̇1

√
γ̇1γ̇2e

√
γ̇1 γ̇2t −b

1
γ̇1

√
γ̇1γ̇2e−

√
γ̇1 γ̇2t , (63)

and

z = z(0)− vst, (64)

where a and b are arbitrary constants.

2. For γ̇2.γ̇1 < 0, the particle trajectory satisfies, for real parameters a and θ0,

x = acos
(√
|γ̇1γ̇2|t−θ0

)
,

y =−
√
|γ̇1γ̇2|
γ̇1

asin
(√
|γ̇1γ̇2|t−θ0

)
,

z = z(0)− vst. (65)

Let us note, by making use of the above exact solutions for system (61), that components x and y satisfy

γ̇1x2− γ̇2y2 = const. (66)

This shows that the x− y trajectories are hyperbolae for γ̇1.γ̇2 > 0, while for γ̇1γ̇2 < 0 the swimmer trajectory describes an
elliptical cylinder.

C. Solid body rotation with external force having a general orientation with respect to vorticity

Here, we study the orientation dynamics and the trajectories of spherical gyrotactic particles subject to a solid body rotation
(δ = 0, γ̇1 =−γ̇2 =−γ̇)

u0 =−γ̇ (yiii− x jjj) , (67)

which has the property that the vorticity, which is parallel to z−axis, has constant angular velocity; ωωω = ∇×u0 = 2γ̇kkk. Here, we
assume that gravity is parallel to vorticity; ggg = −gkkk. This section is motivated by a (deterministic) model given in [17, 29, 30]
for which the equation of the swimming direction is rewritten (following their notation for the sake of comparison) as

ṗpp =− 1
2v0

[AAA−AAA.pppppp]+
1
2

ωωω× ppp, (68)

where v0 = 3µ/h,h is the cell center-of-mass displacement, µ fluid kinematic viscosity, and (in the presence of fluid acceleration)
AAA is the total acceleration which is given by [17, 29, 30, 32]

AAA = ggg−aaa, (69)

where the fluid acceleration aaa = (−γ̇2x,−γ̇2y,0). This is the Coriolis force due to cylinder rotation[17, 29, 30]. Equation (68)
is used in [18] to study the effect of the fluid acceleration on spherical gyrotactic microorganisms orientation. Note that unlike
jjj? in Eq. (5), AAA is not normed to unity. Here, we shall first investigate in detail two limiting cases; AAA = ggg, and AAA = −aaa. The
generalized case AAA = ggg−aaa, which seems to be not amenable to exact analytical solution, will be discussed in the last Subsection.
Note that in this case the total acceleration AAA is neither orthogonal nor parallel to fluid vorticity ( and the orthogonality condition
on jjj? and ppp0 is not fulfilled so that solution (15) cannot be used). This means that solution (A15) does not apply, and we shall
use a different approach.
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1. Effect of the gravity

In the first limit AAA = ggg, the external field and the fluid vorticity are parallel. In a such situation, it is known that the
orientation vector tends to a certain fixed orientation (see Refs. [6–8]). Comparing the swimming direction equations
given by (68) and (5), we have jjj? = kkk,λ = g/v0,ω1 = ω2 = 0 and ω3 = 2γ̇. Since here ggg and ωωω are not orthogonal, the
fixed orientation solution (A15) is not valid, and one has thus to go back to the original equation, which turns out to have
a simple solution. In terms of the Cartesian coordinates of ppp, Eq. (68) reads

d px

dt
= γ̇

[
−py− λ̃g pz px

]
,

d py

dt
= γ̇

[
px− λ̃g pz py

]
,

d pz

dt
= γ̇

[
λ̃g− λ̃g p2

z

]
,

(70)

where

λ̃g =
g

2v0γ̇
. (71)

Note that ppp =±kkk are the (only) two exact stationary solutions for all values of parameter λ̃g.

Solving first the pz equation and substituting it into the first and second equations of (70) yields

px = 2
px(0)cos(γ̇t)− py(0)sin(γ̇t)

(1+ pz(0))eγ̇ λ̃gt +(1− pz(0))e−γ̇ λ̃gt
, (72)

py = 2
px(0)sin(γ̇t)+ py(0)cos(γ̇t)

(1+ pz(0))eγ̇ λ̃gt +(1− pz(0))e−γ̇ λ̃gt
, (73)

and

pz(t) =
(1+ pz(0))eγ̇ λ̃gt − (1− pz(0))e−γ̇ λ̃gt

(1+ pz(0))eγ̇ λ̃gt +(1− pz(0))e−γ̇ λ̃gt
, (74)

with p2
x(0)+ p2

y(0)+ p2
z (0) = 1.

Thus, we see that, as t→ ∞, ppp tends to the (only) stable steady solution pppeq = kkk (recall that γ̇ λ̃ > 0). This shows that the
gyrotactic particle exhibits a run motion and aligns in the direction opposite to gravity for large t.

Expressions (72) and (73) are obtained by introducing q = px + ipy, as in the proof of (59). It is easily found that

q = 2q(0)
eiγ̇t

(1+ pz(0))eγ̇ λ̃gt +(1− pz(0))e−γ̇ λ̃gt
. (75)

This result can also be deduced by introducing ρ =
√

p2
x + p2

y , which satisfies the simple ordinary differential equation

dρ

dt
=−γ̇ λ̃g pzρ. (76)

For the particle position, it is convenient to solve the following system

dxc

dt
= γ̇ixc + vsq, (77)

and

dz
dt

= vs pz, (78)
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where xc = x+ iy and q is given by Eq. (75). Therefore,

xc = eiγ̇t
[

xc(0)+ vseiθ0

∫ t

0
ρ(s)ds

]
, (79)

and

z = z(0)+
vs

γ̇ λ̃g
ln

H(t)
2

, (80)

where θ0 is the initial angle of q (i.e., q(0) = ρ(0)eiθ0 ) and

H(t) = (1+ pz(0))eγ̇ λ̃gt +(1− pz(0))e−γ̇ λ̃gt . (81)

Note that if pz(0) = ±1 (this holds (only) if the particle is at the stable or unstable equilibrium orientation), we easily
deduce that the full 3D trajectory is given by

xc = eiγ̇txc(0), z = z(0)±vst, (82)

which describes exactly a helical trajectory in the positive z−direction for pz(0) = 1 at the speed vs. Each particle exhibits
a helical trajectory with radius |xc(0)|. This means that a homogeneous dilute suspension (i.e. particle-particle interaction
is negligible) remains homogeneous where each particle rotates around z-axis following a helical path with a radius given
by the initial position.

Next, we assume that pz(0) 6=±1. By making use of the exact expression of ρ, one sees that xc can be written as,

xc = eiγ̇t

[
xc(0)+ eiθ0

2vs

γ̇ λ̃g

(
arctan(deγ̇ λ̃gt)− arctand

)]
, (83)

or, equivalently for 0 < d < ∞,

xc = eiγ̇t

[
xc(0)+ eiθ0

2vs

γ̇ λ̃g

(
arctan(d−1)− arctand−1e−γ̇ λ̃gt

)]
, (84)

where d =
√

(1+ pz(0))/(1− pz(0)). Equations (80) and (83) or (84) define the trajectory of a spherical gyrotactic
particle in rotating fluid.
Note that parameter d can be written as

d =

√
1+ cos(φ0)

1− cos(φ0)
, (85)

where 0≤ φ0 ≤ π is the angle between kkk and the initial orientation vector ppp(0).

Let us examine in detail the behavior of the trajectory for large t. The explicit exact solutions show that, for large t,
trajectories converge exponentially to different helical trajectories, depending on initial conditions (initial position and
orientation);

e−iγ̇txc→ x̃d(0) = xc(0)+ eiθ0
2vs

γ̇ λ̃g
arctand−1, z(t)→ vst. (86)

Note that quantity eiθ02vs/γ̇ λ̃g arctand−1 depends only on initial orientation ppp(0).

As a way of example, let us assume that xc(0) = 0. Rewriting Eq. (84) gives
x(t) =

2vs

γ̇ λ̃g

(
arctand−1− arctand−1e−γ̇ λ̃gt

)
cos(γ̇t +θ0),

y(t) =
2vs

γ̇ λ̃g

(
arctand−1− arctand−1e−γ̇ λ̃gt

)
sin(γ̇t +θ0).

(87)
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Recall that coordinate z is given by (82). In terms of the dynamical system, we may conclude that there exists a family of
trajectories represented by

Ad = (eiγ̇t x̃d(0),vst), (88)

in C×R, that are possible attractor of the dynamics. For each 0 < d < ∞, the set Ad describes cylinder or helical
(trajectory) whose radius, designated by ρd , is given by

ρd = 4
vsv0

g
arctand−1. (89)

Note that the x− y projection of the trajectories follow the streamlines and that radius ρd decreases from 2πvsv0/g

FIG. 8. An example of trajectories showing that the microswimmer approaches a pseudo-attractor. Parameters are λ = 1, λ̃g = 2, γ̇ = 1,θ0 =
π/3,vs = 1 and d = 4.

(the radius of the upper helical) to 0, as d increases from 0 to ∞. In the limiting case d = 0 (i.e., ppp = (0,0,−1), the
unstable equilibrium orientation), or d = ∞ (i.e., ppp = (0,0,1), the stable equilibrium orientation), the particle moves along
the z−axis at the velocity ∓vs. For 0 < d < ∞, the trajectory is three-dimensional. The particle migrates to the helical
trajectory (with radius satisfying (89)), which may play the same role as an attractor (see Figure 8).
Ad can be considered as a pseudo-attractor or “streamlining” attractor in the sense that for any initial position (xc(0),z(0))∈
Ad such that 0 < d < ∞, (i. e., x(0)2 + y2(0) 6= 0), the particle migrates from (xc(0),z(0)) to Ãd = (eiγ̇t x̃d(0),vst). The
final state depends on initial conditions, so that the final trajectory is not a limit cycle.
The above result suggests that two particles 1 and 2 such that x̃1d(0) = x̃2d(0) will tend to approach the same helical
trajectory for large time. Counterintuitively, we find that two particles with same initial position but with different initial
orientations do not tend to the same trajectory. Thus, if initially particles are prepared with different orientations, they
form different helical paths as time proceeds (see Figure 9).
In passing, we may observe from (85) that quantity ρd reads simply

ρd = 2
vsv0

g
φ0, (90)

indicating that ρd increases linearly with angle φ0.
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FIG. 9. Different x− y trajectories of the microswimmer as a function of the initial position (x(0),y(0)) and the parameter d or the initial
orientation φ0. Here, parameters are λ = 1, λ̃g = 2, γ̇ = 1,θ0 = π/3,vs = 1 and d = 4 (dotted-dashed brown line), d = 8 (solid black line) and
d = 20 (dashed blue line). Trajectories show that the microswimmer approaches a circular path in x− y plane.

2. Effect of fluid acceleration

Here, we briefly consider Eqs. (67) and (68) in the limiting case AAA = −aaa = (γ̇2x, γ̇2y,0) (gravity is neglected) which
isolates the effect of fluid acceleration [17]. Vector jjj? is then given by

jjj? = (
x√

x2 + y2
,

y√
x2 + y2

,0), (91)

which is orthogonal to fluid vorticity ωωω = 2γ̇kkk. According to Section III, the swimmer exhibits a tumbling regime in region
where γ̇2(x2 + y2)< 4v2

0, while in region γ̇2(x2 + y2)> 4v2
0, the particle swims in the stable equilibrium direction

pppeq =
1
λ

λ 2a2−ω2
3

bω3 +a
√

λ 2−ω2
3

iii+
1
λ

λ 2ab+ω3

√
λ 2−ω2

3

bω3 +a
√

λ 2−ω2
3

jjj, (92)

where

ω3 = 2γ̇, a =
x√

x2 + y2
, b =

y√
x2 + y2

, λ =− γ̇2

v0

√
x2 + y2. (93)

We may then conclude that a gyrotactic swimmer in the considered fluid acceleration may accumulate towards center of
cylinder. To show this we study the swimmer trajectory. Since the swimmer position satisfies (z(t) = z(0))

dx
dt

=−γ̇y+
vs

λ

λ 2a2−ω2
3

bω3 +a
√

λ 2−ω2
3

,
dy
dt

= γ̇x+
vs

λ

λ 2ab+ω3

√
λ 2−ω2

3

bω3 +a
√

λ 2−ω2
3

, (94)

one deduces that the radial position, ρ =
√

x2 + y2, evolves according to

ρ
dρ

dt
=−v0vs

γ̇2

√
γ̇4

v2
0

ρ2−ω2
3 . (95)

The solution of the above equation is

γ̇4

v2
0

ρ
2 = ω

2
3 +

(√
γ̇4

v2
0

ρ2(0)−ω2
3 −

γ̇2vs

v0
t

)2

. (96)
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FIG. 10. Exact solutions to the ordinary differential equation (95) with γ̇2/v0 = 1,vs = 1,ρ(0) = 2 and for different values of w3 (w2
3 = 3 for

solid brown line, w2
3 = 3.25 for dotted-dashed black line and w2

3 = 3.5 for dotted blue line). ρ reaches the fixed point 2v0/γ̇ at finite time, t?,
and satisfies ρ = 2v0/γ̇ for all t > t?.

Solution (96) predicts that the radial distance of a swimmer located initially in the run region (i.e. γ̇2(x2 + y2) > 4v2
0)

decreases as t increases, and that the particle reaches the cylinder

A =
{

γ̇
2(x2 + y2) = 4v2

0
}

(97)

at finite time t?;

t? =
v0

γ̇2vs

√
γ̇4

v2
0

ρ2(0)−ω2
3 . (98)

Let us recall that cylinder A separates tumble and run regions. In fact, we can see that any horizontal trajectory of A
satisfies system (116). Hence, we may conclude that any run trajectory reaches cylinder A at a finite time and after this
time the swimmer executes a circular orbit (around the rotation axis) that follows a streamline:

x(t) =
2v0

γ̇
cos
(

γ̇

(
−1+

vs

2v0

)
t +θ0

)
, y(t) =

2v0

γ̇
sin
(

γ̇

(
−1+

vs

2v0

)
t +θ0

)
, (99)

where θ0 is a constant. This result show that fluid acceleration may generate accumulations at finite time around cylinder
of radius 2v0/γ̇. Time t? can be referred to as the focusing time for a run trajectory (see Figure 10).

3. Gyrotactic swimmer in a fluid acceleration field

We consider here both gravity and fluid acceleration. In this case, the total force AAA is neither parallel nor perpendicular
to the vorticity. As a preliminary step we investigate Eqs. (67)-(69) in the limit where the vorticity is relatively small.
This leads to an approximate solution of trajectory equations; Eqs. (67)-(69). The solution of this particular case has been
reported in [29]. By neglecting the vorticity the swimmer direction equation (Eq. (68)) becomes

ṗpp =
1
2

λ (AAA−AAA.pppppp) , (100)
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where λ = −1/v0 and (total acceleration) AAA = (γ̇2x, γ̇2y,−g). The above equation has one stable equilibrium swimming
direction given by ppp?eq =−AAA/‖AAA‖;

ppp?eq =

(
− x√

x2 + y2 +κ2
,− y√

x2 + y2 +κ2
,

κ√
x2 + y2 +κ2

)
, (101)

where κ = g/γ̇2. The equation of the radial swimmer position, ρ2 = x2 + y2, can be written as

dρ

dt
=−vs

ρ√
ρ2 +κ2

. (102)

For the two limiting cases ρ � κ and ρ � κ the above ordinary differential equation becomes linear and we may deduce
that ρ decays exponentially if ρ � κ, while if ρ � κ one sees that the radial swimmer position is given by ρ(t) =
ρ(0)− vst. This linear decrease can also be deduced from (96).

For arbitrary ρ(0), a solution to Eq. (102) can be obtained by a simple integration. It is found that the radial swimmer
position (for small vorticity) can be deduced from√

(ρ/κ)2 +1 =
√
(ρ(0)/κ)2 +1− vs

κ
t− 1

2
ln
(

H (t)
H (0)

)
, (103)

where

H (t) =

√
(ρ/κ)2 +1−1√
(ρ/κ)2 +1+1

. (104)

It follows from (103) that the radial particle position behaves, for t→ ∞, as

ρ(t)∼ 2κe−
vs
κ

t . (105)

Let us now return to Eqs. (67)-(69) in which the swimmer is subjected to both gravitational and fluid acceleration. Let
us recall that AAA is not orthogonal to the fluid vorticity, so that the swimmer direction will tend in time to a certain (stable)
equilibrium orientation irrespective of its initial orientation. We will see that taking into account vorticity will lead to
some difference with the above study.

Equation (68) is rewritten as

γ̇
−1ṗ = kkk× ppp+λ [ jjj?− jjj?.pppppp] , (106)

where jjj? =−AAA///‖AAA‖ ≡ ( j?x , j?y , j?z ) and

λ = λ0
√

x2 + y2 +κ2, λ0 =
γ̇

2v0
. (107)

By assuming ṗpp = 0, the equation of the equilibrium swimming direction is then
0 = −py +λ j?x −λ jjj?.ppppx,

0 = px +λ j?y −λ jjj?.ppppy,

0 = λ j?z −λ jjj?.ppppz.

(108)

By making use of the third equation of system (108), one can easily check that the system admits exactly two equilibrium
orientations, ppp±eq = (p±x , p±y , p±z ) satisfying

p±z =±

√√√√1−λ 2 +
√

(1−λ 2)2 +4λ 2
0 κ2

2
, (109)

and

p±x =
−λ0yp2

z −λ 2
0 κxp±z

p2
z +λ 2

0 κ2 , p±y =
λ0xp2

z −λ 2
0 κyp±z

p2
z +λ 2

0 κ2 . (110)
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The ‘+’ solution is stable and the ‘-’ solution is unstable. Note that for (x,y) = 0 we have jjj? = (0,0,1). In this case, it is
shown (see Section V.B.1) that ppp tends to kkk (opposite to gravity) as t tends to infinity.

As above, it is possible to analytically show that swimmers accumulate exponentially in time at the z−axis. By making use
of the position equation, one deduces that the time evolution of the radial position (ρ =

√
x2 + y2) and the z− component

are described by

dρ

dt
=−vsκλ

2
0 ρ

p+z
p2

z +λ 2
0 κ2 ,

dz
dt

= vs p+z . (111)

We see therefore that ρ tends to 0 as t tends to infinity and, in addition, the equations in (111) behave as, for large t,

dρ

dt
=−vsκλ

2
0

ρ

1+λ 2
0 κ2 ,

dz
dt

= vs. (112)

Therefore, for large t, z(t) = vst, and the radial position (the distance from the rotation axis) asymptotically tends to 0 for
t → ∞ as

ρ(t) = const.e
−

vsκλ2
0

1+λ2
0 κ2 t

. (113)

This result deviates from that obtained in [29]. In fact, in [29], it was argued that the stable equilibrium is simply−AAA/‖AAA|,
which is valid only if the vorticity is neglected (see Eqs. (100) and (101)). This leads to the asymptotic solution for radial
distance (105), with time constant vs/κ instead of vsκλ 2

0 /(1+λ 2
0 κ2), given by our exact asymptotic solution (113)

FIG. 11. An example of trajectories, for large t, of a gyrotactic swimmer in a fluid acceleration. Parameters are γ̇ = 1,κ = 1,vs = 1,a0 = 2
and θ0 = π/3. The particle reaches the z− axis.

Making use of the results of this section we can write

1
xc

dxc

dt
=

1
ρ

dρ

dt
+ i
[

γ̇ + vsλ0
p2

z

p2
z +λ 2

0 κ2

]
, (114)
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which leads to

xc(t) = xc(0)
ρ(t)
ρ(0)

e
i
(

γ̇t+vsλ0
∫ t

0
p2
z

p2z +λ2
0 κ2 ds

)
. (115)

The above result shows that the swimmer oscillates an infinite number of times around the rotation axis and reaches this
axis for t→ ∞.

An approximate particle trajectory, for large t, can be found by using again Eq. (114), or Eq. (115). It is found that (see
Figure 11) 

x(t) ∼ a0ρ(t)cos
((

γ̇ + vsλ0
1+λ 2

0 κ2

)
t +θ0

)
,

y(t) ∼ a0ρ(t)sin
((

γ̇ + vsλ0
1+λ 2

0 κ2

)
t +θ0

)
,

z(t) ∼ vst,

(116)

where ρ is given by (113) and a0 and θ0 are real parameters.

In summary, in the presence of gravity alone we have a pseudo-attractor (final trajectory depends on initial condition,
see Eq.(88)). When only fluid acceleration is present, the trajectory tends towards a limit cycle at finite time (see Eqs.
(97)-98)). When both gravity and fluid acceleration are present, the trajectory focuses towards the cylinder axis at long
time (see Eq.(113)).

D. Stagnation point flow

This is our final example corresponding to a swimmer placed in a two-dimensional stagnation point flow. The velocity profile
of the flow is known to be given by

uuu0 = (δx,−δy,0), (117)

where δ is a positive constant, or by the stream function Ψ = δxy.
The particularity of the above profile is that the flow has zero vorticity. Thus, the equation of orientation for ppp (Eq. (5)) reads

(see Eq. (100))

ṗpp =
1
2

λ ( jjj?− jjj?.pppppp) . (118)

The stagnation flow makes the mathematical study relatively simple. Eq. (118) has two equilibrium orientations ± jjj?, and that
only the ‘+’ equilibrium orientation is stable; ppp tends to jjj? as t approaches infinity.
It is a simple matter to show that the trajectory is given by, with jjj? = ( jjj?1, jjj?2, jjj?3),

x(t) =
(

x(0)+
vs

δ
jjj?1
)

eδ t − vs

δ
jjj?1, y(t) =

(
y(0)− vs

δ
jjj?2
)

e−δ t +
vs

δ
jjj?2, (119)

z(t) = z(0)+ vs jjj?3t. (120)

By making use of (119) one deduces

(x+
vs

δ
jjj?1)(y−

vs

δ
jjj?2) = (x(0)+

vs

δ
jjj?1)(y(0)−

vs

δ
jjj?2), (121)

showing that the x− y plane projections follow the streamlines; the particle trajectory is a hyperbola (see Figure 12.)
For the case where parameter λ is negative, we start from Eq. (100) with − jjj? instead of jjj?. Repeating the above analysis

we deduce that swimmer direction ppp tends to − jjj?, as t tends to infinity, and the swimmer trajectory satisfies (119), (120) with
− jjj?i , i = 1,2,3, instead of jjj?i .

VI. SUMMARY OF THE MAIN RESULTS

We provide in Table I below a summary of different trajectories obtained for different flows and external forces.
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FIG. 12. Projection of a particle trajectory in the x− y plane according to Eq. (121). Parameters are δ = 1,vs = 1 and jjj?i = 1/
√

3, i = 1,2,3.
The initial condition is x(0) = 0 and y(0) = 1, for solid red curve which is a part of the full hyperbolic trajectory (121); the complementary
trajectory is shown as a blue dotted line.

VII. CONCLUSION

One of the major investigations of the paper is to analytically solve a family of equations of the type

ṗ =
1
2
[ΩΩΩ.ppp+λ ( jjj?− jjj?.pppppp)] , (122)

in which λ is a real (physical) parameter, ΩΩΩ is an arbitrary vorticity tensor that may contains all components of the fluid vorticity
ω and jjj? is an arbitrary (unit) vector. Equation (122) describes the time evolution of the orientation of a spherical particle in an
arbitrary flow and subject to an external force jjj?.

We have shown that a solution to the above problem can be given explicitly. We have studied a (general) model of spherical
gravitactic or magnetotactic swimmer and have analyzed its orientation and trajectories in general linear flows. Firstly, we
have shown how to solve easily the problem in the spirit of [25] and then we have obtained exact analytical solutions for the
orientation and the trajectory of the particle. Depending on parameter λ , it is found that the particle can perform run or tumble
dynamics. In addition, we have derived analytically several swimming trajectories. The particle orientations and trajectories can
be quantitatively and qualitatively controlled by an external field (e.g. gyrotactic or magnetic field). A natural extension is to
study this problem for other flows (e.g; Poiseuille flow) and for non spherical particles. We hope to investigate this matter in a
future work.

Acknowledgments. The present work was funded by Project T-MEBIO (AAP A2U 2019), CNES (Centre National d’Etudes
Spatiales) and by the French-German University Programme Living Fluids (grant CFDA-Q1-14).

Appendix A: Adoption of Betherton solution to our problem

Without any algebraic transformation, it seems difficult to apply or follow the Bretherton approach directly due to the structure
of Eq. (5), which is clearly different from (8). The main idea is to transform this equation into an equation for which the analysis
is particularly simple in the spirit of [25].

To solve Eq. (5) we first use the Ansatz

ppp = ppp0 +α(t)qqq, (A1)
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Type of flow and force Run regime Tumble regime
Linear shear flow

u0 = (γ̇y,0,0) , ωωω =−γ̇kkk Parabolic trajectory Inclined Helix

2d Linear flow
u0 = (γ̇1y, γ̇2x,0), ωωω = (γ̇2− γ̇1)kkk
Vorticity perpendicular to force

ggg = g jjj

γ̇1γ̇2 < 0 Hyperboloic trajectory in x− y
z = constant Spherical Helix

γ̇1γ̇2 > 0 Parabolic trajectory in x− y
z = constant No analytical solution

Vorticity parallel to force
ggg =−gkkk

γ̇1γ̇2 > 0 Hyperbolic trajectory in x− y, z∼ t No tumbling

γ̇1γ̇2 < 0 Elliptical trajectory in x− y, z∼ t
3D trajectory is elliptical helix No tumbling

Rigid body rotation
u0 =−γ̇(y,−x,0), ωωω = 2γ̇kkk

External force AAA = ggg−aaa
aaa = (−γ̇2x,−γ̇2y,0)

AAA = ggg =−gkkk
Run along kkk with helical trajectory

with radius depending on initial condition No tumbling

AAA =−aaa
particle reaches cylinder

A =
{

γ̇2(x2 + y2) = 4v2
0
}

at finite time t∗
No tumbling

AAA = ggg−aaa
Particle reaches cylinder axis

with radius behaving as ρ(t) = const.e
− vsκλ2

0
1+λ2

0 κ2 t No tumbling

Stagnation flow
uuu0 = (δx,−δy,0)

Run along jjj∗, an arbitrary force direction
with hyperbolic trajectory in x− y, z = constant No tumbling

TABLE I. Summary of different trajectories obtained analytically

where ppp0 is a steady unknown vector and α and qqq are unsteady unknown quantities. Our idea is to split the resulting equation
into three equations. The first equation is that satisfied by ppp0 :

Ω.ppp0 +λ jjj?−λ jjj?.ppp0 ppp0 = 0, (A2)

which is nothing but the stationary version of (5).
The second equation is that obeyed by qqq :

q̇qq =
1
2
[ΩΩΩqqq−λ jjj?.qqqppp0] . (A3)

This equation is linear and its solution is given by

qqq(t) = exp
(

1
2

Ω̃0t
)

qqq(0), (A4)

where matrix Ω̃0 is defined by

Ω̃ΩΩ0 = ΩΩΩ−λ ppp0 jjj?T, (A5)

or, equivalently,

Ω̃ΩΩ0.qqq = ΩΩΩ.qqq−λ jjj?.qqqppp0. (A6)

Finally, the equation of α is found to be

dα

dt
=−λ

2
[
α jjj?.ppp0 +α

2 jjj?.qqq
]
. (A7)
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The general solution to the above ordinary differential equation, which is of Bernoulli-type, can be expressed as

α
−1(t) = α

−1(0)e
λ

2
jjj?.ppp0t

+
λ

2

∫ t

0
e

λ

2
jjj?.ppp0(t− s)

jjj?.qqq(s)ds, (A8)

once the expression of ppp0 (to be determined below), and the expression of qqq are known (Eq. (A4)). Equation (A8) is simply
derived by making the change of variable α → α−1. Therefore, any solution to Eq. (5) can be written as

ppp(t) = ppp0 +
exp
( 1

2 Ω̃ΩΩ0t
)

qqq(0)

α
−1(0)e

λ

2
jjj?.ppp0t

+
λ

2

∫ t

0
e

λ

2
jjj?.ppp0(t− s)

jjj?.exp
(

1
2

Ω̃ΩΩ0s
)

qqq(0)ds

. (A9)

In expression (A9), α(0) and qqq(0) (initial conditions) have to be chosen such that |ppp|= 1. Here, we shall see that exact solutions
for various cases can be framed in terms of Eq. (A9). The general expression of ppp is interpreted as a linear superposition of
independent solutions to Eq. (A3).

For the particular and interesting case in which jjj? and ppp0 are perpendicular (this orthogonality will naturally emerge, as
discussed below), Eq. (A9) reduces to

ppp(t) = ppp0 +
exp
( 1

2 Ω̃ΩΩ0t
)

qqq(0)

α
−1(0)+

λ

2

∫ t

0
jjj?.exp

(
1
2

Ω̃ΩΩ0s
)

qqq(0)ds
. (A10)

We only need now to determine ppp0 given by Eq. (A2). A priori, a solution ppp0 to (A2) satisfies

jjj?.ppp0
(
1−|ppp0|2

)
= 0, (A11)

indicating that any solution to (A2) has to satisfy either the unit norm condition, |ppp0|= 1, or the orthogonality condition with jjj?

jjj?.ppp0 = 0. (A12)

If this solution is selected, it is easily seen from Eq. (A2) that this implies

ωωω. jjj? = 0. (A13)

If this orthogonality between external field and vorticity is not fulfilled (see later), one has thus to consider the other solution of
Eq. (A11) |ppp0|= 1, which is not sufficient to determine a full solution of ppp0. We have thus to go back to (A2) and to analyze it
explicitly. An example is treated in Section V C.

In the frequent cases where the orthogonality condition (A12) is satisfied, we obtain (see Appendix B) a (ξ ,ε)−family of
solutions satisfying this equation, which can be decomposed as

ppp0 = ξ ωωω +λΩ
?(ε). jjj?, (A14)

where ξ ∈R and ε = (ε1,ε2,ε3)∈R3, such that ε1+ε2+ε3 = 1, are parameters. Matrix Ω?(ε) is the vorticity or rotation matrix
associated to (vorticity) vector ω?(ε) = (ε1/ω1,ε2/ω2,ε3/ω3), with the convention εm = 0 and εm/ωm = 0 if ωm = 0. Equation
(A14) can also be written as

ppp0 = ξ ωωω +λωωω
?(ε)× jjj?. (A15)

A more practical choice of εεε = (ε1,ε2,ε3) would be to take εi = ω2
i /ω2, i = 1,2,3. In this case (A15) simply reads

ppp0 = ξ ωωω +
λ

ω2 ωωω× jjj?. (A16)

The solution (A10) with ppp0 given by (A15), or (A16), will constitute our basic solution of the model equation (5), which will
be used now in order to determine the explicit expressions of ppp(t) and the particle trajectory. Before embarking on our explicit
calculations, we stress that expression (A10) contains parameter ξ (in view of (A15)), which plays the same role as the Jeffery
orbit constant (it can be checked in our explicit calculations below that it can be absorbed into the Jeffery constant).
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Appendix B: Solution of ppp0

Looking for a stationary (pseudoequilibrium) solution to (5), or to Eq. (A2), satisfying (A12), one sees that this solution is
also a solution to the following homogeneous linear system

Ω.ppp0 =−λ jjj?, (B1)

which appears to be amenable to a simple analytical treatment, despite the fact that matrix Ω is singular. Most importantly, since
ppp.Ω.ppp = 0, for any vector ppp, any solution to (B1), when it exists, is a pseudo-equilibrium orientation in the sense that Eq. (5) is
automatically satisfied.

Thus, it is more convenient to examine Eq. (B1). Since the matrix we are dealing with is singular, as mentioned before, it is
known that Eq. (B1) has no solution or infinitely many solutions. Moreover, any (possible) solution can be written as

ppp0 = ppph
0 + pppp

0 , (B2)

where ppph
0 is a solution of the homogenous system

Ω.ppph
0 = 0 (B3)

and pppp
0 is a particular solution to (B1). Clearly, Eq. (B3) is automatically satisfied if ppph

0 = ω and the orthogonality condition
(A12) is also satisfied if pppp

0 is written as

pppp
0 = ω

′× jjj?, (B4)

for some vector ω ′. However, it is not obvious if Eq. (B1) admits a (particular) solution and if this solution can be represented
as Eq. (B4).

In fact, it is readily seen, on the one hand, that Eq. (B1) has (multiple) solutions only if the fluid vorticity and the external
field are perpendicular. On the other hand, under the orthogonality condition, we obtain a (ξ ,ε)−family of pseudo-equilibrium
solutions that can be decomposed as

ppp0 = ξ ω +λΩ
?(ε). jjj?, (B5)

where ξ ∈R and ε = (ε1,ε2,ε3)∈R3, such that ε1+ε2+ε3 = 1, are parameters. Matrix Ω?(ε) is the vorticity or rotation matrix
associated to (vorticity) vector ω?(ε) = (ε1/ω1,ε2/ω2,ε3/ω3), with the convention εm = 0 and εm/ωm = 0 if ωm = 0. This is
our central result for Eq. (B1). Eq. (A14) can also be written as

ppp0 = ξ ω +λω
?(ε)× jjj?. (B6)

Let us observe that ω?(ε) describes an infinite number of (vorticity) vectors satisfying

ω.ω?(ε) = 1. (B7)

The corresponding (vorticity) matrix is given by

Ω
?(ε) =



0 − ε3

ω3

ε2

ω2

ε3

ω3
0 − ε1

ω1

− ε2

ω2

ε1

ω1
0


, (B8)

which can be written as

Ω
?(ε) =

ε1

ω1
Ω1 +

ε2

ω2
Ω2 +

ε3

ω3
Ω3, (B9)

where Ω?
i , i = 1,2,3 is the usual basis of rotation matrices in R3.

We would like to stress that any (pseudo-equilibrium) ppp0 given by (A14) satisfies ppp0. jjj
? = ξ ω. jjj?. This observation, supple-

mented with the above analysis, may provide a natural explanation of the orthogonality condition between the external field and
the fluid vorticity to find exact analytical solutions. In fact, the orthogonality condition is necessary and sufficient to solve the
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pseudo-equilibrium equation under the additional assumption ppp0. jjj
? = 0, which, as mentioned before, simplifies the construction

of the exact general expression (A9).
A more practical choice of εεε = (ε1,ε2,ε3) would be to take εi = ωi/ω2, i = 1,2,3 (recall that ω = ‖ωωω‖). In this case (A15)

simply reads

ppp0 = ξ ωωω +
λ

ω2 ωωω× jjj?. (B10)

Let us note that since a pseudo-equilibrium orientation given by (B10) satisfies

‖ppp0‖2 = ξ
2
ω

2 +
λ 2

ω2 , (B11)

we get an equilibrium orientation for

ξ
2
ω

2 = 1− λ 2

ω2 , (B12)

provided that 1 > λ 2

ω2 .
Once a pseudo-equilibrium is known (see (A14)), our approach can also be used to derive the exact expression of the equilib-

rium orientations of Eq. (5) and to easily study their stability without calculating the exact general expression of ppp (see (A9)).
This is a further evidence of our approach. According to Ansatz (A1), orientation ppp can be written as

ppp = ppp0 + p̃, (B13)

where p̃ satisfies

˙̃p =
1
2
[
Ω̃0.p̃−λ ( jjj?.p̃)p̃

]
, (B14)

where matrix Ω̃0 is given in (A5) or (A6). This suggests that an equilibrium orientation may be written as

pppeq = ppp0 + p̃ppeg, (B15)

where p̃ppeg is an equilibrium solution to (B14);

Ω̃0.p̃ppeg = λ jjj?.p̃ppeg p̃ppeg. (B16)

Even if the above nonlinear equation seems to be difficult to solve, in general, it suffices to note that Eq. (B16) indicates that p̃ppeg

and λ jjj?.p̃ppeg are an eigenvector and an eigenvalue, respectively, of matrix Ω̃0. Therefore, if p̃pp0 is an eigenvector of matrix Ω̃0
associated to an eigenvalue χ 6= 0, a solution to Eq. (B16) can be written as

p̃ppeg =
χ

λ jjj?.p̃pp0
p̃pp0, (B17)

if jjj?.p̃pp0 6= 0, and then

pppeq = ppp0 +
χ

λ jjj?.p̃pp0
p̃pp0. (B18)

If jjj?.p̃pp0 = 0, we use (A6) to deduce firstly that p̃pp0 is also an eigenvector of matrix Ω and then p̃pp0 = 0, from which we get

pppeq = ppp0, (B19)

provided that |ppp0|= 1, otherwise we obtain a contradiction and then jjj?.p̃pp0 6= 0.
To check the stability of the stationary solutions of Eq. (B14) and then the stability of pppeq, we recall that the solution of Eq.

(B14) with initial condition p̃pp(0) has been shown to be

p̃pp(t) =
exp
( 1

2 Ω̃0t
)

p̃pp(0)

1+
λ

2

∫ t

0
jjj?.exp

(
1
2

Ω̃0s
)

p̃pp(0)ds
. (B20)
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In the following we denote by χd the real eigenvalue of matrix Ω̃0 (if any) which strictly dominates (the real part of) other
eigenvalues. Therefore, it is easy to see that if χd > 0, the corresponding eigenvector, p̃ppd

0 , is the unique stable stationary solution
of Eq. (B14). Therefore, orientation ppp tends to pppeq, as t approaches infinity, where

pppeq = ppp0 +
χd

λ jjj?.p̃ppd
0

p̃ppd
0 . (B21)

Let us note that since ppp0 and jjj? (or jjj? and ωωω) are perpendicular the stability of pppeq requires that λ jjj?.pppeq > 0. Similar conclusion
is derived in [7] by a linearized stability analysis involving a small perturbation from pppeq and perpendicular to it. In fact, it is not
difficult to demonstrate that the condition λ jjj?.pppeq > 0 is necessary and sufficient for the (strict) stability of pppeq given by (B21).
Let us note that if matrix Ω̃0 has exactly one real eigenvalue χr such that χr ≤ 0, then ppp exhibits a tumble regime.

By way of illustration without excessive calculation, we firstly consider two cases. Each of these cases may in turn be
carried out in a variety of practical situations. Recall here that we are concerned with exact solutions to Eq. (5) in which jjj? is
perpendicular to vorticity ωωω in most cases.

1. ω1 = ω2 = 0 and ω3 6= 0. The orthogonality condition is satisfied for jjj? = aiii+ b jjj, where a and b are (arbitrary) real
parameters such that a2 +b2 = 1. For ε, there is only one choice; ε1 = ε2 = 0 and ε3 = 1. For ppp0, we may take ξ = 0;

ppp0 = (− λ

ω3
b,

λ

ω3
a,0). (B22)

It follows from this that

Ω̃0 =



λ 2ab
ω3

−ω3 +
λ 2b2

ω3
0

ω3−
λ 2a2

ω3
−λ 2ab

ω3
0

0 0 0


, (B23)

which has 0 and two nontrivial real or pure imaginary complex eigenvalues satisfying

χ
2 = λ

2−ω
2
3 . (B24)

Hence, we may conclude that we have two types of motions (run or tumble regime) depending on whether quantity λ 2−ω2
3

is positive or not.
Firstly, we consider the simple case in which (for instance) ω2

3 = λ 2a2. Hence, the spectrum of matrix Ω̃0 is given by
σ(Ω̃0) =

{
0,±λ 2ab/ω3

}
. Clearly, we have χd = λ 2ab/ω3 if λ 2ab/ω3 > 0. The corresponding eigenvector is shown to

be p̃ppd
0 = (1,0,0) together with (B21) we deduce that

pppeq =
b
|b|

(0,1,0). (B25)

In the similar way we get for the case χd =−λ 2ab/ω3 > 0 the stable equilibrium orientation

pppeq =
b
|b|

(2ab,b2−a2,0). (B26)

Next, we consider the case where λ 2−ω2
3 > 0 and assume that ω2

3 6= λ 2a2 and ω2
3 6= λ 2b2. The case ω2

3 = λ 2b2 which is
similar to the case ω2

3 = λ 2a2 is left to the reader.

From (B24), we have χd =
√

λ 2−ω2
3 and a simple calculation leads to the following eigenvector

p̃ppd
0 =

λ 2ab+ω3

√
λ 2−ω2

3

ω2
3 −λ 2a2 ,1,0

 , (B27)

or

p̃ppd
0 =

1,
λ 2ab−ω3

√
λ 2−ω2

3

ω2
3 −λ 2b2 ,0

 , (B28)
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which are collinear. The stable equilibrium orientation is then given by

pppeq = (− λ

ω3
b,

λ

ω3
a,0)+

√
λ 2−ω2

3

λ

1
jjj?.p̃ppd

0
p̃ppd

0 , (B29)

where p̃ppd
0 satisfies (B27) or (B28). For the special case in which jjj? = j (a = 0,b = 1) with λ 2 > ω2

3 , we deduce from
(B27) and (B29)

pppeq = (−ω3

λ
,

1
λ

√
λ 2−ω2

3 ,0). (B30)

If we suppose that λ 2 < ω2
3 , we can see from (B13) and (B20) that any solution to (5) oscillates (tumble regime).

2. ω1,ω2 6= 0,ω3 = 0. In this case, we have different possibilities for ε = (ε1,1− ε1,0), and for jjj?. Here, setting jjj? = kkk and
making use of (A14), one sees that a pseudoequilibrium solution can be expressed as (ξ = 0)

ppp0 = λ (
1− ε1

ω2
,− ε1

ω1
,0). (B31)

Matrix Ω̃0 reads

Ω̃0 =



0 0 ω2 +
λ 2(ε1−1)

ω2

0 0 −ω1 +
λ 2ε1

ω1

−ω2 ω1 0


, (B32)

and has one null eigenvalue and two eigenvalues satisfying

χ
2 = λ

2−ω
2
2 −ω

2
1 , (B33)

leading, as above, to run or tumble regime depending on whether quantity λ 2−ω2
1 −ω2

2 is positive or negative.

For λ 2 > ω2
1 +ω2

2 (run regime), we have χd =
√

λ 2−ω2
1 −ω2

2 and the corresponding eigenvector can be written as

p̃ppd
0 =

(
ω2

2 +λ 2(ε1−1)
ω2χd

,
−ω2

1 +λ 2ε1

ω1χd
,1
)
. (B34)

The analog of (B29) is

pppeq = λ (
1− ε1

ω2
,− ε1

ω1
,0)+

√
λ 2−ω2

1 −ω2
2

λ

1
kkk.p̃ppd

0
p̃ppd

0 , (B35)

from which one obtains

pppeq = (
ω2

λ
,−ω1

λ
,

√
λ 2−ω2

1 −ω2
2

λ
). (B36)

It is important to notice that the particle motions or the eigenvalues of matrix Ω̃0 do not depend on the choice of parameter
ε1. We have seen, for example, that the choice ppp0 = λ/ω2iii (ε1 = 0) is sufficient to derive an analytical expression for the
orientation vector.
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